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Abstract: Nowadays, financial institutions increasingly leverage artificial intelligence to
enhance decision-making and optimize investment strategies. A specific application is
the automatic analysis of large volumes of unstructured textual data to extract relevant
information through deep learning (DL) methods. However, the effectiveness of these
methods is often limited by the scarcity of high-quality labeled data. To address this, we
propose a new data augmentation technique, Concatenation Augmentation (CA). This
is designed to overcome the challenges of processing unstructured text, particularly in
analyzing professional profiles from corporate governance reports. Based on Mixup and
Label Smoothing Regularization principles, CA generates new text samples by concatenat-
ing inputs and applying a convex additive operator, preserving its spatial and semantic
coherence. Our proposal achieved hit rates between 92.4% and 99.7%, significantly outper-
forming other data augmentation techniques. CA improved the precision and robustness
of the DL models used for extracting critical information from corporate reports. This
technique offers easy integration into existing models and incurs low computational costs.
Its efficiency facilitates rapid model adaptation to new data and enhances overall precision.
Hence, CA would be a potential and valuable data augmentation tool for boosting DL
model performance and efficiency in analyzing financial and governance textual data.

Keywords: board of directors profiling; concatenation augmentation; data augmentation;
deep learning; finance; long short-term memory

1. Introduction
In the digitalization and artificial intelligence era, financial institutions and their gov-

erning bodies face the challenge of adapting to new methodologies that enhance decision-
making and optimize investment strategies [1]. Among these innovations, natural language
processing (NLP) has emerged as an essential tool, enabling analysts and researchers to
efficiently examine large volumes of textual information, such as professional profiles or
biographies (CVs), financial reports, and relevant publications [2–5]. This capability is
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particularly valuable for uncovering the impact of independent directors on governance
and corporate strategy [6,7].

A key resource in Spain for this task is the set of Annual Corporate Governance
Reports [8] issued by the National Securities Market Commission (Comisión Nacional del
Mercado de Valores, CNMV), which is available at https://www.cnmv.es/ (date of access
to data 10 November 2022). These freely accessible reports provide a detailed explanation
of the structure and operation of the entity’s governing bodies. Among other content,
it includes information about the shareholder composition and the management bodies,
related-party transactions, risk control systems, and the operating of the board, as well
as the CVs of the members of the board of directors and senior management. Among the
different types of directors, we focus on the independent ones. Since these directors are
typically selected for their expertise in specific areas, their knowledge has the potential to
significantly impact company decisions. Therefore, analyzing their profiles is crucial to
understanding how their experience and skills can influence the strategies adopted by the
company and identifying patterns or trends in decision-making (e.g., directors with a strong
financial background could lean toward strategies that prioritize financial stability, while
those with an academic profile could promote investment in innovation and development).

One of the issues is that these reports are usually formed by unstructured and hetero-
geneous information. When processing this type of unstructured texts, we find variability
in its format and content, which makes the standardization process difficult [2]. Relevant
information is often implicit or scattered across various sections of the CV, requiring ad-
vanced methods to extract and consolidate this data. Additionally, CVs can contain typos,
inconsistent terminology, and even contextual and semantic ambiguities, adding another
layer of complexity to the analysis process. All of this makes the extraction of information
a complex task, which is why a system is needed that helps automatically analyze the
information contained in these CVs and extract that which is truly relevant.

In this regard, deep learning (DL), an approach that has revolutionized the field of NLP,
allows for more sophisticated modeling and analysis of these reports, extracting complex
patterns and correlations that go beyond the limited capabilities of traditional methods [9].
Its ability to identify and learn data representations at multiple abstraction levels makes
DL techniques, such as Bidirectional Encoder Representations of Transformers (BERT)
and Long Short-Term Memory (LSTM) neural networks [10–12], widely used to improve
the contextual and semantic understanding of the texts. These techniques usually adopt
significant modeling flexibility, featuring a wide range of parameters. With such extensive
modeling capabilities, DL models require efficient regularization methods to prevent
overfitting and promote generalization [13]. Consequently, techniques such as weight
decay [14], dropout [15], batch normalization [16], and data augmentation schemes [17]
are commonly used for this purpose. However, one of the most significant limitations of
its application in this context is the scarcity of high-quality labeled data [18]. Unlike other
fields where data is abundant and well-structured, data from CVs is heterogeneous and
limited, making it challenging to effectively train and optimize DL models.

In order to address this inherent limitation, several data augmentation techniques
have been explored to enrich the available dataset and thus improve the robustness
and performance of the models [19–21]. Token-level and sentence-level augmentation
applied in NLP include the use of synonym and word replacement, translation and
back-translation, and paraphrasing, compositional augmentation, conditional generation,
and saliency map-based token span merge-replacement [22–28]. Adversarial data augmen-
tation uses adversarial training to generate text with greater variability but is semantically
indistinguishable [29]. Finally, hidden-space augmentation generates variations in the
text by manipulating its representation in internal space, for example by adding noise or

https://www.cnmv.es/


Electronics 2025, 14, 2289 3 of 22

interpolations between different data points [30]. While these techniques are valuable, they
have very high implementation costs. Additionally, they are domain-specific [18], which
makes automation difficult and results in significant variability in their applicability and
effectiveness across different contexts. These limitations highlight the ongoing need to
continue developing and refining data augmentation methods that can tackle this problem
and enhance the quality and diversity of the dataset, thereby ensuring more effective
and accurate training of DL models in analyzing the professional profiles of independent
directors and financial research in general.

In this study, we propose a new data augmentation technique. We start from the
hypothesis that Mixup [31] and Label Smoothing Regularization (LSR) [32] methods, which
are commonly used in image processing and share similar goals with our approach, can be
extrapolated to the NLP context to accurately create text samples. Our objective is thus to
design, implement, and evaluate a new data augmentation method that, inspired by these
techniques, generates variability from the available data and significantly improves DL
model training. Accordingly, this research addresses the following main questions:

• Can the proposed method enhance the performance and generalization of DL models
in financial NLP tasks under data scarcity conditions?

