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Abstract

A method for coupling the variable damage to the yield function of a 2D beam element is
presented. The damage is represented by a scalar internal variable which expresses the loss
of strength of the material during ductile or fatigue processes and it is concentrated at the
ends of the element.

Yield surfaces, considering the interaction of bending moment, axial force, shear force
and damage of material are also given. And the yield function obtained can be used to
determine the elastoplastic stiffness matrix of beam element used for the structural analysis.
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1. Introduction

It is well known that the usual numerical way for the determination of the plastic collapse
load of framed structures is the use of one-dimensional finite element models (2D beam
element) together with the plastic hinge concept and an incremental procedure. We present an
approach that takes into account the extended plastic cross section concept (that includes
the plastic hinge concept) and Continuum Damage Mechanics (CDM) concepts for coupling
the variable damage to the yield function of the cross section. We try to apply this approach
to determine an explicit form of the tangent stiffness matrix called “elastoplastic
degradation stiffness matrix” and also to determine more exactly the collapse load of the
frame.

The yield function Z(F) includes the effect of the stress components F(axial N, shear V
and bending moment M) acting in the system to predict the yielding of the material. This can
be graphically represented as the place of the points of space of stress (yield surface) that
constitute the limit for a given state of the material [1, 2]. To define the yield function Z (F,
D) for damaged material, it has been necessary take into account: the Navier hypothesis for
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beams, the Von Mises yield criterion and the hypothesis of strain equivalence of CDM
formulated by Lemaitre [3] that assumes that the strain associated with a damage state under
the applied stress is equivalent to the strain associated with its undamaged state under the
effective stress [4]. The plasticity is supposed to be concentrated only in the cross section of
the ends of the beams and it is in plastic state by the combination of stress that satisfies the
yielding condition Z(N,V,M,D) at damage D. The evolution of damage can be determined
using the kinetic law of damage evolution, where the damage rate and the effective
accumulated plastic strain rate are coupled by mean of the definition of the plastic
multiplier.

In the next section a description of an analytical procedure used for determine the yield
function of elastoplastic 2D beam element of rectangular cross section is presented. The
function obtained can be used in framework of plastic analysis of structures to calculate the
loss of rigidity of the material due to its deterioration and its influence on the collapse load
of the structure.

2. Materials and Methods

An analytical yield surface equation of 2D beam element (Figure 1), based on CDM and the
classical hypothesis of Solid Mechanics is presented, taking into account the combined
action of axial and shear forces, bending moment and the effects of damage of material.
Basic assumptions, such as the following, have been taken into account [1,2,3,4]:
e Material nonlinearity is simulated by the formation of plastic zones of zero length at
the ends of the each beam element.
The effect of strain hardening is not considered.
For the plastic behavior, Von Mises yield criterion and associated flow rule are
adopted.
e Damage (D) is isotropic and, like plasticity, it is supposed to be concentrated at the
beam ends.
e For simplicity, all expressions are only applicable for rectangular cross section of base
(b) and heigh (h).
Under combined forces, the elastic limit is defined mathematically by a certain yield
criterion or yield condition. The initial yield criterion depends only on the stress, and can be
generally expressed as:

f=(0g-R-04)<0 1)

Where f is the yield function, o, is the Von Mises equivalent stress, R is the isotropic
hardening (although it is not considered) and o, is the yield stress. The equivalent stress
oe, associated with a damaged state has to be replaced by a_eq (damage effective equivalent
stress) given according to the CDM concept of effective stress as:
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Figure 1. (a) Beam element with elastoplastic displacement at the end of the element and
damage. (b) Stress distributions in a rectangular cross section
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Substituting Eq. (2) into Eq. (1) we obtain the constitutive yield function for damaged
material

f=(laei)-af)so 3)

In 2D beam elements o, is given by:

Oeq = \/Gf +G§ ~o,0y+3 ffy 4

and if the normal stress o, is not considered, then we can write:

Oeq = Joli+3 Tfy 5)

where o, is the normal stress in the beam due to axial force and bending moment and z,, is

the shear stress. In the points of the cross section of the beam where the normal stress is null
(neutral axis o, =0), yielding is only due to the effects of the shear stress (z,, ). Therefore,

in order to achieve yielding in the neutral fibre, the shear stress would have to be equal to the
yield shear stress (o ), given as:
_ e

= (6)

and

J3r 1-D
——01)=0 orf =z, <D0 )

f=( N

In the case of a section subjected to bending moment (M,), axial stress (Ny) and shear
stress (Vy) simultaneously, when the yielding of section takes place, the elastic area
disminishes (y»-y3) and simultaneously the position of the neutral axis of the section varies
(yinp, Figure 2) i.e when the loading process continues, yielding starts at the top or the
bottom fibres, and the plastic zone propagates to the interior of the cross section. During the
elastoplastic stage, the cross section has an elastic zone with linear stress variation, and one
or two plastic zones with constant stress equal to the positive or negative yield stress. This
process is continuum until the total yielding of the cross section that appear when the shear
stress (z,, ) is equal to the yield shear stress (7 ).

