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Abstract: Unlike the real line, the real space Rd, for d ≥ 2, is not canon-
ically ordered. As a consequence, such fundamental univariate concepts as
quantile and distribution functions, and their empirical counterparts, in-
volving ranks and signs, do not canonically extend to the multivariate con-
text. Palliating that lack of a canonical ordering has been an open problem
for more than half a century, generating an abundant literature and mo-
tivating, among others, the development of statistical depth and copula-
based methods. We show that, unlike the many definitions proposed in
the literature, the measure transportation-based ranks introduced in Cher-
nozhukov et al. (2017) enjoy all the properties that make univariate ranks a
successful tool for semiparametric inference. Related with those ranks, we
propose a new center-outward definition of multivariate distribution and
quantile functions, along with their empirical counterparts, for which we es-
tablish a Glivenko-Cantelli result. Our approach is based on McCann (1995)
and our results, unlike those of Chernozhukov et al. (2017), do not require
any moment assumptions. The resulting ranks and signs are shown to be
strictly distribution-free and essentially maximal ancillary in the sense of
Basu (1959) which, in semiparametric models involving noise with unspec-
ified density, can be interpreted as a finite-sample form of semiparametric
efficiency. Although constituting a sufficient summary of the sample, em-
pirical center-outward distribution functions are defined at observed values
only. A continuous extension to the entire d-dimensional space, yielding
smooth empirical quantile contours and sign curves while preserving the
essential monotonicity and Glivenko-Cantelli features, is provided. A nu-
merical study of the resulting empirical quantile contours is conducted.
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1. Introduction

Unlike the real line, the real space Rd, for d ≥ 2, is not canonically ordered.
As a consequence, such fundamental concepts as quantile and distribution func-
tions, which are strongly related to the ordering of the observation space, and
their empirical counterparts—ranks and empirical quantiles—playing, in dimen-
sion d = 1, a fundamental role in statistical inference, do not canonically extend
to dimension d ≥ 2.

Of course, a classical concept of distribution function—the familiar one, based
on marginal orderings—does exist. That concept, from a probabilistic point of
view, does the job of characterizing the underlying distribution. However, the
corresponding quantile function does not mean much (see, e.g., Genest and
Rivest (2001)), and the corresponding empirical versions (related to their pop-
ulation counterparts via a Glivenko-Cantelli result) do not possess any of the
properties that make them successful inferential tools in dimension d = 1.

That observation about traditional multivariate distribution functions is not
new: palliating the lack of a “natural” ordering of Rd—hence, defining statisti-
cally sound concepts of distribution and quantile functions—has been an open
problem for more than half a century, generating an abundant literature that
includes, among others, the theory of copulas and the theory of statistical depth.

A number of most ingenious solutions have been proposed, each of them ex-
tending some chosen features of the well-understood univariate concepts, with
which they coincide for d = 1. Coinciding, for d = 1, with the univariate
concepts obviously is important, but hardly sufficient for qualifying as a sta-
tistically pertinent multivariate extension. For statisticians, distribution and
quantile functions are not just probabilistic notions: above all, their empirical
versions (empirical quantiles and ranks) constitute fundamental tools for infer-
ence. A multivariate extension yielding quantiles and ranks that do not enjoy,
in dimension d ≥ 2, the properties that make traditional ranks natural and
successful tools for inference for d = 1 is not a statistically sound extension.

Those inferential concerns are at the heart of the approach adopted here.

1.1. Ranks and rank-based inference

To facilitate the exposition, let us focus on ranks and their role in testing prob-
lems. Univariate rank-based methods naturally enter the picture in the context

of semiparametric statistical models under which the distribution P
(n)
θθθ,f of some

real-valued observation X = (X1, . . . , Xn)′, besides a finite-dimensional parame-
ter of interest θθθ ∈ΘΘΘ, also depends on the unspecified density f ∈ F1 (F1 the
family of Lebesgue densities over R) of some unobserved univariate noise Zi(θθθ),

say. More precisely, X ∼ P
(n)
θθθ,f iff the θθθ-residuals Z1(θθθ), . . . , Zn(θθθ) =: Z(n)(θθθ) are

i.i.d.1 with density f . In such models—call them i.i.d. noise models2—testing the

1Although i.i.d.-ness can be relaxed into exchangeability, we are sticking to the former.
2Typical examples are linear models, with Zi(θθθ) = Xi − c′iθθθ (ci a q-vector of covariates

and θθθ ∈ Rq), or first-order autoregressive models, with Zi(θ) = Xi − θXi−1 (where i denotes
time and θ ∈ (−1, 1); see, e.g., Hallin and Werker (1998)), etc.
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null hypothesis H
(n)
0 : θθθ = θθθ0 (that is, P

(n)
θθθ,f ∈P

(n)
θθθ0

:= {P(n)
θθθ0,f
|f ∈F1}) reduces to

the problem of testing that Z1(θθθ0), . . . , Zn(θθθ0) are i.i.d. with unspecified den-
sity f ∈ F1. Invariance arguments suggest tests based on the ranks R(n)(θθθ0) of

the residuals Z(n)(θθθ0)3; such tests are distribution-free under H
(n)
0 .

Distribution-freeness (DF) is often considered as the trademark and main
virtue of (univariate) ranks; it guarantees the validity and similarity of rank-

based tests of H
(n)
0 . Distribution-freeness alone is not sufficient, though, for

explaining the success of rank tests: other classes of distribution-free methods
indeed can be constructed, such as sign or runs tests, that do not perform as
well as the rank-based ones. The reason is that, unlike the ranks, they do not
fully exploit the information available once the nuisance (the unknown f) has
been controlled for via some minimal sufficient statistic. That feature of ranks
originates in the fact that

(DF+) (essential maximal ancillarity) the sub-σ-field generated by the residual

ranks R(n)(θθθ) is essentially maximal ancillary (hence distribution-free) for P(n)
θθθ

in the sense of Basu (1959) (see, e.g., Example 7 in Lehmann and Scholz (1992)).

while the sub-σ-field generated by the residual order statistic Z
(n)
( . ) (θθθ) is minimal

sufficient and complete (still for P(n)
θθθ ).

In families satisfying the condition (Koehn and Thomas 1975) of non-existence
of a splitting set—which is the case here whenever f ranges over F1—Theorems 1
and 2 in Basu (1955) imply that essential maximal ancillarity is equivalent to
“essential maximal independence with respect to the complete (hence minimal)

sufficient statistic Z
(n)
( . ) (θθθ).”4 Intuitively, thus, and leaving aside the required

mathematical precautions, the order statistic Z
(n)
( . ) (θθθ), being minimal sufficient

for P(n)
θθθ , is carrying all the information about the nuisance f and nothing but

that information, while the ranks, being (essentially) “maximal independent

of Z
(n)
( . ) (θθθ),” are carrying whatever information is left for θθθ. This can be inter-

preted as a finite-sample form of semiparametric efficiency5

In the same vein, it also has been shown (Hallin and Werker 2003) that, un-
der appropriate regularity conditions, univariate ranks preserve semiparametric
efficiency in models where that concept makes sense:

(HW) (preservation of semiparametric efficiency) the semiparametric efficiency

bound at arbitrary (θθθ, f) can be reached, under P
(n)
θθθ,f , via rank-based procedures

(tests that are measurable functions of the ranks of θθθ-residuals Zi(θθθ)).

The latter property, contrary to (DF) and (DF+), is of a local and asymp-
totic nature; in Hallin and Werker (2003), it follows from the maximal invariance

3Those ranks indeed are maximal invariant under the group of continuous monotone
increasing transformations of Z1(θθθ0), . . . , Zn(θθθ0); see, e.g., Example 7 in Lehmann and
Scholz (1992).

4We refer to Appendix D.1 for precise definitions, a more general and stronger version of
this property, and a proof.

5Semiparametric efficiency indeed is characterized as asymptotic orthogonality, with re-
spect to the central sequences carrying information about parametric perturbations of the
nuisance; asymptotic orthogonality here is replaced with finite-sample independence.
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property of ranks under a group of order-preserving transformations of Rn gen-

erating the fixed-θθθ submodel (that is, yielding a unique orbit in the family P(n)
θθθ of

fixed-θθθ model distributions). Being intimately related to the concept of order-
preserving transformation, this invariance approach is much more delicate in
dimension d > 1. For lack of space, we do not investigate it any further here,
leaving a formal multivariate extension of (HW) for further research.

Properties (DF+) and (HW), which indicate, roughly, that the order statistic
only carries information about the nuisance f while the ranks carry all the
information available about θθθ, are those a statistician definitely would like to
see satisfied by any sensible multivariate extension of the concept.

1.2. Multivariate ranks and the ordering of Rd, d ≥ 2

The problem of ordering Rd for d ≥ 2, thus defining multivariate concepts of
ranks, signs, empirical distribution functions and quantiles, is not new, and has
a rather long history in statistics. Many concepts have been proposed in the
literature, a complete list of which cannot be given here. Focusing again on
ranks, four types of multivariate ranks, essentially, can be found:
(a) Componentwise ranks. The idea of componentwise ranks goes back as far as
Hodges (1955), Bickel (1965) or Puri and Sen (1966, 1967, 1969). It culminates
in the monograph by Puri and Sen (1971), where inference procedures based on
componentwise ranks are proposed, basically, for all classical problems of mul-
tivariate analysis. Time-series testing methods based on the same ranks have
been considered in Hallin, Ingenbleek, and Puri (1989). That strand of literature
is still alive: see Chaudhuri and Sengupta (1993), Segers, van den Akker, and
Werker (2015), ... to quote only a very few. Componentwise ranks actually are
intimately related to copula transforms, of which they constitute the empirical
version: rather than solving the tricky problem of ordering Rd, they bypass it
by considering d univariate marginal rankings. As a consequence, they crucially
depend on the choice of a coordinate system. Unless the underlying distribu-
tion has independent components (Nordhausen et al. 2009, Ilmonen and Pain-
daveine 2011, Hallin and Mehta 2015) coinciding with the chosen coordinates,
componentwise ranks in general are not even asymptotically distribution-free:
neither (DF) nor (DF+) hold.
(b) Spatial ranks and signs. This class of multivariate ranks (Möttönen and
Oja 1995; Möttönen et al. 1997; Chaudhuri 1996; Koltchinskii 1997; Oja and
Randles 2004, Oja 2010, and many others) includes several very ingenious, ele-
gant, and appealing concepts. Similar ideas also have been developed by Choi
and Marden (1997) and, more recently, in high dimension, by Biswas, Mukho-
padhyay, and Ghosh (2014) and Chakraborthy and Chaudhuri (1996, 2014,
2017). We refer to Marden (1999), Oja (1999) or Oja (2010) for a systematic
exposition and exhaustive list of references. All those concepts are extending
the traditional univariate ones but none of them enjoys (DF)6, let alone (DF+).

6Biswas et al. (2014) is an exception, but fails on (DF+)
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(c) Depth-based ranks. Those ranks have been considered in Liu (1992), Liu and
Singh (1993), He and Wang (1997), Zuo and He (2006), Zuo and Serfling (2000),
among others; see Serfling (2002) for a general introduction on statistical depth,
Hallin et al. (2010) for the related concept of quantile, Lòpez-Pintado and
Romo (2012) for functional extensions, Zuo (2018) for a state-of-the art sur-
vey in a regression context. Depth-based ranks, in general, are distribution-free
but fail to satisfy (DF+).
(d) Mahalanobis ranks and signs/interdirections. When considered jointly with
interdirections (Randles 1989), lift interdirections (Oja and Paindaveine 2005),
Tyler angles or Mahalanobis signs (Hallin and Paindaveine 2002a, c), Maha-
lanobis ranks do satisfy (DF+), but in elliptical models only—when f is limited
to the family of elliptical densities. There, they have been used, quite success-
fully, in a variety of multivariate models, including one-sample location (Hallin
and Paindaveine 2002a), k-sample location (Um and Randles 1998), serial de-
pendence (Hallin and Paindaveine 2002b), linear models with VARMA errors
(Hallin and Paindaveine 2004a, 2005a, 2006a), VAR order identification (Hallin
and Paindaveine 2004b), shape (Hallin and Paindaveine 2006b; Hallin, Oja,
and Paindaveine 2006), homogeneity of scatter (Hallin and Paindaveine 2008),
principal and common principal components (Hallin, Paindaveine, and Verde-
bout 2010, 2013, 2014). Unfortunately, the tests developed in those references
cease to be valid, and the related R-estimators no longer are root-n consistent,
under non-elliptical densities.

None of those multivariate rank concepts, thus, enjoys distribution-freeness
and (DF+)—except, but only over the class of elliptically symmetric distribu-
tions, for the Mahalanobis ranks and signs. A few other concepts have been
proposed as well, related to cone orderings (Belloni and Winkler 2011; Hamel
and Kostner 2018), which require some subjective (or problem-specific) prelim-
inary choices, and similarly fail to achieve distribution-freeness, hence (DF+).

The lack, for d ≥ 2, of a canonical ordering of Rd places an essential dif-
ference between dimensions d = 1 and d ≥ 2. Whereas the same “exogenous”
left-to-right ordering of R applies both in population and in the sample, perti-
nent orderings of Rd are bound to be “endogenous”, that is, distribution-specific
in populations, and data-driven (hence, random) in samples. This is the case
for the concepts developed under (b)-(d) above; it also holds for the concept we
are proposing in this paper. Each distribution, each sample, thus, is to produce
its own ordering, inducing quantile and distribution functions, and classes of
order-preserving transformations. As a result, datasets, at best, can be expected
to produce, via adequate concepts of multivariate ranks and signs, consistent
empirical versions of the underlying population ordering. That consistency typ-
ically takes the form of a Glivenko-Cantelli (GC) result connecting an empirical
center-outward distribution function to its population version. A quintessential
feature of Glivenko-Cantelli is its insensitivity to continuous order-preserving
transformations of the data. That feature is not compatible with moment as-
sumptions, since the existence of moments is not preserved under such transfor-
mations. Moment assumptions (as in Boeckel et al. (2018) or Chernozhukov et
al. (2017) where (weak) consistency is established under compactly supported
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distributions), therefore, are somewhat inappropriate in this context.
No ordering of Rd for d ≥ 2 moreover can be expected to be of the one-

sided “left-to-right” type, since “left” and “right” do not make sense anymore.
A depth-type center-outward ordering is by far more sensible. All this calls for
revisiting the traditional univariate concepts from a center-outward perspec-
tive, while disentangling (since they are to be based on distinct orderings) the
population concepts from their sample counterparts.

1.3. Outline of the paper

This paper consists of a main text and an online appendix. Except for the proofs,
the main text is self-contained and the reader familiar with measure transporta-
tion and statistical decision can skip most of the appendix. For those who are
less familiar with those topics, however, we recommend the following plan for
fruitful reading. After the introduction (Section 1), one may like to go to Ap-
pendix A.1 for a brief and elementary account of some classical facts in measure
transportation, then to Appendix A.2 for a short review of the (scarce) literature
on relation of that theory to multivariate ranks and quantiles. Appendix B is de-
scribing how the traditional univariate case, where the concepts of distribution
and quantile functions, ranks, and signs are familiar, naturally enters the realm
of measure trasportation once the usual distribution function F is replaced by
the so-called center-outward one 2F − 1. The paper then really starts with Sec-
tion 2, where the main concepts—center-outward distribution and quantile func-
tions, ranks, signs, quantile contours and quantile regions—are defined and their
main properties—regularity of distribution and quantile functions, nestedness
and connectedness of quantile regions, distribution-freeness of ranks and signs,
their maximal ancillarity property and their Glivenko-Cantelli asymptotics—are
stated. Proofs are given in Appendices D and D.1 and the relation, under ellip-
ticity, to Mahalanobis ranks and signs is discussed in Appendix C. Up to that
point, empirical distribution and quantile functions are defined at the observa-
tions only. Section 3 shows how to extend them into smooth functions defined
over the entire space Rd while preserving their gradient of convex function na-
ture, without which they no longer would qualify as distribution and quantile
functions. This smooth extension is shown (Proposition 3.3) to satisfy an ex-
tended Glivenko-Cantelli property; proofs are concentrated in Appendix F. The
tools we are using throughout are exploiting the concept of cyclical monotonic-
ity and the approach initiated by McCann (1995).7 Section 4 provides some
numerical results. The algorithms we are using can handle samples of size as
large as n = 20000 in dimension 2 (the complexity of the algorithms in Rd only
depend on n, not on d); simulations demonstrate the power of empirical center-
outward quantile functions as descriptive tools. Further numerical results, and
a comparison with Tukey depth are given in Appendix H. Section 5 concludes
with a discussion of some perspectives for further research.

7This fact is emphasized by a shift in the terminology: as our approach is no longer based on
Monge-Kantorovich optimization ideas, we consistently adopt the terminology center-outward
ranks and signs instead of Monge-Kantorovich ranks and signs.
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1.4. Notation

Throughout, let µd stand for the Lebesgue measure over Rd equipped with its
Borel σ-field Bd. Denote by Pd the family of Lebesgue-absolutely continuous
distributions over (Rd,Bd), by Fd := {f := dP/dµd, P∈ Pd} the corresponding

family of densities, by Bnd the n-fold product Bd × . . . × Bd, by P(n) or P
(n)
f

the distribution of an i.i.d. n-tuple with marginals P = Pf ∈ Pd, by P(n)
d the

corresponding collection {P(n)
f , f ∈ Fd}; P(n)

d -a.s. means P(n)-a.s. for all P ∈ P(n)
d .

Write spt(P) for the support of P, spt(P) for its interior, Sd−1, Sd, and Sd for
the unit sphere, the open, and the closed unit ball in Rd, respectively.

2. Distribution and quantile functions, ranks and signs in Rd

As announced in the introduction, our definitions of center-outward distribu-
tion and quantile functions are rooted in the main result of McCann (1985).
Those definitions in Hallin (2017) are given under the assumption that P has a
nonvanishing density with support Rd. Under that assumption, one safely can
define the center-outward distribution function as the unique gradient of a con-
vex function ∇φ pushing P forward to the uniform distribution over the unit
ball. That gradient, moreover, is a homeomorphism between Rd\∇φ−1({0}) and
the punctured unit ball Sd\{0} (Figalli 2019) and its inverse naturally qualifies
as a quantile function—a very simple and intuitively clear characterization.