• To what extent does it outperform or complement existing comparable augmentation
methods, such as Wmix and LSR, in these same tasks and conditions?

To answer these questions, we introduce the new method and conduct extensive
experiments in the context of corporate governance disclosures. Therefore, the main
contributions of our study are the following:

• Development of the Concatenation Augmentation (CA) method. This new data augmen-
tation technique generates new samples by concatenating inputs and applying a convex
additive operator to generate labels, maintaining spatial and semantic coherence.

• Enhancement of the accuracy and generalization capabilities of DL models for auto-
matically extracting key data about independent directors from corporate reports.

Thereby, it is intended to contribute to the advancement of NLP techniques in finance,
promoting the development of more accurate and robust models capable of handling the
inherent variability and uncertainty of existing unstructured text data.

A key feature of our technique is its low computational cost, which positions it as a
promising contribution within the broader context of sustainable development [33,34] and
responsible AI. As concerns over the environmental impact of large-scale AI systems grow,
particularly those requiring extensive computational resources, techniques that minimize
energy consumption and hardware demands play a critical role in promoting more sustain-
able practices in machine learning. By enabling model enhancement without reliance on
computationally intensive architectures or augmentation pipelines, our approach supports
efforts to reduce the carbon footprint of AI workflows, thereby aligning with sustainability
goals outlined in global agendas such as the United Nations’ Sustainable Development
Goals (SDGs).

Furthermore, this work contributes to the discourse on ethical and inclusive AI gover-
nance by making advanced data augmentation more accessible to institutions or research
groups with limited computational resources. This supports broader participation in AI
development and enhances institutional resilience, particularly in low-resource settings.
Integrating efficiency-focused techniques like ours into standard ML practices not only
advances performance metrics but also addresses long-term challenges related to equity,
environmental responsibility, and the democratization of AI technologies.

The organization of this document is as follows: Section 2 provides a review of
conventional data augmentation techniques (including LSR, Mixup, and its variants) and
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more advanced LLM-based approaches. Section 3 provides a description of our proposed
CA method, detailing its application and benefits. In Section 4, we present the conducted
experiments, which include a description of the initial dataset, the base model used, and the
experimental methodology. Section 5 presents the results obtained. Section 6 discusses the
practical implications of our findings and offers recommendations for implementing CA in
real-world financial environments. Finally, Section 7 summarizes the main findings and
conclusions of this study.

2. Related Work
In this section, we provide an overview of data augmentation techniques used in NLP,

categorizing them into two main groups: conventional techniques, discussed in Section 2.1,
and more recent, sophisticated approaches that leverage complex models and/or large
language models (LLMs), covered in Section 2.2.

The technique proposed in this work belongs to the first category of conventional
methods. It is characterized by its low computational cost and independence from specific
model architectures, making it highly practical and scalable. Among the existing techniques,
the most closely related to our approach are Label Smoothing (LSM) and WMix, which are
detailed in Section 2.1.1 and Section 2.1.2, respectively.

2.1. Conventional Data Augmentation Techniques

Data augmentation has been widely and effectively utilized in computer vision [32,35,36]
and speech recognition [37–39]. Many of these techniques rely on human expertise to
transform data in a label-invariant manner, such as scaling, flipping, and rotation of images.
However, unlike images, slight alterations to a word within a sentence can drastically
change its meaning. Consequently, there is not a straightforward rule for conducting
label-invariant transformations in NLP [18].

As previously mentioned, conventional data augmentation methods in NLP focus
on techniques such as transforming text by substituting words with synonyms sourced
from manually crafted ontologies [22,23,25], translating samples to a foreign language and
back [24] to rephrase the inputs. However, these techniques are not without limitations.
The use of synonyms and word substitution can alter the meaning of the original texts,
while translation and back-translation can introduce errors and unwanted variations that
do not accurately reflect the original content. Paraphrasing, although useful, can result
in the loss of important details or changes in context that affect the interpretation of the
text. Moreover, all these techniques have a very high implementation cost, a high domain
dependency, and cannot be easily automated. Another category of techniques, such as
SSMix [27] and DropMix [28], relies on mixing and replacing tokens based on their saliency
maps. Although they are simpler to apply than those mentioned above, they are tied to a
specific type of problem, sentiment analysis, so their adaptation to other types of problems
is not immediate, requiring a very careful analysis of their applicability.

In this study, our main interest lies in the development of free-text data augmentation
techniques that can be easily automated, do not require external data or models, and have
a low computational cost. We will draw inspiration from the Mixup [31] and LSR [32]
techniques to adapt or develop variants that can be applied to our problem. At a conceptual
level, the motivation behind applying LSR is to incorporate into the network the prior
knowledge of continuity and imprecision in the results. On the other hand, Mixup generates
variability by superimposing information and labels, but has the difficulty of not being
directly reproducible in NLP. There are other proposals in the state of the art that have
already been discussed in Section 1, such as token- and sentence-level augmentation,
adversarial augmentation and hidden-space augmentation. However, we base our proposal
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on LSR and Mixup, instead of using other existing techniques, since it should be easily
generalizable and not depend on a specific domain or model.

Below we provide a brief overview of two techniques that share similar objectives
with CA. These will be used to establish a comparison basis of results and to highlight the
advantages of our proposal.

2.1.1. Label Smoothing

LSR [32] is a well-known regularization technique that is commonly used in classifica-
tion tasks. Its main aim is to reduce the confidence of the training model with the desired
goal of preventing the largest logit from becoming much larger than all others. In order to
achieve this, LSR generates new samples by adding a uniform distribution to the original
label distribution. As a result, given the training set x and its labels k ∈ {1 . . . K}, LSR is
defined based on the smoothing parameter ϵ and a distribution over the labels µ(k) that
is independent of the training set. The distribution of labels q(k | x) = δk,x is replaced
by q

′
(k | x) = (1 − ϵ)δ(k,x) + ϵµ(x); that is, it is replaced by the union of the original

distribution with µ(k), independent of the training set and with weights (1 − ϵ) and ϵ.
For example, if the uniform distribution µ(k) = 1

k is used, then the distribution of labels
takes the form q(k | x) = (1 − ϵ)δk,x +

ϵ
k . Thus, this method creates controlled variability

in the labels that results in a reduction in overfitting of the training process [32].
The adaptation of this technique to our particular case of regression instead of clas-

sification is straightforward due to the granularity present in the labeled data, consisting
of values between 0 and 1 with increments of 0.1 between them. For this reason, a loss
function based on RMSE has been used instead of the more standard Cross Entropy, since
the latter is better adapted to classification tasks. This change does not affect the data
augmentation technique since it only alters the training of the DL model to make it more
effective in regression problems. In fact, it is possible to generalize this adaptation to any
regression problem where there is a non-negligible precision limit in the resulting values.

