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Abstract
The evaluation of the maximum level of load that any 2D framed structure can undergo, 
before plastic collapse or buckling, is addressed in this paper. The analytical approach, 
based on a beam element with elastic behaviour except on its ends, uses an incremental 
approach to determine when changes appear due to plastic behaviour. When the 
combination of axial force and bending moment in any cross-section reaches the plastic 
function, that section is considered to yield suddenly and relative displacements can appear 
because of the yielding. The model includes the traditional plastic hinge, which only 
considers relative rotation due to the effect of the bending moment. The sequential loading 
and yielding reduces the stiffness and stability of the frame, which is computed and 
compared with the classic plastic methods of analysis.
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Resumen
En este trabajo se determina el nivel de carga máximo de 
pórticos metálicos planos constituidos por barras rectas 
esbeltas. Se realiza un planteamiento analítico basado en un 
elemento barra con comportamiento elástico en su dominio y 
posibilidad de comportamiento plástico localizado en sus 
secciones extremas. La plasticidad se alcanza por combinación 
de esfuerzos. Se considera que aparece de forma concentrada y 
súbita y origina desplazamientos relativos acoplados asociados 
a un único grado de libertad. Este modelo incluye el tradicional 
de rótula plástica, el cual solo considera giro relativo por 
plastificación debida al efecto del momento flector. La aparición 
secuencial de grados de libertad acoplados afecta a la 
estabilidad del conjunto, la cual se va evaluando 
numéricamente en cada uno de los instantes representativos de 
aplicación de la carga marcados por la plastificación de las 
secciones.

Palabras clave
Pandeo ; Colapso ; Grandes desplazamientos ; Nudos 
semirrígidos

1. Introducción
Es bien conocida la importancia que tienen los sistemas 
estructurales de barras en muchos campos de la ingeniería y su 
capacidad de soportar más carga que aquella para la que 
fueron diseñados. Esto se debe, en parte, a que su 
dimensionamiento se ha realizado en régimen elástico lineal y 
no se ha considerado la redistribución de tensiones tras la 
plastificación. Esto supone una reserva de resistencia que 
permitiría conseguir un diseño más optimizado de la estructura, 

conocer el factor de seguridad real ante ciertas sobrecargas, 
realizar una evaluación de su vulnerabilidad ante determinados 
estados límites últimos o evaluar el daño acumulado y proponer 
las correspondientes intervenciones. Para ello, resulta 
imprescindible disponer de modelos numéricos que permitan 
una adecuada simulación de los complejos fenómenos no 
lineales que tienen lugar incluso en régimen estático, a partir de 
los cuales se pueda conocer y cuantificar el comportamiento 
límite de estructuras de barras.

La forma más eficiente para llevar a cabo una modelización 
numérica del comportamiento lineal de las estructuras de 
barras es mediante elementos monodimensionales [8] , [10] 
and [17] . El uso de estos elementos para problemas en los que 
existe no linealidad del material está muy limitado, 
fundamentalmente porque los programas comerciales y las 
formulaciones utilizadas asumen hipótesis muy simplificadas 
que no pueden reproducir fielmente el comportamiento plástico 
real o incluso carecen de elementos monodimensionales, por lo 
que estos deben aproximarse por elementos tridimensionales 
discretizados con pocos elementos en las 2 direcciones 
perpendiculares a la directriz. Ante esta situación, es deseable 
desarrollar un elemento simple, pero riguroso, que permita 
abordar eficientemente el estudio numérico de adaptación 
plástica de las estructuras hasta su colapso, incluyendo el efecto 
de posibles grandes desplazamientos.

Basándose en el comportamiento plástico a nivel de punto, pero 
expresado en función de las variables tradicionales del modelo 
1D de barra de Navier-Bernoulli, se llega, tras ciertas hipótesis, 
al concepto de sección agotada por plastificación, como 
extensión del concepto de rótula plástica, cumpliendo la teoría 
general de la plasticidad. A este modelo se incorpora la no 
linealidad geométrica (teoría de segundo orden) que permite 
realizar un análisis de estabilidad [1] and [5] y conocer la carga 
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crítica correspondiente a estados de carga para los que ya se 
han agotado una o más secciones del pórtico.

