Annals of Operations Research
https://doi.org/10.1007/5s10479-026-07065-5

ORIGINAL RESEARCH

-

Check for
updates

Unrelated parallel machine scheduling problem with setup
times and additional resources: an enhanced metaheuristic
to address resource-related infeasibilities

Juan C. Yepes-Borrero! (» - Javier Alcaraz? - Marta Lépez-Garcia' -

Mario Villaizan-Vallelado'3

Received: 17 May 2025 / Accepted: 14 January 2026
© The Author(s) 2026

Abstract

Efficient scheduling tools are essential for managing production environments where both
machine availability and additional resource constraints play a significant role. This paper
addresses the Unrelated Parallel Machine scheduling problem with setup times and additional
resources in the Setups (UPMSR-S), an NP-hard problem that models real-world production
settings where setups require limited resources, such as personnel or specialized equipment.
We propose an enhanced algorithm designed to better handle resource-related infeasibili-
ties and consistently outperform state-of-the-art methods. This is demonstrated through an
extensive computational campaign on 1,000 benchmark instances, with improvements in
Relative Percentage Deviation (RPD) exceeding 70% for several instance sizes. The pro-
posed approach is well suited to large production environments involving setup and resource
constraints, showing strong performance in challenging scheduling settings. Statistical anal-
ysis confirms that the method is highly effective across a wide range of instance sizes and
scenarios, with particularly strong performance as the number of jobs and machines increases.

Keywords Scheduling - Unrelated Parallel Machine - Additional resources -
Metaheuristics - GRASP

1 Introduction

In today’s globalized economy, companies must optimize their processes to remain compet-
itive (Mahmoodi et al., 2024). This requires careful management not only of time, but also
of the resources used, which are often limited. In many manufacturing environments, these
resources (such as operators or tools required for machine setup) are not infinite, and their
scarcity can become a bottleneck in production (Luo et al., 2023). For instance, in ceramic tile
manufacturing, machines process large batches automatically, but setup adjustments (e.g.,

B Juan C. Yepes-Borrero
juancamilo.yepes @uva.es

Departamento de Estadistica e Investigacion Operativa, Universidad de Valladolid, Paseo de Belén
7,47011 Valladolid, Spain

Centro de Investigacién Operativa, Universidad Miguel Herndndez, Elche 03202, Spain

Telefonica Scientific Research, Madrid, Spain

Published online: 26 January 2026 &\ Springer

Annals of Operations Research

mould or glaze changes) must be performed manually by a limited number of specialized
operators. These operators constitute a renewable setup resource that can only assist one
machine at a time, meaning that parallel setups are constrained by their availability. This sit-
uation often leads to waiting times between consecutive setups and exemplifies the practical
relevance of modelling resource limitations in scheduling problems. When several machines
require setup operations simultaneously but only one operator is available, the pending setups
must wait in sequence, delaying production and increasing idle time. Efficient allocation
and management of these finite resources is critical to maintaining smooth operations and
reducing delays (Mahmoodi et al., 2024). Moreover, the increasing operational complexity
of production systems, driven by Industry 4.0 advancements, product customization, and
shorter delivery times, puts additional pressure on companies to find efficient solutions that
optimize not only the use of machines but also of human and material resources (Florescu &
Barabas, 2022; Luo et al., 2023).

Problems involving the sequencing of jobs on machines, known as scheduling problems,
are central to production optimization (Avgerinos et al., 2023; Yepes-Borrero et al., 2021).
These problems vary in the level of challenge they pose depending on the structure of the
production environment. Among the different types of scheduling problems, one of the most
common is the Parallel Machine scheduling problem (PM), where each job must be processed
by exactly one machine from a set of machines that can operate simultaneously (Avgerinos
et al., 2023; Elidrissi et al., 2023). The challenge lies in determining how to assign jobs to
machines in a way that optimizes an objective, such as minimizing tardiness or the maximum
completion time among all machines, also known as makespan (Avgerinos et al., 2023;
Elidrissi et al., 2023; Lee & Jang, 2019).

