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Abstract

In this note we analyze the influence of four damage models on the collapse load of a

structure. The models considered here have been developed using thehypothesis based on

the concept of effective stress and the principle of strain equivalence andthey were proposed

by Lemaitre and Chaboche, Wang, Chandrakanth and Bonora. The differences between them

consist mainly in the form of the dissipative potential from which the kinetic law of damage is

derived, and also in the assumptions made about some parameters of thematerial.
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1 Introduction

Continuum Damage Mechanics (CDM) is a new approach through which the material degradation

can be quantified as a measurable parameter called thedamage variable. It is considered as an

internal variable in the framework of thermodynamics, and it is a measure of the degradation of

the material. The constitutive model of a postulated damageparameter should be a function of the

local stress, strain, strain rate, etc. Integrating over the loading history, the damage law will predict

the material failure dynamically [1,2]. The dissipation potential function (φ) is a scalar function of

all theobservable variables(elastic strain tensorεij and temperatureT ; their associated variables

are the stress tensorσij and the entropys) and theinternal variables(accumulated plastic strain

p and damage variableD; their associated variables are the increment of yield surfaceR and the

damage strain energy release rateY ) as parameters. [2–4]. The differences between many ductil

models are mainly based on the form of this potential.

2 Materials and methods

The analysis of frames considering damaged material can be done using the same concepts of

equivalence of stress and strain as in Continuum Mechanics. Therefore, if we consider a 2D beam

element of a frame between nodes 1 and 2 (Fig. 1), generalizeddamage, stresses and displacements

can be defined respectively at the beam-ends, as

{D} = {D1, D2} (1)

{dF} = {dNx1, dVy1, dMz1, dNx2, dVy2, dMz2} (2)

{duep} =
{

uep
x1, v

ep
y1, θ

ep
1 , uep

x2, v
ep
y2, θ

ep
2

}

(3)
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A constitutive model for the 2D beam element can be defined as the set of equations that

relates the generalized stress with the history of generalized displacements. For the elastic case,

considering that the variation of the elastoplastic displacementduep at the beam-ends can be split

into its elastic(due) and its plastic(dup) component, in a vectorial form{duep} = {due}+ {dup}

{dF} = [K]{due} = [K]({duep} − {dup}) (4)

where[K] is the elastic stiffness matrix for the 2D beam element.

Figure 1: Beam element with plasticity and damage at its ends

The variation of plastic displacement{dup}, taking into account the laws in the case of asso-

ciated flow, can be expressed through

{dup} = {dλ}

{

dZ

dF

}

(5)

whereZ is the yield function for the beam element and{dλ} is a2× 1 column vector of so-called

plastic multipliersdλ1, dλ2 that measure the total plastic flow of the beam-ends.

The classic CDM formulation from Chaboche and Lemaitre, in theform specifically related to
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damage evolution, can be generically expressed as

{dD} = {dλ}

{

−∂φ∗

∂Y

}

and ṗ =
λ̇

(1 − D)
(6)

Equation (6), the kinetic law of damage evolution, shows thecoupling between the damage

rate and the effective accumulated plastic strain rateṗ by means of the plastic multiplier.φ∗ is the

damage dissipation potential.

From the plastic consistency condition, we can write

Ż =

{

∂Z

∂F

}

{dF} +

{

∂Z

∂D

}

{dD} = 0 (7)

Substituting Eqs. (4)-(6) into Eq. (7), isolating{dλ} and substituting it in Eqs. (6) and Eq. (4)

{dF} = [K]









1 −

[K]

{

∂Z

∂F

}{

∂Z

∂F

}

{

∂Z

∂F

}

[K]

{

∂Z

∂F

}

+

{

∂Z

∂D

}{

∂φ∗

∂Y

}









{duep} = [Kep]{duep} (8)

where[Kep] is the elastoplastic degradation stiffness matrix for the 2D beam element.

To determine the elastoplastic degradation stiffness matrix, it is necessary to evaluate the po-

tential derivate with respect to the damage strain energyY .

Y = −
σ2

eq

2E(1 − D)2
f

(

σm

σeq

)

where f

(

σm

σeq

)

=

[

2

3
(1 + ν) + 3(1 − 2ν)

(

σm

σeq

)2
]

(9)

whereσm is the hydrostatic stress,σeq is the von Mises equivalent stress,ν is the Poisson’s ratio,

E is the Young’s modulus.