De forma resumida y desde el punto de vista teórico, el 
comportamiento elastoplástico de un determinado elemento 
finito normalmente viene descrito por la matriz de rigidez 
elastoplástica tangente [3] and [11] , e intervienen la matriz de 
rigidez y las derivadas de la función de plastificación con 
respecto a las tensiones. La extensión de esta formulación al 
caso de barras lleva a una expresión similar en la que juega un 
papel fundamental la función de plastificación y sus derivadas 
con respecto a los esfuerzos [2] and [6] . Esta función expresa la 
combinación de esfuerzos que llevan a la plastificación completa 
de la sección. Para casos simples en los que se considere que 
esta función depende solo del momento flector, y tomando 
equilibrio en la configuración indeformada, la formulación lleva 
estrictamente al modelo tradicional de rótula plástica. Sin 
embargo, si de manera adicional se impone el equilibrio en la 
configuración deformada y se considera la influencia de los 
esfuerzos axil y/o cortante, los desarrollos son más complejos y 
aparecen fenómenos de acoplamiento entre esfuerzos y 
desplazamientos [8] , [13] , [14] , [15] and [16] , siendo este el 
objeto del presente estudio.

2. Modelo barra 2D
A las limitaciones tradicionales del modelo de barra de Navier-
Bernoulli aplicado al estudio de pórticos planos se añade la 
hipótesis de estado proporcional de cargas aceptada 
usualmente en los métodos de cálculo plástico.

2.1. Equilibrio, compatibilidad y 
comportamiento
Para el elemento barra de la figura 1 , bajo un estado genérico 
de cargas y vinculaciones en sus secciones extremas, las 
ecuaciones de equilibrio son [1] and [5] :

Ns′ (s ) + qs (s ) = 0

Vy′ (s ) + qy (s ) = 0

Mz′ (s ) + Vy (s ) = 0

( 1)

donde las variables con notación prima indican derivada 
respecto a la coordenada espacial (s ). Los esfuerzos y los 
grados de libertad, en coordenadas locales en los extremos de 
la barra, se definen como:

Figura 1.

Modelo barra 2D.

E_ i
k = (Nsi , Vyi , Mzi )T = (Ns (0), Vy (0), Mz (0))T

E_ j
k = (Nsj , Vyj , Mzj )T = (Ns (L ), Vy (L ), Mz (L ) )T ( 2)

u_ i
k = (ui , vi , θi )T = (u (0), v (0), θ (0))T

u_ j
k = (uj , vj , θj )T = (u (L ), v (L ), θ (L ) )T ( 3)

mientras que en coordenadas globales (xg , yg , zg ) se expresan 
como:

Q_ l
k = (Fxl , Fyl , Mzl )

T = (L__
k )T E_ l

k ; l = i , j ( 4)

δ_ l
k = (L__

k )T (u_ l
k + (k__ l

k )−1 (E_ l
k − F_ l

k ) ) ; l = i , j ( 5)

donde (F_l
k ) es la solicitación de tipo concentrado/puntual en el 

extremo (l ) de la barra (k  ), k__l
k  son las rigideces en el extremo 

de cada barra en el sistema de coordenadas local y L__k  es la 
correspondiente matriz de cambio de base.

Por tanto, este modelo de barra 2D considera en sus secciones 
extremas nudos semirrígidos de rigidez longitudinal, 
transversal y rotacional dada. Se ha optado por este tipo de 
elemento en lugar del clásico de nudos rígidos porque permite 
incluir de forma sencilla cualquier tipo de libertad entre barras 
de la estructura.

