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Abstract

This work presents a time-domain approach for characterizing the Ground Reaction Forces
(GRFs) exerted by a pedestrian during running. It is focused on the vertical component,
but the methodology is adaptable to other components or activities. The approach is
developed from a statistical perspective. It relies on experimentally measured force-time
series obtained from a healthy male pedestrian at eight step frequencies ranging from
130 to 200 steps/min. These data are subsequently used to build a stochastic data-driven
model. The model is composed of multivariate normal distributions which represent the
step patterns of each foot independently, capturing potential disparities between them.
Additional univariate normal distributions represent the step scaling and the aerial phase,
the latter with both feet off the ground. A dimensionality reduction procedure is also
implemented to retain the essential geometric features of the steps using a sufficient
set of random variables. This approach accounts for the intrinsic variability of running
gait by assuming normality in the variables, validated through state-of-the-art statistical
tests (Henze-Zirkler and Shapiro-Wilk) and the Box-Cox transformation. It enables the
generation of virtual GRFs using pseudo-random numbers from the normal distributions.
Results demonstrate strong agreement between virtual and experimental data. The virtual
time signals reproduce the stochastic behavior, and their frequency content is also captured
with deviations below 4.5%, most of them below 2%. This confirms that the method
effectively models the inherent stochastic nature of running human gait.

Keywords: human loading; running forces model; stochastic data-driven model; reduced
model; virtual GRFs

1. Introduction
Human locomotion is a complex process involving various psychomotor capabilities

(e.g., balance, strength, emotional state) that enable movement by overcoming obstacles
and resistance from gravity and air. Depending on the field of study, locomotion exhibits
different characteristics [1]. In particular, human gait is primarily divided into walking
and running, where the forces exerted on the ground by the pedestrian, known as Ground
Reaction Forces (GRFs), play a crucial role [2]. These forces have three components: antero-
posterior (forward movement), mediolateral (transverse sway oscillations), and vertical
(the most significant). Other actions of interest, though without relevant displacement,
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include jumping and bouncing—the latter without losing ground contact—where the ver-
tical component is almost the only relevant one. Conceptually similar, GRFs and their
patterns vary depending on the motor activity, requiring an individualized approach, while
maintaining common general rules. Specifically, the study presented in this paper focuses
on the vertical GRFs of a pedestrian during running.

The complexity of GRFs arises from their nondeterministic nature, where a force gen-
erated during one step is not identical to others but is statistically similar [3]. Considering
randomness is key to developing accurate models for the simulation and prediction of
the aforementioned forces. These models are essential in such fields as structural engi-
neering, biomechanics, and physiotherapy. In the first, the time and frequency analysis of
vertical GRFs, as one of the main sources of dynamic excitation, is crucial for preventing
serviceability issues in pedestrian structures. The second allows the interaction between
body segments during gait to be simulated and movement-related risks [4,5] to be assessed.
Finally, in physiotherapy, GRFs can be used in diagnosing and treating gait disorders [6].
Reduced models are of great interest because they use the minimum necessary variables
and parameters, optimizing efficiency while maintaining accuracy and applicability.

Several studies, some of which are related to the reproduction of human loads, have
developed models to simulate GRFs in both time and frequency domains [3]. These
algorithms can be based on periodic analytic functions fitted to experimental data—a
deterministic approach with Fourier decomposition regarding amplitudes, frequencies,
and phases [7]—or on stochastic models that assume near-periodic signals, addressing the
inherent variability of gait. In this context, Racic et al. have proposed data-driven algo-
rithms (using data collected at constant step frequencies) based on Gaussian functions to
preserve the shape and randomness of GRFs during walking [8], running [9], jumping [10],
and bouncing [11]. These combined with auto-spectral densities for gait cycle duration
and linear regressions that account for force magnitude scaling. Autoregressive models
have been dismissed due to their inefficiency [12]. Other authors, such as Li et al., propose
a similar methodology for jumping, but with cycle times modelled as normal random
variables [13]. Alternatively, Chen et al. model jumps using wavelet transforms [14], while
Pancaldi et al. combine classical Fourier decomposition with univariate and multivariate
normal distributions, obtaining Gaussian Mixtures and Markov random walks for the
generation of virtual gaits [15–17]. García-Diéguez et al. stochastically reproduced vertical
GRFs at variable speed [18], providing an alternative approach to fixed step frequencies.
All of these techniques have resulted in robust algorithms that simulate different types of
GRFs in time and also reproduce their frequency content (up to several harmonics).

Other approaches include nonlinear time physical models. Unlike mathematical-
statistical techniques, these indirectly reproduce GRFs from simple mechanisms, where
parameter tuning and numerical resolution allow for the simulation of forces. In this regard,
Cacho and Lorenzana propose a double inverted pendulum to model a pedestrian walking
on a coupled vibrating structure [19], a study similar to that conducted by Lin et al. but
on a rigid floor [20], the 3D model by Liang et al. [21], and the modified autonomous
oscillator from Rayleigh, Van der Pol, and Duffing, forms developed by Kumar et al. [22].
Alternatively, Xiang et al. present a 55-degree-of-freedom human model for the numerical
prediction of GRFs during walking (among other kinematic magnitudes) [23], while Wang
et al. develop a method for identifying the physical parameters of a pedestrian’s mass-
spring-damper system by means of a particle filter algorithm [24]. Other studies with
similar models reproduce GRFs during running, such as those by Masters et al. [25] and
Zanetti et al. [26], the latter with an interesting approach based on modal analysis and the
superposition of the actions present in a running GRF.
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Finally, other techniques use wearable devices, such as Inertial Measurement Units,
to record human body kinematics, along with correlation and Machine Learning models
for the indirect estimation of GRFs [27–30]. A literature review on this subject has been
compiled by Ancillao et al. [31].

As indicated, the literature offers a wide range of models to characterize GRFs. Nev-
ertheless, although many of the proposed works are comprehensive, some important
limitations remain. On the one hand, stochastic models, while capturing the inherent
variability of gait, do not explicitly account for the potential asymmetry between the forces
exerted by each individual foot, which may have an influence in the resultant action. Fur-
thermore, most datasets are constrained to laboratory environments, relying on force plates
or treadmills and making continuous measurements difficult [32,33]. On the other hand,
nonlinear physical models often treat GRFs as deterministic and symmetric actions, an
assumption that limits their capability for a rigorous modelling of gait. Moreover, they
do not consider reducing the model to the minimum necessary variables and parameters
either. These shortcomings highlight the need for newer stochastic approaches capable of
combining individual foot modelling with randomness-preserving techniques.

