

1 **Irrigation in Mediterranean urban areas: a good strategy to face the ongoing**
2 **climate change impacts on urban cedar trees?**

3

4 Jaime Madrigal-González^{1,2*}, Antonio de Benito², Ezequiel Antorán^{2,3}, Isabel
5 Catalina Cuesta-Cano^{1,2}, Gabriel Sangüesa-Barreda⁴

6

7 1 ETSIIAA-iuFOR, Universidad de Valladolid, Campus La Yutera, 34004 Palencia, Spain.

8 2 Non-profit Organization for nature conservation '*El Espadañal*'. 40200, Cuéllar, Spain

9 3 Área Biodiversidad y Conservación, Departamento de Biología, Geología, Física Aplicada y
10 Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Madrid, Spain.

11 4 EiFAB-iuFOR, Universidad de Valladolid, Campus Duques de Soria, 42004, Soria, Spain.

12

13 *Corresponding author: jaime.madrigal@uva.es

14

15 **Abstract**

16 Irrigated trees are known to develop large aboveground structures that can be
17 detrimental during dry spells, and therefore irrigated trees are expected to perform worse
18 than non-irrigated ones under climate change. In this study, we evaluated the climate-
19 growth relationship of irrigated and non-irrigated trees of the species *Cedrus atlantica*
20 (Endl.) Manetti ex Carrière (Atlas cedar) in an urban environment in central Spain. We
21 first studied climate-growth relationships with and without irrigation to test the hypothesis
22 that irrigated trees should be less sensitive to interannual climatic variability than non-
23 irrigated ones. Secondly, we identified the four most intense droughts over the 21st
24 century (2005, 2012, 2017, 2019) to test the hypothesis that growth resilience should be
25 lower in irrigated than non-irrigated trees due to traits such as total height. Our results
26 support the idea that irrigated trees are less responsive to climatic interannual variability
27 and notably less resilient to drought stress, with these differences becoming more
28 pronounced with age. These results suggest that irrigation may increase the risk in a

29 scenario of more frequent and intense droughts in Mediterranean urban areas. Thus,
30 widening urban green areas to meet the European Green Deal 2030 in Mediterranean
31 cities should consider better-adapted tree species and *ad hoc* adaptation to water
32 shortage rather than watering and strategies based on resource supplements.

33

34 **Key words:** Urban greening, Atlas cedar, Mediterranean gardens, dendrochronology,
35 resilience, resistance, growth sensitivity.

36

37 **Introduction**

38 The population of cities is projected to reach 9.7 billion people by 2050 (United Nations,
39 2018). Cities facilitate closer connections between individuals and offer multiple services,
40 yet they also concentrate environmental problems (Barthelemy, 2019). Urban trees play
41 a pivotal role in providing ecosystem services to society, such as mitigating warm
42 temperatures, filtering air pollutants, reducing greenhouse gases through carbon
43 storage, promoting the absorption of rainwater, or enhancing mental well-being, among
44 others (Livesley et al., 2016). Nevertheless, they contend with a highly stressful
45 environment compounded by extensive pavements, urban heat island, and climate
46 change effects, that result in high tree mortality rates (Savi et al., 2015). Such increasing
47 chronic stress negatively impacts urban trees, jeopardizing their function in cities and
48 posing potential hazards in residents.

49 Rising drought stress and heatwaves directly contribute to increased mortality
50 rates among people (Åström et al., 2015), highlighting the urgent need for governments
51 to implement adaptive and mitigating strategies for climate change. Greening urban
52 environments is one of the key strategies identified by the European Union (European
53 Green Deal 2030) for climate change mitigation in the coming decades (Tutak et al.,
54 2021). This greening strategy, however, will face significant challenges, especially in
55 water-limited areas, where the establishment and growth of vegetation are strongly
56 hindered by the harsh climatic conditions. In particular, the greening of cities in southern

57 Europe will face the difficult challenge of getting trees to grow and survive intense heat
58 waves and increasingly intense and prolonged droughts (Madrigal-González et al.,
59 2024).

60 Traditional gardening has strongly relied on plant irrigation in water-limited areas
61 (Luketich et al., 2019). Since ancient times, plant species in urban areas and gardens
62 have been selected using aesthetic criteria (Conway & Vander Vecht, 2015). From
63 colours to growth forms, crown shape, leaf size, and canopy shape, annual plants,
64 shrubs, and trees have been chosen to recreate exotic/magical spots. Gardens have,
65 therefore, been conceived as artificial recreations of nature devoted to boosting
66 emotions. However, water scarcity is anticipated in the future, potentially leading to a
67 reduction in irrigation practices. In this scenario, hotter droughts, e.g. the combination of
68 drought stress and high temperatures by the heat island effect (Oleson et al., 2011),
69 could overpass their resilience capacity.

70 We lack knowledge about how species respond to hotter drought stress in novel
71 environments beyond their natural habitats, particularly with contributing factors of tree
72 decline such as pollution, intense pollarding, and poor soil conditions (e.g. soil
73 compaction or tree pits). Irrigation reduces urban heat islands and promotes rapid growth
74 and big structures (Fini & Brunetti, 2017) yet could also result in shallow root systems.
75 While the strategy of irrigating generates fast-growing, large tracheids or vessels, high
76 crown height, and cover, these trees could be less resistant and resilient to periods of
77 water scarcity. Large canopies increase transpiration rates and larger cells increase the
78 risk of cavitation and mortality (Savi et al., 2015). Understanding the mechanisms of
79 drought resilience is paramount to promoting urban trees that provide all the ecosystem
80 services while minimizing the need for anthropogenic irrigation. Quantifying the growth
81 resilience in response to drought of urban trees dominated by multiple species with
82 contrasting functional traits from different biomes all around the world is then a major
83 research challenge.

