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Abstract

The identification and characterization of High Atmospheric Turbidity (HAT) episodes is a key
objective of global aerosol monitoring. This study presents a comparison of three different
methodologies that were used to identify HAT episodes in the north-central Iberian Peninsula. The first
methodology (named C&S inventory) is based on columnar aerosol optical depth (AOD from the
Aerosol Robotic Network, AERONET) and surface particulate matter concentrations (PMx from the
European Monitoring and Evaluation Programme, EMEP) as well as ancillary information. Another
methodology (named SPR) is based on PM surface concentrations levels and ancillary information.
Both methods are carefully reviewed by human observers. A third method, based only on fine and
coarse mode values of AOD was also analysed. This method (the SDA or Spectral Deconvolution
Algorithm) is found to be a good operational candidate for automating the identification of HAT
episodes. The three methods allow for the identification of mineral desert dust (coarse type ‘D’) aerosols
and aerosols of fine type, ‘A’ (i.e. biomass burning or polluted aerosols): their mixture, categorized as
‘MD’ and ‘MA’ classes (depending of the prevailing ‘D’ or ‘A’ type) is only identified in the C&S and
SDA inventories. The three inventories show about 60% coincidence across a 2005-2014 reference
period. When the C&S and SDA inventories are compared, the agreement is very high if columnar
aerosol data is available: >90% for desert aerosol type and >70% for fine aerosol type. The comparative

study of these three aerosol inventories was motivated by the need to automate existing methodologies.
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Nomenclature

a: spectral derivative of AOD at 500 nm

a’: Spectral derivative of a

A: Flag for pollution caused by urban-industrial and biomass burning aerosols

AE: Angstrom exponent

AOD: Aerosol Optical Depth

AODs: Aerosol Optical Depth at 500 nm

AODc: Coarse mode Aerosol Optical Depth at 500nm

AODE: Fine mode Aerosol Optical depth at 500nm

C: Flag for pollution caused by coarse aerosols (only in SDA inventory)

C&S: ‘Columnar and Surface’ inventory

D: Flag for pollution caused by mineral dust aerosols

DS: Direct Sun products from AERONET network

n: fine mode fraction (at 500 nm)

F: Flag for pollution caused by fine aerosols (only in SDA inventory)

HAT: High atmospheric turbidity

M: Flag for pollution caused by a mixture of fine and coarse aerosols (only in SDA inventory)
MA: Flag for a pollution mixture with predominance of urban-industrial and biomass burning aerosols
MD: Flag for a pollution mixture with predominance of mineral dust aerosols

NT: Flag for non-turbid cases (only in SDA inventory)

SDA: ‘Spectral Deconvolution Algorithm’ inventory

SPR: *Spanish and Portuguese Reference method’ inventory



1. Introduction

Atmospheric aerosols represent a large source of uncertainty in the complex Earth-atmosphere climate
system. They have a notable impact on critical issues such as the radiative budget, air quality, human
health, hydrological cycle, cloud life cycle, etc.(e.g., Boucher et al., 2013). The contribution of aerosols
to these effects is magnified during high atmospheric turbidity (HAT) episodes: strong aerosol loads that
occur over large, regional, or local scales and over short time periods. Aerosols from distant or nearby
emission sources can, during HAT episodes, dramatically change the typical values observed for aerosol
load levels in a given area as well as their optical and microphysical properties. Aerosol characterization
during such HAT episodes can be accomplished using different measuring techniques. For air quality
monitoring, PMy, (particulate matter concentration for particle sizes below 10 um in diameter) or
speciation measurements are used to detect those days with concentration data in excess of the
established safety thresholds for human health (e.g., Pey et al. 2013, using European Monitoring and
Evaluation Programme, EMEP, data). Networks of ground-based data using Sun photometers or Lidar
instruments, such as AERONET (AERosol Robotic NETwork, Holben et al., 1998) and EARLINET
(European Aerosol Research Lidar Network, Pappalardo et al., 2014), can provide regional to global-
scale indicators of HAT episodes. Furthermore, satellite observations provide data for wider
interpretation of global scale phenomena (e.g., CALIOP-CALIPSO, MODIS) (e.g., Levy et al., 2010).

Recent studies have demonstrated the relevance of long-term identification and characterization of
different HAT episodes (e.g., Toledano et al., 2007; Valenzuela et al., 2012; Gkikas et al., 2013, 2016a;
Pey et al., 2013; Burgos et al., 2016). Columnar quantities such as Aerosol Optical Depth (AOD) and
the Angstrém Exponent (AE), defined by the spectral slope of the AOD across a given wavelength
interval, are commonly used in the discrimination of aerosol types: these being mainly, maritime, desert
dust, urban, biomass burning, and mixtures (e.g., Holben et al., 2001; Toledano et al., 2007; Bennouna
et al., 2016). A simple scattergram plot of AE vs AOD enables certain thresholds to be defined in order
to discriminate aerosol types. The use of air mass back trajectories allows the identification of aerosol
sources (e.g., Pace et al., 2006; Valenzuela et al., 2012) and is accordingly, a key source of information
for aerosol type identification. Similar methods have been recently applied to satellite data to identify
and characterize different aerosol types over large areas (e.g., Gkikas et al., 2016a, 2016b). These
methods differ in the selected aerosol parameter/properties (such as fine mode fraction, effective radius,
among others) and threshold values. However, the weakness of these methods is that generally they are

only efficient for identifying relatively strong episodes in terms of AOD values.



The lack of studies comparing different methodologies whose nominal mandate is the identification of
aerosol episodes, underscores the need for more exhaustive analyses of this nature. Hence, this study
presents a comprehensive comparison between three different HAT identification techniques that
employ columnar and/or surface data. Cachorro et al. (2016) developed a long-term (2003 to 2014)
desert dust inventory over north-central Spain based on the visualization and analysis of both surface
and columnar aerosol data together with other ancillary information. This methodology is also employed
in this study (with some adaptations) to identify HAT episodes related to the incursion of urban-
industrial and biomass burning aerosols and other fine mode dominated aerosols. This day-by-day
visualization of an entire data series over a certain site can be considered the most comprehensive way
to address the issue of HAT event day identification, and constitutes our first inventory. The handicap of
such careful monitoring is that the process cannot easily be applied to a large area with many
measurement stations. Moreover, long-term datasets often have missing data for extended periods of
time. This lack of measurements may prevent from appropriate detection of HAT episodes. Given the
strong seasonality of long-range transported aerosol events, the absence of data in certain periods or
seasons can also affect the overall statistics. The combination of columnar and in situ aerosol data is

therefore helpful to minimize the gaps in the analysis.