2.2. No linealidad geométrica
Debido a que un análisis de estabilidad requiere que el 
equilibrio se plantee en la configuración real, es decir, en la 
deformada, se hace necesario fijar el sistema de referencia en el 
que expresar los desplazamientos y los esfuerzos de la barra. 
Para ello, se considera un sistema de referencia cartesiano de 
orientación fija para cada barra independiente de su 
deformación, denotado por (s , y , z ). Del equilibrio de fuerzas 
según los ejes (s , y ) y de momentos según (z ), resulta el 
siguiente sistema de ecuaciones diferenciales:

N′(s ) + qs (s ) = 0V′(s ) + qy (s ) = 0M′(s ) − N (s )θ (s ) + V (s ) = 0 ( 6)

donde θ (s ) = v′(s ) y las variables con notación prima indican 
derivada respecto a la coordenada espacial (s ) y donde se ha 
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aproximado el seno del ángulo por el ángulo y su coseno por la 
unidad. También se asume la hipótesis de pequeñas 
deformaciones y se considera que el comportamiento 
intrabarra del material es de tipo elástico y lineal. Las 
ecuaciones que relacionan los esfuerzos (Ns , Vy , Mz ) con los 
desplazamientos (u , v , θ ) de un punto de la directriz de la barra 
son:

Ns (s ) = EA (s )u′(s )
Mz (s ) = EIz (s )θ′(s ) ( 7)

siendo E el módulo de Young del material, Iz (s ) el momento de 
inercia y A (s ) el área de cada sección transversal de la barra.

2.3. No linealidad material
Como consecuencia de la actuación simultánea de todos los 
esfuerzos, la capacidad de la sección para soportar el momento 
flector disminuye, siendo menor que el momento plástico (MP ). 
La relación entre el momento flector y el esfuerzo axil y cortante 
necesarios para la plastificación completa de una determinada 
sección se denomina función de plastificación (YMNV ). Como caso 
particular simplificado, para una barra de sección rectangular 
de canto h y ancho b , y despreciando el efecto del esfuerzo 
cortante, dicha función vale:

YMN = Mz
MP

+ ( Ns
NP )2

− 1 = 0 ( 8)

donde

MP = bh2

4 σF ; NP = bhσF ( 9)

Para secciones con otras geometrías (doble T, tubulares, etc.), 
las ecuaciones (8) y (9) tienen expresiones más complejas pero 
operacionalmente se procede del mismo modo. Asumiendo la 
ley de flujo asociada, la variación del vector de desplazamientos 
plásticos en los extremos de la barra se puede expresar de 
forma vectorial como:

du_
p =

(dup (0) 0 dθp (0) dup (L ) 0 dθp (L ) )T ( 10)

y definiendo el vector de esfuerzos en los extremos de la barra, 
de componentes:

dE_ =
(dNs (0) 0 dMz (0) dNs (L ) 0 dMz (L ) )T ( 11)

y considerando el vector normal (n_) a la superficie de 
plastificación (YMN ) en función del gradiente de la función de 
plastificación

n_ = ( ∂YMN
∂E_ ) ( ∂YMN

∂E_ ) ⋅ ( ∂YMN
∂E_ ) ( 12)

se puede obtener la respuesta elastoplástica en términos de la 
función de plastificación (YMN ) y de los esfuerzos de la sección 
(E_) . La derivada de la función de plastificación respecto de los 
esfuerzos resulta:

( ∂YMN
∂E_ ) = [ 2Ns (0)

NP
2 0 1

MP
0 0 0

0 0 0 2Ns (L )
NP

2 0 1
MP

]T
( 13)

Si se impone la condición de que en una sección agotada ante 
carga adicional debe permanecer en la curva de plastificación, 
se llega a las siguientes expresiones:

dMz (i ) = − (2Ns (i ) − dNs (i )) Mz (i )
|Mz (i )|

MP

NP
2 dNs (i )

dup (i ) = 2Ns (i )
NP

Mz (i )
|Mz (i )|

dθp (i )
i = 0, L

( 14)

que se pueden incorporar de forma relativamente sencilla en el 
modelo de barra de la figura 1 como condiciones de contorno 
en sus extremos.