84 This study aims to evaluate the drought resilience of urban trees in Cuéllar, a
85 middle-size city of 10,000 inhabitants in central Spain, distinguishing between those
86 subjects to irrigation and those left unirrigated. We focus on the Atlas cedar *Cedrus*
87 *atlantica* (Endl.) Manetti ex Carrière (Atlas cedar), that is a highly popular choice for urban
88 tree planting across the Mediterranean region. We first studied climate-growth
89 relationships under and in the absence of watering to test whether irrigated trees are less
90 responsive to interannual climatic variability than non-irrigated ones. Secondly, we
91 identified the major recent warmest droughts to test whether growth resistance and
92 resilience are lower in irrigated than non-irrigated trees. Our hypothesis posits that
93 irrigated trees will exhibit greater growth, size, and height compared to their non-irrigated
94 counterparts of the same age. Thus, we suspect that these oversized structures may
95 lead to reduced resistance and resilience against the warmest drought impacts.

96

97 **Materials and Methods**

98 Study area

99 The study was conducted in the village of Cuéllar, Segovia province (Spain). This village
100 is located in the northern plateau of the Iberian Peninsula (41.40°, -4.31°; 857 m asl).
101 The climate is Mediterranean with high continental influence and strong interannual
102 variability in temperature and precipitation. The mean annual temperature is currently
103 12°C and total annual precipitation ranges 430-470 mm (2001-2023). The urban area
104 extends > 2 km² by a moderate slope, oriented southwards.

105

106 The Atlas cedar (*Cedrus atlantica*)

107 *Cedrus atlantica* (Endl.) Manetti ex Carrière is currently distributed by north-western
108 African mountain environments in the Rif, the Atlas, and the Aures (Morocco and Algeria)
109 at altitudes ranging from 1300 to 2600 masl. However, humans have used this species
110 in gardening and green urban species in North America, Europe, and Asia (mostly warm
111 climates) and so it is currently one of the most widely distributed tree species in public

112 and private owning urban areas. This species is well adapted to warming conditions and
113 moderately to water scarcity.

114

115 Sampling and data recording

116 A total of 33 trees were identified in public and private properties scattered throughout
117 the urban environment of the village. Total height (using a laser forestry hypsometer,
118 Nikon Pro II) and diameter at breast height (DBH, using tape measures) were measured
119 for these individuals, and a tree core was collected at 1.3 m for dendrochronological
120 analysis using a Pressler-type increment borer (Haglöf, Sweden). In addition, for each
121 individual, its location was estimated through geographical coordinates using a GPS
122 (Garmin eTrex Legend HCx), and the presence of irrigation systems was determined
123 with the help of the municipal environmental technician. A total of 13 trees were discarded
124 from further analysis due to a lack of precise information about irrigation since the time
125 of planting. Thus, a total of 10 irrigated and 10 non-irrigated individuals were available
126 for the study area.

127 Dendrochronological samples were transported to the lab for further preparation and
128 analysis. We first glued samples onto wood sticks and then sanded using progressively
129 thinner sandpapers until a proper identification of every growth ring. After that, all the
130 samples were photographed using the CAPTURING system (García-Hidalgo et al.,
131 2022), and tree ring widths were measured using the software CooRecorder (Maxwell &
132 Larsson, 2021). We visually cross-dated all the samples using pointer years, which in
133 this case corresponded to narrow rings associated with intense droughts in 2005, 2012,
134 2017, and 2019 respectively. Tree-ring width series were converted into basal area
135 increment (BAI; Biondi & Qaeden, 2008) Tree age was estimated by counting the total
136 number of tree rings when the sample contains the pith of the trunk. Alternatively, the
137 CooRecorder target device was used to calculate the potential number of rings lost in
138 case the sample does not reach the pith.

139 Climatic data on monthly precipitation and temperature were retrieved from a nearby
140 climatological station placed in the village of Gómezserracín (41.29°, -4.32°; 803 m asl;
141 11 km far from the study area). We used this climatological data because of the lack of
142 a long enough record available in Cuéllar (2009-2024). Otherwise, the altitudinal
143 differences are minimal (-54 m asl), and the terrain in between is flat and homogeneous,
144 so it is possible to assume the validity of this climatic information. Following the results
145 of the sample depth of the chronologies with and without irrigation (Appendix 1, Fig. S1),
146 we considered 1998-2021 as the appropriate time window for the subsequent analyses.
147 By selecting this period, we avoided the first years of each tree to reduce the effect of
148 planting trees of a certain age from greenhouse. We used the index Precipitation /
149 Potential Evapotranspiration (September of the previous year to August of the current
150 year) as a metric of aridity which is commonly used in ecological studies. Potential
151 Evapotranspiration (PET) was assessed using the Thornthwaite index (Thornthwaite,
152 1948). It is worth noting that the larger the values of the aridity index the lower the aridity
153 conditions.

154 We selected the driest years in the record based on precipitation-to-potential
155 evapotranspiration (PET) data from a long-term meteorological station located in the city
156 of Segovia, 64 km from the study area. The station's meteorological data spans from
157 1920 to the present (see Appendix 1, Fig. S1). Using a statistical criterion based on the
158 10th percentile, we established a threshold of 0.598 (precipitation/PET), below which
159 values indicate particularly dry years. According to this criterion, the years 2005, 2012,
160 2017, and 2019 are identified as extreme dry years (Fig. 1).