A second inventory is performed every year by the Spanish Government using weather forecasts,
aerosol model forecasts and a re-evaluation of the inventory with surface PM concentrations in different
sectors of the Iberian Peninsula (Viana et al., 2010; MITECO, 2019). These two methods must be
carried out by human observers with considerable expertise and can require significant time to be
completed. They are difficult to apply in real time over large areas with many sites. Indeed, a
bibliographic search indicated that no real time reference method is currently available. For these
reasons a new automatic method, requiring only aerosol columnar data, is proposed and applied in this
study. This third inventory method, applied for the first time as part of this study, detects the occurrence

of coarse and/or fine mode HAT event days.

The very clean background over the plateau of the north-central Iberian Peninsula enables an accurate
identification of different types of HAT episodes. The closeness to the African continent ensures that
desert dust aerosol will be one of the most dominant aerosol types throughout the year. Urban-industrial
and biomass burning aerosols are also present due to local sources as well as long range transport from
European and North American sources. The complex orography of the Iberian Peninsula also ensures
extended periods of air mass recirculation and therefore the observation of aged aerosol, particularly

during the summer months.



The aim of this study is to carry out a comprehensive comparison among the three above-mentioned
methodologies for identifying high atmospheric turbidity event days in the central area of the Iberian
Peninsula between 2005 and 2014. For illustration, the identification of all the episodes registered
during the entire year 2014 is presented as a particular case study. Furthermore, the sensitivity of the

proposed automated method to the threshold selection is also investigated.

2. Aerosol Database
2.1. Columnar AERONET and surface EMEP aerosol data

Columnar aerosol data presented in this study are measured using the CIMEL CE-318 Sun photometers
(Holben et al., 1998; Giles et al., 2019) at the Palencia site (41.9° N, 4.5° W, and 750 m a.s.l.) belonging
to AERONET/RIMA (AERosol RObotic NETwork/ “Red Iberica de Medida fotométrica de Aerosoles™)
since 2003. Direct sun (DS) data include spectral AODps at 7 different wavelengths (340, 380, 440, 500,
675, 870, 1020 nm respectively) and the associated Angstrom Exponent (AEps) retrieved from the AOD
using different pairs (or intervals) of wavelengths (Vergaz et al.,, 2001). These 15-minute daytime
records (level 1.0) are processed under cloud-screening algorithm (level 1.5) and they are considered as
‘instantaneous values’ which can be used to identify changes of aerosol properties across very small
time scales. All these records are also daily averaged to characterize day to day statistics. The
‘instantaneous’ or daily averaged databases are used depending on the case. Only AERONET version 2
level 2 (quality assured) DS products between 2003 and 2014 were analyzed. The data coverage in this
period for the sun photometer is 67% (for AOD), and the EMEP data coverage is 90% (for PM). For
further details and year-to-year information, see Cachorro et al. (2016).

With respect to aerosol surface concentration measurements, the closest site to Palencia is a rural site
located at Peflausende (41.28°N, 5.87°W, and 985 m a.s.l.), belonging to the EMEP (European
Monitoring and Evaluation Programme) network. Daily sampled PM;, particle concentrations are
obtained by gravimetric determinations. These high quality measurements are the official data reported
to the European Commission (e.g., Pey et al., 2013). These PM;o data started in year 2000. The distance
of 100km between Palencia (columnar data) and Pefiausende (surface data) does not introduce any effect
regarding the identification of HAT event days (Cachorro et al., 2016).

2.2. AERONET SDA collection data
AERONET provides a high number of aerosol products derived from different algorithms which use

different inputs (direct sun, sky radiance measurements, AOD data, etc.). In particular, the Spectral



Deconvolution Algorithm (SDA ; O’Neill et al., 2001, 2003) algorithm employed by AERONET
utilizes as input five spectral AOD values in the 380-870 nm spectral range. The output is a variety of
fine and coarse mode products (see Section 3.2). Those products are evaluated at a reference wavelength
of 500 nm, and include: total AOD at 500nm (named AODsy, as mentioned above), fine mode AOD
(AODg) and coarse-mode AOD (AODc), fine mode fraction (n=AOD{/AOD), spectral AOD derivative
(o, as per O’Neil et al., 2001), and spectral derivative of o, denoted as o’. Here, we must note the
different meaning of o and AE, both are defined in the literature as the Angstrém coefficient, but o is
defined as the spectral derivative of AOD at a specific wavelength (500 nm in the SDA algorithm) and
AE is related with a given spectral wavelength interval. More details about these concepts were given by
Shifrin (1995). Therefore the values of o and AE are different but a strong correlation exists between

both coefficients.

The AERONET version 2 level 2 (quality-assured) SDA product is only available since July 2008 at
Palencia site. To extend the analysis between 2005 and 2008, an extra quality control was applied to
level 1.5 data to ensure data and retrieval SDA reliability. We were able to extend our analysis to the
entire 2005-2014 period. A few details concerning the nomenclature are worth to be mentioned: the DS
algorithm AODs used throughout the text are those derived at the 440 nm channel and always appear
with the subscript ‘DS’ (see first paragraph of Section 2), while the SDA retrievals are subscript-free

and referenced to a wavelength of 500 nm.

Based on these measured/derived data, three different inventories have been constructed. The inventory
named “SPR” (see Section 3.3) uses only surface PM;o data; and the “SDA” inventory uses only
columnar AOD data (see Section 3.2). The inventory named “C&S” (see Section 3.1) uses both
columnar AODps at 440 nm (AODps 440nm) and surface PMy, data. The common database with both

columnar and surface aerosol data used in this study spans between 2005 and 2014.