Things are more delicate when the support of P is a strict subset of Rd, as
uniqueness of∇φ then only holds P-a.s., and requires the slightly more elaborate
definitions developed here. The two approaches, however, coincide in case P has
a non vanishing density over Rd.

2.1. Center-outward distribution and quantile functions in Rd

Recall that a convex function ψ from Rd to R ∪ {∞} (a) is continuous on the
interior of dom(ψ) := {x : ψ(x) <∞} and (b) Lebesgue-a.e. differentiable, with
gradient ∇ψ, on dom(ψ). By abuse of language and notation, call gradient and
denote as ∇ψ any function coinciding µd-a.e. with that gradient. A statement
of McCann’s main result adapted to our needs is the following. 8

Theorem 2.1 (McCann 1985) Let P1 and P2 denote two distributions in Pd.
Then, (i) the class of functions

∇ΨP1;P2
:=
{
∇ψ

∣∣ψ : Rd → R convex, lower semi-continuous, and (2.1)

such that ∇ψ#P1 = P2}
is not empty; (ii) if ∇ψ′ and ∇ψ′′ are two elements of ∇ΨP1;P2

, they coin-
cide P1-a.s.; 9 (iii) if P1 and P2 have finite moments of order two, any element
of ∇ΨP1;P2 is an optimal quadratic transport pushing P1 forward to P2.

8Below we are borrowing from the measure transportation literature the convenient nota-
tion T#P1 = P2 for the distribution P2 of T (X) under X ∼ P—we say that T is pushing
forward P1 to P2.

9That is, P1({x : ∇ψ′(x) 6= ∇ψ′′(x)}) = 0; in particular, ∇ψ1(x) = ∇ψ2(x) Lebesgue-a.e.
for x ∈ spt(P1).
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Although not mentioned in McCann’s main result (p. 310 of McCann (1995)),
lower semi-continuity in (2.1) can be imposed without loss of generality (this
follows, for instance, from his proof of uniqueness on p. 318).

Denoting by Ud the spherical uniform distribution over Sd,10 consider The-
orem 2.1 and (2.1) for P1 = Ud and P2 = P ∈ Pd. Since the support of Ud

is Sd (which is convex and compact), ψ is uniquely determined over Sd if we
impose, without loss of generality, ψ(0) = 0.11 Outside Sd (that is, on a set
with Ud-probability zero), let us further impose again

ψ(u) =∞ for ‖u‖ > 1 and ψ(u) = lim inf
Sd3v→u

ψ(v) for ‖u‖ = 1. (2.2)

The domain of ψ is dom(ψ) := {u
∣∣ψ(u) < ∞} = Sd. A convex function is

differentiable a.e. in the interior of its domain. Hence, the gradient ∇ψ of ψ
satisfying (2.2) exists, is unique a.e. in Sd, and still belongs to ∇ΨUd;P.

Inspired by the univariate case as described in Section B.3, we propose the
following definitions of the center-outward quantile function of P ∈ Pd.

Definition 2.1 Call center-outward quantile function Q± of P ∈ Pd the a.e.
unique element ∇ψ ∈ ∇ΨUd;P such that ψ satisfies (2.2).

In general, thus, Q± is a class of Lebesgue-a.e. equal functions rather than a
function. Each element in that class pushes Ud to P, hence fully characterizes P.
Such a.e. uniqueness, in probability and statistics, is not uncommon: densities,
conditional expectations, likelihoods, MLEs, ... all are defined up to sets of prob-
ability zero. As we shall see, however, strict uniqueness does hold for important
families of distributions, for which ψ is everywhere differentiable over Sd.

Next, let us proceed with the definition of the center-outward distribution
function F±. Consider the Legendre transform

φ(x) := ψ∗(x) := sup
u∈Ss

(〈u,x〉 − ψ(u)) x ∈ Rd (2.3)

of the a.e.-unique convex function ψ (satisfying ψ(0) = 0 and (2.2)) of which Q±

is the gradient. Being the sup of a 1-Lipschitz function, φ also is 1-Lipschitz. It
follows that φ is a.e. differentiable, with ‖∇φ(x)‖ ≤ 1, so that (Corollary (A.27)
in Figalli (2017)), denoting by ∂φ(x) the subdifferential of φ at x,12

∂φ(Rd) :=
⋃

x∈Rd

∂φ(x) ⊆ Sd. (2.4)

Moreover, since P has a density, Proposition 10 in McCann (1995) implies that

10Namely, the product of the uniform over the unit sphere Sd−1 with a uniform over the
unit interval of distances to the origin. While Ud coincides, for d = 1, with the Lebesgue-
uniform over S1, this is no longer the case for d > 1; we nevertheless still call it uniform over
the unit ball.

11Indeed, two convex functions with a.e. equal gradients on an open convex set are equal
up to an additive constant: see Lemma 2.1 in del Barrio and Loubes (2019).

12Recall that the subdifferential of φ at x ∈ R is the set ∂φ(x) of all z ∈ Rd such
that φ(y) − φ(x) ≥ 〈z,y − x〉 for all y; φ is differentiable at x iff ∂φ(x) consists of a sin-
gle point, ∇φ(x).
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∇ψ ◦ ∇φ(x) = x P-a.s. and ∇φ ◦ ∇ψ(u) = u Ud-a.s. (2.5)

In view of (2.4) and the second statement in (2.5), F± := ∇φ takes values

in Sd and pushes P forward to Ud. Moreover, there exist subsets ˘spt(P) and S̆d
of spt(P) and Sd, respectively, such that (a) P

(
˘spt(P)

)
= 1 = Ud

(
S̆d
)
, (b) the

restriction to ˘spt(P) of ∇φ =: F± and the restriction to S̆d of ∇ψ =: Q± are bi-
jections, and (c) those restrictions are the inverse of each other. Accordingly, F±

qualifies as a center-outward distribution function.

Definition 2.2 Call F± :=∇φ the center-outward distribution function of P∈Pd.

The following propositions summarize the main properties of F± and Q±,
some of which already have been mentioned in previous comments.

Proposition 2.1 Let Z ∼ P ∈ Pd and denote by F± the center-outward distri-
bution function of P. Then,

(i) F± takes values in Sd and F±#P = Ud: F±, thus, is a probability-integral
transformation;

(ii) ‖F±(Z)‖ is uniform over [0, 1], S(Z) := F±(Z)/‖F±(Z)‖ uniform over Sd−1,
and they are mutually independent;

(iii) F± entirely characterizes P;
(iv) for d=1, F± coincides with 2F−1 (F the traditional distribution function).

For q ∈ (0, 1), define the center-outward quantile region and center-outward
quantile contour of order as

C(q) :=Q±(q S̄d)={z
∣∣‖F±(Z)‖ ≤ q} and C(q) :=Q±(q Sd−1)={z

∣∣‖F±(Z)‖ = q},
(2.6)

respectively.

Proposition 2.2 Let P∈ Pd have center-outward quantile function Q±. Then,

(i) Q± pushes Ud forward to P, hence entirely characterizes P;
(ii) the center-outward quantile region C(q), 0 < q < 1, has P-probability

content q;
(iii) Q±(u) coincides, for d = 1, with inf{x

∣∣F (x) ≥ (1 + u)/2)}, u ∈ (−1, 1),
and C(q), q ∈ (0, 1), with (F the traditional distribution function)13[

inf{x
∣∣F (x) ≥ (1− q)/2}, inf{x

∣∣F (x) ≥ (1 + q)/2}
]⋂

spt(P). (2.7)

The modulus ‖F±(x)‖ thus is the order of the quantile contour and the P-
probability content of the largest quantile region containing x; the unit vec-
tor S(z) := F±(z)/‖F±(z)‖ has the interpretation of a multivariate sign. Note
that the definition of C(0) so far has been postponed.

These properties are not entirely satisfactory, though, and a bijection be-
tween ˘spt(P) and S̆d is not enough for meaningful quantile concepts to ex-
ist. The terminology quantile region and quantile contour, indeed, calls for

13Since Q± is only a.e. defined, one can as well use spt(P) in (2.7); this, however, no longer
produces a closed region and may result in an empty set

⋂
0<q<1 C(q) of medians in (2.8).
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a collection of connected, closed, and strictly nested regions C(q)—i.e., such
that C(q1) ( C(q) ( C(q2) for any 0 < q1 < q < q2 < 1—with continuous
boundaries C(q) of Hausdorff dimension d − 1; a reasonable14 definition of a
median set then is, with C(q) (q ∈ (0, 1)) defined in (2.6),

C(0) :=
⋂

0<q<1
C(q). (2.8)

Such attractive properties do not hold, unfortunately, and the median set C(0),
as defined in (2.8) may be empty, unless Q±, hence F±, enjoy some continuity
properties, which require regularity assumptions on P and its support: see Ap-
pendix H for examples. A sufficient condition, as we shall see, is the continuity
of u 7→ Q±(u), at least on Sd\{0}.

To see this and understand the special role of 0, recall that Q± is only
a.e. defined. Hence, Q±(0) can take any value compatible with the convexity
of ψ—namely, any single point in the subdifferential ∂ψ(0) of the uniquely de-
fined ψ satisfying ψ(0) = 0. As a consequence, continuity of Q± is impossible
unless ∂ψ(0) (and all other subdifferentials—not just almost all of them) con-
tains exactly one single point.

Continuity of the restriction of Q± to a closed spherical annulus q+Sd\q−Sd
yields continuous contours C(q) and strictly nested closed regions C(q) for the
orders q ∈ [q−, q+]. Letting q+ = 1 − ε and q− = ε with ε > 0 arbitrarily
small, continuity of Q± everywhere except possibly at 0 thus yields continuous
contours and strictly nested closed regions for the orders q ∈ (0, 1).

The definition of quantile regions implies that all possible values of Q±(0)
are contained in the intersection

⋂
0<q<1C(q) of all regions of order q > 0;

hence, ∂ψ(0) ⊆
⋂

0<q<1C(q). Conversely, any point u 6= 0 has a neighbor-

hood V (u) such that 0 /∈ V (u). Assuming that Q± is continuous everywhere
but at 0, Q±(V (u)) ∩

⋂
0<q<1C(q) = ∅. Hence, ∂ψ(0) =

⋂
0<q<1C(q). As the

subdifferential of a convex function ψ, ∂ψ(0), hence
⋂

0<q<1C(q), is closed and
convex. Because P has a density and 0 is in the interior of ψ’s domain, it also
is compact and has Lebesgue measure zero (Lemma A.22 in Figalli (2017)).

It follows that by defining the median set as C(0) :=
⋂

0<q<1C(q) = ∂ψ(0)

(instead of C(0) := Q±(0), which is not uniquely determined), we do not need
continuity at 0 to obtain strict nestedness of all quantile contours and regions—
now including C(0)—while (2.8), of course, is automatically satisfied.

This, which justifies giving up continuity at 0 (and only there), is not an
unimportant detail: Proposition 2.3 below indeed shows that important classes
of distributions yield quantile functions Q± that are not continuous over the
ball Sd but nevertheless enjoy continuity over the punctured ball Sd\{0}.

Denote by Pconv
d the class of distributions Pf ∈ Pd such that (a) spt(Pf ) is

a convex set15 and, (b) for all D ∈ R+, there exist constants ΛD;f and λD;f

14By analogy with the definition of C(q) for q > 0, one may be tempted to define C(0)
as Q±(0). This yields for C(0) an arbitrary point in the subdifferential ∂ψ(0) which, unless
that subdifferential consists of a single point, cannot satisfy (2.8).

15That convex set is not necessarily bounded.
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in (0,∞) such that λD;f ≤ f(x) ≤ ΛD;f for all x ∈ (D Sd)∩ spt(Pf ). That class
includes the class P+

d of distributions with support spt(P) = Rd considered by
Hallin (2017) and Figalli (2018).

The following result, which establishes the continuity properties of F± and Q±

for P ∈ Pconv
d , extends the main result obtained for P+

d by Figalli (2018) and is
borrowed, with some minor additions, from del Barrio et al. (2019).

Proposition 2.3 Let P ∈ Pconv
d have density f and support spt(P). Then, its

center-outward distribution function F± =∇φ is continuous and single-valued
on Rd and ‖F±(x)‖ = 1 for x /∈ spt(P). Furthermore, there exists a compact
convex set K ⊂ spt(P) with Lebesgue measure zero such that

(i) F± and the center-outward quantile function Q± = ∇ψ are homeomor-
phisms between Sd\{0} and spt(P)\K, on which they are inverse of each
other; for d = 1, 2, however, K contains a single point and the homeo-
morphisms are between Sd and spt(P);

(ii) the quantile contours C(q) and regions C(q), 0 < q < 1 defined by Q± are
such that

⋂
0<q<1C(q) = ∂ψ({0}) = K; K thus qualifies as the median

set C(0) of P as defined in (2.8).

If, moreover, f ∈ Ck,αloc (spt(Pf )) for some k ≥ 0, then

(iii) (a) Q± and F± are diffeomorphisms of class Ck+1,α
loc between Sd \ {0}

and spt(P)\C(0);

(b) f(z) = c−1
d det

[
Hψ

(
∇φ(z)

)]
‖∇φ(z)‖1−dI

[
z ∈ spt(Pf )\C(0)

]
where cd

is the area 2πd/2/Γ(d/2) of the unit sphere Sd−1 and Hφ∗(u) the Hes-
sian16 of ψ computed at u.

Denote by P±
d ⊂ Pd the class of all distributions of the form P = ∇Υ

where Υ is convex and ∇Υ a homeomorphism from Sd \ {0} to ∇Υ (Sd \ {0})
such that ∇Υ ({0}) is a compact convex set of Lebesgue measure zero. By
construction, such P ∈ P±

d has center-outward quantile function Q± = ∇Υ,
center-outward distribution function F±(x) = (∇Υ)−1 for x in the range of ∇Υ

and ‖F±(x)‖ = 1 outside that range, and satisfies Proposition 2.3; the latter
actually can be rephrased as Pconv

d ⊂ P±
d , with the following immediate corollary

in terms of quantile regions and contours.

Corollary 2.1 For any P ∈ P±
d (hence, any P ∈ Pconv

d ) and q ∈ [0, 1), the
quantile regions C(q) are closed, connected, and nested, with continuous bound-
aries C(q) satisfying µd(C(q)) = 0.

For any distribution P ∈ P±
d , F± thus induces a (partial) ordering of Rd

similar to the ordering induced on the unit ball by the system of polar coordi-
nates, and actually coincides with the “vector rank transformation” considered
in Chernozhukov et al. (2017) when the reference distribution is Ud. The quan-
tile contours C(q) also have the interpretation of depth contours associated with
their Monge-Kantorovich depth. Their assumption of a compact support satis-
fying Cafarelli regularity conditions are sufficient (not necessary) for P ∈ P±

d .

16That Hessian exists since k ≥ 0 and ∇φ(z) 6= 0 for z ∈ spt(Pf )\C(0).
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2.2. Center-outward ranks and signs in Rd

Turning to the sample situation, let Z(n) :=
(
Z

(n)
1 , . . . ,Z

(n)
n

)
denote an n-tuple

of random vectors— observations or residuals associated with some parameter θθθ

of interest. We throughout consider the case that the Z
(n)
i ’s are (possibly, under

parameter value θθθ) i.i.d. with density f ∈ Fd, distribution P and center-outward
distribution function F±.

For the empirical counterpart F
(n)
± of F±, we propose the following extension

of the univariate concept described in Appendix B. Assuming d ≥ 2, let n
factorize into

n = nRnS + n0, nR, nS , n0 ∈ N, 0 ≤ n0 < min(nR, nS) (2.9)

where nR →∞ and nS →∞ as n→∞ (implying n0/n→ 0); (2.9) is extending

to d ≥ 2 the factorization of n into n = bn2 c2+n0 with n0 = 0 (n even) or n0 = 1

(n odd) that leads, for d = 1, to the grids (B.6).
Next, consider a sequence of “regular grids” of nRnS points in the unit ball Sd

obtained as the intersection between

– a “regular” nS-tuple S(nS) := (u1, . . .unS
) of unit vectors, and

– the nR hyperspheres centered at 0, with radii
j

nR + 1
, j = 1, . . . , nR,

along with n0 copies of the origin whenever n0 > 0. In theory, by a “regular”
nS-tuple S(nS) = (u1, . . .unS

), we only mean that the sequence of uniform
discrete distributions over {u1, . . .unS

} converges weakly, as nS → ∞, to the
uniform distribution over Sd−1. In practice, each nS-tuple should be “as uni-
form as possible”. For d = 2, perfect regularity can be achieved by dividing
the unit circle into nS arcs of equal length 2π/nS . Starting with d = 3, how-
ever, this typically is no longer possible. A random array of nS independent
and uniformly distributed unit vectors does satisfy (almost surely) the weak
convergence requirement. More regular deterministic arrays (with faster conver-
gence) can be considered, though, such as the low-discrepancy sequences of the
type considered in numerical integration and Monte-Carlo methods (see, e.g.,
Niederreiter (1992), Judd (1998), Dick and Pillichshammer (2014), or Santner
et al. (2003)), which are current practice in numerical integration and the design
of computer experiments.

The resulting grid of nRnS points then is such that the discrete distribution
with probability masses 1/n at each gridpoint and probability mass n0/n at the
origin converges weakly to the uniform Ud over the ball Sd. That grid, along
with the n0 copies of the origin, is called the augmented grid (n points).

