

1

Analysis of Meis2 knockout mice reveals

3 Sonic hedgehog-mediated patterning of the cochlear duct

4

5 ^{1,2}Hei Yeun Koo, ^{1,2}Jae Hwan Oh, ³María Beatriz Durán Alonso, ³Iris López Hernández,

6 ³Margarita González-Vallinas, ³María Teresa Alonso, ⁴Juan J Tena, ⁴Alejandro Gil-Gálvez,

7 ⁵Fernando Giraldez, ^{1,2}Jinwoong Bok and ³Thomas Schimmoeg*

8

9 ¹Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea

10 ²Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul
11 03722, Korea

12 ³Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM),
13 Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y
14 Forés 3, Valladolid 47003, Spain

15 ⁴Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones
16 Científicas (CSIC)/Universidad Pablo de Olavide, 41013 Sevilla, Spain

17 ⁵Dept. Medicine and Life Sciences (MELIS) CEXS, Universitat Pompeu Fabra, María de
18 Maeztu Unit of Excellence, Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona,
19 Spain

20 *Corresponding author

1 **Abstract**

2 Background: The mechanisms underlying the formation of complex structures such as
3 during the outgrowth of the cochlear duct are still poorly understood.

4 Results: We have analyzed the morphological and molecular changes associated with
5 cochlear development in mouse mutants for the transcription factor Meis2, which show
6 defective coiling of the cochlea. These morphological abnormalities were accompanied by
7 the formation of ectopic and extra rows of sensory hair cells. Gene profiling of otic vesicles
8 from Meis2 mutants revealed a dysregulation of genes that are potentially involved in Sonic
9 hedgehog (Shh)-mediated patterning of the cochlear duct. Like in Shh mutants, Meis2
10 defective mice showed a loss of genes that are expressed in the apical part of the cochlear
11 duct.

12 Conclusions: Taken together, these data reveal that the loss of Meis2 leads to a phenotype
13 that resembles Shh mutants, suggesting that Meis2 is instrumental for cochlear Shh
14 signaling. The modulation of the same subset of genes provides an interesting insight into
15 which Shh responsive genes are essential for outgrowth and patterning of the cochlear duct.

16

1 **Introduction**

2 In mammals, the development of the inner ear is a prime example for the complexity
3 underlying organ formation. It contains domains with a most unique organization such as
4 the semicircular canals or the cochlea. They contain the sensory organs for hearing and
5 balance which comprise hair cells that sense sound, gravity and acceleration. Within the
6 cochlea, hair cells are the sensory transducers, which are arranged in a complex and precise
7 mosaic pattern in rows that requires the coordinated expression of specific genes^{1,2}.

8 The cochlea is a spiral organ which is organized tonotopically. i.e.: hair cells tuned to
9 different sound wave frequencies are located in different locations along the axis of the
10 cochlea. During mammalian development, the cochlear duct undergoes a process of
11 elongation, bending and coiling to form a spiral. These morphogenetic processes are
12 regulated by signaling pathways such as those controlled by Wnt, components of the planar
13 cell polarity (PCP) pathway or Sonic hedgehog (Shh), which has been shown to control
14 elongation and regional specification of the cochlear duct¹. Before mouse embryonic day
15 11 (E11), Shh is expressed in the floor plate and notochord from where it specifies ventral
16 and regional identity in the otic vesicle and cochlea, respectively³⁻⁵. Thereafter, Shh is found
17 in the cochlear ganglion from where it regulates cochlear extension and differentiation^{5,6}.
18 A comprehensive list of Shh-responsive genes expressed during initiation of cochlear duct
19 formation has been reported recently, which provides a useful reference for deciphering
20 Shh-dependent regulatory mechanisms⁷.

1 Transcription factors act as key regulators during the development of the cochlear duct⁸⁻¹⁵,
2 however, their downstream networks are often poorly understood. In the case of Meis
3 transcription factors, retinoic acid, Wnts and Fgfs have been proposed to be instrumental
4 signaling components¹⁶. In this study we have explored the signaling pathways downstream
5 of Meis2 in the mammalian otic vesicle by using RNAseq analysis of Meis2 mutants. We
6 reveal that a subset of Shh-regulated genes are dysregulated in these mutants which
7 phenotypically resemble mutants with a partial loss of Shh signaling. This indicates that
8 Meis-mediated Shh signaling is required for proper cochlear development.

9

10 **Results**

11 We had recently observed that mouse mutants lacking Meis2 in the otic vesicle showed
12 either a complete absence of (*Meis2*^{flox/flox}; *Foxg1*^{Cre/+}) or an abnormal (*Meis2*^{flox/flox};
13 *Pax2*^{Cre/+}) cochlear outgrowth during inner ear development^{17,18}. To further define the
14 phenotype associated with *Meis2*^{flox/flox}; *Pax2*^{Cre/+} mutants, cochleae were dissected at
15 E18.5 and stained with phalloidin and myosin VIIA antibodies to label hair cells. In
16 *Meis2*^{flox/flox}; *Pax2*^{Cre/+} cochleae, cochlear length was severely shortened as compared to
17 wild type (Fig. 1A,E). In addition, mutant samples showed four or five rows of outer hair
18 cells instead of the normal three rows (compare Figs. 1B-D', control, and Fig. 1. F-H',
19 mutant). Similar phenotypes have been previously observed in other mouse mutants
20 lacking transcription factors like *Neurog1*, *Neurod1*, *N-myc* and *Foxg1*^{10,12,19,20}. In addition,

1 ectopic vestibular-like hair cells were observed in the greater epithelial ridge (GER) region
2 of the apical cochlea (Fig. 1. I-J'').