3. Análisis estructural
Con las hipótesis adoptadas, el comportamiento no lineal 
material solo afecta a la sección que alcanza la plastificación y 
no a las de su entorno. Además, al aparecer de forma súbita no 
se considera el comportamiento elastoplástico transitorio en el 
dominio de la sección. Estas simplificaciones, usualmente 
aceptadas en estructuras de barras, permiten plantear el 
siguiente proceso de resolución.

Tras los correspondientes cambios de sistemas de coordenadas 
que permitan expresar las ecuaciones de todas las barras en 
una única referencia y a la vista del orden del sistema de 
ecuaciones (1) , (6) y (7) , es necesario imponer en cada instante 
6 condiciones de contorno por barra en desplazamientos y/o 
esfuerzos.

Ya solo resta resolver las ecuaciones diferenciales para todas las 
barras de la estructura, junto con las condiciones de contorno 
en los apoyos, para determinar la respuesta en función de la 
carga aplicada. Dicha solución será válida mientras no cambien 
las condiciones de definición del problema. Por el 
planteamiento realizado, solo habrá cambios cuando una 
determinada sección plastifique. Por tanto, se plantea una 
resolución incremental, determinando en cada paso la carga 
máxima a partir de la cual cambian las condiciones y, en ese 
caso, se procede a acumular la solución y a iniciar el paso 
siguiente. A diferencia de los métodos matriciales en los que en 
cada paso se resuelven sistemas lineales de ecuaciones, en este 
caso, al estar planteado el problema en términos de las 
correspondientes ecuaciones diferenciales, dentro de cada paso 
se obtiene la solución exacta (lineal o no lineal, según 
corresponda). Nótese que la aparición del esfuerzo axil en la 
ecuación (6) hace que disminuya la rigidez si es de compresión o 
que aumente si es de tracción. Por tanto, este planteamiento 
permite en cada paso buscar la carga para la que se anula la 
rigidez de la estructura, pudiendo determinar de esta manera el 
valor de la carga de pandeo. Para ello, se añade una solución 
arbitraria a los desplazamientos y se busca el valor del 
incremento de carga que hace que las magnitudes 
incrementales en desplazamientos (Δu , Δv , Δθ  ) y esfuerzos (ΔN , 
ΔV , ΔM ) satisfagan las siguientes ecuaciones de estabilidad [12] 
:

ΔN′(s ) = 0ΔV′(s ) = 0ΔM′(s ) − N (s )Δθ (s ) + ΔV (s ) = 0 ( 15)

siendo N (s ) el esfuerzo axil acumulado en cada barra. Las 
condiciones de contorno de este sistema de ecuaciones 
diferenciales son las mismas que las del problema estático que 
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se está resolviendo pero con cargas exteriores nulas. Desde el 
punto de vista matemático supone un problema de valor 
frontera cuyos autovalores son los valores del factor de carga 
de interés. Si para el autovalor mínimo se resuelve la ecuación 
(15) imponiendo un valor arbitrario de algún desplazamiento 
transversal, se puede obtener el correspondiente modo de 
pandeo.

4. Ejemplos de aplicación

Como aplicaciones a casos concretos, seguidamente se 
presentan 2 ejemplos. Por simplicidad, se ha considerado una 
sección rectangular maciza de 50 mm de ancho y 200 mm de 
canto, de material acero de límite elástico 275 MPa y módulo de 
elasticidad 2,1·1011 Pa  . Se pretende mostrar la metodología de 
cálculo expuesta y realizar una comparación de los resultados 
entre los distintos modelos, bien sea considerando 
plastificación solo por momento flector (YM = Mz

Mp
− 1 = 0 ) o por 

el efecto combinado de los esfuerzos axil y flector (YMN ) y 
considerando o no grandes desplazamientos (es decir, 
equilibrio en la configuración deformada). En todos los casos se 
asume que la estructura no pandea fuera de su plano.

4.1. Viga apoyada-empotrada
A modo de validación, se resuelve el problema de una barra 
apoyada-empotrada sometida a una carga de compresión P y a 
una carga distribuida transversal q , tal y como se indica en la 
figura 2 . Según la longitud L y las proporciones relativas entre 
las cargas P y q , se muestran 3 casos.