The normal stress (o, ) in the elastic zone of the material of the cross section of Figure
1(b) is given by
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And considering that the resultant normal force on the cross section must be cero we can
write that the axial force is equal to

N, (x)= {ax(x)dA )

Considering the Eq. (9) for each one of the areas of stress distributions shown in the
Figure 1(b) corresponding to the plastic behavior (A;, As) and elastic (A;) we write the
following expression for the resultant normal force:

N, =—[ o1 dA- [o,0a+ [odA (10)
A A2 &

Now, taking into account the laws of variation of the normal stress in the elastic and
plastic domain on the cross section according to Eg. (8) and substituting in Eq. (10) we get

N, =0y {— TZ(y) dy-— yf(y ~ Yinp ) 2(y) dy + yfZ(y) dy] (11)

Yo—¥
Y2 2 np Y3 Y4

Using the same procedure described for the normal force, we can write the equilibrium
equation for bending moment considering the elastic or plastic behavior of section:

Yo

M, =0 ﬁy 2(y)dy + [ (= vinp)y Z(y)dy—yfy Z(y)dy] (12)

Y2 2 np Y3 Ya

In the Egs. (11) and (12) the limits of the section (y; and y,) are known for a rectangular
cross section, however the penetration of yielding (y, and y3) and the position of the neutral
axis (yinp) are dependent variables of the bending moment (M,) and the axial stress (Ny) in
each instant of the loading process. Since the number of equations is two and the number of
unknown variables is three, it is necessary to introduce an additional equation to solve the
system. This equation will depend on the geometry of the section, for what an application
for the case of a concrete section is carried out.

In this way for the case of a beam of a constant rectangular section of width b and heigh
h, with an elastoplastic behaviour of the material (Figure 1(b) the position of the neutral axis
will be defined as

_YatYs
2

Yinp (13)
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Using the equilibrium equation Eg. (11) and Eq. (12) and the position of the neutral axis
Eq. (13) we can obtain the penetration of the yielding of the section (y, and ys) in function
of the bending moment (Mz) and axial stress (Nx) and behavior of the material
(characterized by the yield stress o)

N, +4-3NZ —+30%0 h? ~125bM,

y2 ZbO'f (14)

N, —y~3NZ +3b%c?h? ~120bM, 5

Y3 = 2bor, (15)
_ Ny

Yinp ~2bo, (16)

In the different domains of behavior of the section (elastoplastic), the normal stress doesn't
follow the law of Navier, as it has been indicated in the Eqg. (8), but can be expressed as

h/2>y>y, oy =0
o
Yo>Y>Ys3 Oy = f (y— ylnp) (17)
yz_ylnp
Vs>y>-h2 o =0y

From the position of the neutral axis (yi,) and of the penetration of the yielding (y2, ys)
given by the Egs. (16), (14) and (15) respectively, the normal stress is obtained in the elastic
domain of the section with behavior elastoplastic

Uf(zyaber Nx)\/§
GX(MZ’NX): 2 2 2,2
3/~ N2 +b2oyh? — 4o (bM,

(18)

The distribution of the shear stress on the section with elastoplastic behavior must
comply the equations of internal balance. Therefore for the case of a two-dimensional study
with null forces of mass we can write:

oo 6Tx
ZOx LY

OX oy (19)

The variation of the shear stress can be written as:
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To determine the distribution of shear stress (z,) it is necessary to evaluate the normal
stress (ox) deriving with respect to X. The normal stress (ox) Eq. (18) doesn't depend
explicitly on that variable but if does on the bending moment ( M, ) and axial stress (Ny).
Therefore is possible to write the normal stress derived with respect to X as

90,(M,,Ny) _ 9o, dM, , 0oy N, 1)
OX OM, dx  ON, dx
Where, considering only the axial force (Ny) due to a punctual force we can rewrite the
Eg. (21) as:

dN, doy(M,,N,) oo, dM
=O X Z X — X 4
dx = X oM, dx (22)
Substituting Eq. (22) in Eq. (18) we get
do, 2361 %b(N, +2ybof)
M, \/(— NZ +b%c 2h? — 4o M, 23)
dm
—L=V
ax 7

Therefore the distribution of shear stress in the elastic area of the elastoplastic behavior
of the cross section Eq. (20) can be expressed by:

\/§afvy(—4NX2 +30%6%h? —12bo; Mz - 4y?b%c ? +4nybo‘f)
\/(—Nf +b%0 2h? —4afb|\/|z)3 (24)

Txyp (y)=-

The variation of the shear stress of the cross section of the Figure 1(b) for each one of its
domains is defined by:

h/2>y>y, Ty =0
Yo >Y>Y;3 Tyy (y): Txyp (y) (25)
y; >y>-h/2 Ty =0

The distribution of the shear stress in the elastic domain of the material allows to
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determine the combination of values of the bending moment (M,), axial stress (Nx) and shear
stress (Vy) that makes the section reach its limit state of complete yielding, and starting from
them to obtain the yield surface of the section. This occurs if the maximum value of the
shear stress of the elastic area (zypmax ) IS equal to the shear yield stress ().