Thus, LSR successfully combines effectiveness in increasing the variability of training
data with simplicity. However, it is limited, by design, in the amount of variability it can
generate in the dataset. For this reason, it loses effectiveness when the amount of available
data is small and therefore must be combined with other approaches.

2.1.2. Mixup and Derivatives: WordMixup (WMix)

Mixup [31] is a data augmentation technique that has yielded excellent results in
the field of computer vision, despite its simplicity [40–42]. It involves generating new
inputs by interpolating inputs and outputs. Thereby, new virtual training images and their
corresponding labels are constructed by combining pairs of images with each other using a
parameter λ according to the following equations [31]:

x̃ = λxi + (1 − λ)xj

ỹ = λyi + (1 − λ)yj
(1)

where (xi, yi) and (xj, yj) are samples from the training set, (x̃, ỹ) is the new sample gen-
erated by means of Mixup, and the parameter λ that manages the interpolation degree is
sampled from the statistical Beta(α, α) distribution, whose hyperparameter α controls the
dispersion of the generated values. Several tests were conducted for different values of α

and, finally, we chose the value α = 1 since it was the one that provided the best results for
our dataset.

However, generalizing Mixup to the NLP field is problematic due to the inputs
consisting of variable-length character sequences, so there is no direct way to perform the
interpolation operation between them. To deal with this limitation, ref. [43] proposes two
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models, wordMixup (WMix) and senMixup, where interpolation is performed at the word
embedding level (zero-padded) or at the sentence representation level, respectively. There
are also more recent variants, such as Mixup-Transformers [44]. However, this technique
is specifically designed for Transformer-based models. Because Transformers and LSTM
models have fundamental differences in how they process sequential information, using
this technique would require significant adaptations and is not suitable for our model.
Thus, we chose WMix for comparison purposes since it is easier to implement in our model
and has similar performance to senMixup [43].

In this regard, LSR and our proposed CA can be applied directly to the data, with-
out the need to modify the model code, allowing rapid prototyping to test improvements.
However, WMix requires modification of the model code since the interpolation occurs
in internal layers [43]. On the other hand, WMix, like Mixup, uses the hyperparameter
α that must be tuned to achieve optimal performance [43]. In contrast, LSR and CA are
designed to work effectively with default settings or minimal adjustment and do not
have hyperparameters, simplifying their implementation. As a result, LSR and CA are
more work-friendly and less prone to issues related to hyperparameter sensitivity, such
as overfitting.

2.2. Advanced Data Augmentation Techniques

Recent advances in NLP have given rise to sophisticated data augmentation methods
that go beyond traditional heuristics. Notable techniques include LLM-based paraphrasing,
embedding-based augmentation using Transformer models, adversarial augmentation,
and contextual augmentation.

• Large language models like GPT-4 [45] and Llama [46] have been widely adopted for
paraphrase generation. This method enables the creation of diverse training samples
that help models generalize better to different linguistic expressions.

• Another advanced technique leverages the latent space of Transformer-based mod-
els such as BERT [47] or RoBERTa [48]. In this approach, text inputs are encoded
into embeddings, and augmentation is performed in the continuous embedding
space—either by interpolating between vectors (e.g., Mixup), adding noise, or sam-
pling nearby points. The modified embeddings are then decoded or used directly for
training, depending on the task. This strategy allows for smooth and semantically
meaningful transformations that are often difficult to achieve with surface-level text
manipulations.

• Adversarial data augmentation involves generating examples that are intentionally
challenging for a model—often by introducing minimal but semantically significant
perturbations. Techniques such as HotFlip [49] craft adversarial inputs by substi-
tuting words or characters while preserving the original meaning. These examples
are used to fine-tune models, making them more resilient to subtle variations and
adversarial attacks.

• Contextual augmentation uses masked language models (e.g., BERT [50]) to replace
selected words with contextually appropriate alternatives. Unlike static synonym re-
placement, this method considers the surrounding text to generate grammatically and
semantically coherent augmentations, preserving the integrity of the original sentence.

• Finally, a promising area of ongoing research is the development of semi-supervised
models designed to support—or potentially replace—the manual labeling process,
like [51].

A common characteristic of these techniques is their reliance on advanced, computa-
tionally intensive models, which differs from the simplicity and low computational cost of



Electronics 2025, 14, 2289 7 of 22

our proposed method. Our study includes a comparison with LLM-based paraphrasing,
as a representative example of this class of techniques.

3. Material and Methods
3.1. Concatenation Augmentation (CA)

We propose a new method called Concatenation Augmentation (CA), which generates
high variability into the training dataset through simple and straightforward operations.
CA is based on concatenating training information, with an operation defined by the
additivity of the assigned labels, reflecting prior embodied knowledge. The heuristics that
justify it are based on the union of knowledge of free-text information that is expressed
through the new additive operation.