3 The first phenotypic change observed in *Meis2*^{fl/fl}; *Pax2*^{Cre/+} mutants was the reduced
4 size of the otic vesicle¹⁷. During normal development, cochlear morphogenesis is initiated
5 at the ventral portion of the otic vesicle by an elongation that later on coils in an anterior-
6 medial direction until it completes one and three-quarters turns (Fig. 1A and 3E). In
7 contrast, in *Meis2*^{fl/fl}; *Pax2*^{Cre/+} mutants the cochlear duct initially extends toward the
8 apex but then takes a U-turn toward the base leading to a truncated cochlear duct¹⁷ (Fig.
9 1E and 3J,O). In order to identify target genes of *Meis2* with a potential developmental value
10 for this process, we performed a RNAseq-based screen for differential gene expression in
11 *Meis2*^{fl/fl}; *Pax2*^{Cre/+} mutant versus wild-type otic vesicles at E11.5, the stage at which the
12 outgrowth of the cochlear duct is initiated. The results of this analysis showed only 14 genes
13 dysregulated in mutant samples, the majority of them being expressed during inner ear
14 development (Table 1).

15 Most interestingly, we found that more than half of the differentially expressed transcripts
16 in *Meis2*^{fl/fl}; *Pax2*^{Cre/+} mutant otic vesicles (57%) showed a pattern of gene dysregulation
17 which faithfully matched that of *Shh* mutant otic vesicles, genes that were either up- or
18 down-regulated in parallel⁷ (Table 1 and Figure 2A). This is a rather high figure when
19 compared to other mouse mutants that show defects in cochlear outgrowth and from which
20 transcriptomic data are available at the otic vesicle stage. Dysregulation of *Shh*-responsive
21 genes is of 8% of the differentially expressed transcripts in *Chd7/Sox2* double mutants²¹, 9%
22 in *Tbx2/3* double mutants¹⁴, 10% in *Six1* mutants²², 11% in *Chd7* mutants²³ and 12% in

1 mutants expressing a dominant negative Fgf receptor²⁴ (see supplementary Table S1 for
2 gene lists). Shh-responsive genes that were down-regulated in *Meis2*^{flx/flx}; *Pax2*^{Cre/+}
3 mutant otic vesicles included *cytochrome P450 family 26 subfamily C member 1 (Cyp26c1)*,
4 *Follistatin (Fst)*, *Fras1 related extracellular matrix protein 2 (Frem2)*, *clusterin (Clu)* and *basal*
5 *cell adhesion molecule (Bcam)*. Upregulated genes were *activated leukocyte cell adhesion*
6 *molecule (Alcam)*, *calcium voltage-gated channel subunit alpha1 G (Cacna1g)* and *collagen*
7 *type XII alpha 1 chain (Col12a1)*. Differential regulation of *Cyp26c1*, *Fst*, *Frem2* and *Clu* was
8 validated by RT-qPCR (Supplementary Figure 1).

9 In order to obtain insight into the transcriptional mechanisms regulating *Meis2* target gene
10 expression in the inner ear, we analyzed Transposase-Accessible Chromatin with high
11 throughput sequencing (ATAC-Seq) data from chromatin isolated from wild-type otic
12 vesicles^{25,26}. ATAC-seq profiles from otic vesicles revealed more than 16,000 regions of open
13 chromatin accessibility that mapped to intergenic (31%), intronic (30%), promoter (30%)
14 and exonic (3%) regions of the genome (Fig. 2B). Gene regulatory sequences typically reside
15 within regions of open chromatin^{15,27,28}. In agreement, actively transcribed genes in the otic
16 vesicle (RNA-seq, RPKM \geq 5) were more likely to display ATAC-seq signals than inactive genes
17 (RNA-seq, RPKM<5) (Fig. 2C).

18 A comparison of *Meis2*-regulated genes and ATAC-seq analysis of otic vesicles showed that
19 with the exception of *Acta2*, all genomic regions of the dysregulated genes contained
20 accessible chromatin (Table 1). In order to identify potential *Meis*-dependent regulatory
21 sequences associated with the differentially regulated Shh-responsive genes, we performed
22 a search for *Meis* consensus binding sites¹⁶ in genes exhibiting open chromatin regions as

1 revealed by ATAC-seq analysis. This analysis showed the presence of motifs for direct
2 binding of the Meis transcription factor in the Shh-regulated genes *Cyp26c1*, *Frem2*, *Alcam*
3 and *Bcam* (Table 1 and Figure 2A). The absence of Meis binding sites in other differentially
4 regulated Shh-responsive genes suggests that they are indirectly regulated by Meis2.

5 Like Meis2 mutants, Shh defective mice are frequently characterized by a shortened
6 cochlear duct, multiple rows of hair cells in the apex and ectopic vestibular-like hair
7 cells^{6,29,30}. Specification of regional identity along the cochlear duct depends on a gradient
8 of Shh that leads to differences in hair cell morphology and physiology and the tonotopic
9 organization of the cochlea: hair cells at the basal cochlea tune to high frequency sounds
10 and those at the apex tune to low frequencies^{2,5,10}. We thus asked whether loss of Meis2
11 also leads to changes in regional cochlear identity. To do so we analyzed expression patterns
12 of genes, which are expressed in either a basal-to-apical or apical-to-basal gradient along
13 the developing cochlea. E14.5 wild-type controls showed a distinct *A2m* and *Inhba*
14 expression in the base of the cochlea (Fig. 3C,D), while *Msx1* and *Fst* were expressed in the
15 apical end (Fig.3A,B). In *Meis2*^{fl/fl}; *Pax2*^{Cre/+} cochleae, the basal markers were maintained
16 in the basal turn (*A2m*, *Inhba*) (Fig.3H,I), but the apical markers were either lost (*Msx1* in
17 Fig. 3K, asterisk) or weakly expressed (*Fst* in Fig.3L, arrow). These expression gradients
18 revealed that *Meis2*^{fl/fl}; *Pax2*^{Cre/+} mutants displayed an apically truncated cochleae, very
19 much like the Shh deficit, which suggested a potential damage in the Shh signaling pathway
20 in Meis2 mutants^{5,29}. To further reveal if Shh signaling was affected in *Meis2*^{fl/fl}; *Pax2*^{Cre/+}
21 mutants, we examined the expression of the direct Shh target genes *Ptch1* and *Gli1*. In wild-
22 type controls, *Ptch1* and *Gli1* are expressed in a graded pattern, stronger in the apex and

1 gradually weaker toward the base (Supplementary Fig.2A,B). In agreement with an
2 alteration of cochlear Shh signaling, *Meis2*^{flox/flox}; *Pax2*^{Cre/+} mutant showed strongly reduced
3 expression of *Ptch1* and *Gli1* in the shortened cochlea (Supplementary Fig.2C,D).

