

1 **Manuscript title:** Influence of opponent ranking on the physical demands encountered during
2 Ultimate Frisbee match-play

3
4 Authors:

5 Daniel Castillo. Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
6 danicasti5@gmail.com

7
8 Javier Raya-González. Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
9 rayagonzalezjavier@gmail.com

10
11 Aaron T. Scanlan. Human Exercise and Training Laboratory, School of Health, Medical and
12 Applied Sciences, Central Queensland University, Rockhampton, Australia.
13 A.Scanlan@cqu.edu.au

14
15 Marta Domínguez-Díez. Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
16 mdomid00@gmail.com

17
18 María C. Madueno. Human Exercise and Training Laboratory, School of Health, Medical and
19 Applied Sciences, Central Queensland University, Rockhampton, Australia.
20 maria.madueno@cqumail.com

21
22 *Corresponding Author:*

23 Javier Raya-González. Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
24 rayagonzalezjavier@gmail.com

25

26

27

28

29

30

31

32 **Influence of opponent ranking on the physical demands encountered during Ultimate**
33 **Frisbee match-play**

34

35 **Abstract**

36 There is a lack of evidence regarding the match demands encountered in elite Ultimate Frisbee
37 (UF) overall and dependent upon opponent ranking. These data may be useful to elite UF
38 coaches to implement optimal training loads and recovery strategies. Therefore, this study
39 quantified the physical demands of elite UF match-play and analysed differences in demands
40 according to opponent ranking. Twelve UF players from the same national team participated in
41 the study. An observational design was used to compare the physical demands encountered by
42 players between opponents carrying different rankings (1st, 3rd, 4th, and 5th) during four
43 official matches in a 5-team competition. No significant differences ($p > 0.05$) in sprinting and
44 repeated-sprinting activity were evident across UF matches between opponents. In contrast, a
45 higher (*moderate-large*) quantity and greater intensities of body impacts were observed in UF
46 matches played against higher-ranked (1st) compared to lower-ranked teams (3rd, 4th, and 5th).
47 Additionally, greater (*moderate-large*) PL and metabolic power were observed in matches
48 played against higher-ranked (1st) compared to lower-ranked teams (3rd and 4th). These
49 findings suggest coaches may need to reduce the training loads in the next days after the
50 matches played against higher-ranked opponents compared to when facing lower-ranked
51 opponents.

52

53 **Word Count:** 199

54

55 **Keywords:** external loads; sprints; impacts; metabolic power; Player Load.

56

57 **Introduction**

58 Ultimate Frisbee (UF) is considered an alternative, hybrid, non-contact sport as it contains rules,
59 movements, and physical demands indicative of more common team sports such as rugby,
60 basketball, netball, and football (Scanlan, Kean, Humphries, & Dalbo, 2015). The popularity
61 and professionalism of UF has grown since its development in 1967 (Marfleet, 1991), with
62 many competitions now held at regional, national, and international levels (Griggs, 2009). [This](#)
63 [team sport](#) is played by millions of people in approximately 50 countries around the world
64 (Scanlan et al., 2015). [Official matches are](#) administered on a soccer-sized pitch between two
65 teams of seven players (Krustrup & Mohr, 2015) aiming to score goals by passing a flying disc
66 (or FrisbeeTM) and catching it in the attacking end-zone (Madueno, Kean, & Scanlan, 2017).
67 Matches are completed when the first team reaches 15 goals with at least a two-goal advantage
68 or when a pre-defined playing duration is met (i.e. 60 min) (WFDF, 2016). Therefore, the
69 duration of UF matches can vary depending on the score ([e.g., from 53 min to 75 min](#)), which
70 may dictate the physical demands encountered by players.

71 In team sports, when quantifying the physical demands encountered during match-play,
72 high-intensity actions are particularly useful to measure given they can occur in critical match
73 situations such as creating passing options to facilitate goal opportunity (Faude, Steffen,
74 Kellmann, & Meyer, 2014). During a UF match, players undertake intermittent activity
75 involving sprints, accelerations, decelerations, changes-of-direction, jumps, and lateral
76 displacements (Krustrup & Mohr, 2015; Scanlan et al., 2015). In fact, collegiate, male UF
77 players cover 4.70 ± 0.47 km, including ~ 600 m of high-intensity running ($14\text{--}22 \text{ km}\cdot\text{h}^{-1}$) and
78 ~ 200 m moving above $22 \text{ km}\cdot\text{h}^{-1}$ during match-play (Krustrup & Mohr, 2015). Furthermore,
79 recreational, male and female players undergo high physical loading across all movement
80 planes covering ~ 3 km during match-play estimated with accelerometry (Madueno et al.,
81 2017). Although the physical demands regarding the distance covered at different speeds and

82 loading experienced by players has been examined during collegiate (Krustrup & Mohr, 2015)
83 and recreational (Madueno et al., 2017) UF matches, reporting a wider range of variables in
84 higher competitions, such as at the national level, is necessary to understand the precise physical
85 demands imposed in elite UF players to maximise their on-field performance.