The maximum shear stress (zyomax ) appears in the neutral axis of the yielding section,
therefore substituting the position of the neutral axis of the section (y = yi,p) EQ. (16) in the
law of variation of the shear stress 7, (24), we get

\Eafvy(—SNXZ +3025*h? ~12b0 Mz)

Txypmax(Y) =- (26)
6\/(— NZ b2 %n? —4afsz)3
As the yielding begins when z, . =z itis possible to write:
AL I N (27)

"4 4bo; 16bo,(1-D)

If the stress that causes the yielding is considered independently, it is possible to write the
value of the plastic bending moment (Mp), plastic axial force (Np) and the value of the
plastic shear force (Vp) that cause the full yielding of the cross section of the

bh? 20 ¢ bh
beam.[9,10,11,12] M, ="— v, ==t

N, =o¢bh. Now, under the hypothesis of

4 PN
strain equivalence [2,22] these expressions are modified to consider the possibility of
_ o ;bh? 20 ¢ bh o¢bh . _
damage, so we can writeM = N, =———. Substituting this

*"30) P T aBe-p) P @-D)

formulas in the expression of M,, we can obtain the yield function (Zunva) for the 2D beam
element, taking into account the effects of damage of material and also the stress due to axial
force, shear force and bending moment. [9]

2 2
Ma| [Ny ] 1 afVy] 1
z = S ~(1-D)=0 28
MNVd Mp+ Np (1-D) 3 Vo ) -y (1-D) (28)

3. Results and Result Analysis

If we represent the expression |M,|/M, graphically in the normalized domain
(0<N,/N, <1) and (0<v, /v, <1) for D=0, we obtain the yield function and yield surface
without considering the damage of the material.
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Figure 2. Yield function Zyyy for rectangular cross section

The yield function associated to the rectangular section Eq. (29) has a curve of contour
expressed by Eq. (30).

(30)
For V,=0 d=0 = Zynv =Zun
2
M Vv
zMV=| Z|+1 2| -1=0 (31)
M, 3V,

2
M
Zwn =|M—Z|+(EXJ -1=0 (32)
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Figure 3. Yield function Zyy and Zyy.

The yield surfaces for a damaged material are shown in Figures 4, 5, 6 and the yield
functions associated to the section and each Figure areas follows:

For V,=0 D=0-1 = Zynvd = Zwing (33)
For N,=0V,=0 D=0-1 = Zynvd = Zmd
2
M V
Z v =u+l _y ;3_(143):0 (34)
My, 3(Vy) (@-D)
2
M N
zMNd=| Z|+ —x ! -(1-D)=0 (35)
Mp Np 1-D)

(36)
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Figure 4. Yield surface for rectangular cross section depending on the stresses and damage Zynvg
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In the Figure 4, there are graphically represented several yield surfaces for ten values of
the variable damage D, which varies between 0 and 1. Notice that the yield surface
decreases as damage of the cross section increases because the accumulation of the damage
of the section implies a decrease of its capacity of load.

The expression (28) can be used for determining the elastoplastic stiffness matrix of the
beam element and therefore, it will be possible to consider damage material in the structural
analysis of frame i.e. dF =K®du® where dF is the stress vector at each beam end, K* is the
elasticplastic degradation stiffness matrix and du® is the elastoplastic displacement vector at
the ends of the element. [9,10]

b)

Figure 5. a) Yield surface Zyng. b) Yield surface Zyyg.
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Figure 6. Yield function Zyq
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dF = K®du®
oz K oz

Kep — K 1_ 6F aF _ (37)
oz oz oz o

oF  oF oD oY

Where, K is the tangent stiffness matrix of each beam, ¢* is the damage dissipation potential

(that depends on the internal variable associated to damage, the Y-Damage energy release
rate and the accumulated effective plastic strain. An incremental and iterative algorithm can
be used for the analysis of frame [11,13,14].

4. Conclusions

In this work, the bases for the numeric study of the beam 2D element in regime elastoplastic
have been presented, considering the different stresses that can take part in the yielding of
each cross section and the damage that it the material can suffer. The variable damage was
introduced considering the theory of the Continuous Damage Mechanics, specifically the
principle of equivalent deformation formulated by Lemaitre. The yield function considered
here can be used to obtain the degradable elastoplastic stiffness matrix of the 2D beam
element.

Depending on the stresses considered in the study of the yielding of sections different
yield surfaces are showed. When the degradation of the material is considered, there is a
yield surface for each value of the variable damage that defines the combination of the
stresses that cause the yielding of the cross section of the beam (Figure 4). The existence of
damage modifies the characteristics of the rigidity of the beam causing a smaller load
capacity of the structure in general.
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