2.3. Ancillary information: HYSPLIT model

Air mass back-trajectories of 120 hours duration were calculated with the version 4 HYSPLIT model
(Hybrid Single-Particle Lagrangian Integrated Trajectory; Stein et al., 2015) at 8, 12 and 16 UTC, and at
six atmospheric heights (500, 1500, 3000, 4000, 5500, and 7000 m a.g.l.) in order to check the trajectory
of the air masses and therefore the possible aerosol sources during HAT episodes. The six heights were

chosen to accommodate the fact that the transport of particles associated with high turbidity episodes



can occur at altitude levels below and above the boundary layer. The evaluation of the air mass
trajectories is carried out at three different times each day in an attempt to account for different diurnal
variants of HAT occurrence. This includes when a HAT episode is starting/ending. During these initial
or final periods, the HAT conditions can occur only in just a few hours of the whole day. The
meteorological database used as input for HYSPLIT is the Global Data Assimilation System (GDAS)
dataset. HYSPLIT-derived sources were defined when the air masses spent at least 15% of the entire
back-trajectory (at any height) over Africa, Europe, Mediterranean Basin, American Continent, Atlantic
Ocean, and locally (lberian Peninsula). Further details of the followed methodology were explained in
detail by Mateos et al. (2015). In this study, the air mass back-trajectories were, in particular, employed

to corroborate the presence of mineral dust, urban-industrial and biomass burning aerosols.

3. Methods for identifying high atmospheric turbidity conditions

The methods presented in this study allows discriminating between two main types of HAT episodes:
those related to coarse mode mineral dust, and those related to fine particles whose origin can mostly be
attributed to anthropogenic sources and biomass burning. Desert dust outbreaks will be identified with a
‘D’ flag. The A’ flag includes mainly fine mode aerosols resulting from fossil fuel combustion from
industry or urban-pollution, biomass burning (BB) aerosols from forest fires and other atmospheric
processes, mainly of anthropogenic origin. However, this well-defined coarse and fine particle types are
usually mixed with variable fine/coarse mode contribution, giving rise to aerosol mixtures. We have
distinguished two of them, ‘MD’ and ‘MA’, to indicate that desert dust or fine aerosol particles are
predominant in that aerosol mixture, respectively. These cases of mixtures are only distinguished in the
C&S and SDA methodologies (see below).

We must note that episodes dominated by fine mode particles represent aerosols of different type which
are difficult to distinguish because of the necessity of other more specific parameters (i.e., absorption
coefficient or single scattering albedo in the case of columnar aerosol measurements or speciation in the
case of PMy, filter measurements). However, given the clean atmospheric characteristic of our area of
study, BB and pollution aerosol episodes can be easily distinguished by analysing ancillary information,
such as air mass back-trajectories and public domain information (e.g. newspaper information about

local or strong regional forest fires).

We also must emphasize that the existing methodologies to detect and evaluate the episodes of HAT are
not simple, because they require different data and information of different sources to give reliable
results. and they are time-consuming and rely on the researcher expertise. Therefore, novel automatic
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methodologies as proposed in this paper are of great relevance, as they can provide objective and near
real-time HAT identification.

3.1.Method using Columnar and Surface (C&S) aerosol data: C&S inventory

One of the HAT inventories used in this study follows the methodology described by Cachorro et al.
(2016) for the identification of mineral dust intrusions. The methodology used in that study serves as a
reference for the other methodologies. It is based on the joint interpretation of columnar (AOD, AE) and
surface data (PMyg), making the visual inspection of the whole time series of instantaneous values with
predefined threshold values. Obviously, the procedure is hard and time consuming, similarly in this
aspect to the SPR method. The advantage of the simultaneous usage of columnar and surface aerosol
quantities is that they contain complementary information which can help to identify and classify a HAT
event day even if a HAT fingerprint is absent or very weak in one of the two data sets. Furthermore, the
impact of missing one data type on a certain period is minimized since the other data can still be
analyzed. Besides, in order to ensure the reliability of the HAT event, ancillary information is also

required.

Due to the clean continental conditions of our study area, moderate and high intensity episodes can be
detected by establishing certain AODps thresholds at 440nm wavelength (AODps 440nm) and in terms of
PMjo. Instantaneous values of AODps 440nm and AEps are used for the detection of high turbidity events,
together with the daily concentrations of PMjo. The HAT episodes are defined as those cases showing
an aerosol load of AODpsg 44onm > 0.18 and/or PMyo > 13 pug/m® (Cachorro et al., 2016). These thresholds
were established based on the analysis of aerosol climatology (both AODps 440nm and PMjg) and
previous knowledge about the aerosols over this area (e.g., Bennouna et al., 2013; 2016; Burgos et al.,
2016).

The discrimination between fine or coarse particles causing the high turbidity is defined in terms of
AEps parameter. The AEps < 1.0 is taken to identify desert dust events (‘D’ flag) and AEps > 1.5 to
represent urban-industrial and biomass burning pollution (A’ flag). The interval of 1.0 < AEps < 1.5 is
taken to represent mixtures, either labelled as ‘MD’ or ‘MA’ according to the available ancillary

information.

The classification of each day of each event is corroborated by analyzing ancillary information (a
process which is also very beneficial in helping to determine the duration of the events). This ancillary

information is, mainly: HYSPLIT backward air mass trajectories, MODIS RGB and AOD images,



meteorological maps and the NAAPS Global Aerosol model (Navy Aerosol Analysis and Prediction
System). Further details about this method were described in detail by Cachorro et al. (2016). The used

ancillary information for this method and SPR method is very similar.

The C&S inventory includes 667 HAT event days in the 2005-2014 period (18% of the days). A total of
330 are categorized as dust days, with 193 in the “D” category and the rest (137) in the “MD” category .
A total of 189 and 148 event days were, respectively, attributed to the ‘A’ and ‘MA’ categories.

3.2. Method using Spectral Deconvolution Algorithm (SDA): SDA inventory
3.2.1. First step in the identification of fine and coarse mode HAT episodes

Products derived from Spectral Deconvolution Algorithm are based on the spectral curvature of the
AOD values. This information, represented by its spectral derivatives, a and o’, IS essential to extracting
the fine and coarse mode components of the AOD. . The bimodal basis for spectral curvature analysis
can be found in O’Neill et al. (2001) while the fine/coarse mode retrieval algorithm (the Spectral
Deconvolution Algorithm or SDA) was described by O’Neill et al. (2003). The SDA retrievals of fine
mode AOD (AODgE) and coarse mode AOD (AODc¢) along with the corresponding fine mode AOD
fraction (n) at 500nm wavelength, are an operational AERONET product.