4 Within the developing cochlea, regional identity is sequentially defined via Shh from two
5 different sources: first, from the floor plate and the notochord in the ventral midline and,
6 later on, starting at E11.75 from the spiral ganglion neurons^{5,6}. A complete loss of Shh
7 signaling leads to absence of all cochlear structures and the otic vesicles show a
8 dysregulation of several markers such as *Pax2*, *Ngn1* and *Tbx1* which are, however,
9 maintained in *Meis2*^{flox/flox}; *Pax2*^{Cre} mutants^{3,4,17}. Therefore, *Meis2*^{flox/flox}; *Pax2*^{Cre} mutants
10 are phenotypically close to mouse mutants with a partial rather than a complete loss of Shh
11 signaling, including a truncated cochlea and ectopic rows of hair cells^{6,30}. In *Shh*^{flox/-}; *Foxg1*^{Cre}
12 mutants, in which Shh signaling from the spiral ganglion but not the ventral midline is
13 selectively abolished, the cochlea is severely shortened, reaching only a half turn, very much
14 like our to *Meis2*^{flox/flox}; *Pax2*^{Cre} mutant^{6,17}. However, unlike in *Shh*^{flox/-}; *Foxg1*^{Cre} mutant
15 mice⁵, the expression domains of apical genes like *Fst* and *Msx1* are more affected in
16 *Meis2*^{flox/flox}; *Pax2*^{Cre} mutants, indicating a potential crucial requirement of Meis2 for apical
17 identity and cochlear outgrowth (Table 2).

18 To our knowledge, there is no co-expression of *Meis2* and Shh-target genes, the former
19 found in the dorsal portion of the otic vesicle¹⁷ and the latter mostly detected in its ventral
20 portion⁷. However, at earlier stages of otic development, *Fst* and *Meis2* are both expressed
21 in the otic placode^{17,32}. Additionally, *Fst*, and the Shh target genes *Frem2*, *Cacna1q* and

1 Bcam show a relatively high expression in microarrays hybridized with RNA extracted from
2 the otic placode³³.

3 Amongst the group of Meis2-regulated Shh responsive genes, *Cyp26c1*, *Clu* and *Fst* are
4 expressed in the ventral portion of the otic vesicle (Table 1) from which the cochlear duct is
5 derived. Loss of *Cyp26c1* does not affect embryonic development, but is required
6 redundantly with *Cyp26a1* to regulate anterior-posterior patterning of the developing brain
7 and the size of the otic vesicle³⁴. *Clu* has recently been shown to protect against age and
8 aminoglycoside-induced hair cell loss, but without alteration of cochlear morphogenesis³⁵.

9 On the other hand, *Fst* has been previously proposed to play a central role during Shh-
10 mediated cochlear morphogenesis and tonotopy⁵. Follistatin encodes an antagonist for
11 TGFb/BMP signaling and is expressed in an apical to basal gradient in the cochlea^{5,36}. It has
12 been proposed that this gradient is required to generate a basal to apical gradient of
13 ActivinA, a member of the TGFbeta superfamily. Moreover, this counter gradient of Activin
14 A and Follistatin has recently been shown to instruct the timing of hair cell differentiation
15 in the murine cochlea³⁶. As mentioned above, early Shh signaling is crucial for establishing
16 regional identity in the developing cochlea, including setting up the distinct apical pattern
17 of *Fst* expression⁵. Recent work showed that *Fst* is required for the maintenance of apical
18 cochlear identity as indicated by the loss of *Msx1* expression, *Fst* is dispensable for cochlear
19 induction³⁷ (Table 2). In contrast to the apparent apical truncation of *Fst* mutants, cochlear
20 outgrowth is more severely affected in *Meis2*^{fl/fl}; *Pax2*^{Cre} mutants, which exhibit a more
21 severe disruption of cochlear outgrowth includes a loss of *Fst* and *Msx1* expression (Table
22 2). Therefore, the dysregulation of additional Shh responsive genes and/or other Meis2-

1 regulated genes are likely to contribute to the severe cochlear truncation observed in
2 *Shh*^{fl_{ox}/-}; *Foxg1*^{Cre} and *Meis2*^{fl_{ox}/fl_{ox}}; *Pax2*^{Cre} mutants, respectively. Further analysis of these
3 genes will shed light into the specification of regional identity, proper outgrowth and coiling
4 of the mammalian cochlea.

5

6

1 **Acknowledgments**

2 We would like to thank Irene Delgado and Miguel Torres for providing Meis mouse mutants
3 and experimental advice and help. This work was supported by MinEco (BFU2016-76580-P)
4 and Programa Estratégico Instituto de Biomedicina y Genética Molecular (IBGM), Escalera
5 de Excelencia, Junta de Castilla y León (Ref. CLU-2019-02) and Programa Estratégico
6 Instituto de Biomedicina y Genética Molecular (IBGM), Junta de Castilla y León (Ref.
7 CCVC8485) to T.S. and by the National Research Foundation of Korea (NRF-
8 2022R1A2C3007281, RS-2024-00400118) to J.B..

9 **Experimental procedures**

10 **Transgenic mice**

11 Mice carrying a floxed *Meis2* allele and a *Pax2*-Cre transgene have been described
12 previously¹⁷. Experiments conformed to the institutional and national regulatory standards
13 concerning animal welfare.

14 **Screening for differentially regulated genes in *Meis2*^{flox/flox}; *Pax2*^{Cre/+} mutants**

15 RNA was isolated from E11.5 otic vesicles of wild type and *Meis2*^{flox/flox}; *Pax2*^{Cre/+} mutants
16 using the RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions.
17 Sequencing libraries were prepared using the NEBNext Ultra RNA Library Prep Kit for
18 Illumina according to the manufacturer's instructions. Libraries were subjected to 2x75 bp
19 paired-end sequencing on an Illumina NextSeq sequencer following the manufacturer's
20 protocol. Mapping of the reads to the GRCm38 reference genome was performed with Star
21 software. Generation of count tables and differential expression was done by parsing Star

1 output with edgeR. Differentially expressed genes with an adjusted p value (false discovery
2 rate) below 0.05 are listed in Table 1. The RNAseq data from this screen have been
3 deposited at GEO with accession number GSE154787.