Considering all of the above, this paper proposes a time-domain stochastic data-
driven model to characterize and generate virtual GRFs of a particular pedestrian while
running. An improved continuation of related studies by the authors regarding the walking
action [34,35], its contributions with respect to other works in the state of the art reside in
the following points:

1. The development of a time-domain stochastic model based on experimental data
collected with a pair of instrumented insoles at different step frequencies, avoiding
any too constrained laboratory setting;

2. The independent modelling of each foot’s GRF, capturing gait’s inherent variability
across feet. In this regard, vertical GRFs were analyzed, and the resultant total action
was evaluated at the end. The approach could be extended to other force components
with adjustments not addressed here;

3. The use of a rigorous statistical procedure to model the aforementioned pedes-
trian’s running GRFs without resorting to deterministic approaches or purely
mathematical frameworks;

4. The implementation of a dimensionality reduction algorithm that preserves the main
GRF characteristics in the virtual signals, using the minimum necessary variables and
parameters through an optimization workflow.

Additionally, the stochastic model separately considers the time scaling of steps and
aerial times, both modelled as normal random variables, as well as the pattern of the
forces, which follows a time-independent multivariate normal distribution by means of
the covariance matrix computation. Under the normality assumption, verified through
statistical tests, the algorithm generates virtual gaits from pseudo-random numbers.

The document is structured as follows: this first section introduces the topic and
presents a state-of-the-art review. Next, Section 2 details the Materials and Methods used in
the study, covering terminology, the adopted approach for the experimental measurement
of running GRFs, and the full development of the stochastic model and its algorithms.
Section 3 presents the main results, while Sections 4 and 5 are dedicated, respectively, to
the analysis and discussion of the results and the main conclusions.

2. Materials and Methods
2.1. Running Human Gait and Terminology

Before addressing the methodology, key concepts and terminology related to running
human gait are briefly introduced in the present section. As stated in the Introduction,
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running is a complex process involving multiple human abilities, making each step unique.
However, certain general characteristics are common across people.

Running is a near periodic activity consisting of four phases, collectively known as the
gait cycle, which can also be defined as two successive footfalls (stride to stride) or any other
consecutive similar events. Figure 1 illustrates these four phases and presents an example
of the vertical GRFs exerted on the ground, which can vary slightly in shape depending
on the runner’s specific running style (mid-frontfoot running pattern in Figure 1a and
rearfoot—heel strike in Figure 1b). During the first and third phases, known as aerial,
neither foot contacts the ground. The first begins with right toe-off and ends with left foot
contact (duration tRL), while the third follows the opposite pattern (tLR). In between, the
second and fourth stance phases involve continuous ground contact, with the left and right
foot solely generating the step force, respectively.

  
(a) (b) 

Figure 1. Vertical running GRFs patterns. Left (blue) and right foot (red) forces with the four phases
of the gait cycle: (a) mid-frontfoot runners; (b) rearfoot (heel strike runners).

As observed in the GRFs for both feet and running styles, a maximum, known as the
Active Peak (AP), occurs during each step. In rearfoot runners, an initial, smaller peak can
appear just after the heel strikes the ground, referred to as the Impact Peak (IP), during
which a significant fraction of the body weight (BW) is loaded on that foot for a very short
time. Regarding the resultant force, which represents the effective force applied to the
ground by the runner, it is composed of the individual GRFs from each foot, separated by
the aerial phases mentioned.

2.2. Experimental GRF Dataset: Measurement and Testing Protocol

In this study, a pair of instrumented insoles placed inside the footwear were used to
measure the experimental vertical GRFs [36,37]. Various alternatives have been employed
by other authors, such as force plates, which do not allow continuous GRF measurement
during prolonged running, or instrumented treadmills [32,33]. While these methods are
professional and precise, they are expensive, challenging to calibrate, and limit experimen-
tal data gathering to laboratory settings. In this regard, Novel GmbH Loadsol® insoles
were used [38] (Figure 2a). These devices have been validated by other authors, demon-
strating good test-retest reliability and highlighting their suitability for gait analysis beyond
laboratory settings [39,40]. They measure the total vertical force exerted by the foot using a
99-capacitive sensor grid and transit data via Bluetooth to a smartphone at a sampling rate
( fs) of 100 S/s.
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(a) (b) 

Figure 2. Instrumented insoles: (a) Novel GmbH Loadsol® model; (b) Usage example.

Experimental GRFs were recorded using the aforementioned insoles (Figure 2b), worn
by a 55-year-old healthy male inside sports footwear (93.3 kg, measured on a common
medical scale, with a height of 177 cm). The pedestrian ran at eight different step frequen-
cies, ranging from 130 to 200 steps/min (2.17 to 3.33 Hz), assisted by a digital portable
metronome. Trials were carried out on a 100 m straight rigid path with a flat, regular and
obstacle-free surface. The experiments were performed under standard outdoor conditions,
with appropriate ambient temperature for physical activity. Since the insoles are synchro-
nized, the i-th elements from both left-right signals are assumed to occur simultaneously,
and two data vectors were obtained. The testing protocol involved calibrating the insoles
individually at the start of the first trial (130 steps/min) using the pedestrian’s BW, with
the calibration assumed to remain stable throughout all experiments. Data recording began
at the start of each trial, was stopped upon reaching the end of the path, and saved. After a
2-min rest, the step frequency was increased by 10 steps/min, and another trial was per-
formed. Once all the data had been saved, a dataset was created, along with the algorithms
presented in the following sections [41].

2.3. Time Vector Data Processing

The force, time-synchronized vectors exerted by each foot at each step frequency were
processed independently. Relevant data were first selected by manually defining a time
interval [tmin, tmax], discarding any values outside it, which may have contained irrelevant
information for the model to be obtained. The final data arrays should retain as many
consecutive steps as possible for subsequent automated processing. Figure 3 shows an
example of both measured GRFs signals at 130 steps/min. Additional preprocessing, such
as detrending or filtering could have been applied if needed. Once the final experimental
vectors had been prepared, step (stance) samples were created through detection, isolation,
and rescaling, by the methods explained in the following subsections, adapted from the
ones presented in [34].

 

Figure 3. Example of measured time-synchronized GRF signals at 130 steps/min.

2.3.1. Step Detection Algorithm

Steps were first detected using the following algorithm. A sliding window
wk = {w1, . . . , wa} of width a = 3 points was applied along each force vector to determine
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the beginning and end of each step. This detection relied on fundamental conditions related
to the shape of the GRF, including its rising and falling edges during the stance phase, as
illustrated in Figure 4. Window’s width a was chosen to ensure a robust step detection:
using more than two points allows the proper meeting of the conditions explained below,
while keeping the sliding window small avoids including samples that could distort the
rising and falling edges of the GRFs. Consequently, a step began when the condition in
Equation (1) (rising edge) was met, provided an auxiliary flag was previously false.

F > Fth

dF
dt

≈ Fk+1 − Fk
tk+1 − tk

> 0
∣∣∣∣a−1

k=1
f lag = False

=⇒
{

f lag = True

w↑
1 =

(
t↑1 , F↑

1

) (1)

 

Figure 4. Step detection, time isolation and duration estimation by means of linear extrapolation.