We then define F
(n)
± (Z

(n)
i ), i = 1, . . . , n as the solution of an optimal coupling

problem between the observations and the augmented grid. Let T denote the

set of all possible bijective mappings between Z
(n)
1 , . . . ,Z

(n)
n and the n points

of the augmented grid just described. Under the assumptions made, the Z
(n)
i ’s

are all distinct with probability one, so that T contains n!/n0! classes of n0!
indistinguishable couplings each (two couplings T1 and T2 are indistinguishable

if T1(Z
(n)
i ) = T2(Z

(n)
i ) for all i).
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Definition 2.3 Call empirical center-outward distribution function any of the

mappings F
(n)
± :

(
Z

(n)
1 , . . . ,Z

(n)
n

)
7→
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

=: F
(n)
± (Z(n))

satisfying
n∑
i=1

∥∥Z(n)
i − F

(n)
± (Z

(n)
i )
∥∥2

= min
T∈T

n∑
i=1

∥∥Z(n)
i − T (Z

(n)
i )
∥∥2

(2.10)

or, equivalently,
n∑
i=1

∥∥Z(n)
i − F

(n)
± (Z

(n)
i )
∥∥2

= min
π

n∑
i=1

∥∥Z(n)
π(i) − F

(n)
± (Z

(n)
i )
∥∥2

(2.10)

where the set {F(n)
± (Z

(n)
i )| i = 1, . . . , n} consists of the n points of the augmented

grid and π ranges over the n! possible permutations of {1, 2, . . . , n}.

Determining such a coupling is a standard optimal assignment problem, which
takes the form of a linear program for which efficient algorithms are available
(see Peyré and Cuturi (2019) for a recent survey).

Call order statistic Z
(n)
( . ) of Z(n) the un-ordered n-tuple of Z

(n)
i values—

equivalently, an arbitrarily ordered version of the same. To fix the notation,

let Z
(n)
( . ) :=

(
Z

(n)
(1) , . . . ,Z

(n)
(n)

)
, where Z

(n)
(i) is such that its first component is the ith

order statistic of the n-tuple of Z
(n)
i ’s first components. Under this definition, the

points z ∈ Rnd at which (2.10) possibly admits two minimizers or more lie in the
union N of a finite number of linear subspaces of Rnd where some equidistance

properties hold between Z
(n)
i ’s and gridpoints; therefore, N is Z

(n)
( . ) -measurable

and has Lebesgue measure zero. Such multiplicities have no practical impact,
thus, since (for a given grid) they take place on a unique null set N .

Another type of multiplicity occurs, even over Rnd\N : each of the minimiz-

ers F
(n)
± (Z(n)) of (2.10) indeed is such that the n-tuple{(

Z
(n)
1 ,F

(n)
± (Z

(n)
1 )
)
, . . . ,

(
Z(n)
n ,F

(n)
± (Z(n)

n )
)}

(2.11)

is one of the n0! indistinguishable couplings between the n observations and the n
points of the augmented grid that minimize, over the n! possible couplings, the
sum of within-pairs squared distances. That multiplicity, which involves n0 tied

observations, does not occur for n0 = 0 or 1: the mapping z 7→
(
z( . ),F

(n)
± (z)

)
then is injective over Rnd \N . For n0 > 1, it is easily taken care of by re-
placing, in the grid, the n0 > 1 copies of 0 with n0 i.i.d. points uniformly
distributed over (nR + 1)−1Sd—a convenient tie-breaking device (see footnote 9

in Appendix D.2) restoring the injectivity over Rnd\N of z 7→
(
z( . ),F

(n)
± (z)

)
.

Reinterpreting (2.10) as an expected (conditional on the order statistic—
see Section 2.4 for a precise definition) transportation cost, the same optimal
coupling(s) also constitute(s) the optimal L2 transport mapping the empirical
distribution to the uniform discrete distribution over the augmented grid (and,
conversely, the two problems being entirely symmetric, the optimal L2 trans-
port mapping the uniform discrete distribution over the augmented grid to the
empirical distribution). Classical results (McCann (1995) again) then show that
optimality is achieved (i.e., (2.10) is satisfied) iff the so-called cyclical mono-
tonicity property holds for the n-tuple (2.11).
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Definition 2.4 A subset S of Rd × Rd is said to be cyclically monotone if, for
any finite collection of points {(x1,y1), . . . , (xk,yk)} ⊆ S,

〈y1, x2 − x1〉+ 〈y2, x3 − x2〉+ . . .+ 〈yk, x1 − xk〉 ≤ 0. (2.12)

The subdifferential of a convex function does enjoy cyclical monotonicity, which
heuristically can be interpreted as a discrete version of the fact that a smooth
convex function has a positive semi-definite second-order differential.

Note that a finite subset S = {(x1,y1), . . . , (xn,yn)} of Rd × Rd is cycli-
cally monotone iff (2.12) holds for k = n—equivalently, iff, among all pairings
of (x1, . . . ,xn) and (y1, . . . ,yn), S maximizes

∑n
i=1〈xi,yi〉 (an empirical covari-

ance), or minimizes
∑n
i=1 ‖yi − xi‖2 (an empirical distance). In other words, a

finite subset S is cyclically monotone iff the couples (xi,yi) are a solution of
the optimal assignment problem with assignment cost ‖yi−xi‖2. The L2 trans-
portation cost considered here is thus closely related to the concept of convexity
and the geometric property of cyclical monotonicity; it does not play the statis-
tical role of an estimation loss function, though—the L2 distance between the
empirical transport and its population counterpart (the expectation of which
might be infinite), indeed, is never considered.

Associated with our definition of an empirical center-outward distribution

function F
(n)
± are the following concepts of

– center-outward ranks R
(n)
±,i := (nR + 1)‖F(n)

± (Z
(n)
i )‖,

– empirical center-outward quantile contours and regions

C(n)

±;Z(n)

( j

nR + 1

)
:=
{
Z

(n)
i |R

(n)
±,i = j

}
and C(n)

±;Z(n)

( j

nR + 1

)
:=
{
Z

(n)
i |R

(n)
±,i ≤ j

}
,

respectively, where j/(nR+1), j = 0, 1, . . . , nR, is an empirical probability
contents, to be interpreted as a quantile order,

– center-outward signs S
(n)
±,i := F(n)

± (Z
(n)
i )I

[
F

(n)
± (Z

(n)
i ) 6= 0

]
/‖F(n)

± (Z
(n)
i )‖,

and center-outward sign curves {Z(n)
i |S

(n)
±,i = u}, u ∈ S(nS).

The contours, curves, and regions defined here are finite collections of observed
points; the problem of turning them into continuous contours enclosing compact
regions and continuous lines is treated in Section 3.

Up to this point, we have defined multivariate generalizations of the uni-
variate concepts of center-outward distribution and quantile functions, center-
outward ranks and signs, all reducing to their univariate analogues in case d = 1.
However, it remains to show that those multivariate extensions are adequate in
the sense that they enjoy in Rd the characteristic properties that make the
inferential success of their univariate counterparts—namely,

(GC) a Glivenko-Cantelli-type asymptotic relation between F
(n)
± and F±, and

(DF+) the (essential) maximal ancillarity property described for d = 1 in Sec-
tion 1.1.

This is the objective of Sections 2.3 and 2.4.
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2.3. Glivenko-Cantelli

With the definitions adopted in Sections 2.1 and 2.2, the traditional Glivenko-
Cantelli theorem, under center-outward form (B.7), holds, essentially ne vari-
etur, in Rd under P ∈ P±

d .

Proposition 2.4 Let Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ P±

d . Then,

max
1≤i≤n

∥∥∥F(n)
± (Z

(n)
i )− F±(Z

(n)
i )
∥∥∥ −→ 0 a.s. as n→∞. (2.13)

The particular case of elliptical distributions is considered in Appendix C.
Proposition 2.4 considerably reinforces, under more general assumptions (no

second-order moments), an early strong consistency result by Cuesta-Albertos
et al. (1997). It readily follows from the more general Proposition 3.3, which

extends (2.13) under sup form to cyclically monotone interpolations of F
(n)
± .

2.4. Distribution-freeness and maximal ancillarity

Proposition 2.5 provides the multivariate extension of the usual distributional
properties of univariate order statistics and ranks. Note that, contrary to Propo-
sition 2.4, it holds for P ∈ Pd. See Appendices D.2 and D.1 for a proof and details
on sufficiency, ancillarity, and (strong) essential maximal ancillarity.

Proposition 2.5 Let Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ Pd, center-

outward distribution function F±, order statistic Z
(n)
( . ) , and empirical center-

outward distribution function F
(n)
± . Then,

(i) Z
(n)
( . ) is sufficient and complete, hence minimal sufficient, for P(n)

d ;

(ii)(DF) F
(n)
± (Z(n)) :=

(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniformly distributed
over the n!/n0! permutations with repetitions (the origin counted as n0 indistin-
guishable points) of the grid described in Section 2.2;

(iii) for n0 = 0, the vectors of center-outward ranks
(
R

(n)
±,1, . . . , R

(n)
±,n

)
and

signs
(
S

(n)
±,1, . . . ,S

(n)
±,n

)
are mutually independent; for n0 > 0, the same indepen-

dence holds for the (nRnS)-tuple of ranks and signs associated with the (random)

set {i1 < . . . < inRnS
} such that F

(n)
± (Z

(n)
ij

) 6= 0;

(iv) for all P ∈ Pd, Z
(n)
( . ) and F

(n)
± (Z(n)) are mutually P-independent, and

(v) for n0 ≤ 1 or after adequate tie-breaking (cf. comment below), F
(n)
± (Z(n))

is strongly P(n)
d -essentially maximal ancillary.

In (iii) and (v), n0 plays a special role. In (iii), the fact that the sign, for
the n0 observations mapped to the origin, is not a unit vector induces, for n0 ≥ 1,
a (very mild) dependence between signs and ranks which, however, does not

affect joint distribution-freeness. In (v), n0 ≤ 1 implies that z 7→
(
z( . ),F

(n)
± (z)

)
is injective over Rnd\N . As previously explained, injectivity is easily restored
via a simple tie-breaking device: (v) then is satisfied irrespective of n0. Note
that the proportion n0/n of points involved anyway tends to zero as n→∞.

More important is the interpretation of essential maximal ancillarity in terms
of finite-sample semiparametric efficiency in case Zi is the θ-residual Zi(θ) in
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some semiparametric model with parameter of interest θ and nuisance f (see
Section 1.1). Another crucial consequence of (v) is the following corollary.

Corollary 2.2 Denote by B̃(n)
± the sub-σ-field generated by the mapping F̃

(n)
±

associated with some other deterministic17 n-points grid—whether over the unit
ball, the unit cube, or any other fixed domain. Then, there exists M ∈ Bnd such

that P(n)(M) = 0 for all P ∈ Pd and B(n)
± ∩

(
Rnd\M

)
= B̃(n)

± ∩
(
Rnd\M

)
.

It follows (see Appendix D.1) that B(n)
± and B̃(n)

± are strongly essentially
equivalent σ-fields. Ranks and signs associated with distinct grids, thus, essen-
tially generate the same sub-σ-fields, which considerably attenuates the impact
of grid choices; see Appendix D.2 for details and a proof.

3. Smooth interpolation under cyclical monotonicity constraints

So far, Definition 2.3 only provides a value of F
(n)
± at the sample values Z

(n)
i .

If F
(n)
± is to be extended to z ∈ Rd, an interpolation F

(n)

± , similar for instance to
the one shown, for d = 1, in Figure 5 of Appendix B, has to be constructed. Such
interpolation should belong to the class of gradients of convex functions from Rd

to Sd, so that the resulting contours C(n)

±;Z(n) have the nature of continuous quan-

tile contours. Moreover, it still should enjoy (now under a supz∈Rd form similar
to (B.2)) the Glivenko-Cantelli property.18 Constructing such interpolations is
considerably more delicate for d ≥ 2 than in the univariate case.

Empirical center-outward distribution functions F
(n)
± , as defined in Defini-

tion 2.3, are cyclically monotone (discrete) mappings from the random sample

(or n-tuple of residuals) Z
(n)
1 , . . . ,Z

(n)
n to a (nonrandom) regular grid of Sd;

hence, F
(n)
± is defined at the observed points only. Although such discrete F

(n)
±

perfectly fulfills its statistical role as a sufficient sample summary carrying the
same information as the sample itself, one may like to define an empirical center-
outward distribution function as an object of the same nature—a smooth cycli-
cally monotone mapping from Rd to Sd—as its population counterpart F±. This
brings into the picture the problem of the existence and construction, within the

class of gradients of convex functions, of a continuous extension x 7→ F
(n)

± (x) of

the discrete F
(n)
± , yielding a Glivenko-Cantelli theorem of the supx∈Rd form—

namely, supx∈Rd ‖F
(n)

± (x) − F±(x)‖ → 0 a.s. as n → ∞—rather than the
max1≤i≤n form established in Proposition 2.4. That problem reduces to the
more general problem of smooth interpolation under cyclical monotonicity (see
Definition 2.4) constraints, which we now describe.

Let XXXn = {x1, . . . ,xn} and YYYn = {y1, . . . ,yn} denote two n-tuples of points
in Rd. Assuming that there exists a unique bijection T : XXXn →YYYn such that the

17Deterministic here means nonrandom or randomly generated from a probability space
that has no relation to the observations.

18It should be insisted, though, that the max1≤i≤n form (2.13) of Glivenko-Cantelli is not
really restrictive, as interpolations do not bring any additional information, and are mainly
intended for (graphical or virtual) depiction of quantile contours.
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set
{(

x, T (x)
)
| x ∈ XXXn

}
is cyclically monotone, there is no loss of generality in

relabeling the elements of YYYn so that yi = T (xi). Accordingly, we throughout
are making the following assumption.

Assumption (A). The n-tuples XXXn and YYYn are such that T : xi 7→ T (xi) = yi
for i = 1, . . . , n is the unique cyclically monotone bijective map from XXXn to YYYn.

Our goal, under Assumption (A), is to construct a smooth (at least continuous)
cyclically monotone map T : Rd→ Rd such that T (xi) = T (xi) = yi, i = 1, . . . , n.

It is well known that the subdifferential of a convex function ψ from Rd to R
enjoys cyclical monotonicity. A classical result by Rockafellar (1966) establishes
the converse: any finite cyclically monotone subset S of Rd×Rd lies in the subd-
ifferential of some convex function. Our result reinforces this characterization by
restricting to differentiable convex functions. Note that a differentiable convex
function ψ is automatically continuously differentiable, with unique (at all x)
subgradient ∇ψ(x) and subdifferential {(x,∇ψ(x))|x ∈ Rd}. When ψ is convex
and differentiable, the mapping x 7→ ∇ψ(x) thus enjoys cyclical monotonicity.
We show in Corollary 3.1 that, conversely, any subset S = {(xi,yi)|i = 1, . . . , n}
of Rd × Rd enjoying cyclical monotonicity is the subdifferential (at x1, . . . ,xn)
of some (continuously) differentiable convex function ψ.

Note that Assumption (A) holds if and only if identity is the unique minimizer
of
∑n
i=1 ‖xi − yσ(i)‖2 among the set of all permutations σ of {1, . . . , n}. Let-

ting ci,j := ‖xi− yj‖2, the same condition can be recast in terms of uniqueness
of the solution of the linear program

min
π

n∑
i=1

n∑
j=1

ci,jπi,j s.t.

n∑
i=1

πi,j =

n∑
j=1

πi,j =
1

n
, πi,j ≥ 0, i, j = 1, . . . , n. (3.1)

Clearly, σ(i) = i minimizes
∑n
i=1 ‖xi − yσ(i)‖2 iff πi,i = 1/n, πi,j = 0 for j 6= i

is the unique solution of (3.1).
Our solution to the cyclically monotone interpolation problem is constructed

in two steps. First (Step 1), we extend T to a piecewise constant cyclically mono-
tone map defined on a set in Rd whose complementary has Lebesgue measure
zero. Being piecewise constant, that map cannot be smooth. To fix this, we ap-
ply (Step 2) a regularization procedure yielding the required smoothness while
keeping the interpolation feature. For Step 1, we rely on the following result
(see Appendix F.1 for the proof).

Proposition 3.1 Assume that x1, . . . ,xn ∈ Rd and y1, . . . ,yn ∈ Rd are such
that i 6= j implies xi 6= xj and yi 6= yj. Then,

(i) the map T (xi) = yi, i = 1, . . . , n is cyclically monotone if and only if
there exist real numbers ψ1, . . . , ψn such that

〈xi,yi〉 − ψi = max
j=1,...,n

(〈xi,yj〉 − ψj), i = 1, . . . , n;

(ii) furthermore, T is the unique cyclically monotone map from {x1, . . . ,xn}
to {y1, . . . ,yn} if and only if there exist real numbers ψ1, . . . , ψn such that

〈xi,yi〉 − ψi > max
j=1,...,n,j 6=i

(〈xi,yj〉 − ψj), i = 1, . . . , n. (3.2)
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Remark 3.1 The condition, in Proposition 3.1, that y1, . . . ,yn are distinct
in general is not satisfied in the case of empirical center-outward distribution
functions, where, typically, y1 = · · · = yn0

with y1 6= yi for i > n0 and n0

ranging between 0 and min(nR, nS)− 1. This can be taken care of by means of
the tie-breaking device described in Section 2.2. The proof (see Appendix F.1),
however, is easily adapted to show that the map T (xi) = yi, i = 1, . . . , n is
cyclically monotone if and only if there exist real numbers ψ1, ψn0+1, . . . , ψn
such that, setting ψi = ψ1, i = 2, . . . , n0,

〈xi,yi〉 − ψi = max
j=1,...,n

(〈xi,yj〉 − ψj), i = 1, . . . , n.

Similarly, the map T (xi) = yi, i = 1, . . . , n is the unique cyclically monotone
map from XXXn to {y1,yn0+1 . . . ,yn} mapping n0 points in XXXn to y1 if and only
if there exist real numbers ψ1, ψn0+1, . . . , ψn such that

〈xi,y1〉 − ψ1 > 〈xi,yj〉 − ψj , i = 1, . . . , n0, j = n0 + 1, . . . , n,

〈xi,yi〉 − ψi > 〈xi,yj〉 − ψj , i = n0 + 1, . . . , n, j = 1, n0 + 1, . . . , n, j 6= i.

Details are omitted.