An extension of this is the Unrelated Parallel Machine scheduling problem (UPM) (Lei et
al., 2021; Mor et al., 2025; Yan et al., 2025), where jobs have different processing times on
different machines, which significantly complicates the assignment decisions. This difficulty
is further amplified when setup times are considered, a common complication in modern
production environments. Machines often require reconfiguration or preparation between
jobs, a process known as setup, which can vary in duration depending on the specific job
being processed next. These setups must be efficiently managed to minimize downtime. This
introduces the Unrelated Parallel Machine scheduling problem with sequence-dependent
setup times (UPMS) (Fang et al., 2022), where the setup time between jobs depends on the
sequence in which jobs are processed. However, beyond the challenge of scheduling setups,
many production environments also face the constraint of limited additional resources, such
as personnel or tools required to perform the setups. When these resources are scarce, the
resulting problem is harder to solve in practice due to the increased coupling between schedul-
ing and resource allocation decisions leading to the Unrelated Parallel Machine scheduling
problem with setup times and additional Resources in the Setups (UPMSR-S) (Yepes-Borrero
et al., 2020). The inclusion of these additional resource constraints not only enhances the
realism of the model but also fundamentally alters its combinatorial structure and feasibility
conditions, needing novel algorithmic approaches. Even in its simplest form, with just two
identical machines, the PM is known to be .4 &?-hard (Lenstra et al., 1977). The problem
becomes increasingly difficult to solve in practice as the instance size grows, making exact
methods impractical for large-scale instances.

Recent studies have emphasized the need to incorporate practical features such as energy
efficiency, workforce allocation, maintenance coordination, and resource constraints into
modern scheduling models (Avgerinos et al., 2023; Heinz et al., 2022; Mahmoodi et al.,
2024). In parallel, recent reviews highlight that the diversification of parallel machine schedul-
ing problems is still ongoing, with some areas, particularly sequence-dependent setups and

@ Springer

Annals of Operations Research

resource integration, still not fully explored (Geurtsen et al., 2023; Ying et al., 2024). Accord-
ing to Ying et al. (2024), sequence-dependent setups in parallel machine scheduling are at a
growth stage, while Geurtsen et al. (2023) note that the number of studies simultaneously con-
sidering maintenance activities and additional resources is still limited. Despite this progress,
most existing works continue to treat setups and resource availability as separate issues, and
few models explicitly capture their combined effect. This gap motivates the study of prob-
lems such as the UPMSR-S, which address both sequence-dependent setups and renewable
resource limitations in an integrated manner, thereby contributing to closing the gap between
theoretical scheduling research and industrial practice. To illustrate this, real-world scenar-
10s of the UPMSR-S can be found in several modern manufacturing environments. One
representative example arises in the food-processing and packaging industry, particularly in
multiproduct filling and sealing lines (Stefansdottir et al., 2017). These lines behave as unre-
lated parallel machines, since the processing time of each product varies substantially across
machines due to differences in viscosity, temperature, or handling requirements. Between two
consecutive batches, sequence-dependent setup operations, such as cleaning, sterilization, or
format adjustments, must be performed. For instance, switching from an allergen-containing
product to an allergen-free product requires a longer sanitation procedure than the reverse
transition. These setups demand the intervention of certified technicians or specialized clean-
ing equipment, which constitute additional renewable resources available in limited quantity.
When several lines require reconfiguration at the same time, the setups must wait for these
resources to become available, leading to idle times and increased scheduling difficulty. This
scenario fits naturally within the UPMSR-S framework, as both sequence-dependent setups
and resource constraints must be jointly coordinated. Another relevant example appears in the
machining of aerospace components using high-precision CNC (computer numerical con-
trol) equipment (Chen et al., 2024). Each part type can, in principle, be processed on multiple
machines, but the processing times differ significantly across machines due to variations in
stiffness, spindle capabilities, or fixture requirements. As a result, the environment is well
modeled as one of unrelated parallel machines. Transitions between different families of parts
involve sequence-dependent setup tasks, such as recalibrating tool heads, realigning fixtures,
or installing dedicated tooling systems. These operations generally require the presence of
highly skilled technicians or the use of scarce calibration devices, which act as additional
constrained resources. When these resources are not immediately available, setups must be
postponed, thereby altering machine schedules and creating additional bottlenecks. This type
of manufacturing system exemplifies the UPMSR-S problem, where both the heterogene-
ity of machines and the limited availability of setup-related resources play a critical role in
determining feasible and efficient schedules.

Given the NP-hard nature of the UPMSR-S problem, solving it using exact methods
becomes impractical for large instances. Previous studies have demonstrated that exact
approaches struggle with the computational burden as the number of jobs and machines
increases. As a result, heuristic and metaheuristic methods have gained significant atten-
tion in recent years as viable alternatives for obtaining high-quality solutions in a reasonable
amount of time. In particular, the addition of resource constraints transforms the search space,
requiring customized metaheuristic components to effectively explore this more constrained
solution space.