86 In recent years, advances in match analysis technology have provided valid and reliable
87 methods to assess activity profiles and mechanical load in team sport players during matches
88 (Malone, Lovell, Varley, & Coutts, 2017). Although video based-tracking technology and local
89 positioning systems (i.e. indoor global positioning systems (GPS)) are available to use, their
90 high cost for installation and operation, as well as the potential time-consuming requirements
91 for data acquisition and/or system setup make them practically challenging to use in quantifying
92 the physical demands during match-play (Beato, Jamil, & Devereux, 2018; Fox, Scanlan &
93 Stanton, 2017). Thus, the integration of accelerometers with GPS technology in micro-sensors
94 have allowed the physical demands encountered in team sport match-play to be readily and
95 comprehensively quantified using a suite of variables such as speed, acceleration, collisions,
96 and repeated high-intensity efforts (Gabbett, Jenkins, & Abernethy, 2012). In this regard,
97 technology quantifies the sum of the individual tri-axial accelerometer vectors registered during
98 player movement to derive body impacts (Malone et al., 2017). In addition, other variables such
99 as player load (PL), equivalent distance index (EDI), and metabolic power can be determined
100 using micro-sensor technology (Dalen, Ingebritsen, Ettema, Hjelde, & Wisloff, 2016).
101 Therefore, quantifying a wide range of variables indicative of the physical demands
102 encountered during match-play may provide more detailed evidence for coaching staff to
103 periodize the weekly microcycle and optimize player performance (Mujika, 2013). While
104 monitoring players using micro-sensor technology permits quantification of player demands
105 during matches, it is also essential to determine the impact of contextual factors on player
106 demands.

107 In team sports, physical match demands may be influenced by various contextual factors
108 such as match location (Lago-Peñas & Lago-Ballesteros, 2011), playing style (Castellano,
109 Blanco-Villaseñor, & Álvarez, 2011), and opponent ranking (Castillo, Castagna, Cámaras,
110 Iturriastillo, & Yanci, 2018). In UF, given the duration of matches, and thus opportunity to
111 perform activity, can vary depending on the score-line, opponent ranking may exert a
112 pronounced influence on the demands encountered by players. Indeed, research in other team
113 sports, such as soccer (Hulka, Radim, Belka, & Háp, 2015) and rugby union (Murray & Varley,
114 2015) have shown match-play against higher-ranked teams elicits higher ($P < 0.05$)
115 physical demands than match-play against lower-ranked teams. Insight regarding the impact of
116 opponent ranking on match demands in UF may be useful to implement optimal training loads
117 and recovery strategies dependent on the team faced. Thus, the aim of this study was twofold:
118 1) to describe the physical demands of elite UF match-play and 2) to compare the physical
119 demands encountered during UF matches according to opponent ranking. It was hypothesized
120 that matches played against higher-ranked teams would elicit higher physical demands.

121

122 **Material and methods**

123 *Participants*

124 Twelve male ($n = 8$) and female ($n = 4$) UF players (age = 28.1 ± 5.3 years, height = 173 ± 7
125 cm, body mass = 71.1 ± 12 kg, body mass index (BMI) = $23.4 \pm 2.6 \text{ kg} \cdot \text{m}^{-2}$, training experience
126 = 10.4 ± 5.1 years), from the same national team participated in the study. These players
127 participated in at least 80% (50.2 ± 11.1 min) of total match time across all matches and were
128 consequently selected for further analysis. All players trained at least three times a week and
129 were competing in an official, national-level match every two weeks for two months.

130

131 The criteria for allocating opponent ranking was based on each team's final position in
132 the competition (Castillo et al., 2018). The team in this study was ranked 2nd in the five-team
133 competition, while the order of matches was as follows: match one = 5th-ranked team; match
134 two = 4th-ranked team; match three = 3rd-ranked team; and match four = 1st-ranked team. All
135 official matches were played at the same time (12:00 h) on the same UF pitch. All players
136 participated voluntarily in the study and provided written consent prior to testing. The study
137 was approved by a local ethics committee before commencement in accordance with the
138 Declaration of Helsinki.

