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Abstract

OPEN ACCESS

The evaluation of the maximum level of load that any 2D framed structure can undergo,

before plastic collapse or buckling, is addressed in this paper. The analytical approach,
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based on a beam element with elastic behaviour except on its ends, uses an incremental

approach to determine when changes appear due to plastic behaviour. When the
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combination of axial force and bending moment in any cross-section reaches the plastic

function, that section is considered to yield suddenly and relative displacements can appear
because of the yielding. The model includes the traditional plastic hinge, which only
considers relative rotation due to the effect of the bending moment. The sequential loading
and yielding reduces the stiffness and stability of the frame, which is computed and

compared with the classic plastic methods of analysis.

Resumen

En este trabajo se determina el nivel de carga maximo de
porticos metalicos planos constituidos por barras rectas
esbeltas. Se realiza un planteamiento analitico basado en un
elemento barra con comportamiento elastico en su dominio y
posibilidad de comportamiento plastico localizado en sus
secciones extremas. La plasticidad se alcanza por combinacién
de esfuerzos. Se considera que aparece de forma concentrada y
subita y origina desplazamientos relativos acoplados asociados
a un unico grado de libertad. Este modelo incluye el tradicional
de roétula plastica, el cual solo considera giro relativo por
plastificacién debida al efecto del momento flector. La aparicién
secuencial de grados de libertad acoplados afecta a la
estabilidad del conjunto, la cual se va evaluando
numéricamente en cada uno de los instantes representativos de
aplicaciéon de la carga marcados por la plastificaciéon de las
secciones.
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1. Introduccion

Es bien conocida la importancia que tienen los sistemas
estructurales de barras en muchos campos de la ingenieriay su
capacidad de soportar mdas carga que aquella para la que
fueron  diseflados. Esto se debe, en parte, a que su
dimensionamiento se ha realizado en régimen elastico lineal y
no se ha considerado la redistribuciéon de tensiones tras la
plastificaciéon. Esto supone una reserva de resistencia que
permitiria conseguir un disefio més optimizado de la estructura,
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conocer el factor de seguridad real ante ciertas sobrecargas,
realizar una evaluacion de su vulnerabilidad ante determinados
estados limites Ultimos o evaluar el dafio acumulado y proponer
las correspondientes  intervenciones. Para ello, resulta
imprescindible disponer de modelos numéricos que permitan
una adecuada simulacién de los complejos fenémenos no
lineales que tienen lugar incluso en régimen estatico, a partir de
los cuales se pueda conocer y cuantificar el comportamiento
limite de estructuras de barras.

La forma mas eficiente para llevar a cabo una modelizacién
numérica del comportamiento lineal de las estructuras de
barras es mediante elementos monodimensionales [8], [10]
and [17] . El uso de estos elementos para problemas en los que
existe no linealidad del material estd muy limitado,
fundamentalmente porque los programas comerciales y las
formulaciones utilizadas asumen hipétesis muy simplificadas
que no pueden reproducir fielmente el comportamiento plastico
real o incluso carecen de elementos monodimensionales, por lo
que estos deben aproximarse por elementos tridimensionales
discretizados con pocos elementos en las 2 direcciones
perpendiculares a la directriz. Ante esta situacién, es deseable
desarrollar un elemento simple, pero riguroso, que permita
abordar eficientemente el estudio numérico de adaptacién
plastica de las estructuras hasta su colapso, incluyendo el efecto
de posibles grandes desplazamientos.

Basandose en el comportamiento plastico a nivel de punto, pero
expresado en funcién de las variables tradicionales del modelo
1D de barra de Navier-Bernoulli, se llega, tras ciertas hipétesis,
al concepto de seccién agotada por plastificacion, como
extension del concepto de rétula plastica, cumpliendo la teoria
general de la plasticidad. A este modelo se incorpora la no
linealidad geométrica (teoria de sequndo orden) que permite
realizar un analisis de estabilidad [1] and [5]y conocer la carga
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critica correspondiente a estados de carga para los que ya se
han agotado una o mas secciones del pértico.