The AODg and AODc time series for the entire data set were analysed in detail (e.g., frequency
histograms are shown in Figure S1). A systematic statistical analysis leads us to propose the 85"
percentile (P85) as an indicator of high atmospheric turbidity episodes associated with each mode. An
AODk value exceeding 0.12 (P85 of AODy) is labelled as fine mode aerosol event (first flag ‘F’). If the
AODc¢ value is larger than 0.05 (P85 of AODc) the event is declared to be coarse in nature (first flag
‘C’). If both flags of each individual mode are activated, then the event is labelled as an aerosol mixture

(‘“M’ flag). To sum up:

- If AODc > (P85)¢ : “C’ flag (coarse event)

- If AODg > (P85)¢: ‘F’ flag (fine event)

- If AOD¢ > (P85)c & AODg > (P85)¢: ‘M’ flag (mixture event)

- If AODc < (P85)c & AODE < (P85)¢: “NT’ flag (non-turbid)

where (P85)¢/k is the corresponding percentile for the coarse(C)/fine(F) AOD at 500nm wavelength.

The use of an 85™ percentile is, an appropriate way of objectively adapting our HAT threshold approach

to local or regional conditions. Given that this inventory is generated by using SDA retrievals, it is



labelled the ‘SDA’ inventory. This method, therefore, only uses AODr and AODc data. In order to
check the aerosol type identification the o’ vs o space is used, which is also defined by SDA products.
This approach is rendered more informative if one contextualizes the aerosol classification with families
of fine mode fraction (1) and spectral curvature parameter (‘t’) curves (see the definition of “t” given by
O’Neill, 2001). The ‘t’ values are related to the fine mode aerosol type and independent of n
(independent of the aerosol content as per O’Neill, 2010). Furthermore, it provides a visible tool that
helps to better understand how a certain aerosol type interacts with the local environment. This kind of
diagram, overlaid by the continuously differentiable (n, t) family of curves is a graphical representation
of the curvature implications of bi-modality. Figure la shows an o’ vs a scatterplot with the
superimposed curves of constant n and ‘t” for the different classes of HAT event days (‘C’, ‘F’, and ‘M’
categories) at the Palencia site. Most HAT conditions in the coarse mode present negative o’ values and
n below 0.7. With respect to ‘F’ event days, they are placed in the upper region of the plot: n > 0.7 and
positive a’, with most of the ‘t’ values between -0.47 and 1.39. The mixture aerosol type occupies a
large region (0.2 <1 < 0.8) and with most of the ‘t’ values being in the neighborhood of the t=1.39
curve. Therefore, the three aerosol types in our classification by SDA method can be identified in the o’

VS o Space.

Different case studies have been reported for o’ vs o diagrams. O’Neill (2010), for instance, presented a
coarse mode event at the CARTEL AERONET (AEROCAN) site with n values below 0.7 and ‘t’
parameter values confined between 1.39 and 2.15, while a fine mode event was located in the region for
which 1> 0.7 and ‘t’ values were between 0.55 and 2.15. In a pristine sub-Arctic area, Rodriguez et al.
(2012) found that continental and smoke/pollution episodes were located in the upper region of this kind
of diagram (n > 0.7 and ‘t’ values between -0.47 and 2.15) while marine aerosols were located in the ) <
0.7 region. Spectral pairs in the upper (high n) regions of o’ versus a plot were also reported by Salinas
et al. (2013) for a smoke event in Singapore. The value of n = 0.7 is somewhat a natural threshold
between coarse and fine mode HAT event days. In fact, this value was used to discriminate between
different types of mixed classes for HAT episodes that were classified as mixtures (as performed in the

next subsection).

Our SDA classification approach (flags of ‘F’, *‘C’, and ‘M’) yields similar classification categories to
those of previous studies (e.g., O'Neill, 2010; Rodriguez et al., 2012; Salinas et al., 2013).A total of 641
HAT event days in the period 2005-2014 were identified with this method. There are 297 (46%) event
days with HAT in the coarse mode (‘C’ flag), 233 (37%) in the fine mode (‘F’ flag), and 111 (17%)
simultaneously presenting HAT in both modes (‘M’ flag).
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3.2.2. ldentification of ‘D’, ‘MD’, *‘A’, and ‘“MA’ categories.

Once ‘C’,'F’” and ‘M’ aerosol types are identified, we need to ensure the source of the aerosol particles if
the SDA algorithm is to be compared with the previous C&S inventory. In addition, the mixture

predominant types (‘MA’ or “MD’) can be identified too.

Therefore we added air mass back-trajectory information to the a-priori resulting inventory. Paths
followed by air mass trajectories were determined using the HSPYLIT model (see Section 2.2). Possible
aerosol sources on the African, European, and American continents as well as local areas were
determined for each activated flag. If the first flag is *C’, air masses crossing the African Continent are
searched. If the path followed (at any height) crosses Africa, at least 15% of the entire back-trajectory
(see Section 2.2), the aerosol source for this air mass is attributed to North African (Saharan and Sahel)
deserts. The presence of coarse particles is then attributed to mineral dust and the final flag is set to ‘D’.
This kind of methodology has been employed by previous studies on the lIberian Peninsula (e.g.,
Toledano et al., 2009; Mateos et al., 2015; Cabello et al., 2016). If the first flag is ‘F’ and the air masses
spent at least 15% of their flight time over the European and American Continents (or in the local area),
then the fine mode nature of the event is reinforced. Pollution resulting from fine mode aerosols (‘*A’

aerosol type) is then identified with the final flag of ‘A’ replacing the ‘F’ flag.

Possible sources are also checked for the mixture conditions associated with the first flag ‘M’. Those
cases set to the ‘M’ flag along with an aerosol source in North Africa and showing values of n < 0.7 are
interpreted as mixture conditions but with a predominant desert dust contribution (see Figure 1a): their
final flag is accordingly set to ‘MD’ (mixtures with desert dust). If the *M’ flag occurs simultaneously
with a fine mode fraction above 0.7, aerosol sources over the American and European continents and
local areas are searched. If one of those areas is determined to be the source the final flag for those cases

is ‘MA’ (mixtures with a predominance of fine mode particles).

The main characteristics for the (o, o’) space in the first step (HAT identification, Figure 1a) are
essentially conserved in Figure 1b: the ‘D’ classes remain in the ‘C’ and ‘M’ regions and the ‘A’ classes

remain in the ‘F’” and ‘M’ regions.