4 **Quantitative reverse transcription polymerase chain reaction (qPCR)**

5 Isolation of total RNA from otic vesicles was performed using TRIzol® Reagent (Invitrogen),
6 following the manufacturer's protocol. RNA samples were quantified on a
7 Spectrophotometer ND-1000 (NanoDrop, Thermo Fisher Scientific). Total RNA was used to
8 synthesize cDNA with the High Capacity cDNA Reverse Transcription Kit (Applied
9 Biosystems, Life Technologies). cDNA samples were amplified on a LightCycler® 480 II
10 (Roche Molecular Diagnostics, Pleasanton, CA, USA) using SYBR® Green PCR Master Mix
11 (Life Technologies). The thermocycling conditions consisted of an initial denaturation step
12 of 10 minutes at 95°C, followed by 40 cycles at 95°C for 15 seconds and 60°C for 1 min.
13 Primers for each of the genes studied in this work were: *Cyp26c1*,
14 GGAGAACAGACAGCAGAGC and GAAGAGGAGCTCTACAGCC; *Fst*,
15 ACTAGAACAGTACAGTACAGGG and ATCCACCACACAAGTGGAGC; *Frem2*,
16 *TGACCATCCTCACAGACAGG* and *TGGAAGGCTTAGAGAGGTCG*; *Clu*,
17 *GAGCTCTGGTTAGAACTCC* and *TGCAAGCCCTGCCTGAAGC*; *Ptch1*
18 *AGACCAACATCACACGGACC* and *ATTCAAGGACACATATGTGAGC*. Data were analysed using
19 the Software version LCS480 1.5.0.39. Relative levels of mRNA expression were calculated
20 according to the $2^{-\Delta\Delta Ct}$ method.

21 **Immunofluorescence staining**

1 Immunofluorescence staining was performed as previously described⁵. Primary antibodies
2 used were anti-ARL13B (1:3000, generated from rabbit) and anti-MYO7A (1:200; Proteus
3 biosciences, 256790). Secondary antibodies used were Alexa Fluor 488 antibodies (1:200,
4 Thermo Fisher Scientific) and Alexa Fluor 568 Phalloidin (1:100, Thermo Fisher Scientific,
5 A12380). Immunolabeled cochlear tissues were mounted with ProLong Gold Anti-fade
6 Mountant (Thermo Fisher Scientific, P36930).

7 ***In situ* hybridization**

8 Inner ears dissected from E14.5 embryos were fixed in 4% paraformaldehyde overnight and
9 embedded in Tissue-Tek optimum cutting temperature (OCT) compound. Inner ear tissues
10 were sectioned at a 12 μ m thickness using a cryostat (Thermo Fisher Scientific). Serial
11 cochlear sections were collected from the base to the apex on to Superfrost Plus microscope
12 slides (Thermo Fisher Scientific) and subjected to *in situ* hybridization as previously
13 described⁵. Antisense RNA probes for *Ptch1*, *Gli1*, *Msx1*, *Fst*, *A2m*, and *Inhba* were prepared
14 as previously described⁵. Images of *in situ* hybridization were acquired using a Leica
15 DM2700 optical microscope.

16

1 References

- 2 1. Driver EC, Kelley MW. Development of the cochlea. *Development*. Jun 22 2020;147(12).
<https://doi.org/10.1242/dev.162263>.
- 3 2. Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of
4 Hearing: Developmental Mechanisms from the Ear to the Brain. *Annu Rev Neurosci*. Feb 15
5 2024. <https://doi.org/10.1146/annurev-neuro-081423-093942>.
- 6 3. Brown AS, Epstein DJ. Otic ablation of smoothened reveals direct and indirect
7 requirements for Hedgehog signaling in inner ear development. *Development*. Sep
8 2011;138(18):3967-76. <https://doi.org/10.1242/dev.066126>.
- 9 4. Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ. Specification of the
10 mammalian cochlea is dependent on Sonic hedgehog. *Genes Dev*. Sep 15
11 2002;16(18):2365-78. <https://doi.org/10.1101/gad.1013302>.
- 12 5. Son EJ, Ma JH, Ankamreddy H, et al. Conserved role of Sonic Hedgehog in tonotopic
13 organization of the avian basilar papilla and mammalian cochlea. *Proc Natl Acad Sci U S A*.
14 Mar 24 2015;112(12):3746-51. <https://doi.org/10.1073/pnas.1417856112>.
- 15 6. Bok J, Zenczak C, Hwang CH, Wu DK. Auditory ganglion source of Sonic hedgehog regulates
16 timing of cell cycle exit and differentiation of mammalian cochlear hair cells. *Proc Natl
17 Acad Sci U S A*. Aug 20 2013;110(34):13869-74. <https://doi.org/10.1073/pnas.1222341110>.
- 18 7. Muthu V, Rohacek AM, Yao Y, et al. Genomic architecture of Shh-dependent cochlear
19 morphogenesis. *Development*. Sep 19 2019;146(18). <https://doi.org/10.1242/dev.181339>.
- 20 8. Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. Pax2 and Pax8 cooperate in
21 mouse inner ear morphogenesis and innervation. *BMC Dev Biol*. Aug 20 2010;10:89.
22 <https://doi.org/10.1186/1471-213X-10-89>.
- 23 9. Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. Lmx1a and Lmx1b are Redundantly
24 Required for the Development of Multiple Components of the Mammalian Auditory
25 System. *Neuroscience*. Jan 1 2021;452:247-264.
26 <https://doi.org/10.1016/j.neuroscience.2020.11.013>.
- 27 10. Filova I, Bohuslavova R, Tavakoli M, Yamoah EN, Fritzsch B, Pavlinkova G. Early Deletion of
28 Neurod1 Alters Neuronal Lineage Potential and Diminishes Neurogenesis in the Inner Ear.
29 *Front Cell Dev Biol*. 2022;10:845461. <https://doi.org/10.3389/fcell.2022.845461>.
- 30 11. Filova I, Pysanenko K, Tavakoli M, et al. ISL1 is necessary for auditory neuron development
31 and contributes toward tonotopic organization. *Proc Natl Acad Sci U S A*. Sep 13
32 2022;119(37):e2207433119. <https://doi.org/10.1073/pnas.2207433119>.
- 33 12. Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B. Conditional deletion of N-Myc
34 disrupts neurosensory and non-sensory development of the ear. *Dev Dyn*. Jun
35 2011;240(6):1373-90. <https://doi.org/10.1002/dvdy.22620>.
- 36 13. Ma Q, Anderson DJ, Fritzsch B. Neurogenin 1 null mutant ears develop fewer,
37 morphologically normal hair cells in smaller sensory epithelia devoid of innervation. *J
38 Assoc Res Otolaryngol*. Sep 2000;1(2):129-43. <https://doi.org/10.1007/s101620010017>.
- 39 14. Song H, Morrow BE. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for
40 inner ear development. *Dev Biol*. Feb 2023;494:71-84.
41 <https://doi.org/10.1016/j.ydbio.2022.12.003>.
- 42 15. Xu J, Li J, Zhang T, et al. Chromatin remodelers and lineage-specific factors interact to
43 target enhancers to establish proneurosensory fate within otic ectoderm. *Proc Natl Acad
44 Sci U S A*. Mar 23 2021;118(12). <https://doi.org/10.1073/pnas.2025196118>.
- 45 16. Schulte D, Geerts D. MEIS transcription factors in development and disease. *Development*.
46 Aug 15 2019;146(16). <https://doi.org/10.1242/dev.174706>.
- 47