3.2. Algorithm

Our proposal, CA, combines the best characteristics of LSR and Mixup in a data
augmentation technique with very reduced computational requirements. CA significantly
increases the variability provided by LSR by using a Mixup variant that consists of concate-
nating instead of directly mixing the information. CA adapts very well to environments in
which the availability of trained data is very limited. Our proposal generates new samples
according to the following equations:

x̃ = xi ⊕ xj

ỹ = Φ(yi, yj)
(2)

where (xi, yi) and (xj, yj) are samples from the training set, (x̃, ỹ) is the new sample gener-
ated by CA, ⊕ represents the concatenation operator over strings (in the implementation
used, no special string processing was performed, except for appending sentence termina-
tors to strings where they were missing), and Φ is a function that represents the combination
of outputs and depends on the kind of activation function used by the last layer. In our
case, with the logistic function as the activation function, Φ is defined by the following:

Φ(yi, yj) = σ
(

σ−1(yi) + σ−1(yj)
)
=

yiyj

1 − yi(1 − yj)− yj(1 − yi)
(3)

where σ−1(y) = ln y
1−y is the inverse logistic function used to recover the original preacti-

vation values.
In other neural network architectures or output configurations, distinct activation

functions may be used, requiring a different inverse transformation. Alternatively, if access
to the model’s internal code is available, the output of the layer preceding the activation
function can be obtained directly, eliminating the need for this mathematical inversion.

3.3. Advantages of CA

Like LSR, CA is a data augmentation technique with very low computational cost,
does not require additional data or models, and can be easily automated. It is equivalent to
increasing the training dataset with new labeled data, as it generates new pairs (x̃, ỹ) in a
robust and reliable way. In order to achieve this, its heuristic relies on Mixup modifying its
logic so that it can be used in NLP, avoiding the loss of information since it adapts to the
sequential nature of written language. Based on all the above, it can be said that CA is a
combination of LSR and Mixup that takes advantage of the best features of each of them
to significantly increase the variability generated in the training dataset. This variability
allows us, in turn, to regularize the weights of the trained model to improve its adaptation
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to unknown data during the training phase. In short, CA should improve the training of
models by increasing its accuracy and reducing overfitting.

The implementation of CA is very simple and can be easily included in the training
data processing pipeline. It is also directly usable in all types of NLP-based regression
problems, provided that some minimum requirements based on the convex additivity of the
regression values are met. Due to its ability to combine any pair of training data, it allows
us to greatly expand the amount of available training data, thus adapting to problems
where the scarcity of data limits its performance. This provides a new hyperparameter
that allows adjusting the training stages according to the needs of variability and dataset
size. To assess overfitting reduction and accuracy, a complete set of experiments has been
designed, described, and analyzed in the following section.

4. Experimentation
4.1. Dataset

In this section, we describe the initial dataset, the base DL model used, the characteris-
tics of the training performed, and a validation analysis of the base model.

The dataset created in this work is made up of the biographies of the independent
directors of companies listed on the Spanish stock exchange in the period 2003–2020. This
section explains the main aspects of the creation of the dataset, its justification, the models,
and the training. For a more detailed description, please see our previous studies [6,7].
The first step to generate the dataset was to obtain the CVs, which are openly available
but were written as free text and without any type of predefined structure. As a result,
there is great variability, both in length and style, as well as in vocabulary (e.g., the length
varies between 5 and 4052 characters). These features make it very difficult to apply NLP
algorithmic techniques. However, recurrent DL neural network models adapt very well to
this type of problem due to their ability to analyze arbitrarily long data series [10].

The data acquisition, processing, modeling, and training are described in Figure 1.
The data was taken from the Annual Corporate Governance Reports (ACGRs) [8], which
are open reports generated by the CNMV (National Securities Market Commission) but
have the problem that they are published in unstructured data formats. In order to extract
them, web scraping, pre-processing, cleaning, and filtering had to be carried out, thus
obtaining a total of 6561 biographies of independent directors. The generated dataset
is robust and reliable because its creation required the work and supervision of human
experts in finance, computing, and DL. However, to train a supervised learning DL model
with good guarantees, it is essential to achieve reliable labeling of the data.

Of the 6561 biographies obtained, 1042 were selected to carry out data labeling, leaving
5519 available to perform the full analysis once a trained model was obtained. To achieve
a reliable dataset, the labeling must be performed by a human expert. Although from
the point of view of the processing capacity of a DL model, there is little data, from the
perspective of the human expert, generating reliable labels for each of the 1042 biographies
is a very time-consuming task. Considering financial and business criteria, we decided to
carry out the labeling in six dimensions: Financial (F), Executive/Consultant (E/C), Au-
dit/Tax/Accountant (A/T/A), Legal (L), Political (P), and Academic (Ac). The description
of each one is as follows:

• Financial (F): This refers to directors with experience in the financial sector, whether in
banking institutions, any type of investment companies, or the stock market in general.

• Executive/Consultant (E/C): This refers to directors who have held or are currently
holding different types of management positions in other companies or have carried
out outstanding advisory tasks. These directors may have experience in different
business sectors and management positions
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• Audit/Tax/Accountant (A/T/A): In this case, these are directors with specific exper-
tise in auditing, tax, or accounting.

• Legal (L): Lawyers and legal experts are classified in this category.
• Political (P): This refers to directors who have held or are holding public offices of

various kinds, especially political posts.
• Academic (Ac): Finally, this refers to directors with academic experience.

Figure 1. Data acquisition, processing, modeling, and training. All tables and figures are the authors’
own creation.

Almost all the skills identified in the biographies can be assigned to one of the six
categories. Some are more general (Executive/Consultant) and could be broken down,
but we have chosen not to do so because given the sample size, the number of cases would
be too small.

The previous literature highlights the importance of the dimensions considered in this
paper. Refs. [52,53] document that board members with financial expertise significantly
influence firm financing and investment decisions. Likewise, according to the literature,
independent directors help improve firm value with their industry experiences [54], and
ref. [55] documents the positive market response to the appointment of successful ex-
ecutives from other companies. In addition, firms with an accounting expert sitting on
their audit committees show a stronger accounting conservatism [56]. Regarding the legal
dimension, its importance is highlighted by works such as that of [57], which shows that
the presence of directors with a legal background is associated with a higher quality of
financial reporting. Ref. [58] finds that the cost of bank loans is significantly lower for
companies with board members with political ties and [59] points to the prevalence of
directors with a political background for companies with significant government contracts.
Finally, some articles highlight that academic directors play an important governance role
through their advisory and supervisory functions, leading to increased R&D performance
and investment [60].