The next step consists in deriving the damage dissipation potential (Table 1) with respect toY

for obtaining the damage evolution law. Now we describe the procedure for Lemaitre’s model [5].

For a ductile material, the effective equivalent von Mises stress can be written as a function of

the accumulated plastic strain, using Ramberg-Osgood powerlaw, as follows

σeq

1 − D
= κpn, pn =

σeq

κ(1 − D)
or σeq = κpn(1 − D) (10)
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Table 1: Damage evolution law for different approaches

Bonora [3] φ∗ =

[

1

2

(

−
Y

So

)2
So

1 − D

]

(Dcr − D)αB−1/αB

p(2+n)/n

Lemaitre [5] φ∗ =

[

1

2

(

−
Y

SL

)2
SL

1 − D

]

Wang [1] φ∗ =

[

1

2

(

−
Y

SW

)2
SW

1 − D

]

(pcr − p)αW−1

p2n

Chandrakanth [2] φ∗ =

[

1

2

(

−
Y

SC

)2
SC

1 − D

]

1

DαC/n · p2/n

Dcr andpcr are the damage and deformation at failure initiation, respectively, the termsSo, SL, SW , SC , αB , αW , αC

are material constants, andn is the hardening constant of the material.

whereκ is a material constant. Then, substituting Eqs. (9) and (10)into Lemaitre’s damage

evolution law (Table 1), we get

∂φ∗

∂Y
= −

[

κ2

2ESL

f

(

σm

σeq

)]

p2n

1 − D
= −[B0]

p2n

1 − D
(11)

In the case of proportional loading, the ratioσm/σeq can be considered as constant with respect

to time so, for simplicity, the term

[

κ2

2ESL

f

(

σm

σeq

)]

is renamed as[B0].

Substituting Eq. (11) in the damage evolution law given in Eq. (6), we obtain

Ḋ = [B0]p
2nṗ or

dD

dp
= [B0]p

2n (12)

Then, we integrate Eq. (12) between the initial conditionD = Do, andD = Dcr. The damage

process remains inactivated (i.e.D = Do) until the effective accumulated plastic strainp reaches

a threshold strainpth (i.e. dD = 0 andD = 0 or D = Do). Whenp = pth, nucleation is the
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Figure 2: Damage (D) vs accumulated plastic strain (p)

dominating void growth state [3]. WhenD = Dcr, coalescence dominates the void growth process

and the effective accumulated plastic strainp reaches the critical valuepcr for which failure occurs.

Dcr − Do = [B0]

(

p2n+1
cr − p2n+1

th

2n + 1

)

and Dcr − D = [B0]

(

p2n+1
cr − p2n+1

2n + 1

)

(13)

Eliminating [B0] in these equations, we obtain a general integrated evolution law for ductile

plastic damage

p2n+1 = p2n+1
cr −

(

Dcr − D

Dcr − Do

)

(

p2n+1
cr − p2n+1

th

)

(14)

Substituting the same term into Eq. (11) we obtain the derivative of the dissipation potential

with respect toY .

∂φ∗

∂Y
= −

p2n

1 − D

(

Dcr − Do

p2n+1
cr − p2n+1

th

)

(2n + 1) (15)

Similar procedures are used for obtaining the expressions for other models (Table 2). Figure 2

shows the evolution law for ductile plastic damage of the models considered. The material coeffi-

cients are taken from reference [3].

The next step is to determine

{

∂Z

∂F

}

and

{

∂Z

∂D

}

. It is necessary to define the yield function

Z for the beam element in function of the stress and the damage of the material. For the following
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Table 2:

{

∂φ∗

∂Y

}

and ductile plastic damage evolution law for different models

Bonora(PAMNV D)B

∂φ∗

∂Y
= −α

(

(Dcr − Do)
1/α

ln (pcr/pth)

)

(Dcr − D)α−1/α

(1 − D) p

D = Do + (Dcr − Do)

[

1 −

(

1 −
ln (p/pth)

ln (pcr/pth)

)α]

p = eA, wheree is the base of the neperian logarithm

A = ln (pcr) − ln (pcr/pth)

(

Dcr − D

Dcr − Do

)1/α

Lemaitre(PAMNV D)L

∂φ∗

∂Y
= −

p2n

1 − D

(

Dcr − Do

p2n+1
cr − p2n+1

th

)

(2n + 1)

D = Dcr − (Dcr − Do)

(

p2n+1
cr − p2n+1

p2n+1
cr − p2n+1

th

)

p2n+1 = p2n+1
cr −

(

Dcr − D

Dcr − Do

)