De forma resumida y desde el punto de vista teorico, el
comportamiento elastoplastico de un determinado elemento
finito normalmente viene descrito por la matriz de rigidez
elastoplastica tangente [3] and [11], e intervienen la matriz de
rigidez y las derivadas de la funcién de plastificacién con
respecto a las tensiones. La extension de esta formulacion al
caso de barras lleva a una expresion similar en la que juega un
papel fundamental la funcién de plastificacién y sus derivadas
con respecto a los esfuerzos [2] and [6] . Esta funcién expresa la
combinacion de esfuerzos que llevan a la plastificacién completa
de la seccién. Para casos simples en los que se considere que
esta funcion depende solo del momento flector, y tomando
equilibrio en la configuracién indeformada, la formulacién lleva
estrictamente al modelo tradicional de rétula plastica. Sin
embargo, si de manera adicional se impone el equilibrio en la
configuraciéon deformada y se considera la influencia de los
esfuerzos axil y/o cortante, los desarrollos son mas complejos y
aparecen fendmenos de acoplamiento entre esfuerzos y

desplazamientos [8],[13]1,[14]1,[15] and [16], siendo este el
objeto del presente estudio.

2. Modelo barra 2D

A las limitaciones tradicionales del modelo de barra de Navier-
Bernoulli aplicado al estudio de pérticos planos se afade la
hipétesis de estado proporcional de cargas aceptada
usualmente en los métodos de clculo plastico.

2.1. Equilibrio,
comportamiento

compatibilidad vy

Para el elemento barra de la figura 1, bajo un estado genérico
de cargas y vinculaciones en sus secciones extremas, las
ecuaciones de equilibrio son [1] and [5] :

Ns(s) +qs(s)=0
Vy(s) +qy(s) =0 (1)
Mz (s)+Vy(s)=0

donde las variables con notacién prima indican derivada
respecto ala coordenada espacial (s). Los esfuerzos y los
grados de libertad, en coordenadas locales en los extremos de
la barra, se definen como:
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Figura 1.
Modelo barra 2D.
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mientras que en coordenadas globales (x;, y, .
como:

4 ) se expresan

T
QF = (Fu, By, M)" = (L¥) EF;

L*) (uf + (k) (BF-ED));

l=1,j (4)

'S
—~
—

l=1i,j (5)

donde (FX) es la solicitacién de tipo concentrado/puntual en el
extremo (/) de la barra (k ), k_ﬁ‘ son las rigideces en el extremo

de cada barra en el sistema de coordenadas local yL_¥ es Ia
correspondiente matriz de cambio de base.

Por tanto, este modelo de barra 2D considera en sus secciones
extremas nudos semirrigidos de rigidez longitudinal,
transversal y rotacional dada. Se ha optado por este tipo de
elemento en lugar del clasico de nudos rigidos porque permite
incluir de forma sencilla cualquier tipo de libertad entre barras
de la estructura.

2.2. No linealidad geométrica

Debido a que un andlisis de estabilidad requiere que el
equilibrio se plantee en la configuraciéon real, es decir, en la
deformada, se hace necesario fijar el sistema de referencia en el
que expresar los desplazamientos y los esfuerzos de la barra.
Para ello, se considera un sistema de referencia cartesiano de
orientacién fija para cada barra independiente de su
deformacion, denotado por (s, y, z). Del equilibrio de fuerzas
segun los ejes (s,y)y de momentos segln (z), resulta el
siguiente sistema de ecuaciones diferenciales:

N(s) +qs(s) =0V(s) + qy(s) = 0M(s) -N(s)O(s) +V(s) =0 (6)

donde 0(s) =v(s)y las variables con notacién prima indican
derivada respecto a la coordenada espacial (s)y donde se ha
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aproximado el seno del &ngulo por el dngulo y su coseno por la
unidad. También se asume la hipétesis de pequefias
deformaciones y se considera que el comportamiento
intrabarra del material es de tipo elastico y lineal. Las
ecuaciones que relacionan los esfuerzos (N, V,, M,) con los
desplazamientos (u,v, 6) de un punto de la directriz de la barra
son:

Ns(s) = EA(s)u(s) (7)
M;(s) = EI(s)0(s)

siendo E el médulo de Young del material, I, (s ) el momento de
inerciay A (s ) el area de cada seccién transversal de la barra.