The flag was then set to true, and the first point (w↑
1) in the sliding window exceeding

the threshold Fth was stored as the step start, reducing false detections caused by Loadsol®

insole noise. Note that Fth is required in order to avoid issues related to noise around 0 N,
mainly due to sensor noise. The value of this threshold should be higher than the sensor
noise but small enough to minimize the loss of samples as possible at the start and end of
the detected steps. In this regard, a value of 20 N (approx. 1% of the maximum GRF) was
used, as it had been proven effective in previous works [34]. Similarly, when the flag was
true and Equation (2) held (falling edge), the step ending was detected as the first point
falling bellow Fth (last w↓

3 sample). This process was conducted for each foot’s GRF time
series independently.

F < Fth

dF
dt

≈ Fk+1 − Fk
tk+1 − tk

< 0
∣∣∣∣a−1

k=1
f lag = True

=⇒
{

f lag = False

w↓
a =

(
t↓a , F↓

a

) (2)

2.3.2. Step Duration Estimation: First Outlier Removal

Once detected and isolated, steps were extrapolated at their beginning and end using
the corresponding points w↑

1 and w↓
3 to improve duration estimation, due to the influence

of the threshold Fth on the start and end detections. Linear extrapolations were applied
using sliding windows, extending steps to 0 N (Figure 4). Alternative methods may have
failed to reach 0 N and do not improve approximations. Step estimated duration points
were then calculated for each foot using Equation (3), where time estimations are denoted
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with *. After extrapolation, the number of fs points (N f ,j) per step increases by two. Let m0

be the initial sample size for each foot’s step count.

δ∗j ≈ t∗end,j − t∗1 , N∗
f ,j = N f ,j + 2 with j = {1, 2, . . . , m0} (3)

A first outlier removal stage was performed based on step duration. Since the model
to be obtained must represent the set of steps that statistically characterize the pedestrian’s
running action, the first (Q1) and third (Q3) quartiles and the Interquartile Range (IQR) were
computed under the assumption that step duration δ∗ behaved as a random variable with
m0 observations. Any steps with a duration outside the interval defined by Equation (4)
were discarded, reducing the step sample size of each foot to m1.

IQR = Q3 − Q1, Outlier if : δ∗j /∈ [Q1 − 1.5 · IQR, Q3 + 1.5 · IQR] (4)

Scaling factors η were derived in Equation (5) as the inverse of δ∗ for subsequent
analysis. The full sets of t∗1 and t∗end values, without any removal in this case, were also
saved for the aerial time characterization in Section 2.3.4.

ηj =
1
δ∗j

with j = {1, 2, . . . , m1} (5)

2.3.3. Step Rescaling and Geometric Characteristics: Second Outlier Removal

Final step samples were determined after rescaling and a second outlier removal stage
based on geometric GRF characteristics. With the scaling factors computed to preserve
duration information, each step’s extrapolated time vector was mapped to the range [0, 1]
using Equation (6), yielding a set of rescaled timestamps τ. After this task, another force
rescaling to the pedestrian’s BW (reported in Section 2.2) was also conducted.

(τi)j =
t − t∗1,j

t∗end,j − t∗1,j
∈ [0, 1] with

{
i =

{
1, 2, . . . , N∗

f ,j

}
j = {1, 2, . . . , m1}

(6)

Geometric characteristics were determined by obtaining the values of three step
pattern-related variables, also assumed to be random as δ∗. These variables were the AP (as
seen in Figure 1), the Decay Rate (DR) and the GRF area centroid (G). A scheme is provided
in Figure 5. The AP was computed as the GRF maximum and the corresponding instant
(τAP) at which it occurred, following Equation (7).

APj = max(Fi), with i =
{

1, 2, . . . , N∗
f ,j

}
, (τAP, FAP)j with j = {1, 2, . . . , m1} (7)

Figure 5. Rescaled step geometric variables scheme: AP, DR and G.
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DR represents the rate at which the GRF attenuates during stance after AP has been
reached. It was determined using Equation (8), with the aid of an augmented set of fixed,
200 values to better identify the points (τAP+0.1, FAP+0.1) and (τ0.9, F0.9), by means of cubic
Hermite interpolation. This was done following works on the performance of the Loadsol®

performance [38,39], which suggest that 100 S/s is enough for precise measurements, but
such variables as DR may require a refined calculation.

DRj =
F0.9 − FτAP+0.1

0.8 − τAP
in (τi)j with

{
i = {1, 2, . . . , 200}
j = {1, 2, . . . , m1}

(8)

The third variable G represents the centroid of the area under the GRF curve, and
corresponds to the energy involved during each foot’s step. It was calculated through
numerical integration following the expressions of Equations (9) and (10) to determine τG

and FG, both represented by the generic symbol ϕ.Ai = (τi+1 − τi) · (Fi+1 − Fi)

ϕi =
1
2
(ϕi + ϕi+1)

with i =
{

1, 2, . . . , N∗
f ,j − 1

}
(9)

ϕj =

∫
A ϕdA∫
A dA

≈ ∑
N∗

f −1
i=1 ϕi · Ai

∑
N∗

f −1
i=1 Ai

, (τG, FG)j with j = {1, 2, . . . , m1} (10)

After the three geometric variables were computed, defining the step rescaled pattern
(m1 observations per random variable sample), the second outlier removal stage was con-
ducted. These samples were grouped into three subsets IX. Applying the IQR method (as
for δ∗), outliers in each subset were flagged as true. Using the step identifier j, the intersec-
tion of rescaled steps without any outlier was obtained (false subset values), discarding
those that contained at least one atypical observation. These were thus excluded from the
final step sample of size m from now on. Equation (11) formally expresses this.

IFalse
X =

{
j
∣∣ Xj = False, with j = {1, 2, . . . , m1}

}
, IFalse = IFalse

AP ∩ IFalse
DR ∩ IFalse

G →
∣∣∣IFalse

∣∣∣ = m (11)

The whole process followed in this section was applied to the GRF dataset in Section 2.2.
The number of statistically relevant steps is given in Table 1 for each foot and step frequency
after each outlier removal stage.

Table 1. Step sample sizes after detection and outlier removal stages, shown as left-right (L-R).

Step Frequency
(Steps/min)

m0—Detection m1—Duration m—Pattern

L R L R L R

130 66 66 63 62 61 58
140 63 63 60 54 54 51
150 60 60 57 54 49 49
160 63 63 59 59 57 56
170 60 61 56 57 54 53
180 53 53 49 50 46 49
190 51 51 47 47 44 41
200 53 53 47 48 46 42

2.3.4. Aerial Time Characterization

Based solely on their estimated durations, steps from each foot’s GRF time series do
not represent how they concatenate over time to provide the signals shown in Figure 3,
directly affecting the frequency content of the resultant GRF. To address this, start t∗1 and
end times t∗end—without considering the outlier nature of the steps they belonged to, already
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addressed previously—were used to estimate the aerial times, as defined in Section 2.1.
Depending on the order in which the feet lost and regained ground contact (LR or RL),
aerial time samples were obtained by means of Equation (12).

tLR,p = t∗1,R,p − t∗end,L,p with p = {1, 2, . . . , m0,LR}tRL,p = t∗1,L,p − t∗end,R,p with p = {1, 2, . . . , m0,RL} (12)

Since tLR and tRL are part of gait’s random nature as they vary over time, only statis-
tically significant values were of interest. The IQR method was again applied to discard
outliers. Table 2 shows the final aerial time samples of size m1,LR and m1,RL.