1 17. Duran Alonso MB, Vendrell V, Lopez-Hernandez I, et al. Meis2 Is Required for Inner Ear
2 Formation and Proper Morphogenesis of the Cochlea. *Front Cell Dev Biol.* 2021;9:679325.
3 <https://doi.org/10.3389/fcell.2021.679325>.

4 18. Duncan JS, Fritzsch B. Continued expression of GATA3 is necessary for cochlear
5 neurosensory development. *PLoS One.* 2013;8(4):e62046.
6 <https://doi.org/10.1371/journal.pone.0062046>.

7 19. Matei V, Pauley S, Kaing S, et al. Smaller inner ear sensory epithelia in Neurog 1 null mice
8 are related to earlier hair cell cycle exit. *Dev Dyn.* Nov 2005;234(3):633-50.
9 <https://doi.org/10.1002/dvdy.20551>.

10 20. Pauley S, Lai E, Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the
11 mammalian inner ear. *Dev Dyn.* Sep 2006;235(9):2470-82.
12 <https://doi.org/10.1002/dvdy.20839>.

13 21. Gao J, Skidmore JM, Cimerman J, et al. CHD7 and SOX2 act in a common gene regulatory
14 network during mammalian semicircular canal and cochlear development. *Proc Natl Acad
15 Sci U S A.* Mar 5 2024;121(10):e2311720121. <https://doi.org/10.1073/pnas.2311720121>.

16 22. de Lope C, Garcia-Lucena R, Magarinos M, et al. Dysfunction of programmed embryo
17 senescence is linked to genetic developmental defects. *Development.* May 1 2023;150(9).
18 <https://doi.org/10.1242/dev.200903>.

19 23. Yao H, Hill SF, Skidmore JM, et al. CHD7 represses the retinoic acid synthesis enzyme
20 ALDH1A3 during inner ear development. *JCI Insight.* Feb 22 2018;3(4).
21 <https://doi.org/10.1172/jci.insight.97440>.

22 24. Urness LD, Wang X, Doan H, et al. Spatial and temporal inhibition of FGFR2b ligands
23 reveals continuous requirements and novel targets in mouse inner ear morphogenesis.
24 *Development.* Dec 18 2018;145(24). <https://doi.org/10.1242/dev.170142>.

25 25. Galvez H, Tena JJ, Giraldez F, Abello G. The Repression of Atoh1 by Neurogenin1 during
26 Inner Ear Development. *Front Mol Neurosci.* 2017;10:321.
27 <https://doi.org/10.3389/fnmol.2017.00321>.

28 26. Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation,
29 comparison and visualization. *Bioinformatics.* Jul 15 2015;31(14):2382-3.
30 <https://doi.org/10.1093/bioinformatics/btv145>.

31 27. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native
32 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
33 proteins and nucleosome position. *Nat Methods.* Dec 2013;10(12):1213-8.
34 <https://doi.org/10.1038/nmeth.2688>.

35 28. Vierstra J, Stamatoyannopoulos JA. Genomic footprinting. *Nat Methods.* Mar
36 2016;13(3):213-21. <https://doi.org/10.1038/nmeth.3768>.

37 29. Bok J, Dolson DK, Hill P, Ruther U, Epstein DJ, Wu DK. Opposing gradients of Gli repressor
38 and activators mediate Shh signaling along the dorsoventral axis of the inner ear.
39 *Development.* May 2007;134(9):1713-22. <https://doi.org/10.1242/dev.000760>.

40 30. Driver EC, Pryor SP, Hill P, et al. Hedgehog signaling regulates sensory cell formation and
41 auditory function in mice and humans. *J Neurosci.* Jul 16 2008;28(29):7350-8.
42 <https://doi.org/10.1523/JNEUROSCI.0312-08.2008>.

43 31. Moon KH, Ma JH, Min H, et al. Dysregulation of sonic hedgehog signaling causes hearing
44 loss in ciliopathy mouse models. *Elife.* Dec 31 2020;9. <https://doi.org/10.7554/elife.56551>.