161

162 Statistical analyses

163 We first evaluated the hypothesis that irrigated trees are less responsive to climatic
164 variability, particularly aridity (sept-aug aridity), by fitting linear mixed models to BAI at
165 the individual tree level. We evaluated BAI as a linear function of the interaction between
166 the aridity index and irrigation (Watered/Not watered) plus tree age in second-order

167 polynomial form. We included 'tree individual' as a random factor and considered a first-
168 order autoregressive model to account for potential temporal autocorrelation among the
169 annual BAI measurements. We used a backward selection of the fixed effects by
170 subtracting each term at a time. We evaluated the contribution of each fixed term using
171 the Akaike Information Criterion corrected for small-sized samples (Hurvich & Tsai, 1989)
172 through delta AICc (ΔAICc) as follows:

$$173 \quad \Delta\text{AICc} = \text{AICc}_{\text{full model}} - \text{AICc}_{\text{model i.}}$$

174 Where ΔAICc is the delta AICc, $\text{AICc}_{\text{full model}}$ is the AICc of the full model and $\text{AICc}_{\text{model i.}}$ is
175 the AICc of each model i obtained by removing any given fixed term. We considered a
176 fixed term to be included in the final model when its elimination from the full model implies
177 a ΔAICc equal to or lower than -4 units (Burnham & Anderson, 2004).

178 Second, we used linear mixed models to examine potential differences in drought
179 resilience between irrigated and non-irrigated trees. To do so, we calculated relative
180 resilience and resistance indices following Lloret et al. (2011) from annual basal area
181 increments (BAI), and considering the four driest years during the 21st century (i.e. 2005,
182 2012, 2017, and 2019, Fig. 1 and Fig. S2). We used a one-year window to compute the
183 indices in order to avoid overlap, as two of the four dry years (i.e., 2017 and 2019) are
184 separated by only one year. In both cases, resilience and resistance were evaluated as
185 a linear function of the interaction 'irrigation (Watered/Not watered) x tree age (second-
186 order polynomial)' under the assumption that differences in resilience and resistance
187 after drought will become gradually more evident as tree size increases. We considered
188 individual trees as a random factor in the model. Model selection was conducted using
189 a similar procedure as in previous models (backward selection using AICc). We used the
190 function *lme* of package *nlme* in the R environment (Pinheiro et al., 2018)

191 Finally, we evaluated the influence of irrigation on tree size fitting linear models (ANOVA)
192 on tree DBH and Height both made relative to age. To this end, we used the function *lm*
193 in the R environment.

194

195 **Results.**

196 All the trees studied were relatively young, with an average age of 37 (± 1.77) years old,
197 being irrigated trees slightly younger than non-irrigated trees (Table 1). Regarding size,
198 the mean DBH was 36.5 cm (± 2.67), with differences between irrigated and non-irrigated
199 trees lower than 2 cm on average. On the contrary, irrigated trees showed considerably
200 greater heights than non-irrigated trees (Table 1). In general, the health status of the
201 trees was good, with no apparent damage caused by physical impacts, potential
202 pathogens or herbivores.

203 A preliminary view of basal area increments (BAI) data suggested higher annual growth
204 rates in irrigated than non-irrigated trees throughout the time window considered (Figure
205 1). Interestingly, both irrigated and non-irrigated trees showed notable negative
206 responses to the main dry years of the period (i.e., 2005, 2017, 2019), with the exception
207 of 2012, when no negative response in the averaged BAI was detected. Accordingly,
208 model results confirmed these observations. Specifically, irrigation and climatic aridity
209 both positively affected tree growth, but their interaction had a negative effect, indicating
210 that climatic aridity had a more pronounced effect on non-irrigated trees (Table 2 and
211 Figure 2). Fixed effects selection also supported a quadratic relationship between BAI
212 and tree age (Figure 2).

213 Fixed effects selection applied to the relative resilience model supported the interaction
214 between tree age and irrigation (Table 3). Thus, differences in relative resilience between
215 irrigated and non-irrigated trees were almost nonexistent in individuals younger than 20
216 years but became more conspicuous with aging, being non-irrigated trees the most
217 resilient to the driest years under study (Figure 3). On the contrary, model results did not
218 support differences in resistance to drought between irrigated and non-irrigated trees
219 (Table 3).

220 Finally, linear models supported irrigated trees to be significantly larger in height
221 ($\text{Height}_{\text{irrigated}} = 14.32 \text{ m} \pm 0.85$, $\text{Height}_{\text{non-irrigated}} = 10.79 \text{ m} \pm 0.90$), but not DBH ($\text{DBH}_{\text{irrigated}}$
222 $= 37.34 \text{ cm} \pm 4.24$, $\text{DBH}_{\text{non-irrigated}} = 35.67 \text{ cm} \pm 3.45$; Figure 4).

223

224 **Discussion.**

225 Irrigated trees of the species *C. atlantica* in urban areas are less sensitive to interannual
226 variability in aridity and, in parallel, less resilient to drought than their non-irrigated
227 counterparts. This idea connects with the necessity to develop a specific agenda to deal
228 with the urban green deal of the European Commission in the Mediterranean. Besides,
229 this result relies on the paradox of greening in seasonally dry environments. In this
230 environments, growing large green canopies implies the investment of scarce resources
231 at the cost of emergent vulnerabilities associated to higher probability of hydraulic
232 failures and embolism (Madrigal González et al., 2024).

233 Some authors have shown that water availability is crucial for the growth of conifers,
234 primarily influencing cambial activity and xylogenesis (Vaganov et al., 2006). In the case
235 of Atlas cedar, sensitivity to precipitation variability is most strongly linked to winter
236 precipitation patterns in the Mediterranean, which are essential for soil water recharge
237 and subsequent availability during the summer months (Navarro-Cerrillo et al., 2019;
238 Linares et al., 2013). Recent research supports the notion that precipitation is vital for
239 Atlas cedar growth, revealing significantly higher sensitivities to precipitation at the driest
240 sites along a latitudinal gradient from southern France to southern Spain (Camarero et
241 al., 2021). Additionally, notable declines in growth due to increasing aridity have been
242 observed in Atlas cedar populations in northwestern Africa since the 1980s (Slimani et
243 al., 2014; Navarro-Cerrillo et al., 2019). Similar negative growth responses to rising
244 aridity have also been documented in other cedar species throughout the southern
245 Mediterranean Basin (Linares et al., 2013; Bhattacharyya et al., 2023).
246 In urban environments, the extensive use of pavement increases surface runoff and
247 significantly reduces the infiltration of precipitation into the soil, worsening aridity,
248 particularly for trees that do not receive irrigation (Savi et al., 2015). However, irrigation
249 can help alleviate these effects by promoting relatively stable tree growth during the dry
250 summer months (June–September), thereby decreasing sensitivity to fluctuations in