In order to carry out the labeling, the human expert generates a qualitative assessment
for the six dimensions using the CVs. This assessment is not exclusive; i.e., the same
independent director can have the highest qualification in the Financial and Academic
dimensions, for example. This assessment is then quantitatively approximated by a six-
dimensional numerical vector where each value is represented in the interval [0, 1] with a
single decimal digit, that is, 11 possible values for each dimension, minimum value (0.0),
maximum (1.0), and nine intermediate values (0.1, 0.2, . . . , 0.9).
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Generating six-dimensional labeling of 1042 CVs by a human expert is a labor-intensive
process that produces robust and reliable results, as it involves manual, one-by-one annota-
tion. However, it does not generate a sufficient number of values to completely and reliably
train a DL model. The reason is that, first of all, 100 entries are set aside to generate the
test dataset. This dataset is used once a trained model has been obtained to evaluate the
generalization capacity of the model when working with data that it has never previously
used in the training stage. With the remaining 942 entries, a 90–10% distribution is made
between the training and validation sets, leaving a total of 848 biographies with which to
train the model. The validation set is used at the end of each epoch to evaluate the state of
the training and make decisions about the values to apply to the hyperparameters in the
next epoch with the aim of improving the training.

4.2. Base Model

The base DL model used is an ASGD Weight-Dropped LSTM (AWD-LSTM) recurrent
neural network [10], whose main features are DropConnect regularization and NT-ASGD
optimization. DropConnect regularizes by randomly discarding certain information learned
by the network, but instead of discarding the outputs of each stage, it does so with the
weights of the neurons. NT-ASGD is a variant of ASGD that reduces the influence of
randomness in the training process. Thus, AWD-LSTM has demonstrated excellent learning
capacity and has generated robust results in multiple applications in the NLP field [61,62].
It is true that there are other models with good results in NLP, such as those based on
Transformers [63,64]. These models have not been used in this work because the purpose
of this research is to mitigate the negative effects of the scarcity of reliable data in DL
model training in the NLP field, not to make a comparison between different state-of-the-
art models. By applying the proposed data augmentation techniques to a single model,
the effectiveness of these techniques can be easily established [65].

The training was carried out using the universal language model fine-tuning approach
described in [66]. A more detailed description of the training carried out can be found in [7].
The training consists of three phases, as described in Figure 2. The first phase consists of a
random initialization of all the parameters of the AWD-LSTM model and the training of a
Spanish-language model through self-learning using Wikipedia articles. In this way, the DL
model captures the main features of the language. The dataset for this first phase comprises
63,900 Wikipedia articles, containing a total of 65 million words. In the second phase,
academic texts from the financial, economic, and business fields were selected, with a total
length of 2.6 million words. By using texts specific to the scope of application, the model
is adapted to specific linguistic, formal, and vocabulary characteristics. The third phase
consists of training the network to achieve the established objective, which in our case is a
regression in six dimensions. To this end, the model was augmented with two additional
fully connected levels, including the corresponding normalization, dropout, and activations
in each new level [7]. As previously explained, the dataset used for training is made up of
848 CVs plus 94 additional ones for the validation stage.

4.3. Transformer-Based Model (Ensemble)

To evaluate the model-independence of the CA technique, we employed a second
model that differs from the primary one. This alternative model, introduced in a previous
study [7], is an ensemble architecture composed of the main model (AWD-LSTM) and two
Transformer-based models: BERT [47] and RoBERTa [48]. All three models were trained on
the same dataset described in earlier sections to ensure a fair comparison.
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Figure 2. Training phases.

The ensemble employs a stacking strategy, in which a simple multi-layer perceptron
(MLP) takes as input the outputs of the three base models and produces a final prediction.
This MLP learns to select and weight specific components based on patterns identified
during training. Specifically, for each epoch, the ensemble receives the outputs from the
three models alongside the labels provided by human experts, allowing it to build an
internal representation of the relative performance of each model across the six evalua-
tion dimensions.

This setup enables us to assess whether the effectiveness of the CA technique general-
izes across different model architectures, encompassing both traditional (RNN-based) and
Transformer-based approaches.

4.4. Experimental Methodology

A series of experiments was conducted using the two models described in Sections 4.2
and 4.3, each with different variants based on the data augmentation techniques applied.
In the case of Concatenation Augmentation, a human expert reviewed the generated
datasets to ensure semantic and labeling consistency.

4.4.1. Base Model

Three variants of the base model presented in Section 4.2 have been created, differing
only in the data augmentation technique used: (i) Concatenation Augmentation (CA),
the technique proposed and developed in this paper; (ii) LSR; and (iii) WMix, with the latter
two described in Section 2.1.1 and Section 2.1.2, respectively.

In the case of WMix, the parameter λ was randomly sampled from a Beta(α, α) dis-
tribution. Several tests were conducted for different values of α and, finally, we chose the
value α = 1 since it is the one that provided the best results.

Each variant of the base model was trained by modifying the number n of additional
data generated by the corresponding data augmentation method. Particularly, we con-
ducted trials with n = 0, 1000, 2000, 3000, 4000, 5000. Thus, 16 models (the model obtained
with the value n = 0 (no augmentation) is the same for the three models) were trained,
inferences were made from them, and they were evaluated in the test dataset. All models
were trained with the same hyperparameters and number of epochs (50), except for the
model with n = 0 (no augmentation) in which the number of epochs was increased to 100
in order to ensure better convergence.

To ensure statistical significance, bootstrapping techniques (300 replicates) were ap-
plied to our model, and subsequent analyses were conducted to compute 95% confidence
intervals (±2 standard deviations) for key variables and error metrics.

In the evaluation, the usual statistical metrics of a regression model were obtained
(MAE—Mean Absolute Error, RMSE—Root Mean Standard Error, correlation coefficient).
We also extended the study to a category model, since the metrics obtained (hit rate,
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confusion matrix) are more informative about the goodness of fit of each model. To accom-
plish this, the values of each dimension were discretized into four categories corresponding
to the intervals [0, 0.3), [0.3, 0.5), [0.5, 0.7), and [0.7, 1.0], which are indexed by the integers
0, 1, 2, and 3, respectively [6].