As a consequence of Proposition 3.1, we can extend T to a cyclically monotone
map from Rd to Rd as follows. Under Assumption (A), we can choose ψ1, . . . , ψn
such that (3.2) holds. Consider the convex map

x 7→ ϕ(x) := max
1≤j≤n

(〈x,yj〉 − ψj). (3.3)

Now the sets Ci = {x ∈ Rd| (〈x,yi〉 − ψi) > maxj 6=i(〈x,yj〉 − ψj)} are open
convex sets such that ϕ is differentiable in Ci, with ∇ϕ(x) = yi, x ∈ Ci. The
complement of

⋃n
i=1 Ci has Lebesgue measure zero. Thus, we can extend T

to x ∈
⋃n
i=1 Ci, hence to almost all x ∈ Rd, by setting T (x) := ∇ϕ(x).

By construction, xi ∈ Ci, hence T is an extension of T . Theorem 12.15 in
Rockafellar and Wets (1998) implies that T is cyclically monotone. We could
(in case

⋃n
i=1 Ci  Rd) extend T from

⋃n
i=1 Ci to Rd while preserving cyclical

monotonicity, but such extension of T cannot be continuous. Hence, we do not
pursue that idea and, rather, try to find a smooth extension of T . For this,
consider the Moreau envelopes

ϕε(x) := inf
y∈Rd

[
ϕ(y) +

1

2ε
‖y − x‖2

]
, x ∈ Rd, ε > 0 (3.4)

of ϕ (as defined in (3.3)): see, e.g., Rockafellar and Wets (1998). The following
theorem shows that, for sufficiently small ε > 0, ∇ϕε—the so-called Yosida
regularization of ∇ϕ (Yosida 1964)—provides a continuous, cyclically monotone
interpolation of (x1,y1), . . . , (xn,yn), as desired.

Proposition 3.2 Let Assumption (A) hold, and consider ϕ as in (3.3), with
constants ψ1, . . . , ψn satisfying (3.2). Let ϕε as in (3.4). Then, there exists e > 0
such that, for every 0 < ε ≤ e, the map ϕε is continuously differentiable
and Tε := ∇ϕε is a continuous, cyclically monotone map such that Tε(xi) = yi
for all i = 1, . . . , n and ‖Tε(x)‖ ≤ maxi=1,...,n ‖yi‖ for all x ∈ Rd.
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The main conclusion of Proposition 3.2 (see Appendix F.2 for the proof) remains
true in the setup of Remark 3.1, and we still can guarantee the existence of a
convex, continuously differentiable ϕ such that ∇ϕ(xi) = y1 for i = 1, . . . , n0

and ∇ϕ(xi) = yi for i = n0 + 1, . . . , n. More generally, the following corollary,
which heuristically can be interpreted as a discrete version of the fact that a
smooth convex function has a positive semi-definite second-order differential, is
an immediate consequence.

Corollary 3.1 Any cyclically monotone subset {(xi,yi)|i = 1, . . . , n} of Rd×Rd
such that xi 6= xj for i 6= j lies in the subdifferential (at xi, i = 1, . . . , n) of
some (continuously) differentiable convex function ψ.

Remark 3.2 It is important to note that, in spite of what intuition may sug-
gest, and except for the univariate case (d = 1), linear interpolation does not
work in this problem; see Remark F.1 in the appendix for a counterexample.

Remark 3.3 The interpolating function Tε given by the proof of Proposi-
tion 3.2 is not only continuous but, in fact, Lipschitz with constant 1/ε (see,
e.g., Exercise 12.23 in [108]). Looking for the smoothest possible interpolation
we should, therefore, take the largest possible ε for which the interpolation re-
sult remains valid. Let us assume that ‖yi‖ ≤ 1, i = 1, . . . , n (this does not
imply any loss of generality; we could adequately normalize the data to get this
satisfied, then backtransform the interpolating function). Set

ε0 :=
1

2
min

1≤i≤n

(
(〈xi,yi〉 − ψi)−max

j 6=i
(〈xi,yj〉 − ψj)

)
. (3.5)

Then, arguing as in the proof of Proposition 3.2, we see that B(xi, ε0) ⊂ Ci.
Let ε > 0 and δ > 0 be such that ε + δ < ε0. Then, for x ∈ B(xi, δ), we
have x − εyi ∈ B(xi, ε0), and we can mimic the argument in the proof to
conclude that, for x ∈ B(xi, δ), we have ϕε(x) = 〈x,yi〉 − ψi − ε

2‖yi‖
2, and,

consequently, Tε(xi) = yi for every ε < ε0 with ε0 given by (3.5). By continuity
of the Yosida regularization (see Theorem 2.26 in Rockafellar and Wets (1998)),
we conclude that Tε0(xi) = yi, i = 1, . . . , n. We summarize our findings in the
following result.

Corollary 3.2 Let Assumption (A) hold. Assume further that ‖yi‖ ≤ 1 for
all i = 1, . . . , n. Let ϕ(x) := max1≤j≤n(〈x,yj〉 − ψj) with ψ1, . . . , ψn defined
as in (3.2), ϕε as in (3.3), and ε0 as in (3.5). Then Tε0 := ∇ϕε0 is a Lips-
chitz continuous, cyclically monotone map, with Lipschitz constant 1/ε0, such
that Tε0(xi) = yi, i = 1, . . . , n and ‖Tε0(x)‖ ≤ 1 for every x ∈ Rd.

To conclude, let us turn to the choice of the weights ψi that satisfy condi-
tion (3.2), as required by our construction. In view of Corollary 3.2 and the
discussion in Remark 3.3, choosing the weights that maximize ε0 in (3.5) results
in smoother interpolations. The optimal smoothing value then is half of the
maximum in the linear program

max
ψ,ε

ε s.t. 〈xi,yi − yj〉 ≥ ψi − ψj + ε, i, j ∈ {1, . . . , n}, i 6= j; (3.6)
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the optimal ψj ’s are the corresponding weights. The dual of (3.6) is

min
zi,j ,i6=j

∑
i,j=1,...,n; i6=j

zi,j〈xi,yi − yj〉 (3.7)

s.t.
∑

j=1,...,n; j 6=i

(zi,j − zj,i) = 0,
∑

i,j=1,...,n; i 6=j

zi,j = 1, zi,j ≥ 0, i, j = 1, . . . , n.

Now, (3.7) is a circulation problem over a complete graph with n vertices.
By the Flow Decomposition Theorem (see, e.g., Theorem 3.5 and Property 3.6
in Ahuja et al. (1993)), any circulation is of the form zi,j=

∑
W∈W δij(W )f(W )

where W denotes the set of all cycles in the graph, δij(W ) = 1 if the arc con-
necting i and j belongs to cycle W (δij(W ) = 0 otherwise), and f(W ) ≥ 0 is
the flow along cycle W . Writing ci,j = 〈xi,yi−yj〉 and c(W ) =

∑
i,j δij(W )ci,j

(where c(W ) is the cost of moving one mass unit along the cycle W ), the ob-
jective function in (3.7) takes the form∑

i,j=1,...,n; i 6=j

ci,jzi,j =
∑
W∈W

c(W )f(W ),

with the constraint
∑
W∈W |W |f(W ) = 1 where |W | denotes the length (number

of arcs) in the cycle W . Putting f̃(W ) := |W |f(W ), (3.7) can be rewritten as

min
f̃(W )

∑
W∈W

f̃(W )
c(W )

|W |
s.t.

∑
W∈W

f̃(W ) = 1, f̃(W ) ≥ 0.

It follows that the optimal solution to (3.7) is zi,j = δij(Ŵ )/|Ŵ |, where Ŵ is a
minimum mean cost cycle, that is, a minimizer among all cycles of c(W )/|W |.
The computation of the minimum mean cost cycle can be carried out in polyno-
mial time using, for instance, Karp’s algorithm (Karp (1978)). For this, we fix
a vertex in the graph (vertex 1, say; this choice does not affect the final ouput)
and write dk,i for the length of the shortest path from 1 to i in k steps (where
the lentgh of the path (i1, i2, · · · , ik) is ci1,i2 + · · · + cik−1,ik and dk,i = +∞
if there is no path with k steps from 1 to i). The lengths dk,i for 0 ≤ k ≤ n
and 1 ≤ i ≤ n can be computed recursively starting from d0,1 = 0, d0,i = ∞
for i 6= 1, and dk+1,i = minj(dk,j + cj,i) with ci,i =∞. Then, the minimum cy-
cle mean is ε∗ = min1≤i≤n max0≤k≤n−1(dn,i − dk,i)/(n− k), which can be com-
puted in O(n3) steps (see Theorem 1 and subsequent comments in Karp (1978)).
We observe that Assumption (A) is equivalent to ε∗ > 0.

We still need to compute the optimal weights ψi. For this, we can consider
the graph with modified costs c̃i,j := ci,j − ε∗ and compute the length d̃i of the
shortest path (of any length) from vertex 1 to i. It is easy to see that a shortest
path of length at most (n−1) exists. Hence we can compute the shortest k-step
distances d̃k,i as above, and d̃i = min0≤k≤n−1 d̃k,i. Finally, we set ψ = −d̃i.
Now, by optimality, d̃j ≤ d̃i + c̃i,j , that is, ci,j ≥ ψi − ψj + ε∗. This shows
that (ψ1, . . . , ψn, ε

∗) is an optimal solution to (3.6) which, moreover, can be
computed in O(n3) computer time.

For n = 2, it is easily seen that the optimum in (3.7) (hence in (3.6))
is ε0 = 〈x1 − x2,y1 − y2〉/4 > 0. The optimal weights can be chosen
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as ψi = 〈(x1 + x2),yi〉/2, i = 1, 2. In the one-dimensional case, if n = 2,
uniqueness of T holds iff x1 < x2 and y1 < y2. A simple computation yields

Tε(x) =

 y1 for
(
x− (x1 + x2)/2

)
/ε ≤ y1,(

x− (x1 + x2)/2
)
/ε for y1 ≤

(
x− (x1 + x2)/2

)
/ε ≤ y2

y2 for y2 ≤
(
x− (x1 + x2)/2

)
/ε.

We see that Tε is an extension of xi 7→ yi, i = 1, 2 if and only if x2−x1 ≥ −2εy1

and x2−x1 ≥ 2εy2, which implies that ε ≤ (x2 − x1)/(y2 − y1)—equivalently, 1/ε
larger than or equal to (y2 − y1)/(x2 − x1), the minimal Lipschitz constant of
any Lipschitz extension of xi 7→ yi. This yields, for y1 = −1, y2 = 1,

ε0 = (x2 − x1)/2 = (y2 − y1)/(x2 − x1)

and Tε0 is the Lipschitz extension of xi 7→ yi with minimal Lipschitz constant.

We now turn back to the smooth extension of the empirical center-outward

distribution function F
(n)
± of Section 2.2. Proposition 3.2 (and subsequent com-

ments in case n0 > 1) allows us to extend F
(n)
± to a Lipschitz-continuous gradi-

ent of convex function over Rd, denoted as F
(n)

± . The following result (proof in

Appendix F.3) extends to F
(n)

± the Glivenko-Cantelli result of Proposition 2.4.
We state (and prove) it for the value ε0 (3.5) of the smoothing constant; with
obvious modifications, it also holds for any admissible ε.

Proposition 3.3 (Glivenko-Cantelli)Let F
(n)

± denote the smooth interpolation,

with smoothing constant ε0, of F
(n)
± computed from a sample of observations with

distribution P ∈ P±
d and center-outward distribution function F±. Then,

sup
x∈Rd

‖F(n)

± (x)− F±(x)‖ → 0 a.s. as n→∞.

Remark 3.4 Throughout, we focused on a smooth interpolation of F
(n)
± , ap-

plying Proposition 3.2 to the cyclically monotone n-tuple
(
Z

(n)
i ,F

(n)
± (Z

(n)
i )
)
,

i = 1, . . . , n. For n0 ≤ 1 (or after implementing the tie-breaking device described

in Section 2.2), the resulting F
(n)

± is invertible, yielding a smooth interpolation—

denote it as Q
(n)

± :=
(
F

(n)

±

)−1
—of the empirical quantile function Q

(n)
± . For n0 > 1,

the restriction of F
(n)

± to Rd \
(
F

(n)
±

)−1
(0) (which has Lebesgue measure one)

can be considered instead. In all cases, strong consistency still holds for Q
(n)

± ;
uniformity is lost, however, unless spt(P) itself is compact.

Remark 3.5 Another interpolation of Q
(n)
± is considered in Chernozhukov

et al. (2017), based on the so-called α-hull method (see, e.g., Pateiro-López and
Rodŕıguez-Casal (2010)). Although producing visually nice results (Figure 2,
same reference), that method does not take into account any cyclical mono-
tonicity constraints. The resulting contours therefore do not have the nature of

quantile contours. Moreover, contrary to Q
(n)

± , the α-hull interpolation does not
yield a homeomorphism; α-hull contours need not be closed, and the resulting
quantile regions need not be connected: see Appendix H.4 for an example.

imsart-generic ver. 2014/10/16 file: MKFebruary24_2020.tex date: February 28, 2020



Hallin et al. /Distribution and Quantile Functions in Rd 22

An alternative “multivariate step function” extension of F
(n)
± is proposed in

Appendix G.

4. Some numerical results

This section provides some two-dimensional numerical illustrations of the results
of this paper. The codes we used were written in R, and can handle sample sizes
as high as n = 20000 (with nR = 100 and nS = 200, for instance) on a computer
with 32Gb RAM. The algorithm consists of three main steps.

(Step 1) Determine the optimal assignment between the sample points and
the regular grid. This could be done with a cubic implementation of the Hungar-
ian algorithm like the one included in the clue R package (for a detailed account
of the Hungarian algorithm and the complexity of different implementations,
see, e.g., Chapter 4 in Burkhard et al. (2009)). Faster algorithms are available,
though, as Bertsekas’ auction algorithm or its variant, the forward/reverse auc-
tion algorithm, (Chapter 4 in Bertsekas (199), implemented in the R package
transport. These auction algorithms depend on some parameter ε > 0 and
give in O(n2) time a solution to the assignment problem which is within nε of
being optimal. If the costs are integers and nε < 1, the solution given by the
auction algorithm is optimal. Else, Step 2 below provides a check for the opti-
mality of the solution given by the auction algorithm. If the check is negative,
the algorithm is iterated with a smaller value of ε.

(Step 2) Compute the optimal value ε0 of the regularization parameter and
the optimal weights ψi. This is achieved via Karp’s algorithm and the subse-
quent computation of shortest path distances as described in the discussion after
Corollary 3.2. If ε∗ < 0, then the solution of the assignment problem was not
optimal and we return to Step 1 with a smaller value of ε. If not, we go to Step 3.

(Step 3) Compute the Yosida regularization based on a projected gradient
descent method.

In Figure 1, we illustrate the convergence (as formulated by the Glivenko-
Cantelli result of Proposition 3.3), of empirical contours to their population
counterparts as the sample size increases. The problem is that analytical ex-
pressions for the population contours are not easily derived, except for spherical
distributions. We therefore investigate the case of i.i.d. observations with bivari-
ate N (0, Id) distributions, and increasing samples sizes n = 200, . . . 10000.

Inspection of Figure 1 clearly shows the expected consistency. Empirical con-
tours are nicely nested, as they are supposed to be. For sample sizes as big
as n = 500, and despite the fact that the underlying distribution is light-tailed,
the .90 empirical contour still exhibits significant “spikes” out and in the theoret-
ical circular contour. Those spikes reflect the intrinsic variability of an empirical
quantile of order .90 based on about nR observations; they rapidly

Figures 2–4 consider various Gaussian mixtures. Gaussian mixtures gener-
ate a variety of possibly multimodal and non-convex empirical dataclouds. In
Figure 2, we simulated n = 2000 observations from a symmetric mixture of
two spherical Gaussians. Figure 3 clearly demonstrates the quantile contour
nature of our interpolations, as opposed to level contours. Level contours in

imsart-generic ver. 2014/10/16 file: MKFebruary24_2020.tex date: February 28, 2020



Hallin et al. /Distribution and Quantile Functions in Rd 23

the right-hand panel clearly would produce disconnected regions separating the
two modes of the mixture. Here, the contours remain nested—a fundamental
monotonicity property of quantiles. The low-probability region between the two
component populations is characterized by a “flat profile” of

Figure 3 similarly considers a mixture of three Gaussian distributions pro-
ducing, in the central and right panels, distinctively nonconvex datasets. Picking
that nonconvexity is typically difficult, and none of the traditional depth con-
tours (most of them are intrinsically convex) are able to do it. Our interpolations
do pick it, the inner contours much faster than the outer ones, as n increases.
The very idea of a smooth interpolation indeed leads to bridging empty regions
with nearly piecewise linear solutions. This is particularly clear with the .90
contour in the right-hand panel: the banana shape of the distribution is briefly
sketched at the inception of the concave part, but rapidly turns into an essen-
tially linear interpolation in the “central part of the banana”. That phenomenon
disappears as n→∞ and the “empty” regions eventually fill in.

Attention so far has been given to quantile contours, neglecting an important
feature of center-outward quantile functions: being vector-valued, they also carry
essential directional information. That information is contained in the empirical
sign curves—the images, by the interpolated empirical quantile function, of the
radii of the underlying regular grid. In the spherical case, those sign curves are
quite uninformative and we did not plot them in Figures1 and 2. In the highly
non-spherical Gaussian mixture of Figure 3, those sign curves are conveying an
essential information.

Figure 4 is providing the full picture for n = 20000 (see also Figure 7 in Ap-
pendix H.1). The sign curves to the left and to the right of the vertical direction
are vigorously combed to the left and the right. Since each curvilinear sector
comprised between two consecutive sign curves roughly has the same probability
contents, Figure 4 provides graphical evidence of a very low density in the central
concavity bridged by the contours, thus producing a clear visualization of the
banana shape of the dataset. Such figures, rather than contours alone, are the
descriptive plots associated with empirical center-outward quantile functions.
See Appendix H.1 for a comparison with Tukey depth.