Table 2. Aerial time sample sizes after outlier removal stage.

Step Frequency (Steps/min)
tLR tRL

m0,LR m1,LR m0,RL m1,RL

130 64 61 64 61
140 60 59 61 60
150 58 57 57 57
160 61 60 62 60
170 57 57 57 56
180 51 51 51 51
190 49 47 49 47
200 49 47 50 49

2.4. Step Pattern Description Reduction

After addressing the methodology for step detection, isolation, rescaling, geometric
and aerial time characterization, this section presents an algorithm implemented to reduce
the geometric description while preserving key information for stochastic modelling. This
improves the efficiency by using a reduced set of data that is sufficient for accurate replica-
tion. In this regard, the rescaled steps were resampled to a reduced set of equally spaced
(τ, F) points according to the algorithm described in Figure 6. Taking the final samples of
size m obtained in Section 2.3.3 as input, as well as their associated geometric variables
after applying Equation (11), the workflow began by evaluating, for each step frequency
and foot sample, the minimum number of points associated with the insoles fs, N1, from
the varying N∗

f ,j values given in Section 2.3.2.
Through the main loop’s successively reduced cubic Hermite interpolation to Nk

points, new values of AP, DR, and G were estimated, denoted as
~
X for each variable. Shape

preservation is achieved via C1 continuity, interpolating both the steps up to their first
derivative. Operating within the nested loop in Figure 6, which is detailed in Figure 7, the
error counter vector (ecount) accumulated the total number of failed variables estimations,
based on their relative error and tolerances tol1 (F) and tol2 (τ), fixed at 5% and 15%,
respectively. When the total number of out-of-tolerance estimations for any geometric
variable reached or exceeded 10% of the sample size for a given foot and step frequency, the
process was terminated to preserve accuracy. These tolerances values are chosen based on
data inspection to ensure the finding of a reduced set of variables that faithfully represented
the original experimental measurements. The specific choices balance data variability.
Naturally, with other datasets, these tolerance values may need to be adjusted, while the
overall pattern description reduction workflow remains totally applicable.

Considering the previous remarks, the pattern was considered sufficiently processed
for reliable use. Finally, Nr values were obtained and used to interpolate the GRFs to the
final (τ, F) points uniformly. Table 3 shows these values and the corresponding K reduction
coefficients, up to more than 60%.
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Figure 6. Flowchart of the rescaled step pattern reduction algorithm: main, successive interpolation
(red dashed), and nested geometric variable evaluation loop (blue dashed).

Figure 7. Detail of the nested loop in the rescaled pattern reduction algorithm (Figure 6): geometric
variable estimations and ecount calculation procedure.
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Table 3. Step pattern reduction algorithm Nr values (interpolation points) and reduction coefficients K.

Step Frequency
(Steps/min)

Left Steps Points Right Steps Points

N1 Nr K (%) N1 Nr K (%)

130 34 14 58.8 35 14 60.0
140 31 12 61.3 34 12 64.7
150 29 9 69.0 30 11 63.3
160 27 12 55.6 29 12 58.6
170 27 12 55.6 27 12 55.6
180 24 9 62.5 24 9 62.5
190 23 12 47.8 23 11 52.2
200 23 10 56.5 22 12 45.5

2.5. Vertical GRFs Stochastic Model

Using the final processed data samples obtained in the previous sections, the stochastic
model of the pedestrian’s vertical running GRFs for their virtual generation was constructed,
under the assumption that the random variables involved followed normal distributions,
assessed through statistical tests. Samples were then split into random subsets of ≈50% for
modelling (stm.) and ≈50% for testing and validation (val.) after virtual GRF generation
(Section 2.6). The model was built, and was composed of (including the runner’s BW):

• Univariate normal distributions of each foot’s stm. step scaling factors random subsets,

denoted as N
(

µstm
ηL

, σstm
ηL

)
and N

(
µstm

ηR
, σstm

ηR

)
;

• Univariate normal distributions of the stm. aerial times random subsets, denoted as

N
(

µstm
tLR

, σstm
tLR

)
and N

(
µstm

tRL
, σstm

tRL

)
;

• Two mean vectors, µstm
L and µstm

R , and their unbiased covariance matrices, Sstm
L and

Sstm
R . These were obtained from computing the subset, centered, and rescaled GRF

matrices Fstm
c in Equation (13) and applying the expression given in Equation (14),

where ⌊ x⌉ stands for round(x). This accounted for each foot’s step pattern after its
description had been reduced in Section 2.4. Each of the corresponding Nr interpo-
lation points was assumed to follow a normal distribution, with all the (τ, F) points
collectively following multivariate normal distributions, denoted as N

(
µstm

L , Sstm
L

)
and N

(
µstm

R , Sstm
R

)
.

Fstm
c =

(
I −

⌊
2
m

⌉
[1][1]T

)
·


F1i . . . F1Nr
...

. . .
...

F⌊m/2⌉i . . . F⌊m/2⌉Nr

 (13)

Sstm =

 1⌊ m
2

⌉
− 1

 ·
(

Fstm
c

)T · Fstm
c (14)

The total number of variables (TV) that made up the model, as well as the correspond-
ing total number of parameters (TP), are given in Equation (15). Each scaling factor and
aerial time represent a single normal random variable with two associated parameters, µ

and σ, leading to a fixed total of 4 variables and 9 parameters, including the BW. Since the
size of each step pattern model is given by the obtained reduced number of interpolation
points Nr in Section 2.4, an additional Nr,L + Nr,R random variables are introduced (left
and right feet). The minimum number of a single foot’s unique parameters associated with
these variables is Nr(Nr + 1)/2, as the covariance matrix is square and symmetric, and
each variable of the multivariate distribution has a mean (all gathered together in mean
vectors of length Nr). Taking this into account, if an unnecessary number of points had
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been used (significantly higher than the values in Table 3), a much greater TP would have
been obtained, resulting in inefficiency due to quadratic dependencies.

TV = 4 + Nr,L + Nr,R

TP = 9 +
1
2

(
N2

r,L + N2
r,R + Nr,L + Nr,R

) (15)

2.5.1. Step Pattern Multivariate Normality

Step pattern sample multivariate normality assumptions were checked with the Henze-
Zirkler (HZK) test [42,43]. This test was chosen since it is one of the simplest and most
robust for multivariate normality checking. However, it relies on the inversion of the
covariance matrix following the Mahalanobis distance computation. In this regard, the
sample covariance matrix S must be non-singular, i.e., full rank. Consequently, to preserve

variability, a sample GRF centered submatrix
(∼

Fc ∈ Rm×(Nr−2)
)

was derived for this

task, in the same form as the one defined by Equation (13), but excluding the first and
last null variance columns related to the extrapolated 0 BW value for both initial and
final points obtained in Section 2.3.2. After performing Principal Component Analysis
(PCA) [44] to explain, at least, 95% of the data variability in a reduced-dimensional space
of d uncorrelated principal components (PCs), the test was executed for each sample of
steps, foot, and step frequency. Table 4 indicates the corresponding HZK p-values and d
PCs. Significance level was set at α = 0.05.