4.4.2. Alternative (Ensemble) Model

For the alternative model, whose primary purpose is to evaluate the independence
of the proposed Concatenation Augmentation (CA) technique from the underlying model
architecture, a reduced set of variants, tests, and results was considered. In terms of data
augmentation, two techniques were evaluated: (i) Concatenation Augmentation (CA) and
(ii) LLM-based paraphrasing. For the LLM-based paraphrasing approach, ChatGPT-4 and
Llama2 external models were used to generate 1000, 2000, and 3000 additional inputs.
These inputs consisted of semantically equivalent rephrasings of the original biographies,
expressed using different wording while preserving their original meaning. The evaluation
employed the same metrics as in the previous subsection; however, this analysis did not
extend to the category-level model.

5. Results
We present the results of our experiments, evaluating the impact of different data

augmentation techniques on the training and performance of our models. We focus on two
main aspects: the improvement in training and the trade-off between precision and compu-
tational cost. Firstly, we analyze the training improvement by comparing the training loss of
the models with and without data augmentation. Subsequently, we assess the precision of
the models in relation to the computational cost, examining how the number of additional
inputs affects the performance metrics. Lastly, we provide a detailed breakdown of results
by category, highlighting the effectiveness of our proposed technique, CA, in achieving
superior and consistent outcomes across all professional profiles.

5.1. Training Improvement

To illustrate the improvements in training, Figure 3 displays the training loss graphs
of the model without augmentation and of the models with 3000 additional inputs for
each augmentation technique considered. The value of 3000 was chosen because it is the
minimum amount of data at which the model achieves the best results, as shown in the
next subsection. The three models with data augmentation showed faster convergence
and better results than the model without augmentation. It should be noted that this last
model was trained with twice as many epochs. Of the models with data augmentation,
WMix exhibited a slower convergence than the other two. Additionally, it can be seen by
examining the test loss curve that CA had a smoother training than the other methods.

5.2. Precision vs. Computational Cost

The application of data augmentation techniques has an associated computational cost,
since a greater number of inputs implies longer training times. Therefore, it is important
to evaluate the different data augmentation techniques to characterize the performance
of the model with respect to the number of additional inputs. Thus, Figure 4 presents the
evolution of two metrics related to the precision of the model with respect to the number
of additional inputs. Since there are six dimensions (categories), we show only their
average value. The error bars representing the 95% confidence intervals, obtained through
bootstrapping, are displayed above each data point. In the graph on the left, the chosen
metric is RMSE for the regression model, which measures the average magnitude of the
errors between predicted and actual values. On the right, the metric used is the hit rate for
the categorized model, as described in Section 4.4. This metric quantifies the proportion of
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correctly predicted instances out of the total, providing insight about the overall precision
of the model in classification tasks.

Figure 3. Training results obtained (a) without data augmentation, (b) with samples generated by
CA, (c) with samples generated LSR, and (d) with samples generated by WMix.

Figure 4. Performance of the base model with respect to computational cost.

The graphs show, as expected, an increase in the precision of the model when the
number of additional inputs increases. This rate of improvement is lower for WMix.
In the case of CA and LSR, the precision peaks between 3000 and 4000 additional entries,
after which it either plateaus or slightly decreases.

5.3. Alternative Model and LLM-Based Augmentation

The alternative model (Ensemble) described in Section 4.4.2 was evaluated using
two data augmentation techniques: Concatenation Augmentation (CA) and LLM-based
paraphrasing, each tested with varying numbers of additional inputs. The results (average
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RMSE across categories) are presented in Figure 5, and include, for comparison purposes,
the performance of the base model with CA augmentation.

Figure 5. Performance of the alternative model with respect to computational cost.

Figure 5 shows that CA also leads to performance improvements in the alterna-
tive Transformer-based model. Notably, the most significant gains occur with a smaller
number of additional data points, likely due to the model’s higher capacity and sophis-
tication. In contrast, the results for the LLM-based paraphrasing technique indicate that
this form of augmentation does not improve model performance. A plausible explana-
tion is that the paraphrased biographies do not contribute substantial new information.
The changes are primarily syntactic, which may have limited impact on the model’s pre-
dictions—particularly in a task where the presence of specific keywords is likely more
influential than sentence structure.

5.4. Results by Category

In addition to the overall performance metrics, it is essential to analyze the results
achieved in each professional category to understand the impact of CA in this context.
Thus, Table 1 shows the statistical metrics (mean of bootstraped data) obtained for the
base model without data augmentation and for the three variants when the number of
additional inputs is n = 3000. As explained in Section 4.4, the hit rate was calculated on the
discretized model. According to these results, CA achieved the best overall performance,
closely followed by LSR. Moreover, CA obtained lower squared and absolute errors, as well
as higher correlation and precision than LSR.

In order to further explore the comparison between CA and LSR, Figure 6 shows the
confusion matrices of both methods for all categories for a representative run. As can be
seen, the values are more clustered around the main diagonal with our proposal.

An analysis was conducted on the 3.2% of entries misclassified in the confusion matri-
ces for the test case “CA with 3000 additional inputs”. Of these misclassifications, 64% were
attributable to biographies lacking sufficient or high-quality information (e.g., excessively
short texts, typographical errors). Another 26% involved biographies containing relevant
terms (such as company names, job titles, or academic credentials) whose low frequency
resulted in their exclusion from the token dictionary. The remaining 10% represented
genuine misclassifications by the model.
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Table 1. Test set results for each model variant.