This paper focuses on the UPMSR-S problem and, given that it is computationally hard
to solve using exact methods, we propose a novel hybrid metaheuristic algorithm to tackle
it. Our approach aims to efficiently solve large and realistic instances of the problem, where
resource limitations and machine setups pose significant challenges to production planning.
In doing so, we aim to contribute to the ongoing development of advanced algorithms for

@ Springer

Annals of Operations Research

scheduling problems that incorporate both machine and resource constraints, thus improving
their applicability in industrial environments.
The main contributions of our paper are summarized as follows:

e Development of a new algorithm for managing resource-related infeasibilities in schedul-
ing problems with limited resources.

e Extensive computational testing, showing consistent and significant performance
improvements over previous methods across a wide range of instance sizes.

The rest of the paper is organized as follows. Section 2 presents an overview of the related
literature. Section 3 presents the formal definition of the problem and a mathematical model.
Section 4 introduces the metaheuristic designed for solving the UPMSR-S. Section 5 shows
the experimental campaign to assess the algorithms proposed. Finally, in Section 6 some
conclusions and directions for future research are given.

2 Related work

Machine scheduling problems have been the focus of extensive research due to their relevance
inindustrial environments. As explored in Yazdani and Haghani (2024), the extensive research
conducted over the last 20 years has driven the development of more sophisticated algorithms
and a deeper understanding of the characteristics of scheduling problems.

Among these, the parallel machine scheduling problem has been widely studied due to
its direct applicability to real production systems where several machines operate simulta-
neously. Recent work, such as Durasevi¢ and Jakobovi¢ (2023), presents a detailed review
of heuristic and metaheuristic algorithms specifically designed for the unrelated parallel
machine scheduling problem. This analysis highlights the computational difficulty of the
problem and the different approaches taken to address it. Additionally, Ying et al. (2024)
provides a comprehensive analysis of the different contributions to the parallel machine
problem in recent years, highlighting the increasing attention that variations of the problem,
which take setup times into account, are receiving. This section reviews parallel machine
scheduling problems and their main extensions related to setup times, additional resources,
and their integration.

2.1 Parallel machine scheduling with setup times

Setup times have been incorporated into the UPMSP to better represent industrial scenar-
ios where machines require reconfiguration between jobs. For example, Sara¢ and Tutumlu
(2022) propose a bi-objective mathematical model for UPMSP with setup times, while Li
et al. (2024) develop exact formulations that account for family setups and machine costs.
Metaheuristic approaches also play a key role: Yilmaz Eroglu et al. (2014) introduce a genetic
algorithm with local search for UPMSP with sequence-dependent setups, whereas Bédez et
al. (2019) combine Greedy Randomized Adaptive Search Procedure (GRASP) and Variable
Neighbourhood Search to tackle PM problems with dependent setup times, demonstrat-
ing that hybridization can outperform both exact and single-heuristic approaches. Industrial
extensions have also emerged, such as the textile application in Berthier et al. (2022), who
integrate machine eligibility and dual resource types into the UPMSP, and the hybrid large
neighbourhood and tabu search metaheuristic proposed by Fang et al. (2022). Other recent
studies include multi-objective formulations for parallel machine scheduling (Leietal., 2021;

@ Springer

Annals of Operations Research

Srinath et al., 2023), as well as exact and matheuristic approaches that address cost, time-
window, or due dates (Chen et al., 2024; Fonseca et al., 2024; Mor et al., 2025). However,
these works primarily focus on setup-sequence dependencies and rarely incorporate explicit
resource constraints affecting setup feasibility.

2.2 Parallel machine scheduling with additional resources

In parallel machine scheduling, the introduction of additional resources, such as operators,
tools, or auxiliary equipment, adds another layer of difficulty. Some studies have addressed
problems with resources required for processing but not for setups. For instance, Vallada et
al. (2019) and Villa et al. (2018) propose heuristics for parallel machines with additional
processing resources, while Li et al. (2019) introduce a fuzzy swarm optimization algo-
rithm for uniform machines under resource consumption constraints. Munoz et al. (2022)
and Mor and Berliiska (2025) focus on dual resource-constrained environments, whereas
Shafiee et al. (2025) consider renewable resources that alternate among unrelated machines.
Although the focus of this review is on parallel machine settings, other scheduling problems
involving resource constraints have also been explored, for example, project and flexible
job-shop scheduling (Klein, 2025; Klein et al., 2024; Perrachon et al., 2025) or flow-shop
configurations with batch delivery constraints (Zeng et al., 2025).