Figura 2.

Viga apoyada-empotrada (deformada amplificada ×3.600).

4.1.1. Caso a: L = 4m , P = 103 N , q = 103 N 
/m
Este caso corresponde a una viga poco esbelta en que el nivel 
de compresión es bajo y predominan la carga y los esfuerzos de 
flexión. En régimen elástico el factor de carga máximo antes del 
inicio de la plastificación es 45,08, mientras que hasta que no se 
alcance el valor de 8.833,44 no aparece el fenómeno de pandeo.

La figura 2 muestra para el caso más sencillo con el modelo (YM ) 
la deformada de la viga para un instante justo antes de que se 
forme la primera rótula plástica (sección 1, línea discontinua), y 
justo un instante antes del colapso plástico tras formarse otra 
rótula plástica (sección 2, línea continua).

El factor de carga (λ ) para el que se forma la primera rótula es 
68,7502 y tras ella el factor de carga requerido para que se 
produzca el pandeo es 4.249,20. Pero mucho antes, para un 
factor incremental de carga de valor 31,4259 se formaría la 

segunda rótula plástica y con ella se llegaría al estado de 
agotamiento resistente de la viga. Por tanto, el factor de carga 
último (λu ) es de 100,176 y el mecanismo de colapso 
correspondiente, el indicado en la figura 2 . Estos valores 
coinciden con los que se obtendrían mediante los métodos 
clásicos de cálculo plástico [9] o con los obtenidos con 
implementaciones del mismo en aplicaciones informáticas 
basadas en el método de los elementos finitos. Cuando se 
resuelve considerando la plastificación por efecto combinado de 
flector y axil (usando la función de plastificación YMN y equilibrio 
en la configuración deformada) los resultados cualitativos son 
similares. Todos estos valores numéricos se presentan de forma 
resumida en la tabla 1 , junto con las ubicaciones (s ) de las 
rótulas plásticas y secciones agotadas. Nótese que al ser el valor 
del esfuerzo axil relativamente bajo, los resultados son muy 
parecidos.

Tabla 1. Viga apoyada-empotrada con predominio de la 
flexión (caso a )

Rótula plástica (YM ) Sección agotada (YMN )
# Δλ s Δλcri Δλ s Δλcri

1 68,7502 L 4.249,20 68,3490 L 4.274,00
2 31,4259 0,414214·L 31,4282 0,414300·L
λu 100,176 99,7772

4.1.2. Caso b: L = 4m , P = 104 N , q = 103 N 
/m
En este caso, las diferencias entre ambos modelos comienzan a 
ser más significativas, al ser mayor el efecto del esfuerzo axil. El 
factor de carga con el que comienza el régimen plástico es 
39,2900, y para 883,340 pandearía en régimen elástico. Pero 
para ambos modelos el estado último de la viga se corresponde 
con el colapso plástico para un factor de carga de 100,176 con el 
modelo YM y para un valor de 87,1538 con el modelo YMN 
(supone una reducción del 13%). Los factores de carga y las 
posiciones de las secciones plastificadas aparecen en la tabla 2 
y se interpretan de igual manera que en el caso anterior. En la 
figura 3 a se muestra cómo evolucionan el momento flector y el 
esfuerzo axil a medida que aumenta la carga en el modelo YM , y 
en la figura 3 b se puede ver la correspondiente evolución para 
el modelo YMN . Los puntos de color gris corresponden a los 
estados de esfuerzos de la sección del empotramiento 1 y los 
puntos de color negro a los de la sección intraelemental 2, 
donde se formará la última rótula plástica (caso YM ) o la última 
sección agotada (caso YMN ). En ambos casos, las líneas 
indicadas corresponden al comportamiento lineal.

