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Abstract— A unified view of direct-integration (DI) and
exponential-time-differencing (ETD) methods to incorporate
Drude media, such as isotropic plasma and microwave graphene,
into finite-difference time-domain (FDTD) simulators is provided.
To this end, the Drude constitutive relation is expressed in
integral form and the DI integrators are obtained by applying
quadrature rules. Analogously, the ETD integrators are obtained
by starting from the variation of constants formulae and applying
the same quadrature rules as in the DI case. This approach allows
one to directly compare the two families of methods. Additionally,
the accuracy of each integrator is discussed and the stability
condition of the resulting FDTD schemes is derived in exact
closed-form by applying the von Neumann method.

Index Terms— Direct-integration methods, Drude media,
exponential-time-differencing methods, finite-difference time-
domain method, graphene, plasma.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method is one of
the most popular numerical techniques for solving Maxwell’s
equations in the time domain [1]. One of the first FDTD chal-
lenges was to include frequency dispersive materials within the
simulations. Currently, there is a vast number of approaches to
do it that fall into three groups: direct-integration (DI) methods
[21, [3], recursive convolution (RC) techniques [4]-[7], and Z-
transform methods [8], [9].

The DI methods are based on expressing the material con-
stitutive relation as an auxiliary differential equation (ADE).
This ADE is then discretized, term by term, by approximating
derivatives with FDs. The DI techniques are also referred to
as ADE or DI-ADE methods.

The exponential-time-differencing (ETD) methods can be
included into the RC group. A review on ETD methods for
first-order problems can be found in [10]. A comparison be-
tween some DI- and ETD-FDTD schemes for plasma problems
was provided in [5], [11] and more recently in [12].

This communication provides a unified view of DI and
ETD methods for Drude media, such as isotropic plasma
and microwave graphene. Firstly, we introduce a systematic
approach to derive DI methods. To this end, the constitutive
relation is expressed in integral form and the DI integrators are
obtained by applying quadrature rules. Then, starting from the
so-call variation of constants formulae and applying the same
quadrature rules as in the DI case, the ETD integrators are
obtained. This approach allows one to directly compare a DI
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integrator with its ETD counterpart. Additionally, the accuracy
of each integrator is discussed and the stability conditions of
the resulting FDTD schemes are derived in exact closed-form.

II. GOVERNING EQUATIONS

The time-dependent Maxwell curl equations in linear,
isotropic, electrically dispersive media can be expressed as
OF L
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where p is the permeability and ¢ is the permittivity. In the
frequency domain, the current density is related to the electric
field by the constitutive relation
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where a Drude dispersion model has been assumed for the
conductivity function o (w). In (2), o is the static conductiv-
ity and 7 is the relaxation time constant. For 7 = 0, the Drude
model reduces to a simple static conductivity.

Considering the transformation jw < d/dt, (2) can be ex-
pressed in the time domain as a first-order ordinary differential
equation (ODE):
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In the next section, we address the discretization of (3) by
using DI and ETD methods.

ITI. CONSTITUTIVE RELATION INTEGRATORS
A. DI integrators
Integrating (3) over a single time step from ¢, = nA; to

tn+1 = (n+ 1)A;, we have
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Then, approximating .J(¢) within the integrating interval by a
first-degree polynomial as
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the following general expression is obtained
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Different numerical integrators can now be obtained by ap-
plying quadrature rules to approximate the integral in (6).
The simplest approximation consists of assuming Etobea
constant over the integrating interval. For instance, the choice
E(t) ~ E™ leads to the explicit-Euler (EE)-DI scheme that
reads
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Instead, by letting E(t) ~ E"tl in (6), the following
implicit-Euler (IE)-DI integrator is obtained:

jn-l—l —_ alfn 4 GQE7L+1. (9)

This scheme has recently been used to model graphene’s

intraband conductivity [15].
Additionally, the choice E(t)

midpoint (MP)-DI scheme:
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which was introduced in [14] to simulate isotropic plasma and
adopted in [16] to model graphene’s intraband conductivity.