251 precipitation. It is important to note that trees in urban environments are typically young,
252 especially when considering the long lifespan of this species in natural settings. This
253 youthfulness may limit their long-term growth potential (Slimani et al., 2014; Esper et al.,
254 2007). Previous studies have shown that growth sensitivity to precipitation variability in
255 Atlas cedar is age-dependent, with younger trees being more sensitive than older ones
256 under natural conditions (Linares et al., 2013; Dhyani et al., 2022). Given this, we
257 anticipate that urban trees—particularly those in non-irrigated areas—will remain highly
258 sensitive to aridity, especially if younger trees continue to dominate in urban settings.

259 Irrigation can be restricted during intense and prolonged droughts such as those
260 highlighted here, according to the necessity to save water for human priorities (i.e. water
261 for human consumption). Unexpectedly, growth resistance did not show significant
262 differences between irrigated and non-irrigated trees. This means that irrigated trees,
263 even if they are less sensitive to the temporal variability of climatic aridity, experience
264 similar growth reductions when compared to their non-irrigated counterparts during
265 intense dry spells. Importantly, irrigation did not influence the stem radial size of trees
266 but stem height: i.e. irrigated trees had significantly taller stems than non-irrigated trees.
267 This result is in line with current knowledge that, as trees grow in height, gravity and path
268 length resistance limit height development through restrictions on leaf expansion and
269 photosynthesis (Koch et al., 2004). Accordingly, tree height will increase as it increases
270 the soil water availability to sustain leaf expansion and photosynthesis at the cost of a
271 growing vulnerability to extreme events such as dry pulses due to comparatively wider
272 water transport conduits that are exposed to higher conduct-blocking embolism risk
273 (Olson et al., 2018). While some literature supports that taller trees can be comparatively
274 less resistant to drought (Camarero et al., 2024), recent global results suggest that
275 drought-induced stress in gymnosperms is related to changes in recovery (resilience),
276 while resistance remains similar (DeSoto et al., 2020).

277 Our results on growth resilience to the intense dry spells of 2005, 2012, 2017, and 2019
278 pointed to an age-dependency in the sense that differences in resilience between

279 irrigated and non-irrigated trees became more patent with tree age. Interestingly, and
280 according to our second hypothesis, irrigated trees were less resilient, particularly the
281 oldest specimens. This age-dependency of resilience between irrigated and non-
282 irrigated trees suggests that resilience capacity is concomitant with tree-level
283 characteristics tied to age such as stem height. Recently, Camarero et al., (2024)
284 reported a significant negative relationship between tree height and xylem resistance to
285 cavitation after post-drought growth recovery in conifers subjected to seasonally dry
286 conditions. Evidence in North American forests also supports this notion that taller trees
287 are more prone to die off after intense drought events (Stovall et al., 2019). Even if
288 extreme drought pulses don't lead to sudden mortality directly, they can trigger dieback
289 in trees which can previously manifest as significantly lower recovery, particularly in
290 gymnosperms (DeSoto et al., 2020). This age-dependency of resilience should,
291 nonetheless, be inferred with caution in our case study since tree age goes in parallel
292 with potential confounding factors. For instance, several consecutive dry spells over the
293 last two decades of the 21st century have occurred that could be lowering resilience
294 progressively as a consequence of accumulated negative impacts, and this could be
295 particularly patent in the most vulnerable trees (tallest trees). Evidence in this line has
296 been provided for three pine species in the northeast Iberian Peninsula where findings
297 supported a growing vulnerability to drought after consecutive dry spells over the last
298 half century (1951-2010; Serra-Maluquer et al., 2018).

299 Our results suggest that supplying water to urban trees in Mediterranean climate
300 environments may lead to medium- to long-term issues in relation to their persistence in
301 a scenario of more intense and prolonged droughts. In the worst-case scenario, with a
302 complete cessation of water inputs to irrigated trees, the consequences could be
303 significant, leading to massive tree dieback. However, water supply seems to be decisive
304 for increasing canopy cover and thus the mitigating role of heat islands in cities and other
305 ecosystem services. For this reason, the greening of urban environments as a strategy
306 to cope with climate change requires careful risk assessment in water-limited

307 environments where water supply artificially depletes water reserves for human
308 consumption while increasing the vulnerability of vegetation, in this case trees, to the
309 negative impacts of climate change. While the use of drought-adapted species is
310 essential the design of green canopies for the coming decades, it will be also important
311 to carefully allocate scarce resources toward developing these canopies. This approach
312 will help maximize resource efficiency while minimizing the risk of dieback in the medium
313 term. Even though the case study of this study comprises a local environment and a
314 limiting number of tree specimens, its pseudo-experimental design provides insightful
315 evidence on the complex paradox around the needs for water and the risk for its usage
316 in places such as the Mediterranean, which are forecasted a hotspot of climate change
317 impacts for the turn of the present century. A small sample size of trees may make it
318 difficult to identify clear patterns, particularly when there is high variability between
319 individuals. In this context, the observed lack of patterns in resistance could suggest that
320 the variability between trees is considerable, and therefore, a larger sample size would
321 be necessary to draw reliable general conclusions to this regard. However, we believe
322 that the tree-level approach used in this study, despite the limited number of individuals,
323 is the most appropriate. Furthermore, detailed knowledge of the irrigation history at the
324 individual tree level is often scarce in urban environments, especially when focusing on
325 specific species. Cities typically host a diverse range of species with varied origins and
326 characteristics, and tree replacement is common in urban gardening practices to refresh
327 vegetation and accommodate changing aesthetic trends.