2.3. No linealidad material

Como consecuencia de la actuacién simultanea de todos los
esfuerzos, la capacidad de la seccién para soportar el momento
flector disminuye, siendo menor que el momento plastico (M, ).
La relacién entre el momento flector y el esfuerzo axil y cortante
necesarios para la plastificacion completa de una determinada
seccion se denomina funcién de plastificacion (Y, ). Como caso
particular simplificado, para una barra de seccién rectangular
de canto hy ancho b,y despreciando el efecto del esfuerzo
cortante, dicha funcién vale:

M, N;s \2
Y = Z+(—S)—1=0 8
MN MP NP ()
donde
2
Mp:%qr; Np = bhoy (9)

Para secciones con otras geometrias (doble T, tubulares, etc.),
las ecuaciones (8) y (9) tienen expresiones mas complejas pero
operacionalmente se procede del mismo modo. Asumiendo la
ley de flujo asociada, la variacién del vector de desplazamientos
plasticos en los extremos de la barra se puede expresar de
forma vectorial como:

du? =

6,00 dup(L) 0 (10)

(dup(0) © do, L))"
y definiendo el vector de esfuerzos en los extremos de la barra,
de componentes:

dE =

dN;s (L) 0 (1

(dNs(0) 0  dM(0) dM; (L))"
y considerando el vector normal (n)a la superficie de
plastificacién (Y, ) en funcién del gradiente de la funcién de

plastificacién

H:(aYMN) (6YMN _(BYMN) (12)

oE oE

se puede obtener la respuesta elastoplastica en términos de la
funcién de plastificacion (Y, )y de los esfuerzos de la seccién
(E) . La derivada de la funcion de plastificacion respecto de los
esfuerzos resulta:
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Si se impone la condicién de que en una seccién agotada ante
carga adicional debe permanecer en la curva de plastificacion,
se llega a las siguientes expresiones:

. 14
AM, (i) = - (2Ns (i) - dNs () -M20_ Me gy i Lk
M ()| N i=0.L
dup (i) = 2@ _M: @) g6 )

Np |M:(D)]

que se pueden incorporar de forma relativamente sencilla en el
modelo de barra de la figura 1 como condiciones de contorno
en sus extremos.

3. Analisis estructural

Con las hipétesis adoptadas, el comportamiento no lineal
material solo afecta a la seccién que alcanza la plastificacion y
no a las de su entorno. Ademas, al aparecer de forma subita no
se considera el comportamiento elastoplastico transitorio en el
dominio de la seccién. Estas simplificaciones, usualmente
aceptadas en estructuras de barras, permiten plantear el
siguiente proceso de resolucion.

Tras los correspondientes cambios de sistemas de coordenadas
que permitan expresar las ecuaciones de todas las barras en
una Unica referencia y a la vista del orden del sistema de
ecuaciones (1), (6) y (7), es necesario imponer en cada instante
6 condiciones de contorno por barra en desplazamientos y/o
esfuerzos.

Ya solo resta resolver las ecuaciones diferenciales para todas las
barras de la estructura, junto con las condiciones de contorno
en los apoyos, para determinar la respuesta en funcién de la
carga aplicada. Dicha solucion sera valida mientras no cambien
las condiciones de definicién del problema. Por el
planteamiento realizado, solo habrd cambios cuando una
determinada seccién plastifique. Por tanto, se plantea una
resolucién incremental, determinando en cada paso la carga
maéxima a partir de la cual cambian las condiciones vy, en ese
caso, se procede a acumular la solucién y a iniciar el paso
siguiente. A diferencia de los métodos matriciales en los que en
cada paso se resuelven sistemas lineales de ecuaciones, en este
caso, al estar planteado el problema en términos de las
correspondientes ecuaciones diferenciales, dentro de cada paso
se obtiene la solucién exacta (lineal o no lineal, segun
corresponda). Notese que la aparicion del esfuerzo axil en la
ecuacién (6) hace que disminuya la rigidez si es de compresién o
que aumente si es de traccién. Por tanto, este planteamiento
permite en cada paso buscar la carga para la que se anula la
rigidez de la estructura, pudiendo determinar de esta manera el
valor de la carga de pandeo. Para ello, se afiade una solucién
arbitraria a los desplazamientos y se busca el valor del
incremento de carga que hace que las magnitudes
incrementales en desplazamientos (Au, Av, A8 )y esfuerzos (AN,
AV, AM ) satisfagan las siguientes ecuaciones de estabilidad [12]

AN(s) = 0AV(s) = 0AM'(s) - N(s)AQ(s) + AV(s) =0 (15)

siendo N (s) el esfuerzo axil acumulado en cada barra. Las
condiciones de contorno de este sistema de ecuaciones
diferenciales son las mismas que las del problema estético que
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se esta resolviendo pero con cargas exteriores nulas. Desde el
punto de vista matematico supone un problema de valor
frontera cuyos autovalores son los valores del factor de carga
de interés. Si para el autovalor minimo se resuelve la ecuacion
(15) imponiendo un valor arbitrario de algin desplazamiento
transversal, se puede obtener el correspondiente modo de
pandeo.