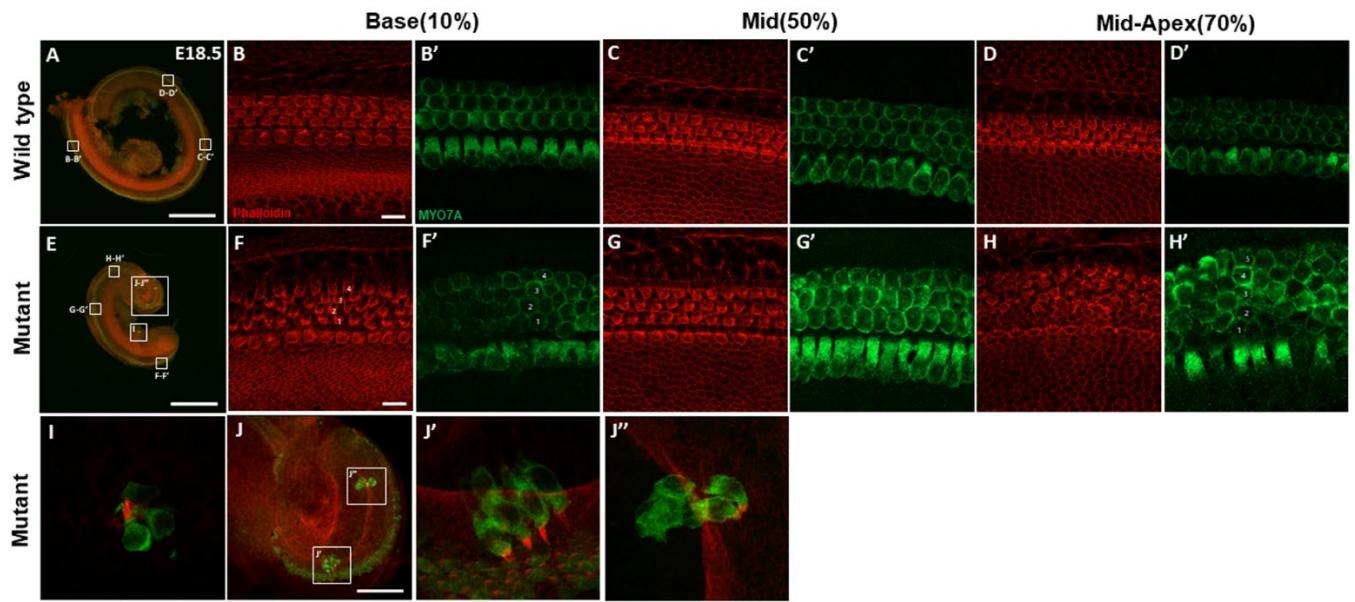
45 32. Albano RM, Arkell R, Beddington RS, Smith JC. Expression of inhibin subunits and follistatin
46 during postimplantation mouse development: decidual expression of activin and
47 expression of follistatin in primitive streak, somites and hindbrain. *Development.* Apr
48 1994;120(4):803-13. <https://doi.org/10.1242/dev.120.4.803>.

1 33. Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL. FGF signaling regulates otic
2 placode induction and refinement by controlling both ectodermal target genes and
3 hindbrain Wnt8a. *Dev Biol*. Apr 15 2010;340(2):595-604.
4 <https://doi.org/10.1016/j.ydbio.2010.02.016>.

5 34. Uehara M, Yashiro K, Mamiya S, et al. CYP26A1 and CYP26C1 cooperatively regulate
6 anterior-posterior patterning of the developing brain and the production of migratory
7 cranial neural crest cells in the mouse. *Dev Biol*. Feb 15 2007;302(2):399-411.
8 <https://doi.org/10.1016/j.ydbio.2006.09.045>.

9 35. Zhao X, Henderson HJ, Wang T, Liu B, Li Y. Deletion of Clusterin Protects Cochlear Hair
10 Cells against Hair Cell Aging and Ototoxicity. *Neural Plast*. 2021;2021:9979157.
11 <https://doi.org/10.1155/2021/9979157>.

12 36. Prajapati-DiNubila M, Benito-Gonzalez A, Golden EJ, Zhang S, Doetzlhofer A. A counter
13 gradient of Activin A and follistatin instructs the timing of hair cell differentiation in the
14 murine cochlea. *eLife*. Jun 12 2019;8. <https://doi.org/10.7554/eLife.47613>.

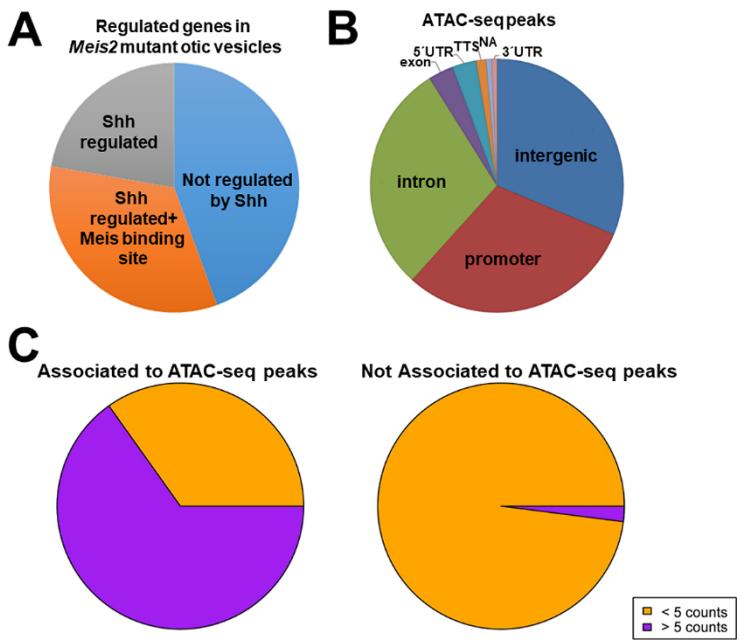

15 37. Koo HY, Kim MA, Min H, et al. Follistatin regulates the specification of the apical cochlea
16 responsible for low-frequency hearing in mammals. *Proc Natl Acad Sci U S A*. Jan 3
17 2023;120(1):e2213099120. <https://doi.org/10.1073/pnas.2213099120>.

18 38. Tateya T, Imayoshi I, Tateya I, et al. Hedgehog signaling regulates prosensory cell
19 properties during the basal-to-apical wave of hair cell differentiation in the mammalian
20 cochlea. *Development*. Sep 2013;140(18):3848-57. <https://doi.org/10.1242/dev.095398>.