328

329 **Acknowledgements**

330 We thank the members of the non-profit organization 'El Espadañal' for their kind help
331 with field sampling and material preparation.

332

333 **Funding Declaration**

334 The project ‘Urban biodiversity to mitigate climate change: a case study in the town of
335 Cuellar’ was funded by the Fundación Caja Segovia Caixabank in the first contest for
336 research projects on conservation and environmental sciences (2022). We also
337 acknowledge Grant CNS2022-135319 funded by MICIU/AEI /10.13039/501100011033
338 and by “European Union NextGenerationEU/PRTR”.

339

340 **References**

341 Barthelemy, M., 2019. The statistical physics of cities. *Nat. Rev. Phys.* 1, 406–415.
342 <https://doi.org/10.1038/s42254-019-0054-2>.

343 Bhattacharyya, A., Dhyani, R., Joshi, R., Shekhar, M., Kuniyal, J. C., Ranhotra, P. S., &
344 Singh, S. P. 2023. Is survival of Himalayan Cedar (*Cedrus deodara*) threatened?
345 An evaluation based on predicted scenarios of its growth trend under future
346 climate change. *Sci. Total Environ.*, 882, 163630.
347 <http://dx.doi.org/10.1016/j.scitotenv.2023.163630>

348 Biondi, F., Qaedan, F. 2008. A theory-driven approach to tree-ring standardiza- tion:
349 defining the biological trend from expected basal area increment. *Tree-Ring Res.*
350 64: 81–96. <https://doi.org/10.3959/2008-6.1>

351 Burnham, K.P., Anderson, D.R. 2004. Multimodel inference: understanding AIC and BIC
352 in model selection. *Sociol. Methods Res.*, 33:261–304.
353 <https://doi.org/10.1177/0049124104268644>

354 Camarero, J. J., Gazol, A., Linares, J. C., Fajardo, A., Colangelo, M., Valeriano, C.,...,
355 Gimeno, T. E. 2021. Differences in temperature sensitivity and drought recovery
356 between natural stands and plantations of conifers are species-specific. *Sci Total
357 Environ.*, 796, 148930. <https://doi.org/10.1016/j.scitotenv.2021.148930>

358 Camarero, J. J., Pizarro, M., Gernandt, D. S., Gazol, A. 2024. Smaller conifers are more
359 resilient to drought. *Agric. For. Meteorol.*, 350, 109993.
360 <https://doi.org/10.1016/j.agrformet.2024.109993>

361 Conway, T.M., Vander Vecht, J., 2015. Growing a diverse urban forest: Species selection
362 decisions by practitioners planting and supplying trees. *Landsc. Urban Plan.* 138,
363 1–10. <https://doi.org/10.1016/j.landurbplan.2015.01.007>

364 Dhyani, R., Joshi, R., Ranhotra, P. S., Shekhar, M., Bhattacharyya, A. 2022. Age
365 dependent growth response of *Cedrus deodara* to climate change in temperate
366 zone of Western Himalaya. *Trees, Forests and People*, 8, 100221.
367 <https://doi.org/10.1016/j.tfp.2022.100221>

368 Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., Xoplaki, E. 2007. Long-
369 term drought severity variations in Morocco. *Geophys. Res. Lett.*, 34(17). <https://doi.org/10.1029/2007GL030844>

370 Fini, A., Brunetti, C. 2017. Irrigation of urban trees. In: *Routledge Handbook of Urban
371 Forestry*. Taylor & Francis Group.

372 García-Hidalgo, M., García-Pedrero, Á., Colón, D., Sangüesa-Barreda, G., García-
373 Cervigón, A.I., López-Molina, J., Hernández-Alonso, H., Rozas, V., Olano, J.M.,
374 Alonso-Gómez, V., 2022. CaptuRING : A Do-It-Yourself tool for wood sample
375 digitization. . *Methods Ecol. Evol.* 2022, 1–7. <https://doi.org/10.1111/2041-210x.13847>.

376 Hurvich, C. M., Tsai, C. L. 1989. Regression and time series model selection in small
377 samples. *Biometrika*, 76(2), 297-307. <https://doi.org/10.1093/biomet/76.2.297>

378 Koch, G. W., Sillett, S. C., Jennings, G. M., Davis, S. D. 2004. The limits to tree
379 height. *Nature*, 428(6985), 851-854. <https://doi.org/10.1038/nature02417>

380 Linares, J. C., Taïqui, L., Sangüesa-Barreda, G., Seco, J. I., Camarero, J. J. 2013. Age-
381 related drought sensitivity of Atlas cedar (*Cedrus atlantica*) in the Moroccan
382 Middle Atlas forests. *Dendrochronologia*, 31(2), 88-96.
383 <https://doi.org/10.1016/j.dendro.2012.08.003>

384 Livesley, S.J., McPherson, E.G., Calfapietra, C., 2016. The Urban Forest and Ecosystem
385 Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street,

388 and City Scale. J. Environ. Qual. 45, 119–124.
389 <https://doi.org/10.2134/jeq2015.11.0567>

390 Lloret, F., Keeling, E. G., Sala, A. 2011. Components of tree resilience: effects of
391 successive low-growth episodes in old ponderosa pine forests. *Oikos*, 120(12),
392 1909–1920. <https://doi.org/10.1111/j.1600-0706.2011.19372.x>

393

394 Luketich, A.M., Papuga, S.A., Crimmins, M.A., 2019. Ecohydrology of urban trees under
395 passive and active irrigation in a semiarid city. *PLoS One* 14, 1–17.
396 <https://doi.org/10.1371/journal.pone.0224804>