Table 4. HZK multivariate normality test p-values and d PCs for step pattern samples after PCA.

Step Frequency
(Steps/min)

Left Steps Right Steps

p-value dL p-value dR

130 0.366 3 0.161 3
140 0.234 3 0.370 3
150 0.703 3 0.0782 3
160 0.553 3 0.484 3
170 0.597 4 0.388 3
180 0.113 3 0.544 3
190 0.784 4 0.408 3
200 0.363 3 0.0322 3

Since the first d PCs explained sufficient variability via linear combinations of the
original variables, multivariate normality could be assessed. PCA minimized the vari-
ables/observations ratio to avoid potential singularities related to interpolation points,
essential for stochastic modelling but problematic for testing. The test suggested that
the majority of samples were adequately modelled by a multivariate normal distribu-
tion (p-value > α, accept null hypothesis), although a slight deviation was observed at
200 steps/min right steps, where p fell below α (null hypothesis rejection).

2.5.2. Scaling Factors and Aerial Times Univariate Normality

Scaling factors and aerial times samples were tested for univariate normality using
the Shapiro-Wilk (SW) test [45,46], the most powerful statistical test for this task applied
to the final sample sizes reported in Table 1 (m) and Table 2 (m1,LR or m1,RL). Specifically,
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stm. random subsets belonging to samples that failed to pass the SW test were transformed
using the Box-Cox transformation [47], as given by Equation (16).

x → x(λ) =

 xλ − 1
λ

, if λ ̸= 0

ln(x), if λ = 0
(16)

The corresponding λ factor was obtained by solving the corresponding Maximum
Likelihood Estimation problem (MLE) [48] and subsequently saved. Then, it was used
to reverse the transformation using the inverse Box-Cox form in Equation (17), thereby
restoring the true data scaling of the virtual GRFs to be generated.

x−1(λ) =

exp
(

ln(1 + λ · x(λ))
λ

)
, if λ ̸= 0

exp(x(λ)), if λ = 0
(17)

An example of this procedure is shown in Figure 8, where scaling factors and aerial
times at 140 steps/min were tested for normality. Histograms were plotted with bins
adjusted following Sturges’ rule [49]. Since ηL and ηR failed to pass the test (p-value < α,
null hypothesis rejection), their stm. random subsets were transformed using Equation (16),
and the SW test was reapplied (Figure 8a,d), achieving normal behavior (pstm

λ ). The corre-
sponding λ factors were saved. The remaining variables, ηR (Figure 8b) and tLR (Figure 8c),
exhibited normal behavior since the beginning, requiring no transformation.

    
(a) (b) (c) (d) 

Figure 8. Histograms and normal distributions for scaling factors and aerial times, with Box-Cox
transformation applied when necessary (140 steps/min): (a) Transformed left steps scaling factor
(ηstm

L ); (b) ηR; (c) tLR; (d) Transformed RL aerial time (tstm
RL ).

2.6. Virtual GRF Generation

With the stochastic model built in the previous section, the virtual GRF generation
was divided into two main stages, which are introduced below and explained in the
following paragraphs:

1. Virtual step generation: virtual left and right rescaled steps were generated using
their stm. multivariate normal distributions. Each virtual step was then rescaled in
time by means of virtual scaling factors ηv, drawn from their respective univariate
normal distributions;

2. Time concatenation: the aforementioned steps, in their original units of time(s) and
force (N), were sequentially concatenated with the aid of virtual aerial times. A final
common interpolation was performed to replicate the insoles sampling rate.

In this regard, the first stage started by generating a set of Ng,L + Ng,R virtual steps,
Ng,L for the left and Ng,R for the right foot, approximately equaling the corresponding
val. subset sizes. They were obtained by means of a multivariate pseudo-random number
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generation algorithm, making use of the N
(
µstm

L , Sstm
L

)
and N

(
µstm

R , Sstm
R

)
distributions

defined in Section 2.5. In this work, the MATLAB® R2024b mvnrnd() algorithm was
executed [50], since it is prepared to deal with the singularities present in the Sstm matrices.
Note that the virtual steps Nr points were generated simultaneously, which was the reason
for employing a multivariate distribution and a covariance approach [51,52]. If univariate
distributions had been used for step pattern modelling, unrealistic noise would have
arisen due to each virtual random value deviating from the model’s mean vector µstm,
independently of neighboring points. This is depicted in Figure 9 for a single left virtual
step at 130 steps/min, with augmented interpolation only for visualization purposes.

 
Figure 9. Example of a virtual rescaled step generated by means of MATLAB®’s mvnrnd(), compared
to an N univariate normal distribution approach (130 steps/min).

As a consequence of how the stochastic model had been obtained, the virtual steps
were then rescaled in time and BW, covering the range given in Equation (6). To address
this, Ng,L and Ng,R pseudo-random virtual scaling factors (ηv) were generated using the
corresponding univariate normal distributions N

(
µstm

L , σstm
L

)
and N

(
µstm

R , σstm
R

)
for each

foot individually. When normalization had been required through the Box-Cox transfor-
mation in Equation (16), λ factors were used to recover the scale and behavior of ηv by
applying the inverse transformation given in Equation (17). Consequently, a statistically
similar step duration to the experimental one was obtained, and the BW was finally used
to recover the GRF values in N as the final task prior to step concatenation.

Eventually, the second and final stage can be carried out. To proceed with this task,
Ng,LR and Ng,RL (val. random subset sizes) pseudo-random virtual aerial times were gener-
ated through their normal distributions: N

(
µstm

LR , σstm
LR

)
and N

(
µstm

RL , σstm
RL

)
. This provided a

way to account for both the LR and RL aerial phases in a separate, statistically similar way
to the experimental expected values estimated in Section 2.3.4. Inversion of the Box-Cox
transformation when needed was conducted accordingly as with ηv. Virtual aerial times
(tv

LR and tv
RL) were then used to assign the starting time for each virtual step based on

the time at which the previous step ended. This process was repeated until 2Ng steps
(Ng of each foot, Ng = min(Ng,L, Ng,R)) had been concatenated. Since each step had a
different time increment and each pattern model could be made up of a different number
of Nr points (Section 2.4), both time-synchronized virtual GRF signals were resampled
simultaneously. Cubic Hermite interpolation was used, as in previous sections, and the
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final time increment was adjusted to replicate the insoles sampling rate fs (100 S/s). An
example of step concatenation is depicted in Figure 10 at 130 steps/min.

The full methodology described in the paper is summarized in Figure 11, with sections
and subsections references for further details.