4. Ejemplos de aplicacion

Como aplicaciones a casos concretos, seguidamente se
presentan 2 ejemplos. Por simplicidad, se ha considerado una
seccién rectangular maciza de 50 mm de ancho y 200 mm de
canto, de material acero de limite elastico 275 MPa y médulo de

elasticidad 2,1-10"" Pa . Se pretende mostrar la metodologia de
calculo expuesta y realizar una comparacién de los resultados
entre los distintos modelos, bien sea considerando

plastificacion solo por momento flector (Y, = Aﬂj[[z -1=0)o por
D

el efecto combinado de los esfuerzos axil y flector (Yyy)y
considerando o no grandes desplazamientos (es decir,
equilibrio en la configuracién deformada). En todos los casos se
asume que la estructura no pandea fuera de su plano.

4.1. Viga apoyada-empotrada

A modo de validaciéon, se resuelve el problema de una barra
apoyada-empotrada sometida a una carga de compresién Py a
una carga distribuida transversal q, tal y como se indica en la
figura 2. Segun la longitud Ly las proporciones relativas entre
las cargas Py q , se muestran 3 casos.

Ag

Figura 2.

Viga apoyada-empotrada (deformada amplificada x3.600).

411.Casoa:L=4m,P=10°N,q=10’N
/m

Este caso corresponde a una viga poco esbelta en que el nivel
de compresion es bajo y predominan la carga y los esfuerzos de
flexion. En régimen eldstico el factor de carga maximo antes del
inicio de la plastificacion es 45,08, mientras que hasta que no se
alcance el valor de 8.833,44 no aparece el fendmeno de pandeo.

La figura 2 muestra para el caso mas sencillo con el modelo (Y,,)
la deformada de la viga para un instante justo antes de que se
forme la primera rétula plastica (seccién 1, linea discontinua), y
justo un instante antes del colapso plastico tras formarse otra
rétula plastica (seccion 2, linea continua).

El factor de carga (A ) para el que se forma la primera rétula es
68,7502 y tras ella el factor de carga requerido para que se
produzca el pandeo es 4.249,20. Pero mucho antes, para un
factor incremental de carga de valor 31,4259 se formaria la
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segunda rétula pléstica y con ella se llegaria al estado de
agotamiento resistente de la viga. Por tanto, el factor de carga
ultimo (A, ) es de 100,176 y el mecanismo de colapso
correspondiente, el indicado en la figura 2. Estos valores
coinciden con los que se obtendrian” mediante los métodos
clasicos de calculo plastico [9] o con los obtenidos con
implementaciones del mismo en aplicaciones informaticas
basadas en el método de los elementos finitos. Cuando se
resuelve considerando la plastificacion por efecto combinado de
flector y axil (usando la funcién de plastificacién Y,y y equilibrio
en la configuraciéon deformada) los resultados cualitativos son
similares. Todos estos valores numéricos se presentan de forma
resumida en la tabla 1, junto con las ubicaciones (s) de las
rétulas plasticas y secciones agotadas. Nétese que al ser el valor
del esfuerzo axil relativamente bajo, los resultados son muy
parecidos.

Tabla 1. Viga apoyada-empotrada con predominio de la
flexién (caso a)

Rétula plastica (Y),) Seccién agotada (Y, )