139

140 *Experimental design*

141 An observational design was used whereby four matches of an official UF competition were
142 monitored. Each match consisted of two 30-min halves with a 5-min rest period between halves.
143 Match rules state when the clock reaches full-time, play continues until one of the teams scores.
144 The match was considered finished when a team scored 15 goals with a two-goal advantage
145 (Krstrup & Mohr, 2015). The final durations were: 1st ranked team = 75 min, 3rd ranked team
146 = 74 min, 4th ranked team = 53 min, and 5th ranked team = 71 min. The field was comprised of
147 an outdoor, natural grass floor, spanning 100 m in length (including two 15-m end zones) and
148 60 m in width. An official referee was present to tabulate the score and ensure match rules
149 were followed. Prior to each match, players undertook a 20-min standardized warm-up
150 consisting of slow jogging, strolling locomotion, dynamic stretching, UF-specific exercises
151 (e.g., different passes in groups), and brief progressive sprints.

152

153 *Physical demands*

154 The physical demands of players were monitored using micro-sensor units containing a 10-Hz
155 GPS (Wimu ProTM, RealTrack Systems, Almería, Spain) (Bastida-Castillo, Gómez-Carmona,

156 De la Cruz-Sánchez, & Pino-Ortega, 2018). Micro-sensor units were affixed between the
157 scapulae of each player in a fitted vest worn during the entirety of each match. The micro-sensor
158 units were activated 15 min before the start of each match in accordance with manufacturer
159 recommendations. Data were downloaded post-match to a computer and analysed using a
160 customized software package (WIMU SPRO, version 1.0, Almería, Spain). The validity and
161 reliability of the WIMU microsensor units for the measurement of sprints, body impacts, and
162 load variables are supported elsewhere (Bastida-Castillo et al., 2018). A number of physical
163 measures were recorded and taken as outcome variables across each match. Sprinting variables
164 included the quantity of sprints ($>22 \text{ km}\cdot\text{h}^{-1}$) performed, maximum velocity (Vel_{\max}) reached,
165 and the quantity of repeated-sprinting bouts (sprints completed within 30 s after finishing the
166 previous sprint [RSA_{30}] and sprints completed within 20 s after finishing the previous sprint
167 [RSA_{20}]). Body impacts were detected from accelerometer data provided in "g" force. An
168 impact was identified by the system if the force applied was greater than 5g. The total impact
169 count from collisions, intensity of each impact, and the time in the match where the impact
170 occurred were recorded. A scaling system between 5-10+g for grading the impacts was used as
171 follows: I5-6g: light impact (hard acceleration/deceleration/change-of-direction); I6-6.5g: light
172 to moderate impact (player collision, contact with the ground); I6.5-7g: moderate to heavy
173 impact; I7-8g: heavy impact; I8-10g: very heavy impact; and I10+g: severe impact/collision
174 (Abade, Gonçalves, Leite, & Sampaio, 2014). Various loading variables were also taken [using](#)
175 [the accelerometer](#), including PL, maximum EDI (EDI_{\max}), mean EDI (EDI_{mean}), and metabolic
176 power. Player load was computed as the vector magnitude representing the sum of accelerations
177 recorded in the anteroposterior, mediolateral, and vertical planes of movement, measured with
178 100-Hz triaxial piezoelectric linear accelerometers in the micro-sensors (Dalen et al., 2016).
179 Equivalent distance index represents the relation between the distance a player would have
180 covered at a steady pace on grass using the same total energy spent over the match and the

181 actual distance covered during the match (Osgnach, Poser, Bernardini, Rinaldo, & di Prampero,
182 2010). From these data, EDI_{max} and EDI_{mean} were determined for each match. Finally, metabolic
183 power was derived using the mathematical model proposed by di Prampero et al. (2005) to
184 estimate overall metabolic cost across each match (Gaudino, Alberti, & Iaia, 2014).

185

186 *Statistical analyses*

187 All variables are reported as mean \pm standard deviation (SD). Normal distribution and
188 homogeneity of variances was confirmed with the Kolmogorov-Smirnov and Levene tests. The
189 repeated measures analysis of variance (ANOVA) with the Bonferroni post hoc test was used
190 to compare the physical demands of players among each match. Effect sizes (ES) with
191 uncertainty of the estimates shown as 90% confidence limits (CL) were used to quantify the
192 magnitude of the difference between the four matches against varied opponents. Effect sizes
193 were classified as *trivial* (<0.2), *small* (0.2-0.59), *moderate* (0.6-1.19), *large* (1.2-1.99), *very*
194 *large* (2.0-3.99), and *extremely large* (≥ 4.0) (Hopkins, Marshall, Batterham, & Hanin, 2009).

195 Statistical analysis was performed using the Statistical Package for Social Sciences (version
196 25.0 for Windows, SPSS Inc, Chicago, IL, USA). The level of significance was set at $p < 0.05$.

197

198 **Results**

199 Mean \pm SD sprinting variables against each opponent are shown in Table 1. No significant
200 differences ($p > 0.05$, *trivial-small*) in sprinting variables were observed across UF matches
201 against differently-ranked opponents.