Figure 10. Example of virtual step concatenation (100 S/s, 130 steps/min), with the order in which
operations are sorted (pink) in the final, time-synchronized GRF signals.

 

Figure 11. Full Materials & Methods summary, with references to sections for a broader description.

3. Results
This section presents the main results obtained after systematically applying the full

methodology described in Section 2 to the pedestrian’s GRF time series at different step
frequencies. It is important to note that some preliminary results and key data features
that justify the methodology and its algorithms have already been presented, serving as
a complement to the final results reported here. These mainly include the building of
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the stochastic models, which relies on the appropriate, outlier-free selection of both the
stm. and val. random subsets (Sections 2.3 and 2.5, Tables 1 and 2). In addition, they
involve the results obtained from the step pattern reduction algorithm (Section 2.4, Table 3).
Finally, the statistical tests used to verify the normality assumptions support the subsequent
generation of pseudo-random virtual GRFs. The goodness of the stochastic models, as
stated in Section 1, is now assessed through the evaluation of the vertical virtual resultant
GRF at the end, in both the time and frequency domains. This evaluation is performed by
comparing it to the experimental resultant GRF at each step frequency, obtained through
the val. random subsets following the same step concatenation criteria of Section 2.6.

In this regard, since the HZK test results for step multivariate normality checking have
already been reported in Table 4, the full SW test results are indicated below. Scaling factors
and aerial time samples for each step frequency were checked for univariate normality
with the results in Table 5. In particular, results at 140 steps/min correspond to those in
Figure 8. Following the guidelines in Section 2.5.2, the Box-Cox transformation was applied
when a non-normal behavior had been found (p-value < α), indicating the λ factors after
MLE and final stm. p-values (pstm

λ ). The distribution parameters (µstm and σstm) are given
in Tables 6 and 7. A clear difference is observed when comparing the values, depending on
whether a transformation was applied or not, with the λ factors retained for preserving the
original data scale and experimental behavior.

Table 5. SW univariate normality test results for scaling factors and aerial times, with Box-Cox
transformation (λ factor and new p-value over ≈ 50% stm. random subset, pstm

λ ) applied if the sample
data failed to pass the test.

Step Frequency
(Steps/min)

Scaling Factors Aerial Times

ηL ηR tLR tRL

p-value λ pstm
λ p-value λ pstm

λ p-value λ pstm
λ p-value λ pstm

λ

130 0.0172 −7.32 0.241 0.0547 - - 0.237 - - 0.0683 - -
140 0.00396 −7.70 0.927 0.265 - - 0.0799 - - 0.0101 −1.64 0.487
150 0.252 - - 0.0694 - - 0.0322 0.394 0.670 0.117 - -
160 0.0268 −2.72 0.153 0.144 - - 0.0420 0.513 0.196 0.0300 0.802 0.179
170 0.0428 −8.32 0.205 0.0221 −4.38 0.332 0.148 - - 0.00533 −0.481 0.483
180 0.334 - - 0.0501 - - 0.148 - - 0.174 - -
190 0.152 - - 0.143 - - 0.245 - - 0.189 - -
200 0.728 - - 0.0374 2.07 0.105 0.581 - - 0.00264 3.44 0.0803

Table 6. Scaling factors normal distribution parameters for the stm. random subsets (≈ 50% of
each sample).

Step Frequency
(Steps/min)

ηstm
L ηstm

R

µstm σstm µstm
λ σstm

λ

(
10−5) µstm σstm µstm

λ σstm
λ

130 - - 0.137 3.14 2.63 0.137 - -
140 - - 0.130 1.06 2.86 0.104 - -
150 3.27 0.190 - - 3.16 0.133 - -
160 - - 0.355 157 3.34 0.147 - -
170 - - 0.120 0.106 - - 0.227 1.90 · 10−4

180 3.96 0.181 - - 3.89 0.268 - -
190 4.18 0.269 - - 4.14 0.246 - -
200 4.44 0.197 - - - - 9.61 1.26



Modelling 2025, 6, 144 17 of 25

Table 7. Aerial times normal distribution parameters for the stm. random subsets (≈ 50% of
each sample).

Step Frequency
(Steps/min)

tstm
LR tstm

RL

µstm σstm µstm
λ σstm

λ µstm σstm µstm
λ σstm

λ

130 0.0853 0.0225 - - 0.0888 0.0189 - -
140 0.0834 0.0236 - - - - −36.0 10.4
150 - - −1.55 0.0895 0.0897 0.0149 - -
160 - - −1.46 0.0537 - - −1.06 0.0191
170 0.0760 0.0149 - - - - −5.20 0.560
180 0.0751 0.0139 - - 0.0747 0.0188 - -
190 0.0646 0.0206 - - 0.0964 0.0122 - -
200 0.0637 0.0131 - - - - −0.291 1.81 · 10−5

Figure 12 shows images of the rescaled step pattern covariance matrices for each
foot and step frequency individually, Sstm

L and Sstm
R , previously defined in Equation (14).

Note that, being symmetric, the matrices can be defined exclusively by their upper (right)
or lower (left) triangular part. This allows for a compact image representation within a
single figure, even though the number of points (Nr multivariate random variables) used
to construct each matrix may vary due to the step pattern reduction algorithm output,
outlined in Section 2.4. Consequently, the matrix dimensions correspond to those reported
in Table 3, with the information retained previously being considered sufficient through
the algorithm presented in Figures 6 and 7.

    
(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 12. Covariance matrix images for each rescaled foot step pattern (≈ 50% stm. random
subsets): left steps (Nr,L × Nr,L) matrix Sstm

L (lower triangular), and right steps (Nr,R × Nr,R) matrix
Sstm

R (upper triangular): (a) 130; (b) 140; (c) 150; (d) 160; (e) 170; (f) 180; (g) 190; (h) 200 steps/min.

Each pixel corresponds to a matrix element. Diagonal elements represent the Nr

random variable variances, while off-diagonal elements account for covariance. Red
represents strong dependencies between variables that tend to increase or decrease to-
gether, notably in Figure 12d,f–h. A higher absolute value of the matrix elements reflects
a greater dispersion in the stm. multivariate data, indicating increasing variability as the
step frequency increases. Negative covariance accounts for variables that increase and
decrease simultaneously, while null values correspond to the starting and ending points
(Sections 2.3.2 and 2.3.3). Differences between feet and across step frequencies arise, espe-
cially at 180 and 190 steps/min, highlighting the need for separate foot modelling.
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Rescaled virtual (statistically similar) steps, generated through the mvnrnd() pseudo-
random number algorithm, are depicted in Figure 13. The covariance matrices in Figure 12,
along with mean vectors µstm, are fundamental for this task. As stated in Section 2.5, the
remaining (≈50%) val. random subsets and their mean (µval) are used to directly compare
the shape of the virtual steps (mean µv). Consequently, Ng,L and Ng,R correspond to
the sizes of the left and right val. subsets, respectively (Section 2.6). For each foot and
step frequency, the step pattern reduced stochastic model satisfactorily reproduces the
experimental steps. It is important to note that, when directly observing the figures of both
virtual and val. subset steps, the higher covariance values—represented by the dark, mostly
red, colored pixels—are directly related to the variability of the aforementioned steps, as
has already been stated. For instance, the highest covariance values indicate the extent to
which the first random variables (i.e., the initial interpolation points in Section 2.4, which
are part of the multivariate distribution) tend to vary together. This pattern is observed in
Figure 12g,h at the highest step frequencies of 190 and 200 steps/min. Therefore, a higher
step dispersion in Figure 13g,h is present.