5. Conclusions and perspectives

Unlike the earlier proposals, our concepts of distribution and quantile func-
tions, ranks, and signs are satisfying the properties that make their univariate
counterparts efficient and meaningful tools for statistical inference. In princi-
ple, they are paving the way to a solution of the long-standing open problem
of distribution-free inference in multivariate analysis, offering a unique combi-
nation of strict distribution-freeness and semiparametric efficiency. A prelim-
inary version (Hallin 2017) of this paper already triggered several important
applications: De Valk and Segers (2018), Shi et al. (2019), Deb and Sen (2019),
Ghosal and Sen (2019), Hallin, La Vecchia, and Liu (2019), Hallin, Hlubinka, and
Hudecová (2020), ... A number of questions remain open, though. In particular,
(i) Several issues remain to be studied about the concepts themselves: how in
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finite samples should we choose the factorization of n into nRnS + n0? should
we consider cross-validation? how do those grids compare to random grids?

n=200 n=500 n=1000

n=2000 n=5000 n=10000

Fig 1: Smoothed empirical center-outward quantile contours (probability con-
tents .50 (green), .75 (red), .90 (black)) computed from n = 200, 500, 1000,
2000, 5000, 10000 i.i.d. observations from a bivariate N (0, I) distribution, along
with their theoretical counterparts.
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Fig 2: Smoothed empirical center-outward quantile contours (probability con-
tents .02 (yellow), .20 (cyan), .25 (light blue) .50 (green), .75 (dark blue), .90
(red)) computed from n = 2000 i.i.d. observations from mixtures of two bivariate
Gaussian distributions.
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Fig 3: Smoothed empirical center-outward quantile contours (probability con-
tents .02 (yellow), .20 (cyan), .25 (light blue) .50 (green), .75 (dark blue), .90
(red)) computed from n = 2000 i.i.d. observations from mixtures of three bivari-
ate Gaussian distributions, with µ0 = ( 0

0 ), µh = ( 1
0 ), µv = ( 0

1 ), Σ1 =
(

5 −4
−4 5

)
,

Σ2 = ( 5 4
4 5 ), Σ3 = ( 4 0

0 1 ).

Fig 4: Center-outward quantile contours and sign curves for the same Gaussian
mixture as in the middle panel of Figure 3, with n = 20000 (right).

(ii) How should we construct efficient rank tests in specific problems? Propo-
sition C.1 suggests replacing, in the optimal test statistics derived under ellip-
tic symmetry, the Mahalanobis ranks and signs with the center-outward ones.
Can we similarly construct one-step R-estimators? This, which requires Hájek-
type asymptotic representation results, would result in a fairly complete toolkit
of distribution-free (hence “universally valid”) semiparametrically efficient-at-
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elliptical-densities rank-based procedures for multivariate analysis and multi-
variate time series.

(iii) Can goodness-of-fit tests be based, e.g. on Kolmogorov-Smirnov or Cramér-
von Mises distances between center-outward distribution functions?

(iv) Turning to quantiles, what are the properties of Q
(n)
± (0) (for n0 6= 0) as

a multivariate median? can we construct multivariate median or sign tests? can
we, on the model of Carlier et al. (2016) or Hallin et al. (2010, 2015), perform
multiple-output quantile regression? construct multivariate growthcharts (as in
McKeague et al. (2011))? How?

(v) Center-outward quantile contours are obvious candidates as multivari-
ate value-at-risk concepts, playing a central role in risk management; in that
context, still in dimension d = 1, the primitives of ordinary distribution or
quantile functions enter the definitions of a number of relevant notions such as
Lorenz curves, average values at risk, or expected shortfall, see Gushchin and
Borzykh (2017). The potential functions ψ and φ are natural multivariate ex-
tensions of those primitives, and likely to provide useful multivariate extensions.

(vi) What happens in high dimension (d → ∞)? in functional spaces? on
spheres (directional data) and other Riemannian manifolds?

Finally, these new empirical distribution and quantile functions are calling
for a study of the corresponding empirical processes with further results such
as Donsker and iterated logarithm theorems, or Bahadur representations.
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Appendix A: Measure transportation in a nutshell

A.1. Measure transportation, from Monge to McCann

Starting from a very practical problem—How should one best move given piles
of sand to fill up given holes of the same total volume?—Gaspard Monge (1746-
1818), with his 1781 Mémoire sur la Théorie des Déblais et des Remblais, initi-
ated a profound mathematical theory anticipating different areas of differential
geometry, linear programming, nonlinear partial differential equations, fluid me-
chanics, and probability.

In modern notation, the simplest and most intuitive—if not most general—
formulation of Monge’s problem is (in probabilistic form) as follows. Let P1

and P2 denote two probability measures over (for simplicity) (Rd,Bd) and
let L : R2d → [0,∞] be a Borel-measurable loss function such that L(x1,x2)
represents the cost of transporting x1 to x2. The objective is to find a mea-
surable (transport) map TP1;P2 : Rd → Rd solving the minimization problem

inf
T

∫
Rd

L
(
x, T (x)

)
dP1 subject to T#P1 = P2 (A.8)

where T ranges over the set of measurable map from Rd to Rd and T#P1 is
the so-called push forward of P1 by T .1 For simplicity, and with a slight abuse
of language, we will say that T is mapping P1 to P2. A map TP1;P2

achieving
the infimum in (A.8) is called an optimal transport map, in short, an optimal
transport, of P1 to P2. In the sequel, we shall restrict to the quadratic (or L2)
loss function L(x1,x2) = ‖x1 − x2‖22.

The problem looks simple but it is not. Monge himself (who moreover was
considering the more delicate loss L(x1,x2) = ‖x1 − x2‖2) did not solve it, and
relatively little progress was made until the 1940s and the pathbreaking duality
approach of Kantorovich. Relaxing the problem into

inf
γ

∫
Rd×Rd

L
(
x,y

)
dγ(x,y) subject to γ ∈ Γ(P1,P2) (A.9)

where Γ(P1,P2) denotes the collection of all distributions over Rd × Rd with
marginals P1 and P2, Kantorovich established that the solutions of (A.9) are of
the form

(
Identity× T

)
#P1 where T solves Monge’s problem (A.8).

The topic attracted a renewed surge of interest some thirty years ago. For
the L2 transportation cost, Cuesta-Albertos and Matrán (1989) showed (under
the assumption of finite second-order moments) the existence of solutions of
the Monge problem and Rachev and Rüschendorf (1990) characterized them
in terms of gradients of convex (potential) functions. Brenier (1991) with his
celebrated polar factorization theorem independently obtained the same results
and, moreover, established the (a.s.) uniqueness of the solution.

1In statistics, a more classical but heavier notation for T#P1 would be PTX
1 or TP1,

where T is the transformation of P induced by T ; see Chapter 6 of Lehmann and Ro-
mano (2005).
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Measure transportation ever since has been among the most active domains
of mathematical analysis, with applications in various fields, from fluid me-
chanics to economics (see Galichon (2016)), learning, and statistics (Carlier et
al. (2016); Panaretos and Zemel (2016, 2018); Álvarez et al. (2018) and del
Barrio et al. (2018)). It was popularized recently by the French Fields medalist
Cédric Villani, with two authoritative monographs (Villani 2003, 2009), where
we refer to for background reading, along with the two volumes by Rachev and
Rüschendorf (1998), where the scope is somewhat closer to probabilistic and
statistical concerns.

Whether described as in (A.8), or relaxed into the more general coupling
form (A.9), the so-called Monge-Kantorovich problem remains an optimization
problem, though, which only makes sense under densities for which expected
costs are finite—under finite variances, thus, for quadratic loss. When defin-
ing concepts of distribution and quantile functions, ranks and signs, one clearly
would like to avoid such assumptions. This is made possible thanks to a re-
markable result by McCann (1995), hereafter McCann’s theorem, the nature of
which is geometric rather than analytical. Contrary to Monge, Kantorovitch,
and Brenier, McCann (1995) does not require any moment restrictions and
avoids using Kantorovich duality. McCann’s main theorem implies that, for any
given absolutely continuous distributions P1 and P2 over Rd, there exists con-
vex functions ψ : Rd → R with a.e. gradients2 ∇ψ pushing P1 forward to P2;
although ψ may not be unique, ∇ψ is P1-a.s. uniquely determined3. Under the
existence of finite moments of order two, ∇ψ moreover is with a L2-optimal (in
the Monge-Kantorovich sense) transport pushing P1 forward to P2.

A.2. Measure transportation, quantiles, and ranks: a review of the
literature

Measure transportation ideas only recently made their way to statistical appli-
cations. Most of them are related to Wasserstein distance (see Panaretos and
Zemel (2019)) and somewhat disconnected from the problems considered here.
They are the basis, however, of Carlier et al. (2016)’s method of vector quan-
tile regression and Chernozhukov et al. (2017)’s concept of Monge-Kantorovich
depth and related quantiles, ranks and signs, two papers of which Ekeland et
al. (2012) can be considered a precursor. While Carlier et al. (2016) consider
mappings to the unit cube, Chernozhukov et al. (2017) deal with mappings to
general reference distributions, including the uniform over the unit ball. On the
other hand, they emphasize the consistent estimation of Monge-Kantorovich
depth/quantile contours, with techniques that strongly exploit Kantorovich’s
duality approach and require compactly supported distributions, hence finite
moments of all orders.

In the present paper, we privilege mappings to the (spherical) uniform over
the unit ball, which enjoys better invariance/equivariance properties than the

2Recall that a convex function is a.e. differentiable.
3This means that, if ψ1 and ψ2 are convex and such that ∇ψ1#P1 = P2 = ∇ψ2#P1,

then P1 [{x : ∇ψ1(x) 6= ∇ψ2(x)] = 0.
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unit cube—the latter indeed is not coordinate-free, and possesses edges and
vertices, which are “very special points”. Mappings to the unit ball naturally
extend the structure of elliptical models, which is central to classical Multivari-
ate Analysis, and is induced by linear sphericizing transformation—transports to
spherical distributions. The same spherical structure also is the basis of the Ma-
halanobis ranks and signs approach developed in Hallin and Paindaveine (2002a,
b, c, etc.). Adopting McCann’s geometric point of view, we manage to waive mo-
ment assumptions which, as we already stressed, are not natural in the context.
Moreover, we are focusing on the inferential virtues of ranks and signs, which
are rooted in their independence with respect to the order statistic. The focus,
applicability and decision-theoretic nature of our approach, in that respect, are
quite different from Chernozhukov et al. (2017).

This paper results from merging two working papers, Hallin (2017) (essen-
tially, Sections 1 and 2, with the Glivenko-Cantelli and Basu factorization re-
sults of Sections 2.3 and 2.4) and del Barrio et al. (2018) (essentially, Sections 3
and 4, with the cyclically monotone interpolation of Section 3, the extended
Glivenko-Cantelli result of Proposition 3.3, and the numerical illustrations of
Section 4).

Inspired by Chernozhukov et al. (2017), Boeckel et al. (2018) propose, under
the name of ν-Brenier distribution function (ν a distribution over Rd with convex
compact support4), a very general concept the empirical version of which sat-
isfies a Glivenko-Cantelli property under compactly supported absolutely con-
tinuous distributions. Their empirical ν-Brenier distribution functions, however,
are obtained by mapping the sample to an independent random sample of ν and
therefore do not provide (even for d = 1) a neat interpretation in terms of ranks
and signs. Yet another approach is taken in a recent paper by Faugeras and
Rüschendorf (2018), who propose combining a mapping in the Chernozhukov
et al. (2017) style with a preliminary copula transform. This copula transform
takes care of the compact support/second-order moment restriction, but results
in a concept that crucially depends on the original coordinate system.

The ideas developed in Chernozhukov et al. (2017) and Hallin (2017), on the
other hand, have been successfully adopted by Shi, Drton, and Han (2019), who
exploit the distribution-freeness properties of center-outward ranks in the con-
struction of distribution-free tests of independence between random vectors (a
long-standing open problem). Deb and Sen (2019) obtain similar results using
different reference uniform distributions, different empirical transports, and dif-
ferent asymptotic techniques. In both cases, the key properties are distribution-
freeness (and the Basu factorization property (DF+) which, however, is not
explicitly mentioned) of center-outward ranks. Ghosal and Sen (2019) also pro-
pose population concepts of distribution and quantile functions that are similar
to those of Hallin (2017). Their empirical versions, however, are quite differ-
ent, as their objective, contrary to this paper, is quantile reconstruction rather
than a multivariate theory of rank-based inference. In particular, their empiri-

4The authors suggest the Lebesgue-uniform rather than the spherical uniform distribution
over the unit ball.
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cal distribution and quantile functions are based on semi-discrete transportation
(pushing the empirical distribution of the sample forward to a continuous refer-
ence such as Ud or the Lebesgue-uniform over the unit cube). The resulting ranks
and signs then are losing the distribution-freeness properties that are central to
our approach. The computational benefit is that their empirical quantile func-
tions, contours, and regions are obtained directly via the semi-discrete optimal
transport5 instead of cyclically monotone interpolation as in Section 3.

Recently, optimal center-outward R-estimators have been derived (Hallin, La
Vecchia, and Lu 2019) for VARMA models, optimal center-outward rank tests
are proposed by Hallin, Hlubinka, and Hudecova (2019) for multiple-output re-
gression and MANOVA, while center-outward quantile-based methods for the
measurement of multivariate risk are proposed in del Barrio, Beirlant, Bui-
tendag, and Hallin (2019). Applications to the study of tail behavior and ex-
tremes can be found in De Valk and Segers (2018).

Appendix B: Distribution and quantile functions, ranks, and signs
in dimension one

B.1. Traditional univariate concepts

The population and empirical concepts of distribution function, hence those of
ranks, signs, order statistics, and quantiles, are well understood in dimension
one. Before introducing multivariate extensions, let us briefly revisit some of
their essential properties.

Let F denote the distribution function of a random variable Z with dis-
tribution P ∈ P1. It is well known that F is a probability-integral transfor-
mation (Z ∼ Pf iff F (Z) ∼ U[0,1], where U[0,1] is the uniform over [0, 1]),
that is, in the terminology of measure transportation, F pushes P forward
to U[0,1]: F#P = U[0,1].

Denote by Z(n) :=
(
Z

(n)
1 , . . . , Z

(n)
n

)
an n-tuple of random variables—observa-

tions or residuals associated with some parameter θθθ of interest (see Section 1.1).

Denoting by R
(n)
i the rank of Z

(n)
i among Z

(n)
1 , . . . , Z

(n)
n , the value at Z

(n)
i of

the empirical distribution F (n) of Z(n) is F (n)(Z
(n)
i ) := R

(n)
i /(n+ 1), where the

denominator (n + 1) is adopted rather than n in order for F (n)(Z
(n)
i ) to take

values in (0, 1) rather than [0, 1]. Note that the mapping Z
(n)
i 7→ R

(n)
i /(n+ 1)

is monotone nondecreasing from the sample to the regular grid

{1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}. (B.1)

The empirical distribution function F (n) then can be defined over R as an ar-
bitrary non-decreasing interpolation of this discrete mapping. Usual practice is
adopting a right-continuous step function interpolation, but that choice carries

5As a consequence, their empirical distribution functions only are continuous, while ours
are at least Lipschitz-continuous (see Corollary 3.2) and the related discussion.
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no information and has no particulat statistical justification: any other choice
is as legitimate.

Intimately related with the concept of ranks is the dual concept of order

statistic Z
(n)
( . ) :=

(
Z

(n)
(1) , . . . , Z

(n)
(n)

)
, with the rth order statistic Z

(n)
(r) , r = 1 . . . , n

implicitly defined by Z
(n)

(R
(n)
i )

= Z
(n)
i , i = 1, . . . , n. Assume that Z(n) is an i.i.d. n-

tuple with unspecified distribution P ∈ P1. Then, Z
(n)
( . ) is minimal sufficient and

complete for f , while the vector R(n) :=
(
R

(n)
1 , . . . , R

(n)
n

)
of ranks is uniform over

the n! permutations of {1, . . . , n}, hence distribution-free. Clearly, there is a one-

to-one correspondence between
(
Z

(n)
( . ) ,R

(n)
)

and Z(n), so that (DF+) follows

from Basu’s Theorem (see Section 1.1). The Glivenko-Cantelli theorem moreover
tells us that, irrespective of the nondecreasing interpolation F (n) adopted,

sup
z∈R

∣∣∣F (n)(z)− F (z)
∣∣∣ −→ 0 a.s. as n→∞ (B.2)

which, for P ∈ P1, is equivalent to the apparently weaker forms

sup
z∈spt(P)

∣∣∣F (n)(z)− F (z)
∣∣∣ −→ 0 a.s. as n→∞ (B.3)

where spt(P) denotes the support of P and

max
1≤i≤n

∣∣∣F (n)(Z
(n)
i )− F (Z

(n)
i )

∣∣∣ −→ 0 a.s. as n→∞. (B.4)

Finally, note that P ∈ P1 (as well as F ) is entirely characterized by the
restriction of F to spt(P) and the fact that it is monotone nondecreasing (i.e.,
the gradient of a convex function).

B.2. Univariate center-outward concepts

The strong left-to-right orientation of the real line underlying the definition of F ,
the ranks, and F (n), however, cannot be expected to extend to dimension two
and higher. For the purpose of multidimensional generalization, we therefore
consider slightly modified concepts, based on a center-outward orientation. De-
fine the center-outward distribution function of Z ∼ Pf ∈ P1 as F± := 2F − 1.

Clearly, being linear transformations of each other, F and F± carry the same
information about Pf . Just as F , F± is a probability-integral transformation, now
to the uniform distribution U1 over the unit ball S1 =(−1, 1): F±#Pf = U1.

Boldface is used in order to emphasize the interpretation of F± as a vector-
valued quantity: while ‖F±(z)‖ = |2F (z) − 1| is the U1-probability contents of
the interval (±‖F±(z)‖) (the one-dimensional ball with radius ‖F±(z)‖), the unit
vector S±(z) := F±(z)/‖F±(z)‖ (S±(0) can be defined arbitrarily) is a direction
(a point on the unit sphere S0 = {−1, 1}) or a sign—the sign of the devia-
tion of z from the median Med(P) := F−1(1/2) = F−1

± (0) of P (possibly, an

interval [Med−(P),Med+(P)] that does not intersect spt(P)).
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Inverting F±yields a (possibly set-valued) center-outward quantile function Q±.
The sets

{
Q±(u)

∣∣|u|=p
}

=
{
z−p , z

+
p

}
and intervals

{
Q±(u)

∣∣|u| ≤ p} =
[
z−p , z

+
p

]
,

with z−p and z+
p such that P

(
[z−p ,Med−(P)]

)
= P

(
[Med+(P), z+

p ]
)

= p/2, ac-
cordingly have the interpretation of quantile contours and quantile regions, re-
spectively, with quantile level (probability contents) 0 ≤ p < 1. Those quantile
regions are closed, connected, and nested.