397 Madrigal-González, J., Olano, J.M., Sangüesa-Barreda, G., 2024. It's not easy being
398 green in the Mediterranean. *Nature* 627, 271. <https://doi.org/10.1038/d41586-024-00760-y>

400 Maxwell, R.S., Larsson, L.A., 2021. Measuring tree-ring widths using the CooRecorder
401 software application. *Dendrochronologia* 67, 125841.
402 <https://doi.org/10.1016/j.dendro.2021.125841>

403 Navarro-Cerrillo, R. M., Sarmoum, M., Gazol, A., Abdoun, F., Camarero, J. J. 2019. The
404 decline of Algerian *Cedrus atlantica* forests is driven by a climate shift towards
405 drier conditions. *Dendrochronologia*, 55, 60-70.
406 <https://doi.org/10.1016/j.dendro.2019.04.003>

407 Oleson, K.W., Bonan, G.B., Feddema, J., Jackson, T., 2011. An examination of urban
408 heat island characteristics in a global climate model. *Int. J. Climatol.*, 31, 1848–
409 1865. <https://doi.org/10.1002/joc.2201>

410 Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J.,...,
411 Méndez-Alonso, R. 2018. Plant height and hydraulic vulnerability to drought and
412 cold. *PNAS*, 115(29), 7551–7556. <https://doi.org/10.1073/pnas.1721728115>

413 Åström, D.O., Schifano, P., Asta, F., Lallo, A., Michelozzi, P., Rocklöv, J., Forsberg, B.,
414 2015. The effect of heat waves on mortality in susceptible groups: A cohort study

415 of a mediterranean and a northern European City. *Environ. Heal. A Glob. Access*
416 *Sci. Source* 14, 1–8. <https://doi.org/10.1186/s12940-015-0012-0>

417 Pant, G. B., Kumar, K. R., Borgaonkar, H. P., Okada, N., Fujiwara, T., Yamashita, K. 2000.
418 Climatic response of *Cedrus deodara* tree-ring parameters from two sites in the
419 western Himalaya. *Can. J. For. Res.*, 30(7), 1127-1135.
420 <https://doi.org/10.1139/x00-038>

421 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team. 2018. *nlme: Linear and*
422 *Nonlinear Mixed Effects Models.* R package version 3.1-131.1

423 Savi, T., Bertuzzi, S., Branca, S., Tretiach, M., Nardini, A., 2015. Drought-induced xylem
424 cavitation and hydraulic deterioration: Risk factors for urban trees under climate
425 change? *New Phytol.* 205, 1106–1116. <https://doi.org/10.1111/nph.13112>.

426 Serra-Maluquer, X., Mencuccini, M., Martínez-Vilalta, J. 2018. Changes in tree
427 resistance, recovery and resilience across three successive extreme droughts in
428 the northeast Iberian Peninsula. *Oecologia*, 187(1), 343-354.
429 <https://doi.org/10.1007/s00442-018-4118-2>

430 Slimani, S., Derridj, A., Gutierrez, E. 2014. Ecological response of *Cedrus atlantica* to
431 climate variability in the Massif of Guetiane (Algeria). *For. Systems*, 23(3), 448-
432 460. <https://doi.org/10.5424/fs/2014233-05175>

433 Stovall, A. E., Shugart, H., Yang, X. 2019. Tree height explains mortality risk during an
434 intense drought. *Nat. Comm.*, 10(1), 4385. [https://doi.org/10.1038/s41467-019-12380-6](https://doi.org/10.1038/s41467-019-
435 12380-6)

436 DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M.,..., Martínez-
437 Vilalta, J. 2020. Low growth resilience to drought is related to future mortality risk
438 in trees. *Nat. Comm.*, 11(1), 545. <https://doi.org/10.1038/s41467-020-14300-5>

439 Thornthwaite, C.: An Approach toward a Rational Classification of Climate, *Geogr. Rev.*,
440 38, 55–94, <https://doi.org/10.2307/210739>, 1948.

441 Tutak, M., Brodny, J., Bindzár, P., 2021. Assessing the level of energy and climate
442 sustainability in the European Union countries in the context of the European

443 green deal strategy and agenda 2030. Energies 14.
444 <https://doi.org/10.3390/en14061767>

445 United Nations. World Urbanization Prospects. <https://esa.un.org/unpd/wup/> 2018.
446 Vaganov, E.A., Hughes, M.K., Shashkin, A.V. 2006. Growth Dynamics of Conifer Tree
447 Rings. Springer, Heidelberg, Germany

448

449 **Tables.**

450 Table1. Descriptive statistics for watered and not watered trees over the time period
451 1998-2021.

	Watered	Not Watered
Tree age (yrs)	35.8 (\pm 3.37)	37.9 (\pm 1.28)
DBH (cm)	37.34 (\pm 4.24)	35.67 (\pm 3.45)
Height (m)	14.32 (\pm 0.90)	10.79 (\pm 0.85)
Mean BAI (cm ²)	210.74 (\pm 11.9)	125.66 (\pm 7.8)
N	10	10

452

453

454

455

456 Table 2. Results of the backward selection of the fixed-effects term in the growth model
457 using the Akaike Information Criterion corrected for small sample size (AICc).

Fixed effects	AICc	Delta_AICc	Supported	R-squared
<i>Null model</i>	737.1			
<i>Full model</i> (Irrigation x Aridity) + Age (2 nd order polynomial)	698.7		*	0.25
<i>Full model - interaction</i> Irrigation + Aridity + Age (2 nd order polynomial)	705.6	6.9		

<i>Full model – Age</i> (Irrigation x Aridity)	713.7	15		
---	-------	----	--	--

458

459

460

461

462

463 Table 3. Results of the backward selection of the fixed-effects term in the resistance and
464 relative resilience models using the Akaike Information Criterion corrected for small
465 sample size (AICc).