Tabla 2. Viga apoyada-empotrada con compresión axil 
significativa (caso b )

Rótula plástica (YM ) Sección agotada (YMN )
# Δλ s Δλcri Δλ s Δλcri

1 68,7502 L 363,045 62,0983 L 372,136
2 31,4259 0,414214·L 25,0555 0,417354·L
λu 100,176 87,1538
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Figura 3.

Viga apoyada-empotrada, evolución de la plastificación cuando el axil es significativo.

4.1.3. Caso c: L = 8 m , P = 2 ·104 N , q = 102 
N /m
A medida que aumentan la esbeltez de la viga o la carga de 
compresión, el pandeo puede ocurrir antes que el colapso 
plástico, como en este caso, donde se han doblado tanto la 
longitud de la viga como el valor del esfuerzo axil. El factor de 
carga con el que comienza el régimen plástico es 62,5000, y 
para 110,418 pandearía en régimen elástico. Los 
correspondientes valores numéricos se muestran en la tabla 3 . 
Dado que para el modelo YM la primera rótula aparecería para 
un factor de 171,875, el pandeo elástico se produce antes que la 
plastificación de la sección 1. En cambio, si se considera el 
modelo YMN , plastifica primero la sección del empotramiento 
por combinación de axil y flector para un factor de carga de 
66,5746 e inmediatamente sobreviene el pandeo de la viga, al 
obtenerse que el incremento de factor de carga que anula la 
rigidez es nulo. Por lo tanto, el factor de la carga máxima sería 
solo 66,5746, un 40% menor que con el modelo YM y solo un 7% 
superior al máximo factor de carga en régimen elástico.

Tabla 3. Viga apoyada-empotrada con mayor esbeltez (caso 
c )

Rótula plástica (YM ) Sección agotada (YMN )
# Δλ s Δλcri Δλ s Δλcri

1 171,875 L −− 66,5746 L 0,0
λu 110,418 66,5746

4.2. Pórtico de Lee
La estructura de la figura 4 , denominada en la literatura 
«Pórtico de Lee» [4] and [7] , permite ilustrar de forma clara y 
sencilla las posibilidades de generalización de la técnica 
numérica empleada. Se considera por simplicidad que el pórtico 
está formado por barras iguales, y se supone la unión rígida 
pilar-dintel. Se resuelven 2 casos particulares correspondientes 
a la misma sección y al mismo material del ejemplo anterior, 
longitud L = 4 m y carga distribuida de valor q = 100 N /m . En el 
primer caso las cargas concentradas P1 y P2 valen 1.000 N, y en 
el segundo, 10.000 N . Si se analizara la estructura en régimen 
elástico se obtendría un factor de 444,060 para llegar al inicio 
de la plastificación y de 8.019,27 para el pandeo.

Figura 4.

Pórtico de Lee (deformada amplificada ×5.000).

En la tabla 4 se muestra que para un factor de carga de 797,784 
se forma la primera rótula plástica en la sección 1 (deformada 
dibujada en línea discontinua en la figura 4 ) y la segunda en la 
sección 2 para un incremento de carga de 488,767 (línea 
continua en la figura 4 ) tras el cual se produce el pandeo. Por 
otro lado, cuando se considera el modelo YMN las secciones 
agotadas aparecen en las mismas secciones pero para valores 
algo menores (709,563 y 340,479, respectivamente). Del mismo 
modo, tras la plastificación de la sección el pandeo 2 sobreviene 
inmediatamente.