202

203 **### Table 1 about here ###**

204

205 Mean \pm SD body impacts against each opponent are shown in Table 2. A higher quantity of
206 total body impacts was registered against the 1st-ranked team compared to the 5th- ($p < 0.01$,
207 *moderate*), 4th- ($p < 0.01$, *large*), and 3rd-ranked teams ($p < 0.01$, *moderate*). In addition, higher
208 total body impacts were encountered against the 5th-ranked team compared to the 4th-ranked
209 team ($p < 0.01$, *moderate*) (Table 2). Body impacts at each intensity (e.g., I5-6g, I6-6.5, 6.5-7g,
210 I7-8g, I8-10g and $>I10+g$) were higher ($p < 0.05$, *moderate-large*) against the 1st-ranked team
211 compared to all other opponents.

212

213 **### Table 2 about here ###**

214

215 Mean \pm SD loading variables against each opponent are shown in Table 3. PL against the 4th-
216 ranked team was lower ($p < 0.01$, *large*) than against all other opponents. In addition, PL against
217 the 1st-ranked team was higher ($p < 0.01$, *moderate*) than against the 3rd-ranked team. No
218 significant differences ($p > 0.05$) in EDI_{max} and EDI_{mean} were observed across UF matches
219 against differently-ranked opponents. A lower metabolic power was evident against the 4th-
220 ranked team ($p < 0.01$, *large*) compared to all other opponents. Additionally, metabolic power
221 against the 1st-ranked team was higher ($p < 0.05$, *moderate*) than against the 3rd-ranked team.

222

223 **### Table 3 about here ###**

224

225 **Discussion and Implication**

226 The main aim of this study was [to quantify](#) and analyse the differences in physical demands
227 registered during national-level UF matches according to opponent ranking. To our knowledge,
228 this is the first study reporting the influence of opponent ranking on match demands in UF. Our

229 results indicate higher volumes and intensities of body impacts, PL, and metabolic power were
230 encountered during matches played against higher-ranked teams than lower-ranked teams.

231 This study is the first to quantify body impacts during UF matches, showing competition
232 against higher-ranked teams promoted more frequent and intense impacts than when playing
233 against lower-ranked teams. Quantification of body impacts in team sports may provide insight
234 on the fatigue accumulated across competition in players (Arruda et al., 2015). In fact, studies
235 have considered quantification of body impacts during match-play as a useful variable to
236 quantify match and training loads in team sports (Gaudino et al., 2014), compared to other
237 physical measures such as TD and high-running intensity (Abade et al., 2014; Arruda et al.,
238 2015). Considering body impacts do not only refer to collisions, and include actions such as
239 hard accelerations and decelerations, changes-of-direction, or contact with the ground (Moreira
240 et al., 2016), it was unsurprising many impacts were detected in our study examining national-
241 level UF players. Our data revealed similar external loads in terms of volume and intensity of
242 body impacts as previous studies in rugby and soccer players (Arruda et al., 2015; McLellan,
243 Lovell, & Gass, 2011). While a total of 816 ± 366 body impacts were encountered by UF
244 players, 830 ± 135 and ~ 850 body impacts were found in elite, adult rugby league (McLellan
245 et al., 2011) and international, junior soccer players (Arruda et al., 2015), respectively during
246 match-play. These data suggest the impact demands encountered during national-level UF are
247 comparable to elite players in more traditional field-based team sports. Furthermore, a higher
248 quantity and intensity of body impacts occurred as opponent ranking increased during UF
249 match-play. These differences could be due an alteration of tactical behaviours when playing
250 against higher-ranked teams, whereby more frequent high-intensity actions (i.e., accelerations,
251 decelerations, jumps and changes-of-direction) are performed to evade or defend a higher level
252 of opponent in offensive and defensive situations (Folgado, Goncalves, & Sampaio, 2018).

253 Further to impact data, PL and metabolic power exhibited significant differences in
254 matches according to opponent ranking. In this regard, PL and metabolic power against the 4th-
255 ranked team ($p < 0.01$, *large*) were lower compared to all other opponents. In addition, PL and
256 metabolic power were *moderately* higher against the 1st-ranked team than the 3rd-ranked team.
257 These load variables are indicative of the volume of activity performed, being determined by
258 the product of movement intensity and duration. In line with previous studies reporting
259 higher physical loading volumes when competing against higher opponents in soccer (Hulka et
260 al., 2015) and rugby union (Murray & Varley, 2015), our findings may be due to the tactical
261 strategies adopted when facing higher-ranked opponents. Specifically, better teams may
262 manage the tempo of the match by retaining possession of the disc more effectively through
263 passing and catching the disc, creating less unforced turnovers. Consequently, when defending
264 in these situations, the analysed team implemented individual player-to-player marking on
265 defence to increase pressure on the opposition across the pitch. In this sense, defensive
266 formations involving individualized marking evoke higher work intensities than zone
267 formations with less stringent defending (Ngo et al., 2012), which may underpin the greater PL
268 and metabolic power we observed against the 1st-ranked team.