With the more restrictive aerosol type classification criteria of the second step, the number of event days
has been slightly reduced from 641 to 538 (loss of 103 days). These 538 days of high turbidity are,
respectively, sub-classified, into 205, 58, 232, and 43 occurrences of the ‘D’, ‘MD’, ‘A’, and ‘MA’
flags.
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The 103 high turbidity days with no clear air mass trajectory were further studied. A total of 90 out of
those 103 event days indicate the presence of coarse particles. This is not directly attributed to air
masses crossing over from North Africa, and therefore, they are not classified as ‘D’. They retain the ‘C’
flag (high turbidity in the coarse mode) but are not analysed in this study and do not appear in Figure 1b.
These events exceed the nominal HAT conditions for the coarse mode (P85 AOD¢ > 0.05) but they do
not correspond to very large AODsqo. For all these 90 cases, the median yielded a value of 0.14. This
figure is smaller than the corresponding value obtained for the ‘D’ category: 0.19. Only 3 event days,
initially classified as fine mode HAT episodes, did not meet the air mass criterion and accordingly
retained the ‘F’ flag: these events are not analysed in this study and do not appear in Figure 1b. Finally,
10 event days showing mixture conditions could not, because of the air mass trajectories, be classified as
‘MD’ or ‘MA’ and they are omitted in this study.

The result of this automatic algorithm is accordingly the identification and classification of HAT event
days when air mass back-trajectory supports the presence of coarse mode dust ‘D’ or fine mode ‘A’

aerosol types.

We must call attention that there are event days which are difficult to classify because instantaneous
AOD/AE (or AODc, AODg ) values present low or very variable intensity ranging in the edges of the
threshold values. An entire day (not instantaneous data) is assigned to an aerosol type, therefore

additional information is needed in such cases.
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Figure 1. Scatterplots of o’ vs a (at 500 nm from SDA algorithm) for different aerosol types: (a) simple
classification (three different flags) using the scheme of Section 3.2.1 and (b) classification scheme of
Section 3.2.2 considering air mass paths (four different flags). Curvilinear coordinate curves of constant
‘t> and n are superimposed on the graph (c.f. O’Neill, 2010). These classifications were applied to the
entire 2003 to 2014 AERONET database of Table 1.

3.3. Spanish and Portuguese Reference (SPR) method: SPR inventory

The third methodology used for identifying HAT episodes has been extensively reported (Escudero et
al., 2005, 2007; Querol et al., 2009; Viana et al., 2010). It is related to surface PM;o data and has been
successfully applied to identify African dust outbreaks in particular. . This procedure largely assures the
identification of African dust episodes, independently of their intensity: it involves the joint
interpretation of meteorological products, aerosol maps from model forecasts, satellite imagery and air
mass back-trajectories. This inventory also allows for possible time delays of up to 2 days in PMyg
levels after the desert dust intrusion (Pey el al., 2013). This inventory is yearly reported by the Spanish
Government (http://www.mapama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-
del-aire/calidad-del-aire/evaluacion-datos/fuentes-naturales/) in order to assess the natural contribution
to excessive PMjo concentrations in different sectors of the Iberian Peninsula (Pérez et al., 2018). The
European Commission (EC) has adopted this method as the standard for investigating the role of desert
dust intrusions over the whole continent (e.g., EC, 2010). The name attributed to this inventory is SPR
(the Spanish-Portuguese reference method, following Viana et al., 2010). Among all the available

sectors, we concluded the northern sector is the most suitable for the comparison in this study. The

13



northern Iberian Peninsula inventory associated with this third methodology was accordingly
downloaded and analysed. A total of 334 dusty days were identified during the 2005-2014 period.

The SPR methodology also determines the episodes of type “A” but these episodes are not based on
experimental data, therefore they were not considered in this study for this method. Preliminary results
have shown a notable underestimation in the identification of ‘A’ pollution episodes when this

methodology is compared with the previous two methods.

4. Comparison of the three different methodologies
4.1.Comparison of detected HAT episodes (2005 — 2014)

The yearly number of ‘D’ and ‘A’ event days identified by the three inventories described in Section 3
are shown in Figure 2. Those days with ‘MD’ and ‘MA’ flags are also added in the bar plots of C&S
and SDA methods. Overall, the number of ‘D” and ‘A’ event days can range, with some exceptions,
between 20 and 40 per year. There is no correlation between the year to year time series of ‘D’ and ‘A’
event days, therefore showing a great variability. The number of dusty days per year in Figure 2a shows
that the SPR inventory results in more event days than the other two methods. It also shows year 2007
as the one with the largest number of desert dust event days (about 60). The three inventories show 2013
to be the year with the minimum number of desert dust outbreaks (less than 8 days). The largest
‘D’+*MD’ discrepancy between the SDA and the C&S methodology occurs in 2006. However, as
pointed out by Cachorro et al. (2016), no columnar data are available in June and July of that year. The
PMy, data in their C&S inventory, enabled the identification of 14 ‘D’ event days along with 13 and 15
‘MD’ and “MA’ days, respectively.

Concerning the fine mode HAT (Figure 2b), the C&S and SDA inventories show good agreement with
respect to ‘A’+‘MA’ events.. These two inventories disagree in the identification of the *MA’ category
in 2006 (because of the same reasonexplained above in terms of the lack of columnar data) and in 2009.
The ‘A’+*MA’ time series generally behave in a similar relative way in terms of year to year variability.
For 2007 and 2013, there are ‘A’ event days identified by SDA method which are detected as ‘MA’ by

the C&S analysis, but this fact does not introduce significant discrepancy.

The total counts of ‘D’+*MD’ across the 2005 to 2014 period are 330, 263, and 334 for the C&S, SDA,
and SPR inventories, respectively. These numbers indicate, therefore, a mean dusty days (‘D’+‘MD’)

occurrence of about 7-9% per year. This is in line with previous studies in the same region (e.g.,
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Cachorro et al., 2016). A similar range of occurrence is found for ‘A’+‘MA’ event days with a total
count of 337 and 275 using C&S and SDA inventories, respectively (7.5-9% of the days).
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Figure 2. Evolution of the number of ‘D’ + ‘MD’ event days (a) for the three inventories used in this
study, and ‘A’ + ‘MA’ event days (b) for the C&S and SDA inventories between 2005 and 2014.

Overall, there were 67 days of HAT conditions per year in the north-central Iberian Peninsula with
roughly the same number of ‘D’ and ‘A’ event days. Saharan dust, in the context of unusually high
aerosol loads in the western Mediterranean Basin (e.g. Pey et al., 2013; Gkikas et al., 2013) is
responsible for the majority of the strongest aerosol episodes (e.g., Gkikas et al., 2016b). However,
when a broader analysis of the variability of HAT event day intensity is performed, the roles of both ‘D’

and ‘A’ categories are more balanced.