21

22

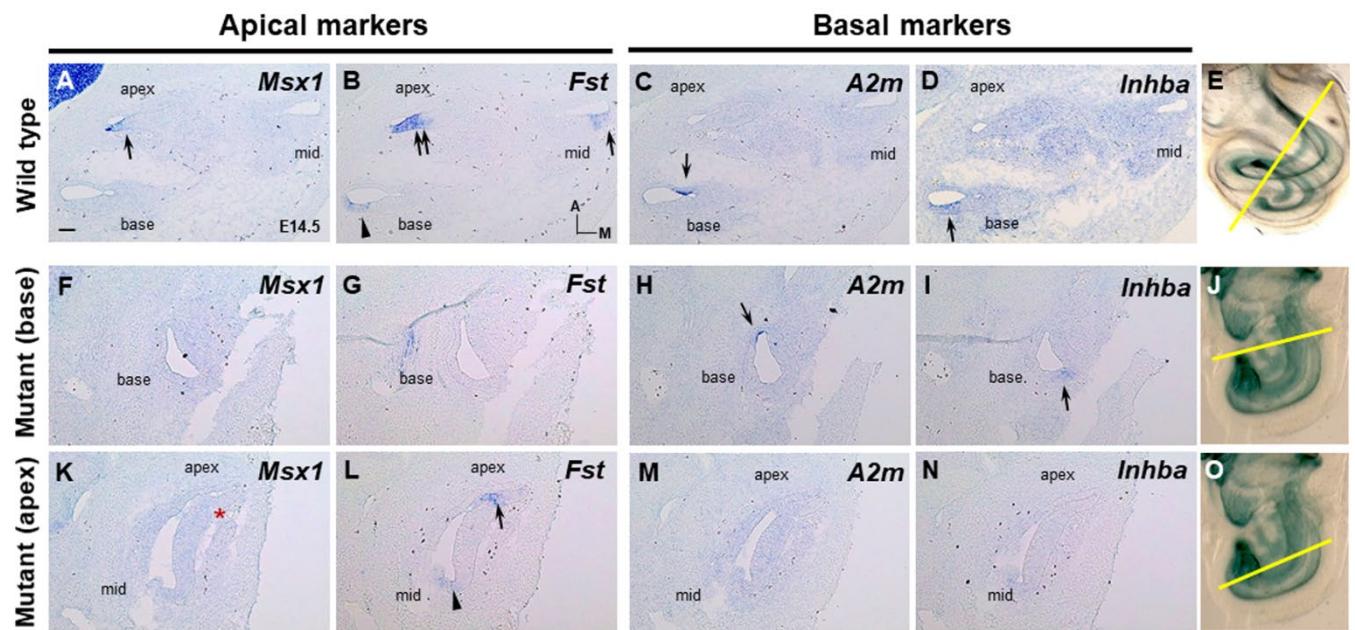
1 **Figure 1**



2 **Figure 1. *Meis2*^{flox/flox}; *Pax2*^{Cre/+} cochlea shows defective cochlear outgrowth and organ of
3 Corti patterning.**

4 E18.5 wild type and *Meis2*^{flox/flox}; *Pax2*^{Cre/+} cochleas were stained with phalloidin to visualize
5 hair bundles (red) and anti-Myo7a antibody to visualize hair cells (green). (A-D') In E18.5
6 wild type cochlea, one row of inner hair cell (IHC) and three rows of outer hair cells (OHCs)
7 were observed. (E-J'') In *Meis2*^{flox/flox}; *Pax2*^{Cre/+} cochlea, the cochlear length was severely
8 shortened compared to wild type (E) and four rows (F,F') or five rows of OHC (H,H') were
9 often observed. Vestibular-like hair cells were observed in the greater epithelial ridge region
10 of the apical cochlea (I-J''). Scale bar in (A, E) is 500um; scale bar in (B-D', F-H', I, J'-J'') is
11 10um.
12

13


1 **Figure 2**

2
3 **Figure 2. Distribution of Shh-regulated genes in *Meis2* mutant otic vesicles and association**
4 **of open chromatin with otic gene expression.**

5 Pie chart showing the relative distribution of genes differentially expressed in *Meis2* mutant
6 otic vesicles and regulation of these genes by *Meis2* (A). Pie chart showing the distribution
7 of open chromatin detected by ATAC-sequencing in mouse otic vesicles (B). Pie charts
8 showing the distribution of otic genes with a relatively high (purple) or low (orange) level of
9 expression within open chromatin detected by ATAC-sequencing (C). Abbreviations: UTR:
10 untranslated region; TTS: transcription termination site; NA: not associable
11

1 **Figure 3**

2 **Figure 3. Conditional loss of *Meis2* in inner ear results in shortened cochlea and loss of cochlear identity at the apex**

3 (A-D) In E14.5 wild type cochlea, *A2m* and *Inhba* are expressed in basal cochlea (C-D, arrows)
4 whereas *Fst* and *Msx1* are expressed strongly in apical cochlea (A-B, arrows). (F-N) In E14.5
5 *Meis2*^{fl/fl}; *Pax2*^{Cre/+} cochlea, the basal markers are expressed in the basal turn (H-I,
6 arrows), whereas the apical markers are either lost (*Msx1* in K, asterisk) or weakly expressed
7 (*Fst* in L, arrow) in middle and apical turns (K-N). The different planes of sections are
8 indicated on the right (E, J, O, modified from Duran Alonso et al., 2021). Scale bar in A (100
9 um) applies to all section panels.