269 Sprinting actions play a key role during critical scoring periods in team sports,
270 potentially impacting the outcome of matches and physical performance of players (Cochrane
271 & Monaghan, 2018). Our results indicate no significant differences in sprinting activity (<22
272 $\text{km}\cdot\text{h}^{-1}$) were apparent during matches played against differently-ranked opponents in UF.
273 These findings may be due to the same playing structure (i.e., two handlers and five cutters)
274 being used by the team analysed in this study across all matches, promoting similar offensive
275 tactical behaviours and therefore sprinting actions in creating space for passing and catching
276 opportunities. These results concur with those reported by Varley et al. (2018) who observed
277 consistent sprint performance across 3 successive, international soccer matches. However, the

278 lack of differences in sprinting demands we observed between opponents contrasts other
279 research conducted in soccer and rugby union showing greater sprinting distances are
280 encountered during matches played against higher-ranked teams than lower-ranked teams
281 (Hulka et al., 2015; Murray & Varley, 2015). Differences in findings across studies might
282 underline the variations in movement patterns across teams or competitions, as well as relate to
283 the different requirements of soccer and rugby union compared to UF. More precisely, these
284 ball sports may involve more sprinting work when facing better opponents given offensive
285 positioning on the field is dictated by defensive structures (i.e. players can be ruled offside if
286 not in correct positioning) possibly allowing more talented players to make breaks in the
287 defensive line and rapidly move across the pitch, requiring defenders to sprint more readily to
288 prevent scoring (Higham, Hopkins, Pyne, & Anson, 2014).

289 While this study provides novel insight regarding the impact of opponent ranking on
290 match demands in national-level UF players, it is not exempt from limitations. [The main](#)
291 [limitation was the unequal duration of the matches \(53 to 75 min\), which should be considered](#)
292 [when interpreting the provided data given variables were not reported relative to time.](#) In
293 addition, opponent ranking was identified according to the final position at the end of the
294 competition ([Castillo et al. 2018](#)). We are aware the ranking of teams may change from match
295 to match in a competition format, depending on the win/loss record of the team. However, final
296 placing in the competition is likely to reflect the longitudinal performance of each team across
297 the entire competition and thus was used to establish criteria to adjudge team ranking in our
298 study. In addition, only four UF matches were examined in the present study. While
299 examination of a wider number of matches would have been ideal, the included matches
300 allowed for an effective comparison between all teams in the competition holding different
301 rankings. Furthermore, only one contextual factor (opponent rank) was considered in this study.
302 Other contextual factors (e.g., match location, playing style) ([Castellano et al., 2011](#)) may have

303 affected the physical demands encountered by players and should be considered in future
304 investigations. Finally, we included a range of variables to comprehensively quantify match
305 demands in elite UF. Given the practical advantage in reducing the volume of data needed for
306 interpretation of match demands, future work is encouraged applying appropriate analyses (e.g.
307 principal component analysis) to identify variables that provide unique insight (Weaving, Jones,
308 Till, Abt, & Beggs, 2017).

309

310 **Conclusions**

311 The current results first emphasize the high physical demands required of players during UF
312 match-play at the national level. Specifically, players undergo extensive intermittent and high-
313 intensity activity involving sprints and repeated-sprinting bouts, with high volumes and
314 intensities of body impacts and loading. Second, the novel analysis of match demands
315 considering the ranking of the opposing team showed coaching staff may need to prepare and
316 manage players differently dependent upon the quality of the opposition faced. Specifically,
317 matches played against higher-ranked teams may imposed greater volumes and intensities of
318 body impacts, PL, and metabolic power than matches played against lower-ranked teams.
319 Consequently, UF coaching staff may reduce the training loads in the next days after the
320 matches played against higher-ranked opponents compared to when facing lower-ranked
321 opponents. Third, greater precision in the planning of player training loads and recovery
322 considering opponent ranking may allow coaches to optimize player performance and minimize
323 overuse injury risk across the season.

324

325 **Acknowledgements**

326 Authors gratefully acknowledge participation of Cidbee UF Club in this study.

327

328 **Disclosure statement**

329 No potential conflict of interest was reported by the authors.

330

331 **References**

332 Abade, E. A., Gonçalves, B. V., Leite, N. M., & Sampaio, J. E. (2014). Time–motion and
333 physiological profile of football training sessions performed by Under-15, Under-17, and
334 Under-19 elite portuguese players. *International Journal of Sports Physiology and*
335 *Performance*, 9(3), 463–470.