Tables 1 and 2 show detailed comparisons of the three inventories for the four episode types, where the
C&S inventory is considered as reference. When a ‘D’ or ‘A’ event day in one inventory is classified in
the other inventory as one of the two mixture categories (‘MD’ or ‘MA’), both inventories are
considered to agree in the identification of HAT conditions. These labelling differences can be
understood since the interpretation of the different aerosol properties using differing criteria can lead to

different choices about the predominant type in each aerosol mixture.

The general agreement for those mineral dust outbreaks (‘D’+‘MD’ type) in the SDA vs C&S and SPR
vs C&S is above 60% and 50%, respectively. The SDA and SPR methods failed to categorize 67 and 71
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dusty days identified by C&S while identifies 106 and 212 ‘D’ flags, respectively, which are not in the
C&S inventory (c.f. Tables 1 and 2 for more details). The SDA inventory missed 59 of the 67 dusty
days because of the lack of columnar data (mostly in 2006, as mentioned above). The other 8 cases
correspond to a lack of SDA retrieval data (2 days), no clear identification of air mass trajectory (2
days), and days in the beginning/ending of particular episodes (which were attributed to the ‘D’ type
during the C&S visual inspection of instantaneous values) with an AOD¢ below the threshold (4 days).
In the SPR vs C&S comparison, the SPR method failed to identify 71 ‘D’ event days. On 2 days SPR
had no data (statistically negligible over 10 years). ). The other 69 days were characterized by mean
values of PMyo = 21 + 16 pug/m* and AODps as0nm = 0.27 + 0.12.

The comparison of ‘D’ results was also performed at different AODps 440nm and PMyg intervals in order
to investigate if the discrepancies/similarities between inventories could be better understood by
employing stratified criteria (only the subset of ‘D’ days for which both AODps 440nm and PMy, data
were available are analysed here). The SDA vs C&S comparison yielded perfect agreement (100%
classification accuracy) for strong intrusions. These are defined by the mean + 2 standard deviations of
the dataset (Bennouna et al., 2016): AODps 4onm > 0.3 and PMyo > 28 pg m™. . There is a source of
discrepancy between them, however, for desert dust intrusions associated with weaker AODs / mass
concentrations (AODps a4onm < 0.3 and PMyo < 28 pg m™). About 8% of the C&S ‘D’ event days are not
identified by the SDA in this AODps 440nm /PM1o range (the classification match is nevertheless 92%). It
is worth noting that detection of weak to moderate intensity episodes is very difficult since the dust
fingerprint can be masked. The SPR vs C&S comparison shows perfect agreement for the strongest
intrusions (AODps 440nm > 0.5 and PMyo > 28 pg m™), but the identification of dusty days is problematic
even for cases with large AODps asonm (> 0.3) because they show PM;g < 28 pg m™. About 30% of the
total dusty days included in the C&S inventory are not identified by the SPR method in these
AODps 440nm @and PMj ranges.

It is remarkable that the large number of ‘D’ event days not in the C&S reference inventory but
identified by the SDA and SPR methods (Tables 1 and 2) are characterized by relatively low aerosol
loads. These days, therefore, do not have important impact on the determination of the dust contribution
to the total load (in AOD or PMjp). The 106 dusty days added by the SDA method are characterized by
mean PMyo = 12 + 7 pg/m® and AODps 440nm = 0.15 + 0.03 (AEps = 0.8 + 0.2) while the mean for the
212 dusty days added by the SPR method are PMyo = 12 + 7 pg/m® and AODpsa40nm = 0.13 + 0.05
(AEps = 1.1 + 0.4). For a particular case of low aerosol load, November 15", 2012 with PMy, = 8 ug/m®,
AODps 440nm = 0.15 (AEps = 0.62), and the SDA retrievals at 500nm AODg = 0.043 and AOD¢ = 0.064.
These conditions are non-high turbidity in the C&S and SPR inventories. But the AOD value in the
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coarse mode is larger than the threshold for HAT conditions in the SDA inventory and this day is
classified as ‘D’ because of the air mass trajectories. This kind of discrepancies do not occur for intense
episodes, but the identification of those event days with moderate to low intensity can differ depending

on the followed method or the measurement technique.

Table 1. Comparison of HAT event days identified using the C&S methodology with those using the SDA
method (2005-2014 period). The classification (categorization) accuracy for HAT event days common to the C&S
and SDA inventories is the “Categorized as” column entry: highlighted in bold font those categories that can be

interpreted as good agreement.

Category in SDA
Category in C&S | Total C&S
D MD A MA No event

D 193 99 26 1 0 67

MD 137 29 24 23 21 40

A 189 0 0 127 5 57

MA 148 10 6 47 16 69
No event 2985 67 2 34 1 2881
Total SDA 205 58 232 43 3114
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Table 2. Comparison of HAT event days identified using the C&S methodology with those using the SPR method
(2005-2014 period). The classification (categorization) accuracy for HAT event days common to the C&S and
SPR inventories is the “Categorized as” column entry: highlighted in bold font those categories that can be

interpreted as good agreement.

Category in SPR
Category in C&S Total C&S

D MD No event
D 193 122 - 71
MD 137 47 - 90
No event 2985 212 - 2773
Total SPR 381 - 2934