Augmentation Metric F E/C A/T/A L P Ac

None

MAE 0.133 0.211 0.072 0.085 0.095 0.088
RMSE 0.204 0.316 0.182 0.185 0.167 0.170

r 0.869 0.759 0.762 0.858 0.781 0.878
Hit Rate 78.2% 69.4% 91.3% 92.3% 84.2% 84.1%

CA (+3000 inputs)

MAE 0.038 0.027 0.007 0.014 0.020 0.038
RMSE 0.095 0.090 0.023 0.028 0.036 0.091

r 0.970 0.979 0.993 0.994 0.987 0.972
Hit Rate 92.5% 97.5% 99.7% 99.6% 96.5% 92.4%

SLR (+3000 inputs)

MAE 0.076 0.080 0.026 0.021 0.050 0.043
RMSE 0.146 0.166 0.049 0.047 0.070 0.103

r 0.940 0.942 0.982 0.989 0.980 0.961
Hit Rate 88.6% 90.6% 97.7% 97.6% 92.6% 92.5%

WMix (+3000 inputs)

MAE 0.089 0.133 0.046 0.056 0.068 0.067
RMSE 0.134 0.209 0.111 0.118 0.112 0.128

r 0.948 0.906 0.953 0.948 0.913 0.935
Hit Rate 85.8% 78.9% 91.9% 92.9% 88.8% 89.7%

Figure 6. Confusion matrix for each category.
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6. Discussion
Throughout our study we have analyzed how the proposed technique, CA, can

mitigate the limitations imposed by the scarcity of data, improving the generalization
capacity of the models and, therefore, its performance in critical tasks such as the extraction
of key information from financial-related corporate reports.

As we saw in the results obtained, the use of data augmentation techniques has a
clear positive impact on the model training process. In fact, some important trends were
observed. Firstly, it is common to see a rapid decrease in RMSE at the beginning of training
(Figure 3), as this indicates that the model is learning important patterns from the data.
Afterwards, the loss curve stabilizes, indicating that the model has reached a point where
it continues to improve, but at a much slower rate. In this regard, models with data
augmentation demonstrated faster convergence and achieved better results compared to
the model without data augmentation. This is a significant finding, as the improvement
in convergence speed, and thus learning, can translate into a reduction in training time
and potentially more efficient use of computational resources. Additionally, models with
data augmentation achieved better results even with fewer epochs, which highlights the
effectiveness of these techniques in enriching the training set and enhancing the ability of
the model to generalize.

Among the data augmentation techniques considered, it was observed that the model
using WMix showed slower convergence compared to CA and LSR (Figure 3). This
behavior suggests that, although WMix may be beneficial for dataset variability, it might
require more careful tuning of its parameter α or more training time to reach an optimal
performance. Additionally, it is important to note that if the curve starts increasing again
after stabilizing, as seen with WMix, this could be an indication of overfitting, as the model
might be memorizing the training data rather than learning generalizable patterns. In this
regard, the models trained with data generated through CA and LSR did not show signs
of overfitting.

Additionally, the CA technique showed a smoother test loss curve throughout the
training, without sharp fluctuations or pronounced peaks (Figure 3). This smoothness in
the loss curve indicates lower variability in the performance of the model in the test set,
which can be interpreted as greater stability and the ability to generalize well to new data.
The smoothness of the curve also suggests that CA might be providing an adequate balance
between variability and similarity in the augmented data, facilitating more consistent and
robust model learning. This behavior also indicates a greater regularization effect, which
would be helping to control model complexity and reduce overfitting.

The results obtained also provided a detailed view of how the addition of supplemen-
tary inputs affects model precision (Figure 4). In this regard, it was observed that as the
number of additional inputs increases, RMSE decreases, indicating an improvement in the
precision of the regression model. This trend was expected, as a larger number of training
data generally helps the model better capture the underlying patterns in the data, thereby
reducing prediction errors. However, this improvement is not uniform across the data
augmentation techniques compared in this study. It is notable that WMix shows a lower
improvement rate compared to CA and LSR, regardless of the number of samples incorpo-
rated into the process. In contrast, CA exhibits a lower error than the other techniques even
before reaching 2000 additional samples. This fact demonstrates that, in addition to being
beneficial for training DL models, the effectiveness of our proposal is higher compared to
other techniques when it comes to reducing prediction error in a regression model.

Similar to RMSE, the hit rate improved with the increase in the number of additional
inputs (Figure 4), reinforcing the notion that more training data contributes to better model
performance. For CA and LSR techniques, it was observed that precision peaked when
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the number of additional inputs was between 3000 and 4000. Beyond this point, precision
tended to stabilize or even slightly decrease, which probably means that the model had
reached its best performance. This phenomenon would be related to the saturation point of
the model, where adding more data no longer significantly improves precision and could
introduce redundancy or even noise that negatively affects performance and computational
cost. It is important to highlight that before reaching 2000 additional samples, CA already
exhibited a higher hit rate than the other techniques. This not only indicates that our
proposal offers significant precision improvements with fewer additional data but also
suggests that CA may be particularly effective in the early stages of data augmentation.
Thus, its ability to achieve and maintain a high level of precision with fewer additional
samples makes it a particularly efficient and robust option, optimizing model performance
from the early stages of training and reducing the need for high computational costs to
achieve substantial improvements.

The CA technique, as shown in Figure 5, also improves performance in the alternative
Transformer-based ensemble model. Interestingly, the most notable gains are observed
with a relatively small number of additional inputs, which may be attributed to the model’s
greater capacity to generalize from limited but well-structured augmented data. By contrast,
the LLM-based paraphrasing technique does not appear to yield performance improve-
ments in this setting. One possible explanation is that the paraphrased biographies intro-
duce primarily syntactic variations without enriching the semantic content in a way that
benefits the model. Given the nature of the task—where the presence of specific keywords is
likely more predictive than sentence structure—such superficial changes may offer limited
value. This suggests that not all augmentation strategies are equally effective, and their
utility may depend heavily on both the task characteristics and the model architecture.

From a categorical perspective (Table 1), CA achieved better performance than LSR
and WMix in all categories. It not only outperformed them in terms of overall precision
but also showed lower squared and absolute errors, as well as a higher correlation with
the true categories. In this regard, the advantage of CA in error and accuracy metrics
suggests that this technique is particularly effective in reducing the discrepancy between
predictions and actual values. Additionally, the fact that CA achieves better results in terms
of correlation implies that the predictions of the model are more aligned with the actual
categories, reinforcing confidence in its ability to generalize. Consequently, CA not only
enhances the ability of the model to make more accurate predictions but also provides a
more faithful representation of the data compared to other data augmentation techniques.