336 Arruda, A. F. S., Carling, C., Zanetti, V., Aoki, M. S., Coutts, A. J., & Moreira, A. (2015).
337 Effects of a very congested match schedule on body-load impacts, accelerations, and
338 running measures in youth soccer players. *International Journal of Sports Physiology and*
339 *Performance*, 10(2), 248–252.

340 Bastida-Castillo, A., Gómez-Carmona, C. D., De la Cruz-Sánchez, E., & Pino-Ortega, J. (2018).
341 Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based
342 position-tracking systems used for time-motion analyses in soccer. *European Journal of*
343 *Sport Science*, 18(4), 450–457.

344 Beato, M., Jamil, M., & Devereux, G. (2018). The reliability of technical and tactical tagging
345 analysis conducted by a semi-automatic VTS in soccer. *Journal of Human Kinetics*, 62,
346 103–110.

347 Castellano, J., Blanco-Villaseñor, A., & Álvarez, D. (2011). Contextual variables and time-
348 motion analysis in soccer. *International Journal of Sports Medicine*, 32(06), 415–421.

349 Castillo, D., Castagna, C., Cámara, J., Iturriastillo, A., & Yanci, J. (2018). Influence of team's
350 rank on soccer referees' external and internal match loads during official matches. *Journal*
351 *of Strength and Conditioning Research*, 32(6), 1715–1722.

352 Cochrane, D. J., & Monaghan, D. (2018). Using sprint velocity decrement to enhance acute

353 sprint performance. *Journal of Strength and Conditioning Research*. (Ahead of print)

354 Dalen, T., Ingebritsen, J., Ettema, G., Hjelde, G. H., & Wisloff, U. (2016). Player load,
355 acceleration, and deceleration during forty-five competitive matches of elite soccer.

356 *Journal of Strength and Conditioning Research*, 30(2), 351–359.

357 di Prampero, P. E., Fusi, S., Sepulcri, L., Morin, J. B., Belli, A., & Antonutto, G. (2005). Sprint
358 running: a new energetic approach. *The Journal of Experimental Biology*, 208, 2809–2816.

359 Faude, O., Steffen, A., Kellmann, M., & Meyer, T. (2014). The effect of short-term interval
360 training during the competitive season on physical fitness and signs of fatigue: a crossover
361 trial in high-level youth football players. *International Journal of Sports Physiology and*
362 *Performance*, 9(6), 936–944.

363 Folgado, H., Goncalves, B., & Sampaio, J. (2018). Positional synchronization affects physical
364 and physiological responses to preseason in professional football (soccer). *Research in*
365 *Sports Medicine*, 26(1), 51–63.

366 Fox, J. L., Scanlan, A. T., & Stanton, R. (2017). A review of player monitoring approaches in
367 basketball: current trends and future directions. *Journal of Strength and Conditioning*
368 *Research*, 31(7), 2021–2029.

369 Gabbett, T. J., Jenkins, D. G., & Abernethy, B. (2012). Physical demands of professional rugby
370 league training and competition using microtechnology. *Journal of Science and Medicine*
371 *in Sport*, 15(1), 80–86.

372 Gaudino, P., Alberti, G., & Iaia, F. M. (2014). Estimated metabolic and mechanical demands
373 during different small-sided games in elite soccer players. *Human Movement Science*,
374 36(2014), 123–133.

375 Griggs, G. (2009). ‘Just a sport made up in a car park?’: the ‘soft’ landscape of Ultimate Frisbee.
376 *Social & Cultural Geography*, 10(7), 757–770.

377 Higham, D., Hopkins, W., Pyne, D., & Anson, J. (2014). Patterns of play associated with

378 success in international rugby sevens. *International Journal of Performance Analysis in*
379 *Sport*, 14, 111–122.

380 Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics
381 for studies in sports medicine and exercise science. *Medicine and Science in Sports and*
382 *Exercise*, 41(1), 3–13.

383 Hulka, K., Radim, W., Belka, J., & Háp, P. (2015). The influence of different level of opponents
384 on internal responses and external loads during small-sided games in soccer. *Acta*
385 *Gymnica*, 45(3), 113–119.

386 Krstrup, P., & Mohr, M. (2015). Physical demands in competitive ultimate frisbee. *Journal of*
387 *Strength and Conditioning Research*, 29(12), 3386–3391.

388 Lago-Peñas, C., & Lago-Ballesteros, J. (2011). Team quality and game location effects in
389 English professional soccer. *Journal of Sports Science and Medicine*, 26(4), 465–471.

390 Madueno, M. C., Kean, C. O., & Scanlan, A. T. (2017). The sex-specific internal and external
391 demands imposed on players during Ultimate Frisbee game-play. *The Journal of Sports*
392 *Medicine and Physical Fitness*, 57(11), 1407–1414.