With respect to ‘A’ flags, the general agreement between the C&S and SDA methods is about 70%, but
the SDA identifies 105 event days that are not in C&S. Six out of 57 unidentified ‘A’ event days are due
to the lack of columnar data. A total of 29 days out of the remaining 51 event days show an AODk value
very close to the established threshold (i.e. their values are found to be in the 0.10-0.12 interval). The 51
unidentified ‘A’ event days represent AODk values between the first and third quartile (0.077 and 0.114,
respectively). Therefore, the AOD¢e is relatively low compared to the P85 threshold, but the
instantaneous AODps 440nm Can display a larger value that can be considered as HAT conditions when
the C&S visual inspection is carried out. This comparison was also carried out for the above-mentioned
PMyo and AODps 440nm intervals, for those days with both types of data being available. As in the case of
the ‘D’ category results, there was a very good agreement of 95% for the strong episodes (AODps 440nm
> 0.3 and PMyq > 28 pg m™). For moderate episodes (AODps 4s0nm < 0.3 and PMyg < 28 pg m™®), about
25% of the ‘A’ event days in C&S are not identified by the SDA method.. Most of the discrepancies
(unidentified days) are observed at the beginning/ending of each event when the impact on aerosol load
is weak. A visual inspection of these particular days showed 2 long-lasting episodes, of about 3-4
consecutive days each, as the only major discrepancies between the inventories. The AODg values
during these days were slightly smaller than the required SDA HAT threshold. The large number of ‘A’
event days identified by the SDA and not in C&S are not characterized by high aerosol load levels
(PMyo = 10 + 3 pg/m®, AODpsas0nm = 0.21 + 0.07, and AEps = 1.6 + 0.2) and they present a minor
impact on the determination of the ‘A’ contribution to the total aerosol load.
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When there is availability of columnar AOD data, the automatic SDA method can provide reliable
identification of HAT event days for ‘D’ and ‘A’ aerosol types. However, if there is a lack of AOD
columnar data, the surface aerosol load should be taken into account in order to have a reliable
inventory. The use of only surface data (together with ancillary information) presents some uncertainties
for strong turbidity episodes, because long-range transported aerosol can remain in high tropospheric
layers and have low impact at the surface, and hence a time lag (one or two days) is required for

sedimentation process and thus for increasing PMyq values.

4.2. Case Study: example of the year 2014

In order to better show how the three methodologies work, particular examples of ‘D’, ‘MD’, *‘A’, and
‘MA’ event days that occurred in 2014 are shown in Figure 3. This year was selected because it presents
moderate occurrence of HAT days, with a minor incidence of ‘MD’ episodes and it is illustrative of the

problems encountered in this comparative analysis.

With respect to desert dust outbreaks, three long events (lasting more than three days in April, October
and November) and a total of 24 dusty days are identified in the C&S inventory. A smaller number (a
total of 17) is found in the SDA inventory. With respect to the SPR inventory, its total of 31 dusty days
is notably augmented compared with the C&S counts by a particularly long episode (11-17 April 2014).
This episode is a good illustration of the challenges associated with the discrepancies that can result
from the different HAT categorization schemes. The episode is not identified in the same way by the
other algorithms, where only two days (12-13 April 2014) are flagged as ‘“MA’ category for C&S while
the SDA flagged one ‘D’ and one ‘A’ category. However, as it can be observed in Figure 3, the
beginning of this period is identified as a dusty day by both C&S and SDA inventories (4 October 2014
AOD¢=0.10 and PMyq = 17 pg/m®). The columnar aerosol load for this long episode can only be
considered as “high turbidity” on the two days mentioned before (12-13 April 2014), while the surface

PM 1, concentrations on those two days were low (between 9 and 12 pg/m®).

The three algorithms simultaneously agree in the identification of HAT mineral dust events in 12 out of
24 C&S “D’ flags in 2014. One possible reason behind this relatively low classification match could be
the weak intensity of desert dust outbreaks for this year with mean (median/maximum) AODps 440nm and
PMyo values of 0.18 (0.16/0.35) and 24 (21/42) pg/m®, respectively. The use of fixed and automatic
thresholds can underestimate the frequency of mineral dust identification. However, this shortcoming is
relatively minor since the analysis of ancillary information is the key that leads to the identification of
desert dust aerosols for low intensity events.
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An unusual and long period of high turbidity occurred between 23™ and 30" October, 2014. A visual
inspection of all the available information associated with this extended desert dust event gives a global
perspective (C&S and SPR) while the automatic algorithm (SDA) only identifies certain days. The days
classified in the ‘D’ category by the C&S method but not identified by the SDA are those days with no
available columnar data (e.g., cloudy conditions throughout the day) so that the C&S classification was
carried out using only PMjq values. Although the month of October was not, within the context of a
multi-year perspective, affected by a large number of desert dust intrusions over our study region
(Cachorro et al., 2016), it does represent a monthly maximum of dusty days for 2014 with 11 ‘D’ event
days plus one “‘MD’ (as per the C&S method). The aerosol load levels during this month ranged between
0.09 and 0.27 for AODps 440nm and between 18 and 42 ug/m3 for PMyo.

The C&S identification of urban-industrial and biomass burning in 2014 indicated 23 ‘A’ days (plus 7
‘MA’ days), while 25 A’ days were identified using the SDA method. These two inventories have 21
‘A’+ ‘MA’ episodic days in common. For instance, the ‘A’ flag reported by C&S on July 4™, 2014 is
not corroborated by SDA method (although, we would point out that the AODg value is very close to
the HAT threshold; AODg = 0.115, the P85 threshold is 0.12). The identification of ‘A’ event days by
using only surface data seems problematic because of the weaker impact of this kind of fine particle
events on PMyp,as mentioned above. For instance, during all ‘A’ and ‘MA’ events of 2014 the maximum
PM, concentration is 22 pg m™, while the maximum AODps 4sonm is 0.36. This emphasizes the different
sensitivities of AODps 440nm and PMjp to the detection of desert and ‘A’ episodes (e.g., Cabello et al.,
2016).
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Figure 3. Inventory of ‘D’, “‘MD’, ‘A’, and ‘MA’ event days in 2014 identified by three different
methodologies.
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4.3. Sensitivity of using 85" percentile in the SDA method
The application of 85" percentiles to SDA-derived AOD¢ and AOD values has proven to be a good
tool for high turbidity identification. One might ask whether the use of other percentiles could also lead
to a reliable means of identifying aerosol episodes. In this section, the sensitivity of the proposed
percentile methodology is accordingly studied. The 80", 85", and 90™ percentiles are chosen for this
sensitivity test of high turbidity identification. Table 3 presents the values of the corresponding
thresholds applied to the Palencia database for the 2005-2014 period.

Table 3. 80™ to 90™ percentiles for AODg and AODc series for ‘Palencia’ AERONET site database
(2005-2014 period).

Percentile | AODg | AODc
80" 0.10 | 0.04
85" 0.12 | 0.05
90" 0.15 | 0.07

The methodology for this test is the same as explained above (see Section 3.2.1). Bear in mind that only
data of AOD¢c and AODk are necessary to identify ‘C’, ‘F’, and ‘M’ categories, first step of SDA

inventory.