# AA s AAcri AA s AAcri
1 168,7502 |L 4.249,20 68,3490 |L 4.274,00
2 |31,4259 (0,414214-L 31,4282 10,414300-L

A, (100,176 99,7772

41.2. Casob:L=4m,P=10'N,q=10°N
/m

En este caso, las diferencias entre ambos modelos comienzan a
ser mas significativas, al ser mayor el efecto del esfuerzo axil. El
factor de carga con el que comienza el régimen plastico es
39,2900, y para 883,340 pandearia en régimen elastico. Pero
para ambos modelos el estado ultimo de la viga se corresponde
con el colapso plastico para un factor de carga de 100,176 con el
modelo Y,y para un valor de 87,1538 con el modelo Y,
(supone una reduccién del 13%). Los factores de carga y las
posiciones de las secciones plastificadas aparecen en la tabla 2
y se interpretan de igual manera que en el caso anterior. En la
figura 3 a se muestra cémo evolucionan el momento flector y el
esfuerzo axil a medida que aumenta la carga en el modelo Y, , y
en la figura 3 b se puede ver la correspondiente evolucién para
el modelo Y,y . Los puntos de color gris corresponden a los
estados de esfuerzos de la seccién del empotramiento 1y los
puntos de color negro a los de la seccion intraelemental 2,
donde se formara la Ultima rétula plastica (caso Yy, ) o la Ultima
seccibn agotada (caso Y, ). En ambos casos, las lineas
indicadas corresponden al comportamiento lineal.

Tabla 2. Viga apoyada-empotrada con compresién axil
significativa (caso b))

Rétula plastica (Yy,) Seccién agotada (Y, )

# M S AA(:ri M S AAcri
1 (68,7502 (L 363,045 |62,0983 |L 372,136
2 [31,4259 (0,414214-L 25,0555 (0,417354-L

A, 100,176 87,1538
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Figura 3.

Viga apoyada-empotrada, evolucién de la plastificacién cuando el axil es significativo.

413.Casoc:L=8m,P=2-10'N, q=10’
N/m

A medida que aumentan la esbeltez de la viga o la carga de
compresién, el pandeo puede ocurrir antes que el colapso
plastico, como en este caso, donde se han doblado tanto la
longitud de la viga como el valor del esfuerzo axil. El factor de
carga con el que comienza el régimen plastico es 62,5000, y
para 110,418 pandearia en régimen eldstico. Los
correspondientes valores numéricos se muestran en la tabla 3.
Dado que para el modelo Y,, la primera rétula apareceria para

un factor de 171,875, el pandeo elastico se produce antes que la
plastificacion de la secciéon 1. En cambio, si se considera el
modelo Y,y , plastifica primero la seccién del empotramiento
por combinacién de axil y flector para un factor de carga de
66,5746 e inmediatamente sobreviene el pandeo de la viga, al
obtenerse que el incremento de factor de carga que anula la
rigidez es nulo. Por lo tanto, el factor de la carga maxima seria
solo 66,5746, un 40% menor que con el modelo Y}, y solo un 7%
superior al maximo factor de carga en régimen elastico.

Tabla 3. Viga apoyada-empotrada con mayor esbeltez (caso

Figura 4.

Pértico de Lee (deformada amplificada x5.000).

c)
Rétula plastica (Y,,) Seccién agotada (Y, )
# M S AAcri M S AAcri
1 171,875 L |=— 66,5746 L 10,0
A, 110,418 66,5746

4.2. Portico de Lee

La estructura de lafigura 4, denominada en la literatura

«Portico de Lee» [4] and [7], permite ilustrar de forma claray
sencilla las posibilidades de generalizacion de la técnica

numérica empleada. Se considera por simplicidad que el pértico
esta formado por barras iguales, y se supone la unién rigida
pilar-dintel. Se resuelven 2 casos particulares correspondientes
a la misma seccién y al mismo material del ejemplo anterior,
longitud L =4 my carga distribuida de valor g =100 N/m . En el
primer caso las cargas concentradas P,y P, valen 1.000 N, y en
el segundo, 10.000 N . Si se analizara la estructura en régimen
elastico se obtendria un factor de 444,060 para llegar al inicio

de la plastificacién y de 8.019,27 para el pandeo.
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En la tabla 4 se muestra que para un factor de carga de 797,784
se forma la primera rétula plastica en la seccion 1 (deformada
dibujada en linea discontinua en la figura 4)y la segunda en la
secciébn 2 para un incremento de carga de 488,767 (linea
continua en la figura 4) tras el cual se produce el pandeo. Por
otro lado, cuando se considera el modelo Y, las secciones
agotadas aparecen en las mismas secciones pero para valores
algo menores (709,563 y 340,479, respectivamente). Del mismo
modo, tras la plastificacion de la seccion el pandeo 2 sobreviene

inmediatamente.