 

    
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 13. Graphical rescaled pattern comparison among virtual (blue-left, red-right) and experi-
mental val. random subset steps (grey) for each step frequency, with stm. (yellow), val. (black) and
virtual (green) mean vectors also represented: (a) 130; (b) 140; (c) 150; (d) 160; (e) 170; (f) 180; (g) 190;
(h) 200 steps/min.

Additionally, differences between both feet at 190 steps/min remain evident and
they are satisfactorily reproduced in the corresponding virtual steps at this particular step
frequency. Other important features to consider, such as the dispersion among different
step observations during the falling edge at 130 steps/min (Figure 12a), are also adequately
replicated by the stochastic model in Figure 13a. This feature, along with the highest
number of Nr random variables (i.e., 14 both left-right interpolation points, Table 3) required
to preserve geometric characteristics within Figure 7’s tolerances, in particular the DR
(Figure 5), can explain this phenomenon.
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The final vertical virtual resultant GRFs are shown in Figure 14, after performing step
concatenation following the guidelines in Section 2.6 and generating the corresponding
virtual scaling factors and aerial times from their stm. normal distributions, ultimately
concatenated according to Figure 10’s scheme. The original force scale (N) is recovered
by means of the BW and the resultant action is obtained by summing the left and right
forces. For representation purposes, only a 3-s relative time zoom interval is plotted for
each step frequency, although the complete signals are obtained with the full sets of values.
Time series from the val. random subsets (experimental data) are also plotted, obtained
through concatenation in a similar way to the virtual GRFs. Note that the sampling rate
has been adjusted to match the Loadsol® insoles’ fs (100 S/s), the rate at which the original
data were gathered in Section 2.2. This final interpolation addresses the requirement to
obtain left-right time-synchronized GRFs. Eventually, the randomness of running gait is
preserved and a good match is achieved between val. and virtual data in all cases.

            

 
(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 14. Time comparison between the experimental (val. data, black) and virtual (green) vertical
resultant GRFs (100 S/s): (a) 130; (b) 140; (c) 150; (d) 160; (e) 170; (f) 180; (g) 190; (h) 200 steps/min.

Time-domain virtual resultant GRF signals resemble the patterns presented in Figures 1
and 3. As step frequency increases, a higher number of steps are displayed in the figures
since the 3 s zoom interval remains fixed. Now, Figure 15 shows the corresponding
Fourier amplitude spectra of the entire time series (not just the zoom in Figure 14), where
several prominent peaks can be seen at the fundamental (metronome-driven, Section 2.2)
running step frequency ( f0) and its harmonics up to the 3rd one (2 f0 and 3 f0), given in Hz.
Additionally, a quantitative comparison of the aforementioned experimental (val. data)
peak values and their corresponding virtual ones is presented in terms of both frequency
and amplitude in Table 8, respectively. A strong match in frequencies is observed, with
errors remaining below 4.5% in all cases, the majority of them being under 2%. In contrast,
larger discrepancies are found in amplitudes, with most errors below 20%, though some
exceed this threshold, and the highest, mostly isolated cases, surpass 30%.
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 15. Fourier amplitude spectra of both the experimental (val. data, black) and virtual
(green) GRFs in Figure 14. Val. data (red) and virtual (magenta) peaks corresponding to the first
three harmonics are also highlighted: (a) 130; (b) 140; (c) 150; (d) 160; (e) 170; (f) 180; (g) 190;
(h) 200 steps/min.

Table 8. Peak frequencies corresponding to the first three harmonics in the Fourier plots of Figure 15
for both experimental (val. data) and virtual resultant GRFs.

Step Frequency Experimental (Test) (Hz) Virtual (Hz) Error (%)

Steps/min Hz f0 2f0 3f0 f0 2f0 3f0 Ef0
E2f0

E3f0

130 2.17 2.18 4.36 6.54 2.13 4.27 6.59 2.13 2.13 0.678
140 2.33 2.31 4.63 6.94 2.31 4.62 6.65 0.231 0.23 4.22
150 2.50 2.46 4.92 7.48 2.51 4.92 7.44 2.20 0.0709 0.600
160 2.67 2.67 5.34 7.92 2.67 5.28 7.95 0.238 1.13 0.363
170 2.83 2.85 5.75 8.59 2.79 5.53 8.32 1.93 3.80 3.18
180 3.00 3.00 6.06 9.06 3.00 5.93 9.06 <0.01 2.15 <0.01
190 3.17 3.19 6.38 9.57 3.18 6.37 9.55 0.159 0.159 0.159
200 3.33 3.34 6.76 9.55 3.35 6.70 9.81 0.239 0.940 2.745

4. Discussion
Having presented the results in Section 3, a discussion is necessary to evaluate their

quality, examine the strengths and limitations of the proposed stochastic model and its
algorithms, and outline potential future developments to be conducted. The preservation
of human gait randomness has been maintained throughout each specific task described
in Section 2, keeping the intrinsic variability associated to each individual foot decoupled
from that of the other foot until the final resultant GRFs, shown in Figure 14, are obtained.
This is a significant advantage of the model, as the disparities between both feet are clearly
evident when comparing the step pattern stm. covariance matrices in Figure 12, but are less
obvious in the time series of Figure 14.

It can thus be stated that, despite ultimately assessing the resultant GRF by summing
the contributions of both feet, a robust stochastic methodology is essential. All stochastic
models cited in Section 1, not just the running ones but also any that entail a near-periodic
action (walking, bouncing, or jumping) consider the gait cycle pattern in Figure 1 as
solely the resultant GRF. On the other hand, physical models treat the GRFs as simplified
deterministic actions, thereby neglecting gait variability and its real behavior.

In the context of experimental data acquisition, the Loadsol® insoles, which record
running GRFs at an fs of 100 S/s, present a set of advantages and limitations, as detailed
in Section 2.2. While these insoles do not offer the higher sampling rates of gold standard
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equipment, such as force plates and treadmills (as high as 1000 S/s), they allow for the
measurement of GRFs beyond constrained laboratory settings. This feature suggests that
the proposed methodology could be applied to assess human running loads in pedestrian
structures such as footbridges, a specific application outlined in the Introduction (Section 1),
within the field of structural engineering. Additionally, it is important to note that, despite
the relatively low sampling rate, the insoles have been employed successfully at 100 S/s.
Moreover, a reduction methodology has been implemented to achieve a robust description
of the running GRFs while reducing the amount of data required.