The results of the HAT identification using 80™, 85", and 90™ percentiles are compared in Figure 4 with
the ‘C&S’ identification method (considered as reference). The 90" percentile threshold exhibits the
best agreement (81% of coincidence) between C&S and SDA inventories in the ‘D’ vs ‘D’ comparison.
The use of 85™ and 80™ percentiles reduces the agreement in the ‘D’ vs ‘D’ case but notably increases

the ‘D’ vs ‘M’ case with a total agreement of 94-96% for this type of episodes.

With respect to the fine-mode dominated cases, little change is observed by changing from 80™ to 85"
percentile thresholds with an agreement about 70% in the ‘A’ vs ‘A’ comparison. The use of 80"
percentile identifies a larger number of ‘A’ event days in the ‘M’ category which are attributed to non-
turbid (‘NT” flag) cases with the use of the 85" percentile. All these cases are associated to values close
the thresholds (between 0.10 and 0.12, see Table 3). The agreement is notably smaller for the 90
percentile analysis. Accordingly, the use of a large threshold (90" percentile), results in weaker events
(AOD < 0.15) being misclassified as “‘NT’ category.
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The two aerosol mixture categories ‘MD’ and ‘MA’ present similar features with respect to the
threshold variation. There is a high agreement with the SDA inventories using 80" and 85" percentiles:
91-88% and 93-74%, respectively. The use of the 90™ percentile reduces the percentage agreement to
~50%.

We assume that a day classified as a HAT event by the SDA (‘C’, ‘F’, or ‘M’) represents good
agreement when it corresponds to a C&S classification of ‘D’, ‘MD’, ‘MA’, or ‘A’. The only SDA
event days that get lost, in accounting for changes from one percentile to another, are those which are
transferred to the “NT’ category. The use of 80™ percentile yields an 88-97% agreement range for the
four categories of the C&S inventory (the “agreement” being the sum of the ‘D’, ‘“M’, ‘A’ % values for
each of the four categories). The lower limit of this range decreases moderately to 73% and the upper
limit is 95% for 85™ percentile. The 90™ percentile yields minimum values for both the lower and upper
bounds of the range (48-89%). The fact that the automatic SDA algorithm accepts more HAT event days
with decreasing percentile can imply a larger uncertainty with significantly greater numbers of false
positives. For instance, the “D” identification for the smaller percentile (80" percentile) yields 245 HAT
attributions. This number gets reduced to 145 and 58 for 85" and 90™ percentile thresholds, respectively.
The use of any one of the three percentiles as threshold can be justified depending on the objective of
the study. For our purposes, the 85™ percentile was the most adequate option: this enables an acceptable
balance between the assured identification of high intensity episodes and the inclusion of a moderate

number of weak intensity episodes.
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Figure 4. Identification of HAT episodes using the ‘SDA’ percentile method (80", 85™ and 90"
percentiles; see text). The “C&S” inventory is used as reference. The colour scale quantifies the total
number of identified HAT event days (values larger than 250 are saturated). The percentage agreement
is given for each category (numbers in white text). The reader should keep in mind that, for each of the
three percentile cases, the total number of events for a given C&S class is conserved (the sum of the
superimposed percentages is 100% + a rounding error).
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5. Summary and Conclusions

To our knowledge, this is the first time that three aerosol inventories, dedicated to the identification and
classification of high atmospheric turbidity events, have been compared. These inventories are based on
different methodologies which make use of different types of aerosol data (columnar aerosol AOD data
and surface PMy, data) while sharing similar ancillary information sources (air mass back-trajectory
analysis, satellite imagery, aerosol models, etc.). The comparison is carried out for three aerosol types:
coarse aerosol type, represented by mineral desert dust aerosol transported from the African continent;
fine aerosol type, basically biomass burning aerosols from forest fires and anthropogenic aerosols
transported from central Europe, the Mediterranean Basin or other regions of the Iberian Peninsula
(long-range transported smoke from Canada has also been detected). A mixture of these two main
aerosol types in the identified high atmospheric turbidity conditions was also investigated. Bear in mind
that our region of study in the north-central Iberian Peninsula is a clean continental area.

The results of the comparison suggest that the simultaneous use of columnar (remote sensing) and
surface (in situ) ground-based aerosol data provides the most reliable inventory. With this combined
datasets, the impact of boundary layer to high-altitude atmospheric layers is taken into consideration
given the high probability of at least one type of data being available: this capability eventually
increases the probability of aerosol event detection. It is obvious that each aerosol database, columnar or
surface, has its advantages and limitations. For instance, columnar aerosol data are based on direct sun
irradiance measurements for which the sky must be cloud free in the direction of the sun: this results in
significant duty cycle problems for cloudy sites. Conversely, PM1, measurements are not constrained by
the sky conditions but do not allow the detection of events in the upper troposphere. The PM data
analysis method requires a human observer to gather multiple information sources and its
implementation in large areas with several sites can be very time consuming. This method can certainly
be partially automated because it is mainly based on threshold values of physical measured/derived
quantities, but initial results have shown that it is not as reliable as a measurement system supported by
human observations, decisions and interpretations. Also, note that the implementation of the
complementary information required for the identification of aerosol mixtures (MD or MA), is not an

easy task because of the complex nature of the information and the decision process.

Given the drawbacks of all current existing methodologies, there are strong reasons to implement an
inventory that is as automated as possible. The results of this study lead us to propose, as an alternative
to the more labour intensive current approaches, an automated method based on the analysis of the fine

and coarse mode AOD. The AODg and AODc parameters are found to be more powerful discriminators
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than the combination of single wavelength AODs and alpha parameters. It can also be expected that
classification methods based on thresholds applied to different variables may yield to different
classifications, especially for weak events. The agreement has been shown to be nearly perfect for

strong events.

The AODg and AODc are standard AERONET SDA products. The proposed approach permits the
identification of high atmospheric turbidity (HAT) event days characterized as fine, coarse or mixed
mode. This method requires the establishment of thresholds which serve as the basis for HAT
identification. The results of this study led to the use of the 85" percentile as a suitable threshold for
both fine and coarse mode aerosol events. A sensitivity test to various thresholds demonstrated that
significant changes in classification occurred only for event days with low AOD. Because HAT
identification is primarily of concern in the presence of high AOD events, these low intensity cases have
a minor impact. The proposed methodology can be readily adapted to near real-time HAT identification
applied to the new AERONET Version 3.0 products. Those products incorporate improved cloud-

screening capabilities that facilitate near-real-time data analysis. .
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Figure S1. Histogram of AOD values for the coarse and fine modes at Palencia site. Vertical lines point
out the P85 value used as threshold.
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