Turning to a sample Z
(n)
1 , . . . , Z

(n)
n (with probability one, n distinct values),

consider the bn/2c observations sitting to the right of the median. Ordering

them from left to right yields ranks R
(n)
±;i , say, with values 1, . . . , bn/2c; give them

sign S
(n)
±;i = 1 (the positive unit vector). Similarly rank the bn/2c observations

sitting to the left of the median from right to left, obtaining ranks R
(n)
±;i ; give

them sign S
(n)
±;i = −1.6 Call R

(n)
±;i and S

(n)
±;i center-outward ranks and signs,

respectively, and define the empirical center-outward distribution function as

F
(n)
± (Z

(n)
i ) := S

(n)
±;i

R
(n)
±;i

bn/2c+ 1
=

 2F (n)(Z
(n)
i )− 1 n odd

n+ 1

n+ 2

(
2F (n)(Z

(n)
i )− 1

)
+

1

n+ 2
n even,

(B.5)
with values on the regular grids

−bn/2c
bn/2c+ 1

, . . . ,
−2

bn/2c+ 1
,

−1

bn/2c+ 1
, 0 ,

1

bn/2c+ 1
,

2

bn/2c+ 1
, . . . ,

bn/2c
bn/2c+ 1

(n odd), and (B.6)

−bn/2c
bn/2c+ 1

, . . . ,
−2

bn/2c+ 1
,

−1

bn/2c+ 1
,

1

bn/2c+ 1
,

2

bn/2c+ 1
, . . . ,

bn/2c
bn/2c+ 1

(n even), respectively. Those grids are the intersection of the two unit vec-
tors u = ±1 and the collection of bn/2c “circles” with center at the origin and
radii R/(bn/2c+ 1), R = 1, . . . , bn/2c—along (n odd) with the origin itself.

Under the assumptions made, each sign S
(n)
±;i is uniform over the unit sphere S0,

and independent of the ranks R
(n)
±;i ; each rank is uniformly distributed over the

integers (0, 1, 2, . . . , bn/2c) or (1, 2, . . . , bn/2c = n/2) according as n is odd or

even; the n-tuple
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniform over the n! permuta-
tions of the grids (B.6).

In view of (B.5) and (B.6), the Glivenko-Cantelli result (B.4) for F (n) straight-

forwardly extends to F
(n)
± :

max
1≤i≤n

∥∥∥F(n)
± (Z

(n)
i )− F±(Z

(n)
i )

∥∥∥ −→ 0 a.s. as n→∞ (B.7)

If F
(n)
± is to be defined over the whole real line, any nondecreasing interpola-

tion F
(n)

± of the n couples (Z
(n)
i ,F

(n)
± (Z

(n)
i )) provides a solution, all of them

yielding Glivenko-Cantelli statements under supz∈R or supz∈spt(P) form (similar

6In case n is odd and the median is Z
(n)
i0

, put S
(n)
±;i0

= 0 and R
(n)
±;i0

= 0.
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to (B.2) and (B.3)). Among them is the continuous-from-the-left on the left-hand
side of the (empirical) median, and continuous-from-the-right on the right-hand
side of the median piecewise constant interpolation shown in Figure 5.

Clearly, the traditional ranks R
(n)
i and the empirical center-outward val-

ues F
(n)
± (Z

(n)
i ), i = 1, . . . , n, generate the same σ-field and both enjoy (DF+): all

classical rank statistics thus can be rewritten in terms of F
(n)
± . Traditional ranks

and center-outward ranks and signs, therefore, are strictly equivalent statistics.

B.3. Relation to measure transportation

The probability-integral transformation z 7→ F±(z) from R to the unit ball S1

(the interval (−1, 1)) is pushing Pf ∈ P1 forward to the uniform distribution U1

over S1. As a continuous monotone non-decreasing function, it is the gradient
(here, the derivative) of a convex function ψf , say, which, therefore, is every-
where continuously differentiable. Actually, it is the unique monotone function
pushing P forward to Ud. It follows from McCann’s theorem (see Section A.1)
that ∇ψf coincides, Pf -almost surely—hence, over spt(Pf )—with any mono-
tone nondecreasing function (any gradient of a convex function) ∇ψ pushing Pf
forward to U1. It follows that ψf − ψ is a constant, hence that ∇ψf = ∇ψ
everywhere. It follows that such a gradient is uniquely determined on spt(Pf ),
and that F± on spt(Pf ) can be characterized as the unique gradient of a convex
function pushing Pf forward to U1. The (noninformative) values of F± out-
side spt(Pf ) then are easily obtained by imposing monotonicity and range [0, 1].

The huge advantage of this characterization is that it does not involve the
canonical ordering of R, hence readily extends to dimension d ≥ 2. The ex-
tension, actually, would be entirely straightforward for distributions Pf with
nonvanishing densities f (hence support Rd). More general cases require some
additional care with Pf -a.s. uniqueness, though—while the support of Pf ∈ P1

consists at most of a countable collection of intervals, the support of of Pf ∈ Pd
is potentially much weirder. Everywhere continuous differentiability of the po-
tential ψ, in particular, will not survive in higher dimension.

Appendix C: Center-outward and Mahalanobis ranks and signs

Recall that a d-dimensional random vector X has elliptical distribution Pµ,Σ,f
with location µ ∈ Rd, positive definite symmetric d × d scatter matrix Σ and
radial density f iff Z := Σ−1/2(X− µ) has spherical distribution P0,I,f , which
holds iff Fell(Z) := ZF

(
‖Z‖

)
/‖Z‖ ∼ Ud, where F , with density f , is the dis-

tribution function of ‖Z‖ (the radial distribution and radial density). Elliptical
distributions with nonvanishing radial densities clearly belong to the class Pconv

d ,
with support Rd.

The mapping Z 7→ Fell(Z) is a probability-integral transformation. Cher-
nozhukov et al. (2017) show (Section 2.4) that it actually coincides with Z’s

center-outward distribution function F±. Letting X
(n)
i , i = 1, . . . , n be i.i.d. with
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Fig 5: A classical distribution function F and its empirical counterpart F (n)

for n = 7 (top left panel), along with (bottom left panel) their center-outward

versions F± and F
(n)
± , the latter with left-continuous piecewise constant inter-

polation on the left-hand side of the (empirical) median, right-continuous piece-
wise constant interpolation on the right-hand side of the median; a regular grid
of n = nRnS points over S2 (right panel).
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elliptical distribution Pµ,Σ,f , denote by µ̂(n) and Σ̂
(n)

consistent estimators of µ
and Σ, respectively: the empirical version of Fell, based on Mahalanobis ranks

and signs (the ranksR
(n)
i of the residual moduli ‖Z(n)

i ‖:= ‖Σ̂
(n)−1/2

(X
(n)
i −µ̂

(n))‖
and the corresponding unit vectors Z

(n)
i /‖Z(n)

i ‖) is, for the ith observa-

tion, F
(n)
ell (Z

(n)
i ) :=

(
R

(n)
i /(n+ 1)

)
U

(n)
i .

Proposition C.1 Let X
(n)
i , i = 1, . . . , n be i.i.d. with elliptical distribution Pµ,Σ,f ,

and assume that µ̂(n) and Σ̂
(n)

are strongly consistent estimators of µ and Σ,
respectively. Then, Fell and F± coincide, and

max
1≤i≤n

‖F(n)
ell (Z

(n)
i )− F

(n)
± (Z

(n)
i )‖, hence also max

1≤i≤n
‖F(n)

ell (Z
(n)
i )− F±(Z

(n)
i )‖

tend to zero a.s., as n→∞, where F± denotes the center-outward distribution
function of P0,I,f .

This result connects the center-outward ranks and signs with the well-studied

elliptical ones. The consistency of F
(n)
ell , however, requires ellipticity, whereas F

(n)
±

remains consistent under any P ∈ P±
d . Note also that F

(n)
ell determines n ellip-

soidal contours, while F
(n)
± only determines nR of them (which, moreover, for

finite n do not define an ellipsoid).

Appendix D: Proofs for Section 2

D.1. Proofs of Propositions 2.1 and 2.2

Proof of Proposition 2.1. Part (i) is satisfied by construction (see the con-
clusion following (2.5)). For Part (ii), since F±#P = Ud, the joint distribu-
tion of ‖F±(Z)‖ and S(Z) = F±(Z)/‖F±(Z)‖ are those of ‖U‖ and U/‖U‖,
where U ∼ Ud; the claim follows. Turning to Part (iii), for any Borel set C
of Rd, we have P

(
C
)

= P
(
C ∩ spt(P)

)
. Now, the fact that the restrictions of F±

and Q± to spt(P) and Sd, respectively, are the inverse of each other, pushing P
forward to Ud and Ud back to P, entails

P
(
C ∩ spt(P)

)
= P

(
Q± ◦ F±(C ∩ spt(P))

)
= Ud

(
F±(C ∩ spt(P))

)
= Ud

(
F±(C) ∩ F±(spt(P)) = Ud

(
F±(C) ∩ Sd);

the claim follows. Finally, Part (iv) readily follows from the fact that, in di-
mension d = 1, 2F − 1 is the only monotone mapping from R to S1 = (−1, 1)
pushing P ∈ P1 forward to U1 = U(−1,1): See Appendix B.2. 2

Proof of Proposition 2.2. Parts (i) and (ii) are direct consequences of the
definition of Q±. As for Part (iii), it follows Proposition 2.1(iv) by adapting the
traditional definition of a quantile function as a general inverse. 2

imsart-generic ver. 2014/10/16 file: MKFebruary24_2020.tex date: February 28, 2020



Hallin et al. /Distribution and Quantile Functions in Rd 40

D.2. Proofs of Proposition 2.3, Proposition 2.5, and Corollary 2.2

Proof of Proposition 2.3. Parts (i), (ii) and (iii) of the proposition are proved
in del Barrio et al. (2019). Hence, we only have to prove the claims about F±(x)
for x /∈ spt(P). Since φ is a finite convex function on Rd, it has a nonempty
subgradient at every point. Let x /∈ spt(P) and consider u ∈ ∂φ(x). Since φ
is 1-Lipschitz, we have ‖u‖ ≤ 1. We claim that ‖u‖ = 1. To show this, assume
that, on the contrary, ‖u‖ < 1. Then, from part (i) of the proposition, we have
that u = ∇φ(x0) for some x0 ∈ spt(P). But this means that both x and x0

are in ∂φ∗(u). Then, by convexity, (1 − t)x + tx0 ∈ ∂φ∗(u) for every t ∈ [0, 1].
Equivalently, u ∈ ∂φ((1−t)x+tx0) for every t ∈ [0, 1]. Since spt(P) is open, this
means that different points in spt(P) are mapped through∇φ to u, contradicting
the injectivity of ∇φ in spt(P)\K. We conclude that, necessarily, ‖u‖ = 1.

Next, let us assume that x /∈ spt(P) is such that u1 6= u2 ∈ ∂φ(x). Then, for
every t ∈ [0, 1], (1− t)u1 + tu2 ∈ ∂φ(x). But ‖(1− t)u1 + tu2‖ < 1 for t ∈ (0, 1)
unless u1 = u2. This proves that ∂φ(x) is a singleton, hence that φ is differen-
tiable at x. The fact that the gradient of a convex function is continuous in the
differentiability set completes the proof. 2

Proof of Proposition 2.5. Part (i). Sufficiency of Z
(n)
( . ) —equivalently, suffi-

ciency of the sub-σ-field B(n)
( . ) of permutationally invariant7 events of Bnd—follows

from a trivial application of the classical Fisher-Neyman factorization criterion
for dominated families (Corollary 2.6.1 in Lehmann and Romano (2005)). Com-
pleteness is established (under the name of symmetric completeness) in Lemma 3
of Bell et al. (1960)8 and minimal sufficiency follows from the fact (see, e.g.,
Proposition 1.4.8 in Pfanzagl (2011)) that complete sufficient σ-fields are auto-
matically minimal sufficient.

Part (ii). Assume n0 = 0 or 1. Conditionally on Z
(n)
( . ) , F

(n)
± (Z(n)) takes values

in the set of the n! permutations of the n gridpoints. Because of the permuta-
tional symmetry of the Z(n) likelihood, all those values are equally likely, hence
have conditional probability 1/n!. Since that (uniform) conditional distribution

does not depend on Z
(n)
( . ) , it is also unconditional. If n0 > 1, the situation is

exactly the same, except that the n0! permutations involving the n0 copies of
the origin are undistinguishable, so that the n! permutations of the grid re-
duce to n!/n0! permutations with repetitions. This, however, can be avoided by
breaking the n0 ties at the origin.9

7Permutation here means permutation among the n d-dimensional subspaces of Bnd .
8That lemma establishes completeness of the order statistic for nonparametric families of

the form {Pn|P � P1} where P1 is non-atomic. In that notation, Pd = {Pn|P � N (0, I)}
where N (0, I) indeed is non-atomic; the result thus applies to P(n)

d .
9For instance, one may replace the n0 copies of 0 with an i.i.d. n-tuple of gridpoints

(distinct with probability one) simulated from a uniform over [1/2(nR + 1)]Sd or a uniform
over [1/2(nR + 1)]Sd−1. Uniformity (conditional on the simulation results) over the n! per-
mutations of the resulting n gridpoints, hence distribution-freeness, is recovered. Some of the
resulting ranks, however, are losing their nature as integers—much in the same way as the
midranks resulting from traditional univariate tie-breaking (see, e.g., Section III.8 in Hájek
and Šidák (1967)).
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Part (iii): Assume n0 = 0. The result readily follows from the uniformity

of F
(n)
± (Z(n)) over the n! permutations of the gridpoints, which are indexed by

a product of the set of nR integers {1, . . . nR} and the set of nS unit vectors.
It no longer holds for n0 ≥ 1, even after performing the tie-break prodedure

just described: indeed, 0 ≤ R
(n)
±,i < 1 tells something about S

(n)
±,i . However, the

proportion n0/n of ties tends to zero as n→∞; moreover, the non-independence
between ranks and (multivariate) signs has no decision-theoretic consequences
as long as joint distribution-freeness holds.

Part (iv), in view of (i) and (ii), is an immediate consequence of the classical
Basu theorem—Basu’s Second Theorem in Appendix D.1 below.

Turning to Part (v), either assume that n0 ≤ 1 or, for n0 > 1, assume that
the previously described tie-breaking grid randomization device has been per-
formed, so that the grid does not exhibit any multiplicity at the origin. Then, the

mapping z 7→
(
z( . ),F

(n)
± (z)

)
is injective for z ∈ Rnd\N . Distribution-freeness

(Part (ii) of the proposition) entails the ancillarity of the σ-field B(n)
± gener-

ated by F
(n)
± (Z(n)). In view of Corollary E.1, the completeness of the sufficient

σ-field B(n)
( . ) generated by the order statistic Z

(n)
( . ) , and the ancillarity of B(n)

± , we

only have to show that the σ-field σ
(
Z

(n)
( . ) ,F

(n)
± (Z(n))

)
is strongly P(n)

d -essentially
equivalent to the Borel σ-field Bnd. This readily follows, however, from the in-

jectivity, over Rnd\N , of z 7→
(
z( . ),F

(n)
± (z)

)
. The claim follows. 2

Proof of Corollary 2.2. It follows from the injectivity of the restriction

to Rnd \N of z 7→
(
z( . ),F

(n)
± (z)

)
that the Borel σ-field Bnd is strongly P(n)

d -

essentially equivalent (for some null set N) to σ
(
Z

(n)
( . ) ,F

(n)
± (Z(n))

)
. For the

same reason, Bnd is strongly P(n)
d -essentially equivalent (for some null set Ñ)

to σ
(
Z

(n)
( . ) , F̃

(n)
± (Z(n))

)
. These strong essential equivalences still hold true withN

and Ñ replaced with M := N ∪ Ñ . It follows that, for z ∈ Rnd\M , a bijection

exists between
(
z( . ),F

(n)
± (z)

)
and

(
z( . ), F̃

(n)
± (z)

)
, hence between the permuta-

tions F
(n)
± (z) and F̃

(n)
± (z) of the two n-points grids. The result follows. 2

Appendix E: Minimal sufficiency and maximal ancillarity

This appendix collects, for ease of reference, some classical and less classical def-
initions and results about sufficiency and ancillarity which are scattered across
Basu’s papers; some of them (such as the concept of strong essential equivalence)
are slightly modified to adapt our needs.

The celebrated result commonly known as Basu’s Theorem was first estab-
lished as Theorem 2 in Basu (1955). The same paper also contains a Theorem 1,
of which Theorem 2 can be considered a partial converse. Call them Basu’s First
and Second Theorems, respectively.
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Proposition E.1 (Basu’s First Theorem) Let S be sufficient for a family P
of distributions over some abstract space (X ,A). Then, if a statistic W is P-
independent of S for all P ∈ P, it is distribution-free over P.

Proposition E.2 (Basu’s Second Theorem) Let T be (boundedly) complete
and sufficient for a family P of distributions over some abstract space (X ,A).
Then, if a statistic W is distribution-free over P, it is P-independent of T for
all P ∈ P.

Basu’s original proof of Proposition E.1 was flawed, however, and Basu’s First
Theorem does not hold with full generality. Basu (1958) realized that problem
and fixed it by imposing on P a sufficient additional condition of connected-
ness. Some twenty years later, that condition has been replaced (Koehn and
Thomas 1975) with a considerably weaker necessary and sufficient one (same
notation as in Proposition E.1).

Proposition E.3 (Koehn and Thomas 1975) Basu’s First Theorem holds
true if and only if P does not admit a measurable splitting set, namely, a
set A ∈ A along with a partition P = P0⊕P1 of P into two nonempty subsets P0

and P1 such that P(A) = 0 for all P ∈ P0 and P(A) = 1 for all P ∈ P0.