To improve the integration accuracy in (6), E(t) is linearly
interpolated within the integrating interval, analogously to (5).
As a result, the trapezoidal (TR)-DI scheme is obtained:

+ 2 (Bt + Bn). (11)

An alternative approach to obtain (11) consists of averaging
the electric field in (10) as E"tz ~ (Entl4 En) /2.
This scheme can also be derived by applying the Mobius
(bilinear) transformation method to the frequency-domain J-E
constitutive relation (2), as was shown in [9]. For cold plasma,
(11) is the same as the “new DI method” introduced in [5].
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B. ETD integrators

Multiplying (3) by e!/7 and noting that the left-hand side
of the resulting equation is the derivative of a product, we can
write

4 (et/T,]_) = ISR,
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The variation of constants formulae is obtained by integrating
(12) from ¢, = nA; to tpaq = (n+ 1)A; as
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Note that (13) is the exact solution to (3) with initial condition
J (tn) = J". The approach now runs parallel to the one
applied for the DI integrators: first E(t (t) in (13) is replaced by
a Newton interpolation polynomial and the resulting integral
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is then solved exactly. Spe01ﬁcally, letting E(t) ~ E™, E(t) ~
E™t! and E(t) ~ E"2 in (13), the EE-ETD
T = by "+ by B (14)
IE-ETD . . .
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and MP-ETD
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integrators are respectively obtained, where
by = e AT by =0 (1 - e_At/T) . (17)

The IE-ETD scheme was used in [17] and the MP-ETD
method in [18] and [19]. In all the cases for plasma modeling.

Analogously, approximating E(t) in (13) by a first-degree
polynomial, the TR-ETD integrator is obtained as
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This scheme has been used for modeling plasma and graphene
in [5] and [20], respectively.
An additional ETD scheme can be obtained by averaging
E™+3 in (16) as
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This scheme was used in [21] for magnetized plasma. We will
refer to it as the averaged (A)MP-ETD integrator.
It is worth noting that replacing the exponential function by
the Padé approximant
Ay
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any of the above ETD integrators leads to its DI counterpart.
Hence, DI and ETD schemes are equivalent for A; < 7.

C. Integrators accuracy

To illustrate the order of accuracy of the integrators in-
troduced above, we consider an example consisting of the
integration of the xz-component of (3) with a known forcing
function E,(t) = Epsin(wt + ¢) and an initial condition
J:(0) = 0. Under these conditions, the exact solution to the
current density is
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The numerical current density, J, num., has been calculated
along the first wave period T' = 27 /w by using a time step
A; = T/N, where N, is the time resolution. The data used
were Fy = 1 V/m, w = 27 x 10! rad/s, ¢ = 0, o5 = 100
S/m and 7 = 0.5 ps. Fig. 1 depicts the RMS error defined as
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against the time resolution NVy. For the two families of inte-
grators, it can be seen that the MP and the TR schemes have
second-order accuracy. The AMP-ETD scheme has second-
order accuracy, as well. However, the Euler schemes are first-
order accurate only.

In the next section we address the coupling of the DI and
ETD integrators to the FDTD Maxwell equations.

IV. FDTD SCHEMES
A. Time-collocated J-E and J-H formulations
According to the conventional FDTD method [1], Faraday’s
equation in (1) is approximated at ¢ = nA\; as
AW
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Fig. 1. Current density RMS error versus the number of time steps per period
for several DI and ETD integrators.
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Fig. 2. Maximum stable CFL number vmax versus frequency for explicit
DI- and ETD-FDTD schemes.

Analogously, Ampere’s law is discretized at ¢ = (n+1)A, as
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Averaging the current density in (24), the following alternative
discretization to Ampére’s equation is obtained
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We will refer to (24) and (25) as time-collocated J-H and J-
E formulations, respectively. The same spatial discretization
as in the conventional FDTD method is assumed in (23)-(25),
[1].

In order to incorporate Drude media into FDTD simulations,
the Euler, TR and AMP-ETD integrators are coupled to (25)
since they are time-collocated J-E schemes, as well. On
the other hand, the MP integrators are time-collocated J-H
schemes that should be used jointly with (24). To this end,
(10) and (16) are shifted by a half time step.

B. Stability

To study the stability of the FDTD schemes outlined above,
we adopt the von Neumann method, according to the proce-
dure given in [22] and [9]. Derivation details are omitted for
the sake of brevity.

We have found that the FDTD schemes based on implicit
integrators preserve the stability limit of the conventional
FDTD method. However, this is not the case for the FDTD
schemes based on explicit integrators, as specified as follows.