Thus, CA obtained better results than WMix and LSR in all categories. Additionally,
the confusion matrices were examined to further compare CA and LSR (Figure 6). These
confusion matrices revealed that the professional profiles obtained with CA are more
clustered around the diagonal. This means that when the model fails, it is more likely
to do so in a category closer to the true one. Consequently, the concentration of values
along the main diagonal suggests that the CA-trained model is more consistent in correctly
classifying instances, even in the more challenging categories. This characteristic is crucial
in our study, as accurate classification of professional profiles is fundamental and can have a
significant impact on the interpretation of results and on financial decision-making derived
from them.

These findings underscore the importance of data augmentation to improve model
performance. Thus, through a series of experiments, we have demonstrated that CA not
only increases the amount of data available for model training but also preserves the
statistical and semantic properties of the original corpus. This translates into significant
improvements in the evaluation metrics of DL models, highlighting the effectiveness of
our technique in scenarios with limited data. Thereby, CA emerges as a promising data
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augmentation option that enhances the precision and predictive capacity of the model while
enabling fast convergence and stable training, as well as reducing computational costs.

Despite the promising results obtained, this study presents certain limitations that
should be considered. First, the evaluation of the CA technique was conducted within a
specific context. It focused on financial NLP tasks and, more particularly, on the extraction
of information about independent directors from corporate governance reports written
in Spanish. This restriction limits the generalizability of the findings to other languages
or financial contexts. Therefore, future validation efforts should consider applying CA to
multilingual datasets from diverse domains. Another notable limitation lies in the intensive
manual labeling required to create the training dataset, which constrains the scalability
of our study. In this regard, future research could explore the adoption of automated or
semi-supervised labeling techniques, such as weak supervision, to reduce dependence on
manual annotation. Although three data augmentation techniques were analyzed, other
emerging approaches may offer additional improvements. Studying their complementarity
with CA represents a promising avenue for future work. Finally, it would also be interesting
to explore variants of the CA technique for different tasks, such as binary classification or
text generation, as well as its integration into more complex model architectures.

7. Conclusions
Although processing unstructured texts presents significant challenges, emerging

solutions in NLP and machine learning offer powerful tools to address these difficulties.
The application of these techniques for the automatic analysis of CVs in the financial
field not only improves the efficiency and accuracy of the process but also opens new
possibilities for analysis and decision-making based on that data. In this context, CA has
been specifically designed to enhance the training and accuracy of models in text processing
problems where quality data is scarce.

This new technique has proven to be particularly effective in the analysis of biographies
of independent directors of listed companies, obtaining the best results (average hit rate of
92.5%, 97.5%, 99.7%, 99.6%, 96.5%, and 92.4% for the F, E/C, A/T/A, L, P, and Ac categories,
respectively) and outperforming other comparable data augmentation methodologies
such as LSR and WMix. Consequently, the results obtained offer a clear and affirmative
response to both research questions posed in our study, as CA was shown to enhance the
performance and generalization capabilities of DL models in financial NLP tasks and to
outperform existing augmentation methods under the same conditions. Moreover, our
proposal offers easy integration into existing models, ensuring a smooth implementation
process with minimal adjustments. It features low computational cost, allowing for efficient
resource use. Additionally, the model trained with CA-generated samples learns quickly,
which leads to faster adaptation to new data. This enhances the training process and
significantly increases the precision of the model. As a result, all these advantages of
CA contribute to improved performance and efficiency in data analysis and modeling.
From a practical perspective, CA constitutes a scalable and cost-effective solution for real-
world applications, particularly in quality-data-scarce financial environments such as CV
evaluation, compliance monitoring, or investment analysis. Its straightforward integration
makes it an attractive tool for industry practitioners aiming to improve automated model
reliability and efficiency. Moreover, its usefulness could be increased in future research
by employing semi-supervised labeling techniques, adapting CA to other NLP tasks,
and integrating it into more complex architectures. Additionally, using CA on multilingual
datasets or different professional sectors would lead to broader applicability. Given all
the above-mentioned points, we consider that CA can be integrated into the collection
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of data augmentation techniques to generate variability from available data, facilitate
regularization, and enhance the precision of DL models.

Author Contributions: Conceptualization, C.V., J.-Á.R.-G., V.B.-G., F.T. and B.S.; methodology, C.V.,
J.-Á.R.-G., V.B.-G., F.T. and B.S.; software, C.V. and B.S.; validation, C.V., J.-Á.R.-G., V.B.-G., F.T.
and B.S.; formal analysis, C.V., V.B.-G. and B.S.; investigation, C.V., J.-Á.R.-G., V.B.-G., F.T. and
B.S.; resources, C.V., V.B.-G., F.T. and B.S.; data curation, C.V., F.T. and B.S.; writing—original
draft preparation, C.V., J.-Á.R.-G., V.B.-G., F.T. and B.S.; writing—review and editing, C.V.,
J.-Á.R.-G., V.B.-G., F.T. and B.S.; visualization, C.V.; supervision, J.-Á.R.-G., V.B.-G., F.T. and B.S.;
project administration, J.-Á.R.-G. and B.S.; funding acquisition, J.-Á.R.-G. All authors have read and
agreed to the published version of the manuscript.

Funding: Verónica Barroso-García was supported by the projects CPP2022-009735 and PID2023-
148895OB-I00, funded by MICIU/AEI/10.13039/501100011033 and the European Union “NextGener-
ationEU”/PRTR. Her research was also funded by the “CIBER-Consorcio Centro de Investigación
Biomédica en Red” (CB19/01/00012) through “Instituto de Salud Carlos III”, co-funded with the
European Regional Development Fund.

Institutional Review Board Statement: Not applicable as this study did not involve humans or
animals.

Informed Consent Statement: Not applicable as this study did not involve humans.

Data Availability Statement: The data used in this study was obtained from the Annual Corporate
Governance Reports issued by the National Securities Market Commission (Comisión Nacional del
Mercado de Valores, CNMV), which are freely accessible at https://www.cnmv.es/ (accessed on 20
May 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACGR Annual Corporate Governance Report
ASGD Averaged Stochastic Gradient Descent
BERT Bidirectional Encoder Representations of Transformers
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