(

p2n+1
cr − p2n+1

th

)

Wang(PAMNV D)W

∂φ∗

∂Y
= −α

(

Dcr − Do

(pcr − pth)
α

)

(pcr − p)α−1

1 − D

D = Dcr − (Dcr − Do)

(

pcr − p

pcr − pth

)α

p = pcr − (pcr − pth)

(

Dcr − D

Dcr − Do

)1/α

Chandrakanth(PAMNV D)C

∂φ∗

∂Y
= −

1

αn

(

Dcr − Do

pcr − pth

)

1

Dα/n (1 − D)

D =

[

Dαn
o + (Dαn

cr − Dαn
o )

(

p − pth

pcr − pth

)]1/αn

p = pth + (pcr − pth)

(

Dαn − Dαn
o

Dαn
cr − Dαn

o

)

αn =
α

n
+ 1
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assumptions (material nonlinearity simulated by the formation of plastic zones of zero length at

the beam-ends, effect of strain hardening not considered and rectangular cross sectionsb × h) [6]

Z =
|Mz|

Mp

+

(

Nx

Np

)2
1

1 − D
+

1

3

(

Vy

Vp

)2
1

(1 − D)3
− (1 − D) = 0 (16)

Mz, Nx andVy are the stresses on the cross section of the beam, andMp, Np andVp are the

plastic bending moment, plastic axial force and plastic shear force, respectively, that cause the full

yielding of the cross section of the beam.

Considering the yielding function of Eq. (16), we get

{

∂Z

∂F

}

=











A1 B1
1

Mp

0 0 0

0 0 0 A2 B2
1

Mp











T

whereAi =
2Nxi

N2
p (1 − Di)

, Bi =
2

3

Vyi

V 2
p (1 − Di)3

(17)

{

∂Z

∂D

}

=









C1 0

0 C2









whereCi =

(

Nxi

Np

)2
1

(1 − Di)2
+

(

Vyi

Vp

)2
1

(1 − Di)4
+ 1 (18)

3 Results and result analysis

The accuracy of the model is verified by simulating one experiment for which data was available

in the literature [7]. We can conclude that the model is simple but it still represents accurately the

behavior of the structure.

After this validation, we apply the method to compare the collapse load of the 2D frame shown

in Fig. 3(a). We consider yielding by bending moment and axial and shear forces. The loads

are proportionally increased from zero to their collapse values, using an incremental and iterative

procedure. Within each load increment, the equilibrium equations are solved by Newton-Raphson

methods. Figure 3(a) shows the accumulated deformed shape of the frame for different load factors
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Simulation performed with
E = 200GPa, L = 1m, A = 0.1 × 0.1m2,
σf = 250MPa (yield stress).
The material is a Steel-1015 [3]:
pcr = 1.4, pth = 0.259,
α = 0.2175 and n = 0.0006.

(a) Frame example (b) Load factor vs horizontal displacement of node 4 (inm)

Figure 3: Test on a 2D frame

(λ) for the model(PAMNV D)B. In all the models, the sequence of the cross section yielding is 5,

4, 3 and 1, and the collapse load isP = λ · Mp.

The response curves for the classic plastic analysis and theelastoplastic degradation analysis

are shown in Fig. 3(b). They were obtained considering the material nonlinear effect and the

elastoplastic damage model proposed, using the hypothesisof strain equivalence and dissipative

potential from which the kinetic law of damage is derived. The curves of damage models are

below the curve of the plastic analysis model due to the loss of stiffness of some sections: the load

factor is lower and the displacements are higher. The effective accumulated plastic strain plays an

important role on the damage evolution law. The evolution ofthe damage variable is much greater

with Wang’s model than with the other models. Therefore, theprogressive reduction of material

ductility is much higher.
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4 Conclusions

The damage model shows a nonlinear variation with respect toplastic strain and it can be identified

with a quantitative evaluation of the parametersDcr, Do, pth, pcr and also the hardening parameter,

which defines the real stress-strain curve. The effects of axial and shear forces and bending moment

have been taken into account for determining the yielding ofthe cross section of the beam.

The results lead to a more accurate prediction of the load that causes the yielding of the sections

of the beam until the mechanism of collapse is formed. We can observe that the transmission of

the load state among all the beams of a system is affected by the behavior of the plastic material

and the accumulation of plastic strain, which leads to damage in the section and to the subsequent

decreasing in the load-bearing capacity of the structure.
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