For the EE-DI-FDTD scheme the stability condition reads
(A+B)*+1—(A+B),

V< Vpax =

(26)

where v = Ay /AFTL s the Courant-Friedrichs—Lewy (CFL)
number, Ag;r%ax is the largest stable time step permitted by the

conventional FDTD method, given by [1]

1
1 1 1)\ 2
A = Ven (F txet F) (27)
T Yy z
and ACTL
T 0S8 max
A=—— p=—STtmax 28
Atc,ll:'g;ax’ de (28)

For 7 = 0, (26) agrees with the stability condition of the time-
backward differencing scheme for the FDTD method in lossy
media [13].
For the MP-DI-FDTD method we have
1
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This condition was previously derived in [14] and [15].
For the EE-ETD- and the MP-ETD-FDTD schemes, the

stability conditions are, respectively,

v S Vmax =

(29)
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with C = (1 —e~2/7) /2 and D = (1+ e=2/7) /2. To the
best of our knowledge, the stability conditions for the EE-DI-
, EE-ETD- and MP-ETD-FDTD methods given in (26), (30)
and (31), respectively, are herein reported in exact closed-form
for the first time. It is worth noting, however, that (30) and
(31) are implicit expressions of the time step. Thus, an iterative
process needs to be performed to obtain the maximum stable
time step.

To illustrate the implications of the above stability ex-
pressions, we consider the 1D-FDTD simulation of a mono-
chromatic plane wave propagating in free-space along the
z-direction and impinging normally on an infinite graphene
sheet. The spatial step is A, = A\y/40, where )\, is the wave-
length in free-space. The graphene parameters are 7 = 0.184
ps and og = 0o/A,, with 09 = 8 mS. These parameters have
been taken form [23]. For this problem Agﬁax = JeolA..
Fig. 2 depicts the maximum stable CFL number v,,x, calcu-
lated by (26) and (29)-(31), versus the wave frequency in the
band [1 —10*] GHz. Note that the parameter AFTL, /7 varies
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Fig. 3. Exact transmission coefficient magnitude versus frequency.

accordingly in the range [140 — 0.014]. It can be seen that,
in general, all the explicit schemes suffer from very severe
stability restrictions. Only under the condition A;/7 < 1, the
MP formulations have a value of vy, approaching unity.

C. Simulation examples

We consider the calculation of the transmission coefficient
of a plane wave propagating in free-space and impinging
normally on an infinite graphene sheet. Fig. 3 plots the exact
solution to this example given by Texa = 2/(2 + 1yo4) [24],
where 7y = \/py/€0 and 04 = 0¢/(1+ jwr) is the superficial
graphene’s conductivity. We have used the same values of o
and 7 as in Fig. 2. We now consider the FDTD simulation of
this problem by using an incident Gaussian pulse under two
different conditions.

Firstly, the maximum effective frequency of the Gaussian
pulse is assumed to be fi.x = 10 GHz. The spatial step is
A, = Amin/40, where Ay, is the minimum wavelength in
free-space, i.e. Amin = 1/(,/€0flg fmax)- Fig. 4 plots the ab-
solute error of the transmission coefficient magnitude, Eyps =
|Zexa.| — | ZrDTD|, @8 a function of frequency for all the second-
order accurate methods. For each method, the simulation has
been carried out with its maximum stable time step. Although
it is widely assumed that DI methods fail unless A;/7 < 1,
results in Fig. 4, obtained for AT /7 ~ 14, show that both
DI and ETD methods provide good accuracy and exhibit quite
close performance also for A;/7 > 1. This agrees with the
conclusions drawn in [12] for lossy and plasma media. It can
be also seen in Fig.4 that the TR-DI-FDTD scheme is the most
accurate method in this example.

Secondly, the simulation is carried out in the whole fre-
quency band, i.e. fiax = 10 THz. Again, the spatial step is
A, = Anin/40 and the maximum stable time step for each
scheme is considered. In this case, we have AFFL /7~ 0.014.
Fig. 5 depicts the absolute error of the transmission coefficient
magnitude against frequency for the same methods as in Fig. 4.
Again, similar accuracy is observed for DI and ETD methods.

V. CONCLUSION

A unified view of DI and ETD methods for Drude media
has been provided. It has been shown that FDTD schemes
based on implicit DI and ETD integrators preserve the stability
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limit of the conventional FDTD method. However, FDTD
schemes based on explicit integrators may suffer from very
severe stability restrictions. The FDTD simulation examples
have shown that DI- and ETD-FDTD methods exhibit similar
accuracy despite the value of A; /7. The methodology outlined
in this communication can also be applied to higher-order
dispersive media by expressing their constitutive relation as
a system of first-order ODEs.
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