Tabla 4. Pórtico de Lee para esfuerzos axiles bajos

Rótula plástica (YM ) Sección agotada (YMN )
# Δλ s Δλcri Δλ s Δλcri

1 797,78
4 L 4.397,9

8
709,56
3 L 4.330,0

8

2 488,76
7

0,483098
·L 0,0 340,47

9
0,486419
·L 0,0

λu
1.286,5
5

1.050,0
4

En el segundo caso, cuando las cargas puntuales son 10 veces 
mayores, el comportamiento es cualitativamente distinto (tabla 
5 ). En esta situación el factor para el inicio de la plastificación es 
de 166,500, y para el pandeo en régimen elástico, de 876,380. 
Cuando se considera la plastificación solo por flector (YM ) 
aparece la primera rótula plástica en la sección 1 para un factor 
de 632,936. En este instante, además, sobreviene el fenómeno 
de pandeo (el incremento de carga es Δλcri = 0). Sin embargo, 
cuando se considera el modelo con plastificación combinada de 
axil y flector, para un factor de carga mucho menor de valor 
216,364 plastifica la sección 1, y hasta que no plastifica 
adicionalmente la sección 2 para un factor incremental de 
25,6792 no se produce simultáneamente el pandeo global, lo 
que corresponde a un valor de la carga acumulada de tan solo 
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242,043.

Tabla 5. Pórtico de Lee para esfuerzos axiles altos

Rótula plástica (
YM ) Sección agotada (YMN )

# Δλ s Δλcri Δλ s Δλcri

1 632,936 L 0,0 216,364 L 332,806
2 25,6792 0,467481·L 0,0
λu 632,936 242,043

5. Conclusiones
Se ha presentado una formulación directa, basada en el 
planteamiento analítico, y su correspondiente resolución 
mediante técnicas numéricas, para la determinación de la 
máxima carga soportada por pórticos planos considerando que 
pueden agotarse por colapso plástico o por inestabilidad global. 
Dentro del modelo de plasticidad, se ha considerado la 
interacción de los esfuerzos sobre la sección y se han 
comparado ejemplos considerando la plastificación solo por 
momento flector o por los efectos combinados de flector y 
esfuerzo axil.

Para llevar a cabo el análisis se formula un elemento de barra 
2D con comportamiento elástico lineal en el dominio y 
comportamiento plástico localizado en las secciones extremas, 
modelizado mediante nudos semirrígidos. El método de cálculo 
es novedoso, ya que está basado en la formulación diferencial a 
nivel de barra y en el cumplimiento riguroso de las condiciones 
de equilibrio y compatibilidad a nivel de estructura. Tiene la 
ventaja de que no hay necesidad de calcular ni de actualizar la 
matriz de rigidez para cada barra y para cada iteración del 
proceso de cálculo. Tampoco requiere conocer de antemano las 
fuerzas equivalentes para los distintos tipos de carga aplicados 
en el dominio del elemento barra, lo que supone un serio 
inconveniente de los métodos de equilibrio (o de rigidez) 
aplicados a la resolución de problemas no lineales de 
estructuras de barras. A pesar de la mayor complejidad 
respecto a los planteamientos matriciales clásicos para el 
análisis de estructuras, proporciona gran generalidad y permite 
tratar de forma sistemática cualquier tipo de carga, condición 
de contorno y unión interelemental (nudos articulados, rígidos o 
semirrígidos).

La capacidad portante del pórtico se reduce cada vez que se 
produce plastificación en alguna nueva sección y cada 
plastificación introduce una libertad interna. En el caso 
simplificado de considerar plastificación solo por el efecto del 
momento flector, esta libertad es de giro en la rótula plástica. 
En el caso general de plastificación por combinación de 
esfuerzos, la libertad corresponde a una combinación de los 
desplazamientos y de los giros plásticos relativos de la sección 
agotada correspondiente. En cualquier caso, en cada 
plastificación disminuye el grado de hiperestaticidad del pórtico 
y por tanto se ve afectada su estabilidad global. En cada 
instante del proceso de cálculo se puede determinar, mediante 
las ecuaciones de estabilidad correspondientes, el factor de 
carga que provoca el pandeo y si se puede proceder a buscar el 
nuevo incremento de factor de carga que provoca la aparición 
de una nueva plastificación, o si por el contrario el límite 
resistente viene fijado por dicha pérdida de estabilidad.

Por último, cabe reseñar que en determinados casos tras la 
plastificación de una nueva sección el incremento de carga que 
provoca el pandeo es nulo, lo que se interpreta como que la 
capacidad resistente adicional es despreciable al disminuir 

súbitamente la hiperestaticidad de la estructura y, con ella, su 
rigidez.
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