Recall that a sub-σ-field A0 of A such that P1(A) = P2(A) for all A ∈ A0

and all P1,P2 in P is called ancillary. Clearly, the σ-field AV generated by
a distribution-free statistic V is ancillary. Contrary to sufficient σ-fields (the
smaller, the better), it is desirable for ancillary σ-field to be a large as possible.
While minimal sufficient σ-fields, when they exist, are unique, maximal ancillary
σ-fields typically exist, but are neither unique nor easily characterized—due,
mainly, to null-sets issues.

Basu (1959) therefore introduced the notions of P-essentially equivalent
and P-essentially maximal sub-σ-fields.

Definition E.1 Two sub-σ-fields A1 and A2 of A are said to be P-essentially
equivalent if, for any A1 ∈A1, there exists an A2 ∈A2 and, for any A3 ∈ A2,
an A4 ∈A1 such that P(A1∆A2) = 0 = P(A3∆A4) for any P ∈ P. An ancil-
lary sub-σ-field essentially equivalent to a maximal ancillary sub-σ-field is called
essentially maximal.

The same reference then establishes the following sufficient condition for an
ancillary statistic to be essentially maximal.

Proposition E.4 (Basu’s Third Theorem) Denote by Asuff a (boundedly)
complete and sufficient (for a family P of distributions over (X ,A)) sub-σ-field
of A. Then, any ancillary sub-σ-field Aanc such that σ

(
Asuff ∪ Aanc

)
= A is

essentially maximal ancillary.

Let us slightly reinforce Definition E.1 and the concepts of essentially equiv-
alent and essentially maximal sub-σ-fields.
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Definition E.2 Two sub-σ-fields A1 and A2 of A are said to be strongly P-
essentially equivalent if there exists N ∈ A such that P(N) = 0 for all P ∈ P
and A1 ∩ (X\N) = A1 ∩ (X\N). An ancillary sub-σ-field strongly P-essentially
equivalent to a maximal ancillary sub-σ-field is called strongly P-essentially
maximal.

Clearly, strong essential equivalence and maximal ancillarity imply essential
equivalence and maximal ancillarity, respectively. The following slightly modi-
fied version of Basu’s Third Theorem then readily follows.

Corollary E.1 Denote by Asuff a (boundedly) complete and sufficient, for a
family P of distributions over (X ,A), sub-σ-field of A. Then, any ancillary
sub-σ-field Aanc such that σ

(
Asuff ∪ Aanc

)
is strongly P-essentially equivalent

to A is strongly P-essentially maximal ancillary.

Appendix F: Proofs for Section 3

F.1. Proof of Proposition 3.1

Duality yields, for the linear program (3.1),

min
π

n∑
i=1

n∑
j=1

ci,jπi,j = max
a,b

1

n

n∑
i=1

ai +
1

n

n∑
j=1

bj

s.t.

n∑
i=1

πi,j =

n∑
j=1

πi,j =
1

n
, s.t. ai + bj ≤ ci,j , i, j = 1, . . . , n.

πi,j ≥ 0, i, j = 1, . . . , n

(F.8)

Moreover, π = {πi,j | i, j = 1, . . . , n} is a minimizer for the left-hand side pro-
gram, and (a, b) = (a1, . . . , an, b1, . . . , bn) a maximizer for the right-hand side
one, if and only if they satisfy the corresponding constraints and

n∑
i=1

n∑
j=1

ci,jπi,j =
1

n

n∑
i=1

ai +
1

n

n∑
j=1

bj .

With the change of variables ai =: ‖xi‖2 − 2ϕi, bj =: ‖yj‖2 − 2ψj , the dual
programs (F.8) take the form

max
π

n∑
i=1

n∑
j=1

πi,j〈xi,yj〉 = min
ϕ,ψ

1

n

n∑
i=1

ϕi +
1

n

n∑
j=1

ψj

s.t.

n∑
i=1

πi,j =

n∑
j=1

πi,j =
1

n
, s.t. ϕi + ψj ≥ 〈xi,yj〉, i, j = 1, . . . , n

πi,j ≥ 0, i, j = 1, . . . , n

(F.9)
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where π is a maximizer for the left-hand side program and (ϕ,ψ) a minimizer for
the right-hand side one if and only if they satisfy the corresponding constraints
and

n∑
i=1

n∑
j=1

πi,j〈xi,yj〉 =
1

n

n∑
i=1

ϕi +
1

n

n∑
j=1

ψj .

Let (ϕ,ψ) be a minimizer for the right-hand side program in (F.9). Then, replac-
ing ϕi with ϕ̃i := maxj=1,...,n(〈xi,yj〉−ψj) yields a new feasible solution (ϕ̃, ψ)
satisfying ϕi ≥ ϕ̃i. Optimality of (ϕ,ψ) thus implies that ϕi = ϕ̃i, so that, at
optimality,

ϕi = max
j=1,...,n

(〈xi,yj〉 − ψj), i = 1, . . . , n. (F.10)

Now, if (3.1) is minimal, then πi,i = 1/n, πi,j = 0, j 6= i is the unique maximizer
in the left-hand side linear program in (F.9). Therefore, (ϕ,ψ) is a minimizer
for the right-hand side program if and only if

1

n

n∑
i=1

(ϕi + ψi − 〈xi,yi〉) = 0.

In view of (F.10) this implies that

〈xi,yi〉 − ψi = max
j=1,...,n

(〈xi,yj〉 − ψj), i = 1, . . . , n. (F.11)

Conversely, assume that the weights ψ1, . . . , ψn are such that (F.11) holds.
Then, letting ϕi = maxj=1,...,n(〈xi,yj〉 − ψj), we have that (ϕ,ψ) is a feasible
solution for which

1

n

n∑
i=1

(ϕi + ψi − 〈xi,yi〉) = 0,

which, in view of the discussion above, implies that the map

T : xi 7→ T (xi) = yi

is cyclically monotone. This completes the proof of Part (i) of the proposition.
As for Part (ii), T is the unique cyclically monotone map from {x1, . . . ,xn}

to {y1, . . . ,yn} if and only if, for any choice of indices {i0, i1, . . . , im} in {1, . . . , n},
we have

〈xi0 ,yi0 − yi1〉+ 〈xi1 ,yi0 − yi2〉+ · · ·+ 〈xim ,yim − yi0〉 > 0, (F.12)

while (3.2) holds if and only if there exist real numbers ψ1, . . . , ψn such that

〈xi,yi − yj〉 > ψi − ψj for all i 6= j.

On the other hand, defining fi,j(ψ) := ψi − ψj − 〈xi,yi − yj〉 for i 6= j, we can
apply Farkas’ Lemma (see, e.g., Theorem 21.1. in Rockafellar (1970)) to see that
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either there exists ψ ∈ Rn such that fi,j(ψ) < 0 for all i 6= j (equivalently, (3.2)
holds), or there exist nonnegative weights λi,j , not all zero, such that∑

i 6=j

λi,jfi,j(ψ) ≥ 0 for all ψ ∈ Rn.

Consider the graph with vertices {1, . . . , n} and (directed) edges corresponding
to those pairs (i, j) for which λi,j > 0. There cannot be a vertex of degree one in
the graph since, in that case,

∑
i 6=j λi,jfi,j(ψ) could not be bounded from below.

Hence, the graph contains at least one cycle, that is, there exist i0, i1, . . . , im
such that λi0,i1 , λi1,i2 , . . ., and λim,i0 all are strictly positive. Part (i) of the
lemma then implies the existence of ψ̄1, . . . , ψ̄n such that fi,j(ψ̄) ≤ 0 for all
i 6= j. But then 0 ≤

∑
i6=j λi,jfi,j(ψ̄) ≤ 0, which implies that fi,j(ψ̄) = 0 for

each pair i, j with λi,j > 0, so that

fi0,i1(ψ̄) + fi1,i2(ψ̄) + · · ·+ fim,i0(ψ̄) = 0.

This in turn entails (observe that the sum ψ̄i− ψ̄j along a cycle i0, i1, . . . , im, i0
vanishes)

〈xi0 ,yi0 − yi1〉+ 〈xi1 ,yi1 − yi2〉+ · · ·+ 〈xim ,yim − yi0〉 = 0. (F.13)

But (F.13) contradicts (F.12), which implies that if T is the unique cyclically
monototone map from {x1, . . . ,xn} to {y1, . . . ,yn}, then (3.2) holds. Con-
versely, if (3.2) holds, then, for every cycle i0, i1, . . . , im, i0, we have

〈xi0 ,yi0 − yi1〉+ 〈xi1 ,yi0 − yi2〉+ · · ·+ 〈xim ,yim − yi0〉

> (ψi0 − ψi1) + (ψi1 − ψi2) + · · ·+ (ψim − ψi0) = 0,

and T is the unique cyclically monotone map from {x1, . . . ,xn} to {y1, . . . ,yn}.
This completes the proof. 2

F.2. Proof of Proposition 3.2

The map ϕε is convex and continuously differentiable since ϕ is convex (see, e.g.,
Theorem 2.26 in Rockafellar and Wets (1998)). Hence Tε := ∇ϕε is a cyclically
monotone, continuous map for every ε > 0. Setting

ε̃0 = min
1≤i≤n

(
(〈xi,yi〉 − ψi)−max

j 6=i
(〈xi,yj〉 − ψj)

)
,

let ε0 = 1
2 ε̃0 min(1, 1/max1≤i≤n ‖yi‖). Note that ε̃0, by (3.1), is strictly positive;

hence, so is ε0. If x lies in the ε0-ball B(xi, ε0) centered at xi, then, if j 6= i,

〈x,yi〉 − ψi = 〈xi,yi〉 − ψi + 〈x− xi,yi〉 > 〈xi,yj〉 − ψj + ε̃0 − ε0‖yi‖

≥ 〈xi,yj〉 − ψj +
1

2
ε̃0 ≥ 〈x,yj〉 − ψj .
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This shows that B(xi, ε0) ⊂ Ci and

ϕ(x) = 〈x,yi〉 − ψi, x ∈ B(xi, ε0).

Assume now that

0 < ε ≤ 1

2
ε0 min

(
1,

1

max1≤i≤n ‖yi‖

)
,

and let x∈ B(xi, ε). The map y 7→ 〈y,yi〉 − ψi + 1
2ε‖y − x‖2 attains its global

minimum at y = x− εyi ∈ B(xi, ε0). For any y, we have

ϕ(y) +
1

2ε
‖y − x‖2 ≥ 〈y,yi〉 − ψi +

1

2ε
‖y − x‖2

≥ ϕ(x− εyi) +
1

2ε
‖x− εyi − x‖2

= 〈x,yi〉 − ψi −
ε

2
‖yi‖2.

This proves that

ϕε(x) = 〈x,yi〉 − ψi −
ε

2
‖yi‖2, x ∈ B(xi, ε);

in particular, we conclude that Tε(xi) = yi.
Turning to the last claim, note that

Tε(x) =
1

ε
(x− y0),

where y0 is the unique minimizer of y 7→ ϕ(y) + ‖y − x‖2/2ε (again by Theo-
rem 2.26 in Rockafellar and Wets (1998)). But y0 is such a minimizer if and only
if 0 ∈ ∂ϕ(y0) + 1

ε (y0 − x), that is, if and only if Tε(x) ∈ ∂ϕ(y0), where ∂ϕ(y0)
denotes the subdifferential of ϕ at y0. Now (this is Theorem 25.6 in Rockafel-
lar (1970)), for every x ∈ Rd, ∂ϕ(x) is the closure of the convex hull of the
set of limit points of sequences of the type ∇ϕ(xn) with xn → x. The map ϕ
is differentiable in the regions Ci, with gradient yi. Hence, for every x, Tε(x)
belongs to the convex hull of {y1, . . . ,yn}. This completes the proof, 2

Remark F.1 (Remark 3.2 continued) It is important to note that, in spite of
what intuition may suggest, and except for the one-dimensional case (d = 1),
linear interpolation does not work in this problem. Assume that n ≥ d + 1
and that {x1, . . . ,xn} are in general position. Denoting by C the convex hull
of {x1, . . . ,xn}, there exists a partition of C into d-dimensional simplices de-
termined by points in {x1, . . . ,xn}: every point in C thus can be written in a
unique way as a linear convex combination of the points determining the sim-
plex it belongs to (with obvious modification for boundary points). Therefore,
for all x ∈ C, there exist uniquely defined coefficients λx

i ∈ [0, 1], i = 1, . . . , n,
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with
∑
i λ

x
i = 1 and #{i|λx

i 6= 0} ≤ d + 1, such that x =
∑k
i=1 λ

x
i xi. A “natu-

ral” linear interpolation of T on C would be x 7→
∑k
i=1 λ

x
i yi, x ∈ C. For d = 1,

this map is trivially monotone increasing, hence cyclically monotone. Starting
with d = 2, however, this is no longer true, as the following counterexample
shows. Let (for d = 2)

x1 =

(
0
0

)
, x2 =

(
0
1

)
, x3 =

(
1
1

)
,

y1 =

(
−5
−.01

)
, y2 =

(
.5
.01

)
, y3 =

(
1
0

)
.

It is easily checked that the map xi 7→ yi, i = 1, 2, 3 is the only cyclically
monotone one pairing those points. Now, let us consider the points

x0 = .8x1 + .1x2 + .1x3 and y0 = .8y1 + .1y2 + .1y3.

The computation of all possible 24 pairings shows that the only cyclically mono-
tone mapping between the sets {x0, . . . ,x3} and {y0, . . . ,y3} is

x0 7→ y2, x1 7→ y1, x2 7→ y0, x3 7→ y3

where, obviously, x0 is not paired with y0 (nor x2 with y2).

F.3. Proof of Proposition 3.3

The proof of Proposition 3.3 relies on the following two preliminary propositions.

Proposition F.1 Let Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ Pd and de-

note by µ(n) the corresponding empirical distribution. Then,

γ(n) := ( identity× F
(n)
± )#µ(n) converges weakly to γ = (identity× F±)#P

as n→∞, P− a.s., where F± is P’s center-outward distribution.

Proposition F.2 Let P ∈ P±
d have center-outward distribution function F±

and let xn = λnun with 0 < λn → ∞, ‖un‖ = 1, and un → u as n → ∞:
then, F±(xn)→ u.

The proof of Proposition F.1 involves four lemmas, three from McCann (1995)
and one from Rockafellar (1966), which we reproduce here for the sake of com-
pleteness. Throughout this section, µ and ν denote elements of the set P(Rd) of
all probability distributions on Rd, P(Rd×Rd) the set of all probability distribu-
tions on Rd×Rd, and Γ(µ, ν) the set of probability distributions in P(Rd×Rd)
with given marginals µ and ν in P(Rd). A measure γ in P(Rd × Rd) is said
to have cyclically monotone support if there exists a cyclically monotone closed
Borel set S in Rd × Rd such that γ(S) = 1.
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Lemma F.1 (McCann 1995, Corollary 14). Let µ, ν ∈ P(Rd), and suppose that
one of those two measures vanishes on all sets of Hausdorff dimension d − 1.
Then, there exists one and only one measure γ ∈ Γ(µ, ν) having cyclically mono-
tone support.

Lemma F.2 (McCann 1995, Lemma 9). Let γ(n) ∈ P(Rd×Rd) converge weakly
as n→∞ to γ ∈ P(Rd × Rd). Then,

(i) if γ(n) has cyclically monotone support for all n, so does γ;
(ii) if γ(n) ∈ Γ(µ(n), ν(n)) where µ(n) and ν(n) converge weakly, as n→∞, to

µ and ν, respectively, then γ ∈ Γ(µ, ν).

Lemma F.3 (McCann 1995, Proposition 10). Suppose that γ ∈ Γ(µ, ν) is sup-
ported on the subdifferential ∂ψ of some convex function ψ on Rd (meaning that
the support of γ is a subset of ∂ψ). Assume that µ vanishes on Borel sets of
Hausdorff dimension d− 1. Then, ∇ψ#µ = ν, that is, γ = ( identity×∇ψ)#µ,
where ( identity×∇ψ)x := (x,∇ψ(x)).

Lemma F.4 (Rockafellar 1966, Theorem 1). The subdifferential ∂ψ of a con-
vex function ψ on Rd enjoys cyclical monotonicity. Conversely, any cyclically
monotone set S of Rd×Rd is contained in the subdifferential ∂ψ of some convex
function ψ on Rd.

This implies the existence of a gradient of convex function running through
any n-tuple of cyclically monotone couples ((x1,y1), . . . , (xn,yn)) ∈ Rd × Rd.

We now turn to the proof of Propositions F.1 and F.2.

Proof of Proposition F.1. Denote by (Ω,A,P) the (unimportant) prob-

ability space underlying the observation of the sequence of Z
(n)
i ’s, n ∈ N,

by γ(n) = (identity×F
(n)
± )#µ(n) the empirical distribution, with marginals µ(n)

and U (n), of the couples (Z
(n)
i ,F

(n)
± (Z

(n)
i )), and by γ = (identity×F±)#P (with

marginals P,Ud) the joint distribution of (Z,F±(Z)). Here, µ(n), hence also γ(n),

are random measures, with realizations µ
(n)
ω and γ

(n)
ω .

A sequence γ
(n)
ω , n ∈ N, is P-a.s. asymptotically tight since µ

(n)
ω converges

weakly to P with probability one and U(n) has uniformly bounded support. By

Prohorov’s theorem, subsequences γ
(nk)
ω can be extracted that converge weakly

(to some γ∞ω ’s). Those γ
(nk)
ω ’s by construction have cyclically monotone sup-

ports, and their marginals µ
(nk)
ω and U(nk) converge weakly to P and Ud. Hence,

by Lemma F.2, all limiting γ∞ω ’s have cyclically monotone supports and margi-
nals P and Ud, respectively.