393 Malone, J. J., Lovell, R., Varley, M. C., & Coutts, A. J. (2017). Unpacking the black box:
394 Applications and considerations for using gps devices in sport. *International Journal of*
395 *Sports Physiology and Performance* 12, 218-226.

396 Marfleet, P. (1991). Ultimate injuries: a survey. *British Journal of Sports Medicine*, 25(4), 235–
397 240.

398 McLellan, C. P., Lovell, D. I., & Gass, G. C. (2011). Biochemical and endocrine responses to
399 impact and collision during elite Rugby League match play. *Journal of Strength and*
400 *Conditioning Research*, 25(6), 1553–1562.

401 Moreira, A., Saldanha Aoki, M., Carling, C., Alan Rodrigues Lopes, R., Felipe Schultz de
402 Arruda, A., Lima, M., ... Bradley, P. S. (2016). Temporal changes in technical and

403 physical performances during a small-sided game in elite youth soccer players. *Asian*
404 *Journal of Sports Medicine*, 7(4), e35411.

405 Mujika, I. (2013). The alphabet of sport science research starts with Q. *International Journal*
406 *of Sports Physiology and Performance*, 8(5), 465–466.

407 Murray, A. M., & Varley, M. C. (2015). Activity profile of international rugby sevens: Effect
408 of score line, opponent, and substitutes. *International Journal of Sports Physiology and*
409 *Performance*, 10(6), 791–801.

410 Ngo, J. K., Tsui, M.-C., Smith, A. W., Carling, C., Chan, G.-S., & Wong, D. P. (2012). The
411 effects of man-marking on work intensity in small-sided soccer games. *Journal of Sports*
412 *Science and Medicine*, 11(1), 109–114.

413 Osgnach, C., Poser, S., Bernardini, R., Rinaldo, R., & di Prampero, P. E. (2010). Energy cost
414 and metabolic power in elite soccer: a new match analysis approach. *Medicine and Science*
415 *in Sports and Exercise*, 42(1), 170–178.

416 Scanlan, A. T., Kean, C. O., Humphries, B. J., & Dalbo, V. J. (2015). Physiological and fatigue
417 responses associated with male and mixed-gender Ultimate Frisbee Game Play. *Journal*
418 *of Strength and Conditioning Research*, 29(9), 2600–2607.

419 Varley, M. C., Di Salvo, V., Modonutti, M., Gregson, W., & Mendez-Villanueva, A. (2018).
420 The influence of successive matches on match-running performance during an under-23
421 international soccer tournament: The necessity of individual analysis. *Journal of Sports*
422 *Sciences*, 36(5), 585–591.

423 Weaving, D., Jones, B., Till, K., Abt, G., & Beggs, C. (2017). The case for adopting a
424 multivariate approach to optimize training load quantification in team sports. *Frontiers in*
425 *Physiology*, 8, 1024.

426 WFDF. (2016). *Ultimate rules 2013-2016*.

427

428 **Table 1.** Mean \pm standard deviation sprinting variables during Ultimate Frisbee matches played
 429 against differently-ranked opponents.
 430

Variable	Opponent (ranking)				Total	Statistical differences
	1 st	3 rd	4 th	5 th		
Sprints (bouts)	9.3 \pm 8.4	6.8 \pm 5.6	9.8 \pm 5.4	8.3 \pm 6.5	8.5 \pm 6.4	No significant differences (p > 0.05).
Vel _{max} (km·h ⁻¹)	25.4 \pm 4.1	25.9 \pm 3.4	27.3 \pm 3.8	25.5 \pm 3.0	26.0 \pm 3.5	No significant differences (p > 0.05).
RSA ₃₀ (bouts)	2.10 \pm 2.33	1.20 \pm 1.40	2.00 \pm 1.66	2.22 \pm 2.73	1.87 \pm 2.04	No significant differences (p > 0.05).
RSA ₂₀ (bouts)	0.80 \pm 1.40	0.80 \pm 0.92	1.11 \pm 1.05	0.78 \pm 0.97	0.87 \pm 1.07	No significant differences (p > 0.05).

431 Abbreviations: CL: confidence limits; RSA₂₀: number of repeated sprints completed within 20 s of the
 432 previous sprint; RSA₃₀: number of repeated sprints completed within 30 s of the previous sprint.
 433

434
435 **Table 2.** Mean \pm standard deviation body impacts during Ultimate Frisbee matches played
436 against differently-ranked opponents.