Tabla 4. Pértico de Lee para esfuerzos axiles bajos

Rétula plastica (Yy,) Seccién agotada (Y, )

# AA S AAcri AA s AAcri

797,78 4.397,91709,56 4.330,0
1 4 o |L 8 3 o |L 8
2 488,76 ® 0,483098 0,0 340,47 ® 0,486419 0,0

7 -L 9 -L
2 |1-286.5 1.050,0

ulg 4

En el segundo caso, cuando las cargas puntuales son 10 veces
mayores, el comportamiento es cualitativamente distinto (tabla
5). En esta situacién el factor para el inicio de la plastificacién es
de 166,500, y para el pandeo en régimen elastico, de 876,380.
Cuando se considera la plastificacion solo por flector (Yy,)
aparece la primera rotula plastica en la seccion 1 para un factor
de 632,936. En este instante, ademas, sobreviene el fenémeno
de pandeo (el incremento de carga es M, = 0). Sin embargo,
cuando se considera el modelo con plastificacién combinada de
axil y flector, para un factor de carga mucho menor de valor
216,364 plastifica la seccién 1, y hasta que no plastifica
adicionalmente la seccién 2 para un factor incremental de
25,6792 no se produce simultdneamente el pandeo global, lo
que corresponde a un valor de la carga acumulada de tan solo
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242,043.

Tabla 5. Portico de Lee para esfuerzos axiles altos

Rétula plastica (

Seccién agotada (Y, )
Yu)

# AA
632,936 | B

“

AAcri AA s AAcri
0,0 (216,364 |®|L 332,806
25,6792 | ©|0,467481-L |0,0

242,043

~

N =

>

. 1632,936

5. Conclusiones

Se ha presentado una formulacion directa, basada en el
planteamiento analitico, y su correspondiente resoluciéon
mediante técnicas numéricas, para la determinaciéon de la
maxima carga soportada por pérticos planos considerando que
pueden agotarse por colapso plastico o por inestabilidad global.
Dentro del modelo de plasticidad, se ha considerado la
interaccion de los esfuerzos sobre la seccion y se han
comparado ejemplos considerando la plastificacién solo por
momento flector o por los efectos combinados de flector y
esfuerzo axil.

Para llevar a cabo el analisis se formula un elemento de barra
2D con comportamiento elastico lineal en el dominio y
comportamiento plastico localizado en las secciones extremas,
modelizado mediante nudos semirrigidos. El método de calculo
es novedoso, ya que esta basado en la formulacién diferencial a
nivel de barra y en el cumplimiento riguroso de las condiciones
de equilibrio y compatibilidad a nivel de estructura. Tiene la
ventaja de que no hay necesidad de calcular ni de actualizar la
matriz de rigidez para cada barra y para cada iteracion del
proceso de cdlculo. Tampoco requiere conocer de antemano las
fuerzas equivalentes para los distintos tipos de carga aplicados
en el dominio del elemento barra, lo que supone un serio
inconveniente de los métodos de equilibrio (o de rigidez)
aplicados a la resolucién de problemas no lineales de
estructuras de barras. A pesar de la mayor complejidad
respecto a los planteamientos matriciales clasicos para el
analisis de estructuras, proporciona gran generalidad y permite
tratar de forma sistematica cualquier tipo de carga, condicién
de contorno y unioén interelemental (nudos articulados, rigidos o
semirrigidos).

La capacidad portante del pértico se reduce cada vez que se
produce plastificacién en alguna nueva seccién y cada
plastificacion  introduce una libertad interna. En el caso
simplificado de considerar plastificacién solo por el efecto del
momento flector, esta libertad es de giro en la rétula plastica.
En el caso general de plastificacion por combinacién de
esfuerzos, la libertad corresponde a una combinacién de los
desplazamientos y de los giros plasticos relativos de la seccién
agotada  correspondiente. En cualquier caso, en cada
plastificacién disminuye el grado de hiperestaticidad del pértico
y por tanto se ve afectada su estabilidad global. En cada
instante del proceso de célculo se puede determinar, mediante
las ecuaciones de estabilidad correspondientes, el factor de
carga que provoca el pandeo y si se puede proceder a buscar el
nuevo incremento de factor de carga que provoca la aparicion
de una nueva plastificacién, o si por el contrario el limite
resistente viene fijado por dicha pérdida de estabilidad.

Por ultimo, cabe resefiar que en determinados casos tras la
plastificacion de una nueva seccion el incremento de carga que
provoca el pandeo es nulo, lo que se interpreta como que la
capacidad resistente adicional es despreciable al disminuir
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subitamente la hiperestaticidad de la estructura y, con ella, su
rigidez.
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