In view of Lemma F.1, there exists only one γ with cyclically monotone
support and marginals P and Ud. Hence, irrespective of the choice of the weakly

converging subsequence γ
(nk)
ω , all limiting γ∞ω ’s coincide with γ, which implies

that the original sequence is converging weakly to γ. Moreover, that limit is the
same for any ω in some Ω1 ⊆ Ω such that P(Ω1) = 1.
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Rockafellar’s Theorem (Lemma F.4) provides a convex function ψ the sub-
gradient of which contains the support of γ. Lemma F.3 and the definition of F±

conclude that γ = (identity×∇ψ)#P = (identity× F±)#P. �

Proof of Proposition F.2. Being the gradient ∇φ of a convex func-
tion, F± = ∇φ is a monotone function (see, e.g., Rockafellar and Wets (1998)).
The sequence ∇φ(xn) is bounded. Taking subsequences if necessary, we can as-
sume that ∇φ(xn) → y for some y with ‖y‖ ≤ 1. By monotonicity, we have
that

〈xn − x,∇φ(xn)−∇φ(x)〉 ≥ 0

for every x ∈ Rd. In particular,

〈xn − (∇φ)−1(w)),∇φ(xn)−w〉 ≥ 0

for every w with 0 < ‖w‖ < 1. But this means that

〈un − 1
λn

(∇φ)−1(w),∇φ(xn)−w〉 ≥ 0

and, taking limits, that 〈u,y−w〉 ≥ 0 for every w with ‖w‖ ≤ 1. From this we
conclude that 〈u,y〉 ≥ ‖u‖. But, since ‖y‖ ≤ 1, this only can happen if y = u. 2

We now can proceed with the proof of Proposition 3.3.

Proof of Proposition 3.3. Denote by U
(n)
d the discrete probability mea-

sure assigning mass n0/n to the origin and mass 1/n to the remaining points

in the regular grid used for the definition of F
(n)
± , and note that U

(n)
d converges

weakly to Ud. Also write P(n) for the empirical measure on Z
(n)
1 , . . . , Z

(n)
n . Over

a probability one set Ω0, say, of the underlying probability space Ω, the se-
quence P(n) converges weakly to P. In the remainder of this proof, we tacitly

assume that ω ∈ Ω0. Note that F
(n)

± = ∇φn for some convex φn, and
that F± = ∇φ with φ convex and continuously differentiable over Rd. Recall,

moreover, that ∇ϕn, by construction, maps P(n) to U
(n)
d . By Theorem 2.8 in

del Barrio and Loubes (2019), after subtracting centering constants if neces-
sary, we can assume that φn(x) → φ(x) for every x ∈ spt(P). Actually, the
statement of that result assumes convergence in transportation cost metric
rather than weak convergence; the proof, however, only depends on the fact
that, in that case, the sequence πn = (identity×∇ϕn)#P(n) converges weakly
to π = (identity × ∇ϕ)#P, which, in view of Proposition F.1, holds here. We
claim that, in fact, φn(x)→ φ(x) for every x ∈ Rd. To see this, first note that,

by Proposition 3.2, ‖F(n)

± (x)‖ = ‖∇φn(x)‖ ≤ 1 for every x ∈ Rd, which implies
that the sequence {φn} is uniformly 1-Lipschitz, hence uniformly equicontin-
uous on Rd. Also, since φn is pointwise convergent in spt(P), we can apply
the Arzelà-Ascoli Theorem to conclude that we can extract a uniformly con-
vergent subsequence over any compact subset of Rd. By extracting a further
subsequence, we can assume that φn → ρ pointwise on all of Rd for some func-
tion ρ. This function must be convex and 1-Lipschitz (in particular, finite over
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all Rd) and, obviously, ρ(x) = φ(x) for every x ∈ spt(P). We note also that for
every u ∈ Sd there exists some x ∈ spt(P) with u = ∇φ(x) = ∇ρ(x). Hence, for
every z, ρ(z)− ρ(x) ≥ 〈u, z− x〉. By duality,

ρ(x) = φ(x) = 〈u,x〉 − φ∗(u) = 〈u,x〉 − ψ(u).

This shows that

ρ(z) ≥ sup
u∈Sd

(〈u, z〉 −Ψ(u)) = φ(z), z ∈ Rd. (F.14)

To get an upper bound we note that, for every x, un := ∇φn(x) ∈ Sd.
Since 〈x,un〉 = φn(x) + φ∗n(un) we obtain that

φn(x) = 〈x,un〉 − φ∗n(un) ≤ sup
u∈Sd

(〈x,u〉 − φ∗n(u)) =: φ̃n(x). (F.15)

Now, φ̃n is the convex conjugate of the function

u 7→ ψ̃n(u) =

{
φ∗n(u) u ∈ S̄d
∞ u /∈ S̄d.

Using Theorem 2.8 in del Barrio and Loubes (2019) again, we obtain that,
for every u ∈ S̄d, φ∗n(u) → ψ(u) and, consequently, for every u ∈ Rd \ Sd−1,
that ψ̃n(u) → ψ(u). Combining this with Theorems 7.17 and 11.34 in Rock-
afellar and Wets (1998), we conclude that φ̃n(ϕ(x) → ψ∗(x) = φ(x) for ev-
ery x ∈ Rd. Combined with (F.15), this shows that ρ(x) ≤ φ(x) which, along
with (F.14), yields φn(x)→ φ(x). But then, Theorem 25.7 in Rockafellar (1970)
implies that

F
(n)

± (x) = ∇φn(x)→ ∇φ(x) = F±(x), x ∈ Rd,

uniformly over compact sets.
It only remains to show that uniform convergence holds over Rd. For this, it

suffices to show that, for every w ∈ Rd,

sup
x∈Rd

∣∣〈(F(n)

± (x)− F±(x)
)
,w〉

∣∣→ 0. (F.16)

Let us assume that, on the contrary, there exist ε > 0, w ∈ Rd\{0}, and xn ∈ Rd
such that ∣∣〈(F(n)

± (xn)− F±(xn)
)
,w〉

∣∣ > ε (F.17)

for all n. The sequence xn must be unbounded (otherwise (F.17) cannot hold).
Hence, using compactness of the unit sphere and taking subsequences if neces-
sary, we can assume that xn = λnun with 0 < λn →∞, ‖un‖ = 1, and un → u
for some u with ‖u‖ = 1. Again by compactness, we can assume that F±(xn)→ y

and F
(n)

± (xn)→ z. By Proposition F.2, we have that y = u. On the other hand,
by monotonicity, for every x ∈ Rd,

〈F(n)

± (xn)− F
(n)

± (x),xn − x〉 ≥ 0.

imsart-generic ver. 2014/10/16 file: MKFebruary24_2020.tex date: February 28, 2020



Hallin et al. /Distribution and Quantile Functions in Rd 51

Taking τ > 0 and x = τun, we obtain that, if n is large enough (to en-
sure λn > τ), then

〈F(n)

± (xn)− F
(n)

± (τun),un〉 ≥ 0.

We conclude that, for every τ > 0

〈z− F±(τu),u〉 ≥ 0.

Now, we can take τn →∞ and use Proposition F.2 to obtain that 〈z−u,u〉 ≥ 0,
that is, 〈z,u〉 ≥ ‖u‖2 = 1. This, however, implies that z = u = y, which
contradicts (F.17), hence completes the proof. 2

Appendix G: A “multivariate step function” version of F(n)
±

Although, for d = 1, a smooth monotone increasing interpolation of the n-

tuple (X
(n)
i , F (n)(X

(n)
i )) in general provides a better approximation of F , em-

pirical distribution functions are traditionally defined as right-continuous step
functions—the exact opposite of smooth functions. Such step function interpo-
lation yields some interpretational advantages in terms of the empirical measure
of regions of the form (−∞, x], x ∈ R. Still for d = 1, an outward-continuous
center-outward counterpart can be defined in a very natural way, with interpre-
tation in terms of the empirical measure of central regions of the form [x−, x+]

where [x−, x
(n)
1/2) and (x

(n)
1/2, x

+] (x
(n)
1/2 an empirical median) contain the same

number of observations: see Figure 5 in Appendix B.

A similar solution can be constructed for d ≥ 2. Let F
(n)

± be some smooth

interpolation of F
(n)
± . For any r ∈ [0, 1] and u on the unit sphere Sd−1, de-

fine brucnR
:= b(nR + 1)rcu/nR + 1. Then, ru 7→ brucnR

maps an outward-
open, inward-closed spherical annulus comprised in between two hyperspheres
of the grid onto its inner boundary sphere while preserving directions. A “multi-
variate step function” version of the empirical center-outward distribution func-

tion F
(n)
± , continuous from outward, can be defined as F

(n)∗
± := bF(n)

± cnR
.

Instead of steps, those functions yield plateaux or hyperplateaux, the bound-
aries (equivalently, the discontinuity points) of which are the continuous quan-

tile contours or hypersurfaces characterized by F
(n)

± . Those “quantile contours”
present an obvious statistical interest. In contrast with the univariate case,
this “step function version” of the empirical center-outward distribution func-

tion F
(n)
± , for d > 1, is not unique, and depends on the smooth interpolation F

(n)

±

adopted. However, all its versions enjoy cyclical monotonicity and obviously

satisfy the sup form of Glivenko-Cantelli: supx∈Rd ‖F
(n)∗
± (x)− F±(x)‖ → 0 a.s.

as n→∞.
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Appendix H: Further numerical results

H.1. Center-outward quantiles and Tukey depth

Statistical depth and our measure transportation approach are sharing the same
ultimate objective of defining a concept of multivariate quantile. Some compa-
risons thus are quite natural—although not entirely straightforward, as we shall
see, as the two concepts are of a different nature. The discussion below is re-
stricted to Tukey depth, but similar conclusions hold for other depth concepts.

Fig 6: Center-outward quantile contours (left) and Tukey contours (right) for
the same Gaussian mixture as in the middle panel of Figure 3, with n = 10000.

Whether theoretical or empirical, center-outward quantile functions and Tukey
depth produce contours—in short, quantile contours and Tukey contours. For a
spherical distribution with center µ, the family of population quantiles (indexed
by their probability contents) and the family of population Tukey contours (in-
dexed by depth) coincide (see Section 2.4 of Chernozhukov et al (2017)) with
the family of (hyper)spheres centered at µ. Empirical quantile and empirical
Tukey contours both consistently reconstruct those (hyper)spheres. As a rule,
the empirical Tukey contours are smoother than the empirical quantile ones—
although pairwise comparisons are difficult (or meaningless), as the probability
contents of a Tukey contour (indexed by depth), unlike that of a quantile con-
tour, depends on the underlying distribution. If smooth estimation of the family
of population quantile contours were the objective, Tukey contours thus are do-
ing a better job here. This is somewhat misleading, though—the (deterministic)
family of (hyper)spheres centered at µ is doing even better! But the objective
here is not the smooth reconstruction of the family of quantile contours: we want
something consistent that for finite n has the nature of an empirical quantile
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function, which requires (cyclical) monotonocity properties that Tukey depth,
even under spherical distributions, does not satisfy. And, of course, things only
get worse under non-spherical densities.

Fig 7: Center-outward quantile contours and sign curves for the same Gaussian
mixture as in Figure 6, with n = 20000.

Now, let us have a closer look at the banana-shaped Gaussian mixtures of
Figure 3. Figure 6 is providing, side by side, a plot of some quantile and Tukey
contours for n = 10000. The concave shape of the distribution is only partially
picked up by the outer quantile contours (left-hand panel)—despite of proven
asymptotic concavity. The same concavity is not picked up at all (not even
asymptotically so) by the Tukey contours (right-hand panel), which are inher-
ently convex. Even worse, the inner Tukey contours display a misleading spike
pointing upwards to the empty region. Despite of this, and although the theoret-
ical weakness (lack of cyclical monotonicity) of Tukey contours as multivariate
quantiles remain the same as previously discussed, one may feel that Tukey
depth, as a descriptive tool, is doing almost as well, with less computational
efforts, as empirical center-outward quantiles. As mentioned in Section 4, this is
neglecting directional information contained in the empirical sign curves. Tukey
depth, which is scalar-valued, has nothing equivalent to offer.

Figure 7 is providing the full picture for n = 20000. The sign curves to the
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left and to the right of the vertical direction are very neatly combed to the left
and to the right parts of the contours. Since each curvilinear sector comprised
between two consecutive sign curves roughly has the same probability contents,
Figure 7 provides evidence of a very low density in the central concavity bridged
by the contours, thus producing a clear visualization of the banana shape of
the dataset. Such figures, rather than contours alone, are the descriptive plots
associated with empirical center-outward quantile functions.

Irrespective of the point of view adopted—be it inferential or data-analytical—
center-outward quantile plots, thus, are carrying an information that Tukey
depth plots cannot provide, which is well worth the additional computational
effort.

H.2. Compact convex supports

All simulations in Section 4 have been conducted under Rd-supported distribu-
tions. In this section, we consider two simple compactly supported cases.

Fig 8: Smoothed empirical center-outward quantile contours (probability con-
tents .50 (green), .75 (red), .90 (black)) computed from n = 2000 i.i.d. obser-
vations from Lebesgue-uniform distributions over the triangle and the square,
respectively.

Figure 8 provides simulations for Lebesgue-uniforms with triangular and
squared supports (sample size n = 2000, with nR = 50 and nS = 40), and
shows how the contours evolve from nested circles in the center, where bound-
ary effects are weak or absent, to nested triangles and squares as the boundary
effects become dominant.

H.3. Disconnected supports

Figure 9 provides two independent simulations (sample size n = 10000) from
Lebesgue-uniforms supported on two disconnected half-balls. Although the as-
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sumptions for consistency are not satisfied, the contours and sign curves pro-
vide a very good description of the dataset, demonstrating, as in Figure 7, their
complementarity: while the contours alone fail to disclose disconnectedness, that
crucial feature of the dataset is fully revealed by the sign curves—an informa-
tion that no depth concept can provide. Note also the (unsurprising) instability
of the median set in such case; the same instability would occur in dimension
one with a density supported on two disjoint intervals of equal probability 1/2,
due to the lack of injectivity of the distribution function.

Fig 9: Smoothed empirical center-outward quantile contours and sign curves
computed from n = 10000 i.i.d. observations from a Lebesgue-uniform distribu-
tion over two half balls (two independent simulations, showing the instability of
the median set).

H.4. A non-connected α-hull contour

In this section, we provide an example of the dangers attached with the so-called
α-hull interpolation, as considered in Chernozhukov et al. (2017).

Consider the six points

x1 =

(
−2
−1/2

)
, x2 =

(
−1
−1/2

)
, x3 =

(
−3/2√
3

2 − 1/2

)
,

x4 =

(
1
−1/2

)
, x5 =

(
2
−1/2

)
, x6 =

(
3/2√

3
2 − 1/2

)
.

Note that x1, x2, x3 and x4, x5, x6 are the vertices of two equilateral triangles
with sides of length one; denote them as A and B, respectively.

The complement of the α-hull of the set X := {x1, . . . ,x6} is defined as
the union of all open balls of radius α that have empty intersection with X .
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Put α = 3/2. In order for its intersection with X to be empty, a ball of radius α
must be centered at distance at least α from each point in X . Clearly, any point
outside the triangles A and B belongs to some ball of radius α that does not
intersect X ; hence, the α-hull of X is contained in A ∪ B.

Fig 10: A disconnected α-hull contour. The picture has been produced with the
alphahull R-package.

Some balls of radius α that do not intersect with X nevertheless intersect
with A or B. The “worst” case, that is, the balls of radius α that do not inter-
sect with X while having largest intersection with A and B are those centered
at c1, . . . , c6 where c1, for instance, is maximizing, among all points at dis-
tance α from x1 and x2, the distance from x3; similarly, c2, say, is maximizing,
among all points at distance α from x2 and x3, the distance from x1, etc. As a
consequence, the α-hull of X , for α = 3/2, is the union of the two curvilinear
triangles shown in Figure 10—obviously not a connected contour.
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[2] Álvarez-Esteban, P.C., del Barrio, E., Cuesta-Albertos, J.A., and Matrán,
C. (2018). Wide consensus aggregation in the Wasserstein space. Applica-
tion to location-scatter families, Bernoulli 24, 3147–3179.

[3] del Barrio, E., Beirlant, J., Buitendag, S., and Hallin, M. (2019).
Center-outward quantiles and the measurement of multivariate risk,
https://arxiv.org/abs/1912.04924

[4] del Barrio, E., Cuesta-Albertos, J.A., , Hallin, M., and Matrán, C. (2018).
Smooth cyclically monotone interpolation and empirical center-outward
distribution functions, arXiv:1806.01238v1.

[5] del Barrio, E., Cuesta-Albertos, J.A., Matrán, C., and Mayo-́Iscar. (2018).
Robust clustering tools based on optimal transportation, Stat. Comput.,
to appear. https://doi.org/10.1007/s11222-018-9800-z
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[38] Faugeras, 0. and Rüschendorf, L. (2017). Markov morphisms: a combined

imsart-generic ver. 2014/10/16 file: MKFebruary24_2020.tex date: February 28, 2020

http://arxiv.org/abs/1811.12061
http://arxiv.org/abs/1909.08733


Hallin et al. /Distribution and Quantile Functions in Rd 59

copula and mass transportation approach to multivariate quantiles, Math-
ematica Applicanda 45 2017, 3–206.

[39] Figalli, A. (2017). The Monge-Ampère Equation and its Applications,
Zurich Lectures in Advanced Mathematics, EMS, Zurich.

[40] Figalli, A. (2018). On the continuity of center-outward distribution and
quantile functions, Nonlin. Anal.: Theory, Methods & Appl. 177, 413-421.

[41] Galichon, A. (2016). Optimal Transport Methods in Economics, Princeton
University Press, Princeton, N.J.

[42] Genest, Chr. and Rivest, P.L. (2001). On the multivariate probability-
integral transformation, Statist. Probab. Lett. 53, 391–399.

[43] Ghosal, P. and Sen, B. (2019). Multivariate ranks and quantiles us-
ing optimal transportation and applications to goodness-of-fit testing,
arXiv:1905.05340.

[44] Gushchin, A.A. and Borzykh, D.A. (2017). Integrated quantile functions:
properties and applications, Mod. Stoch. Theory Appl. 4, 285–314.

[45] Hallin, M. (2017). On distribution and quantile functions, ranks, and
signs in Rd, available at https://ideas.repec.org/p/eca/wpaper/

2013-258262.html.
[46] Hallin, M., Hlubinka, D., and Hudecová, S. (2020). Efficient center-outward
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