Variable	Opponent (ranking)				Total	Statistical differences (Effect size; $\pm 90\%$ CL)
	1 st	3 rd	4 th	5 th		
Impacts	1017 \pm 456	764 \pm 289	605 \pm 246	863 \pm 352	816 \pm 366	Large: 1 st vs.4 ^{th**} (1.95; ± 0.85) Moderate: 4 th vs.5 ^{th**} (-0.71; ± 0.32); 1 st vs.5 ^{th**} (0.74; ± 0.75); 3 rd vs.4 ^{th**} (0.89; ± 0.40); 1 st vs.3 ^{rd**} (0.80; ± 0.44)
I5-6g	459 \pm 202	357 \pm 134	251 \pm 84	420 \pm 118	374 \pm 158	Large: 4 th vs.5 ^{th**} (-1.31; ± 0.40); 3 rd vs.4 ^{th**} (1.28; ± 0.75); 1 st vs.4 ^{th**} (2.47; ± 1.23) Moderate: 1 st vs.5 ^{th*} (0.69; ± 1.05); 1 st vs.3 ^{rd**} (0.70; ± 0.45)
I6-6.5g	152 \pm 70.09	115 \pm 40	93 \pm 39	178 \pm 109	124 \pm 57	Large: 1 st vs.4 ^{th**} (1.76; ± 0.84) Moderate: 4 th vs.5 ^{th**} (-0.66; ± 0.54); 3 rd vs.4 ^{th**} (0.72; ± 0.37); 1 st vs.3 ^{rd**} (0.84; ± 0.48)
I6.5-7g	116 \pm 56	90 \pm 35	69 \pm 38	94 \pm 49	93 \pm 46	Large: 1 st vs.4 ^{th**} (1.53; ± 0.72) Moderate: 1 st vs.5 ^{th*} (0.77; ± 0.79); 3 rd vs.4 ^{th**} (0.83; ± 0.29); 1 st vs.3 ^{rd*} (0.94; ± 0.48)
I7-8g	143 \pm 77	107 \pm 49	96 \pm 56	115 \pm 75	116 \pm 65	Large: 1 st vs.4 ^{th**} (1.24; ± 0.56) Moderate: 1 st vs.5 ^{th*} (0.68; ± 0.57); 1 st vs.3 ^{rd**} (0.67; ± 0.43)
I8-10g	109 \pm 71	74 \pm 49	73 \pm 42	79 \pm 63	84 \pm 57	Large: 1 st vs.4 ^{th**} (1.27; ± 0.68) Moderate: 1 st vs.5 ^{th*} (0.61; ± 0.45); 1 st vs.3 ^{rd*} (0.65; ± 0.37)
I10+g	39 \pm 35	21 \pm 19	23 \pm 19	19 \pm 23	26 \pm 26	Large: 1 st vs.4 ^{th**} (1.19; ± 0.61) Moderate: 1 st vs.5 ^{th*} (0.64; ± 0.44); 1 st vs.3 ^{rd**} (0.81; ± 0.54)

437 Note: * Significant level was set at $p<0.05$ ** Significant level was set at $p<0.01$. Abbreviations: CL:
438 confidence limits; I5-6g: light impact; I6-6.5g: light to moderate impact; I6.5-7g: moderate to heavy
439 impact; I7-8g: heavy impact; I8-10g: very heavy impact, and; I10+g: severe impact.

440

441 **Table 3.** Mean \pm standard deviation player load and metabolic power variables during
 442 Ultimate Frisbee matches played against differently-ranked opponents.
 443

Variable	Opponent (ranking)				Total	Statistical differences (Effect size; $\pm 90\%$ CL)
	1 st	3 rd	4 th	5 th		
PL (AU)	65.6 \pm 22.3	53.9 \pm 11.6	37.6 \pm 6.6	64.7 \pm 6.6	55.7 \pm 17.3	Large: 4 th vs.5 th ** (-3.54; ± 0.67); 3 rd vs.4 th ** (2.69; ± 0.74); 1 st vs.4 th ** (4.45; ± 1.65); Moderate: 1 st vs.3 rd ** (0.92; ± 0.65)
EDI _{max}	1.23 \pm 0.23	1.19 \pm 0.18	1.30 \pm 0.24	1.38 \pm 0.33	1.27 \pm 0.25	No significant differences.
EDI _{mean}	0.93 \pm 0.05	0.94 \pm 0.04	0.93 \pm 0.03	0.94 \pm 0.04	0.93 \pm 0.04	No significant differences.
Metabolic power (W)	18857 \pm 5004	16258 \pm 2547	11455 \pm 1257	19463 \pm 2389	16564 \pm 4368	Large: 4 th vs.5 th ** (-2.77; ± 0.72); 3 rd vs.4 th ** (4.12; ± 1.02); 1 st vs.4 th ** (6.28; ± 2.05) Moderate: 1 st vs.3 rd * (0.93; ± 0.76)

444 Note: * Significant level was set at $p<0.05$ ** Significant level was set at $p<0.01$. Abbreviations: CL:
 445 90% confidence limits; PL: player load; AU: arbitrary units; EDI_{max}: maximum equivalent distance
 446 index; EDI_{mean}: mean equivalent distance index.

447
448