10

1
2
3

1 **Table 1**

2	Gene	MGI	Expression in otic vesicle/cochlea	Fold-regulation	Shh mutant	open chromatin/Meis site
3	<i>Cyp26c1</i>	2679699	ventral otic vesicle	0.6x	down	+/-
4	<i>Fst</i>	95586	ventral otic vesicle/sensory tissue	0.3x	down	+
5	<i>Frem2</i>	2444465	non-sensory tissue	0.6x	down	+/-
6	<i>Clu</i>	12759	ventral otic vesicle/sensory tissue	0.3x	down	+
7	<i>Lars2</i>	2142973	n.d.	0.6x	n.l.	+
8	<i>Acta2</i>	87909	n.d.	0.3x	n.l.	-
9	<i>Alcam</i>	1313266	cochlear ganglion	1.6x	up	+/-
10	<i>Aldh1a2</i>	5819521	medial-lateral otic vesicle/ non-sensory tissue	0.3x	n.l.	+/-
11	<i>Bcam</i>	1929940	n.d.	0.6x	down	+/-
12	<i>Lin28a</i>	1890546	ventral and dorsal otic vesicle	0.4x	n.l.	+/-
13	<i>Cacna1g</i>	1201678	n.d.	1.6x	up	+
14	<i>Tgfb2</i>	98726	otic vesicle/sensory epithelium	1.6x	n.l.	+
15	<i>Irs4</i>	1338009	n.d.	0.4x	n.l.	+
16	<i>Col12a1</i>	88448	otic capsule	1.7x	up	+

18 **Table 1:** Genes differentially regulated in *Meis2*^{fl/fl}; *Pax2*^{Cre} mouse mutants. The reference number of the genes at Mouse Genome
 19 Informatics (MGI), their expression in the otic vesicle and/or cochlea, their fold-regulation listed according to significance (p-value), their
 20 regulation in Shh mutants⁷, the presence of open chromatin and a Meis binding site are indicated. Abbreviations: n.d.: not determined;
 21 n.l.: not listed

22

1 **Table 2**

1	2	3	4	5	6	7	8	9
	Mouse mutant	<i>Fst</i> (E11)	<i>Fst</i> (E15)	<i>Msx1</i> (E15)	Cochlea			
	<i>Meis2</i> ^{fl/fl} ; <i>Pax2</i> ^{Cre}	reduced	reduced	absent	severe truncation			
	<i>Fst</i> ^{-/-} ³⁷	absent	absent	absent (present at E11)	apical truncation			
	<i>Shh</i> ^{fl/fl} ; <i>Foxg1</i> ^{Cre 5,37}	n.d.	present	present	severe truncation			
	<i>Smo</i> ^{fl/fl} ; <i>Emx2</i> ^{Cre 37,38}	present	present	reduced	apical truncation			
	<i>Smo</i> ^{fl/fl} ; <i>Foxg1</i> ^{Cre 3,7}	reduced	n.a.	n.a.	loss of cochlea			

8 **Table 2:** Expression of *Fst* and *Msx1* at the indicated embryonic stages (E) and effects on cochlear outgrowth in the indicated mouse
9 mutants. Abbreviations: n.d.: not determined, n.a.: not applicable

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25


26

27

28

29

1 **Supplementary Figure 1**

2

3 Significantly reduced mRNA expression of the indicated genes was observed in E11.5 otic
4 vesicles isolated from *Meis2*^{flox/flox}; *Pax2*^{Cre/+} mutants (red bars) in comparison to wild-type
5 otic vesicles (blue bars). Asterisks: p-value<0,05.

6

7

8

9

10

11

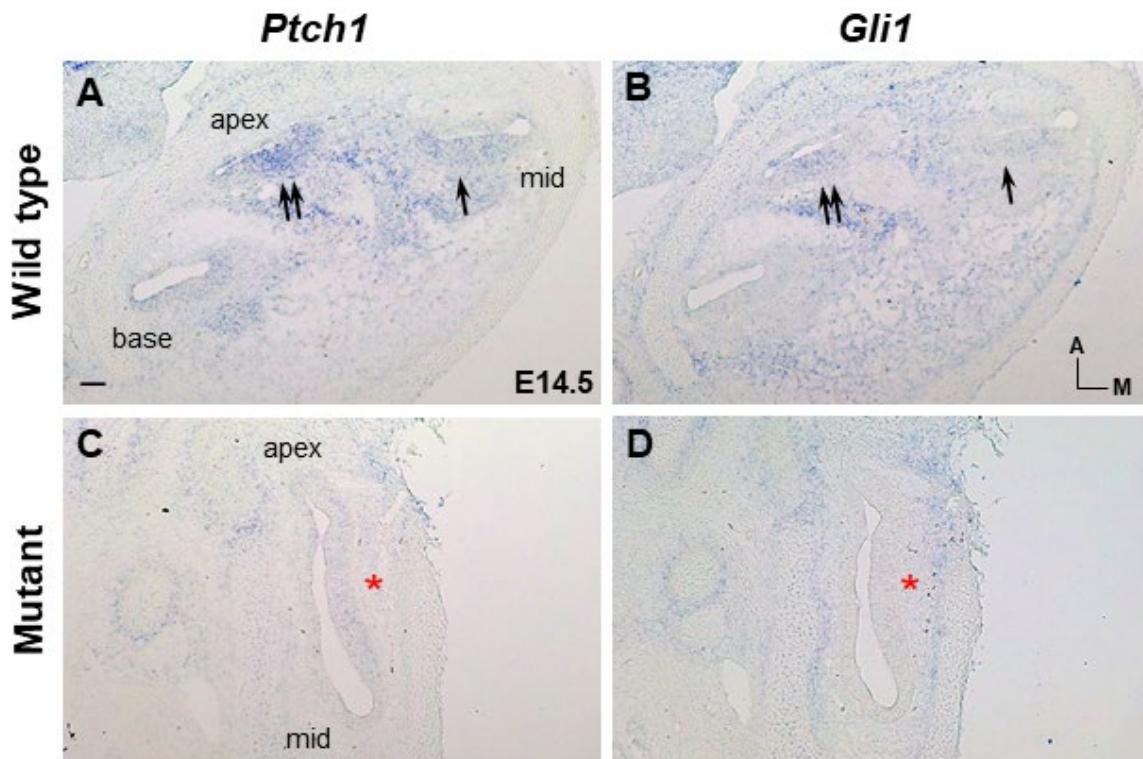
12

13

14

15

16


17

18

19

20

1 **Supplementary Figure 2**

2

3 In E14.5 wild-type cochlea, Shh target genes *Ptch1* and *Gli1* are detected in a graded pattern
4 with stronger expression in the apex (A, B; arrows) and weaker towards the base. In
5 *Meis2*^{fl/fl}; *Pax2*^{Cre/+} mutants, *Ptch1* and *Gli1* expression are strongly reduced in the
6 cochlea (C, D, asterisks).