Model	Fixed effects	AICc	Delta_AICc	Supported	R-squared
<i>Resistance</i>	<i>Null model</i>	84.4		*	-
	<i>Full model</i> (Irrigation x Age (2 nd order polynomial))	89.0			
	<i>Full model - interaction</i> Irrigation + Age (2 nd order polynomial)	89.6	0.6		
<i>Resilience</i>	<i>Null model</i>	104.6			
	<i>Full model</i> (Irrigation x Age (2 nd order polynomial))	84.8		*	0.38
	<i>Full model - interaction</i> Irrigation + Age (2 nd order polynomial)	100.4	5.6		

466

467

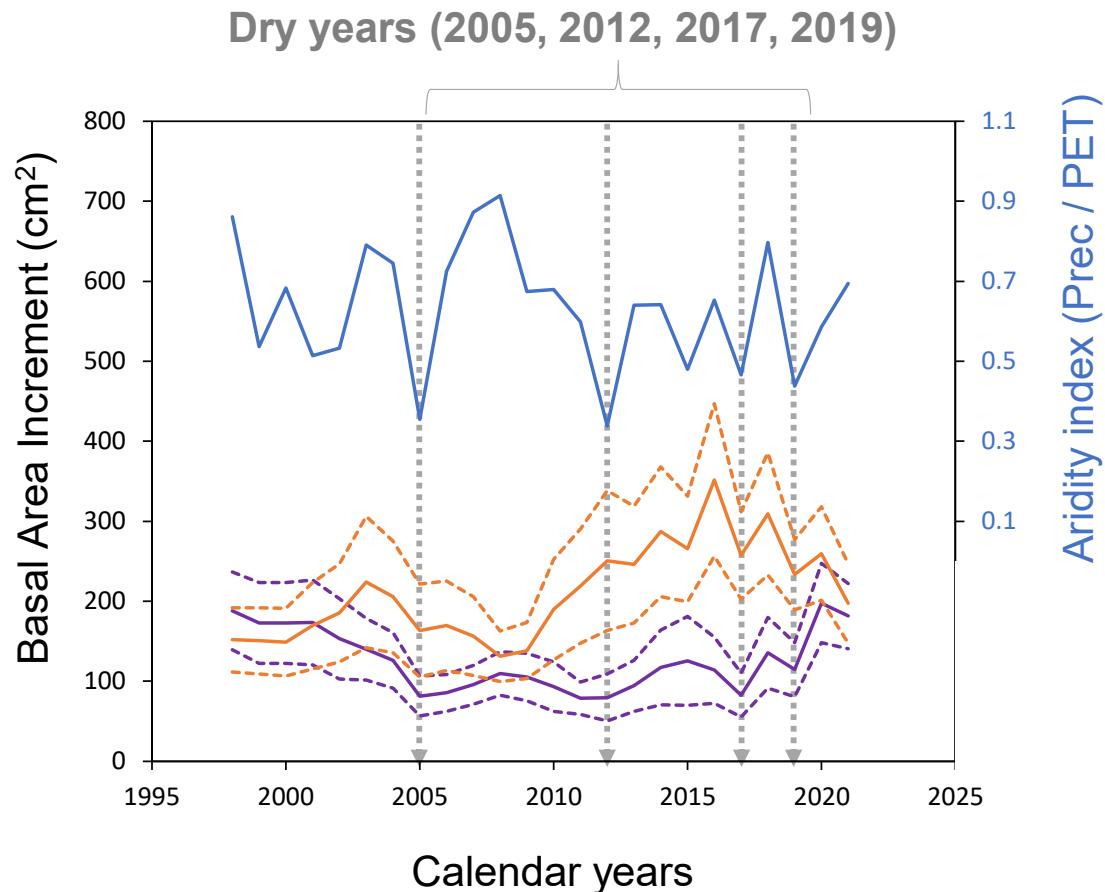
468

469

470

471

472


473

474

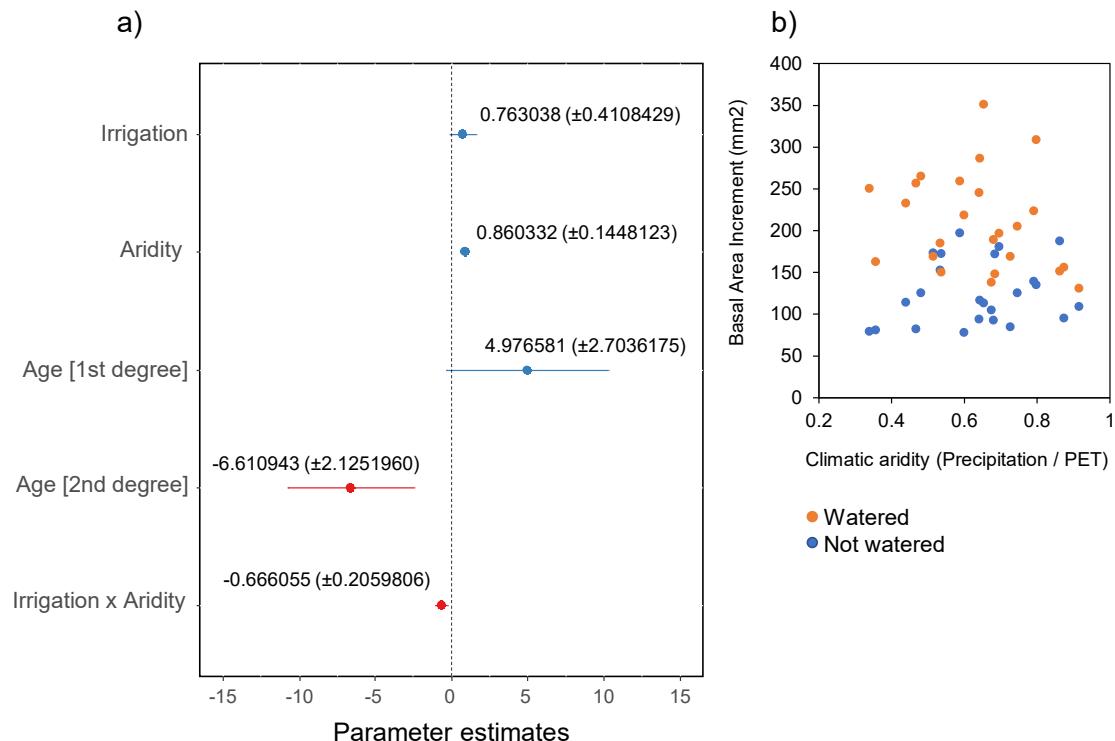
475

476
477
478
479
480
481
482

Figures.

483
484
485
486
487
488
489

Figure 1. Composite plot for mean annual basal area increments of irrigated (orange solid line \pm SE in dotted lines) and non-irrigated (purple solid line \pm SE in dotted lines) Atlas cedar trees next to values of the aridity index (Precipitation / Potential Evapotranspiration) (blue solid line). The four driest years of the 21st century are indicated with vertical dotted red lines.


490

491

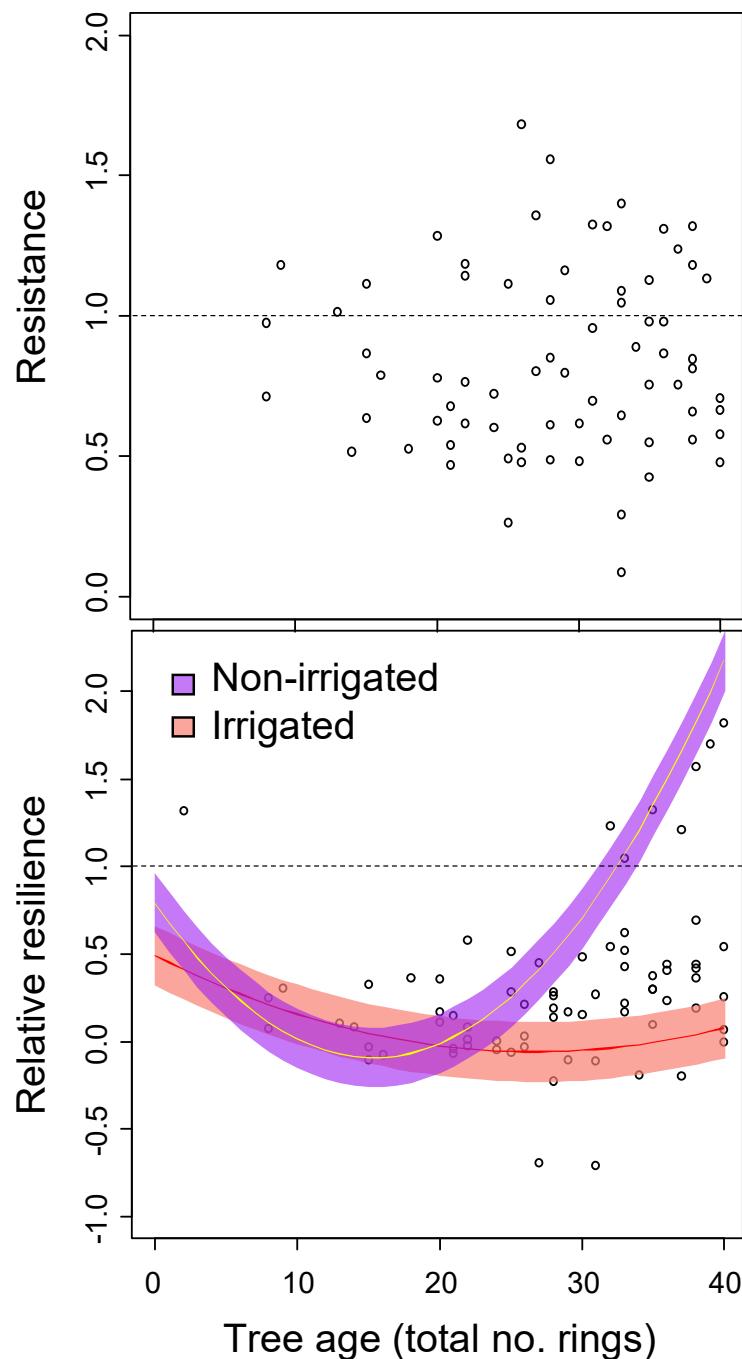
492

493

494

495

Figure 2. Graphical representation of the fitted mixed-model to growth metrics (Basal Area Index, BAI). a) Parameter estimates diagram for the best supported growth model in which the BAI (Basal Area Increment) is expressed as function of tree age in 2nd order polynomial and the interaction between irrigation (yes / no) and aridity (Prec / PET). In brackets, standard error associated with parameter estimates. b) Scatter plot of mean annual BAI metrics as function of climatic aridity (precipitation / PET) coloured by watered (orange points) and not watered (blue points) treatments.


503

504

505

506

507
508
509
510
511

512
513
514

Figure 3. Resistance (a) and resilience (b) of tree growth in response to the interaction of tree age and irrigation considering the driest years of the studied period (2005, 2012,

515 2017, 2019). While model selection using AICc did not support the influence of
516 irrigation on resistance, it did so for the influence of age x irrigation interaction on
517 resilience. Model predictions for irrigated and non-irrigated trees are shown in orange
518 and purple colours respectively.

519

520

521 Figure 4. Size relative to age as function of irrigation: a) radial size, b) height. Different
522 letter denotes significant differences in size driven by irrigation treatment.

523

524