The step pattern reduction algorithm presented in Section 2.4 identifies a reduced
set of random variables (i.e., interpolation points) that maintain geometric characteristics
within predefined tolerances (Figures 6 and 7). This approach enables an efficient step
pattern modelling strategy. As highlighted in Equation (15), when an excessive number
of variables is used, an oversized model is obtained due to quadratic dependencies and
without any advantage. To illustrate this, Table 9 shows a scenario in which the step
pattern is described by 100 points for both feet, resulting in the quadratic growth in the
number of parameters (TP) when calculating the stm. covariance matrices. In contrast,
the proposed reduction strategy, with results shown in Table 3 and further discussed in
Section 3, achieves reductions of more than 85% in variables and 99% in parameters.

Table 9. Model’s final total variables (TV) and parameters (TP) given by Equation (15), compared to
the situation in which 100 points had been used to model each foot’s step pattern.

Step
Frequency

(Steps/min)
TV

TV,100−TV
TV,100

(%) TP
TP,100−TP

TP,100
(%)

130 32 84.3 219 97.8
140 28 86.3 165 98.4
150 24 88.2 120 98.8
160 28 86.3 165 98.4
170 28 86.3 165 98.4
180 22 89.2 99 99.0
190 27 86.8 153 98.5
200 26 87.3 142 98.6

Regarding the use of statistical tests, the HZK test has proven to be an effective tool for
assessing the step pattern samples multivariate normality assumption. Out of the 16 step
rescaled samples, only one fails to pass the test, belonging to the right foot at 200 steps/min
(Table 4). This accounts for just 6.25% of the total samples derived from the GRF dataset
(Section 2.2), and the p-value slightly leads to the null hypothesis rejection (0.0322 < 0.05).
Additionally, neither the stochastic model nor the algorithms and comparisons employed
were significantly affected by this deviation at the aforementioned step frequency, as seen
in Table 8 when computing the errors. For these reasons, the deviation was considered
bearable, and no transformation was applied to multivariate data.

On the other hand, the Box-Cox transformation enforces univariate normality across
both scaling factors and aerial times, enabling the stm. random samples to meet the assump-
tions required for generating virtual pseudo-random values via the λ factor (Section 2.5.2).
With 37.5% (12 out of 32) of the samples in Table 5 failing to pass the SW test, the need for
this transformation is evident. Specifically, λ factors are computed from the MLE problem
exclusively using the stm. random subsets. This preserves methodological integrity, as
transforming unseen val. data and subsequently inverting the transformation compromises
consistency and has no positive impact at all. At 180 and 190 steps/min, however, the
transformation was completely unnecessary, as the SW test confirmed normality across all
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univariate samples. This coincides with the highest accuracy in estimating the first three
harmonic frequencies of the virtual signal, as shown in Figure 15f,g, where relative errors
between virtual and experimental Fourier spectra as low as 0.16% at 190 steps/min or
even close to 0 at 180 steps/min (Table 8). Only a slight yet acceptable 2.15% deviation
is observed for the 2nd harmonic at 180 steps/min. These findings confirm that, while
the Box-Cox transformation enhances stochastic modelling, it can’t replace the inherent
statistical nature of data.

It is also worth noting that the dataset employed, based on one pedestrian and eight
step frequencies, includes fewer statistically similar steps at higher frequencies due to the
constant running distance (Section 2.2). This has limited sample size (Tables 1 and 2) for
all of the random variables involved in the model. Expanding the dataset would likely
enhance model robustness and is planned for future works. Furthermore, the step duration
estimation (Section 2.3.2) relies on a linear extrapolation approximation (Figure 4), which
can introduce slight frequency distortions. Lastly, the model step pattern is simplified using
tolerances of 5% (amplitude) and 15% (location), and a 10% threshold for failed estimations,
dependent on data inspection and behavior, as stated in Section 2.4.

Despite the overall performance and robustness of the proposed methodology, several
limitations must be acknowledged. A higher sampling rate could be desirable for perform-
ing experimental measurements with the insoles as close as possible to the lab-constrained
equipment. The reduction tolerances could also be optimized through refined criteria as
previously outlined. Additionally, the dataset, while including multiple step frequencies, is
currently limited to one pedestrian; thus, inter-subject variability remains unassessed. A
larger dataset, as indicated in the previous paragraph, would likely enhance generalization
and support deeper statistical analysis for both the same pedestrian and other groups of
people. Finally, although the stochastic modelling assumptions are mostly satisfied, the mi-
nor deviation observed at 200 steps/min suggests that multivariate normal transformations
to fully comply with normality may be needed in other situations.

5. Conclusions and Final Remarks
A robust algorithm has been developed for the modelling and reproduction of experi-

mental vertical GRFs, explicitly accounting for the preservation of the inherent variability
and stochastic nature of human gait during running. Consequently, a stochastic data-driven
model has been formulated under normality assumptions, capable of generating sequences
of virtual GRFs statistically equivalent to experimental ones. GRFs from each foot are
analyzed independently, an essential procedure for identifying potential gait asymmetries
and relating them to the specific characteristics of individual pedestrians. Considering that
inter and intra-subject variability results in a broad spectrum of distinct GRF patterns, it
becomes necessary to capture the key governing factors using a minimal set of parameters,
preventing model oversizing while ensuring computational efficiency.

Accordingly, when a sufficient number of steps from a given runner is available—
at any step frequency and under varying conditions—the proposed model can generate
additional synthetic steps from a reduced dataset. On the other hand, the normality
assumption has been examined for both the multivariate step pattern and the univariate
scaling factors and aerial times employed to concatenate individual steps into virtual time
series. It is important to emphasize that the stochastic data-driven model is specific to the
experimental conditions under which the original data were obtained. Variations in surface,
footwear, or biometric parameters may produce different model outputs. Nevertheless, the
model reliably reproduces the GRFs exerted by a pedestrian under those conditions.

The results obtained and discussed in Sections 3 and 4—particularly those related to
the reproduction of harmonics in the virtual signals compared to the experimental ones—
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demonstrate that the model can accurately predict the time signals frequency content,
provided that an adequate data processing is applied. The associated relative errors,
always below 4.5% and mostly under 2%, validate the model together with step pattern
reproduction in the time domain. They also indicate its potential applicability across various
domains, including structural dynamics (for assessing the serviceability of pedestrian
structures), as well as sports science and biomechanics. Moreover, they were achieved after
reducing model complexity up to more than 50% (in terms of variables and parameters), as
depicted in Section 2.4 for the step pattern.

Future work will further investigate the aforementioned potential application fields,
including enhancing the model’s robustness under more challenging conditions, partic-
ularly when normality assumptions are more difficult to satisfy. In addition, since the
methodology proposed in this paper is inherently adaptable to other force components and
activities, the authors plan to explore the development of a unified common framework
regarding different human locomotion activities. Ultimately, other research directions also
aim at extending the out-of-the-lab available data, so more situations can be assessed.
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