2.3 Integrating setup and resource constraints in parallel machine problems

The explicit integration of resource constraints within UPMSP models remains limited.
Fanjul-Peyro (2020) classify resources into three categories: processing-specific resources
(UPMR) (Vallada et al., 2019), setup-specific resources (UPMSR-S) (Yepes-Borrero et al.,
2020), and dual-resource problems involving both processing and setups (UPMSR-P+S)
(Lopez-Esteve et al., 2023). While these formulations mark important progress, few algo-
rithms directly manage setup-resource feasibility. Some related studies also consider shared
entities during setups. Heinz et al. (2022) model common servers as shared resources in
identical-machine environments, while Avgerinos et al. (2023) introduce setup operators in
job-splitting settings. However, these assumptions differ from the UPMSR-S framework,
which deals with unrelated machines and does not allow job splitting.

2.4 Positioning of the present study

Table 1 summarizes the main features of the studies that are, in our view, the most closely
related to the problem addressed in this paper. All of them consider sequence dependent
setups, but they differ in how resource constraints are modelled. Among these studies, only
Yepes-Borrero et al. (2020) address the same UPMSR-S problem, explicitly considering
renewable resources required during setups. The other works deal with different variants,
either without resource constraints, with identical machines, or with job-splitting assump-
tions, which makes direct comparison difficult. Although parallel machine scheduling has
been extensively researched, variants that jointly include setup dependencies and renewable
resource constraints remain comparatively underexplored, despite their closer alignment with
real industrial settings. Advancing algorithms for these problems is therefore essential to
improve operational efficiency and competitiveness.

@ Springer

Annals of Operations Research

Table 1 Comparison of the most relevant studies on parallel machine scheduling with setups

Reference Problem type Resources Method Objective
Vallada and Ruiz (2011) UPMS None GA Cmax
Baez et al. (2019) UPMS None GRASP+VNS Cmax
Avgerinos et al. (2023) UPMS (job-splitting) Setup CP-+Heuristic Cmax
Lopez-Esteve et al. (2023) UPMSR-P+S Proc. + Setup GRASP Cmax
Heinz et al. (2022) PMSR-S Setup CP Cmax
Yepes-Borrero et al. (2020) UPMSR-S Setup GRASP Cmax
This work UPMSR-S Setup E-GRASP Cmax

In this work, we propose an enhanced metaheuristic that more effectively handles infea-
sibilities caused by limited setup resources. The approach is general and can be incorporated
into other heuristics facing similar renewable-resource constraints. It includes an improved
construction phase and a selective repair strategy, resulting in a more efficient method for
solving the UPMSR-S.

3 Problem description

In this section, we present a formal definition of the UPMSR-S problem.

In this problem, we are given a set N of n jobs (indexed by j and k) that must be
processed on a set M of m machines (indexed by i). Each job must be processed exactly
once on any of the available machines. Each machine can process only one job at a time, and
no pre-emption is allowed. The machines are unrelated, meaning that the processing time
for a job can vary across different machines. In addition, to process two jobs consecutively
on the same machine, a setup must be performed. Setup times are sequence-dependent, as
the time required to prepare the machine for a given job varies according to the job that
was immediately previously processed. That is, the setup time can vary depending on the
particular pair of jobs j and k being scheduled. Furthermore, these setup operations require
additional resources, such as workers or tools, and these resources are limited.

The processing times are denoted by p;;, representing the time it takes to process job j
on machine i. The setup time on machine i, s;ji , denotes the time required to prepare the
machine for processing job k given that job j was processed immediately beforehand. The
resources required for setups are denoted by r;jx, representing the resource consumption for
the setup between jobs j and k on machine i. The total available resources are limited by
a maximum value (Rmax), which cannot be exceeded at any given time. The objective is to
minimize the makespan, which is the maximum completion time among all machines.

Given the resource constraints, there may be infeasible solutions that require more
resources to execute. This adds scheduling difficulty to the problem, as it is not only necessary
to determine on which machine and in what order to process the jobs, but also when to start
the setups to satisfy the resource consumption constraints. Figure 1 illustrates two different
solutions for a problem with 4 machines and 8 jobs. The blue boxes represent each job, while
the yellow boxes represent the setups that must be performed on the machines to process
two consecutive jobs. Within the setup boxes, the number of resources r; jx required for each
setup is displayed. In Figure la with a maximum resource availability Rp.x of 3, the first
solution is infeasible, as it requires four resources between time instants #3 and 74 to execute

@ Springer

Annals of Operations Research

Pasmas T

1

1 1 1 1
|

153,4,6i73,4,6 = 1

I .

1

ty 23 t3 tq ts tg t7 ts

(b)

Fig. 1 Example of a UPMSR-S problem with Rmax = 3. In Figure 1a, the solution is infeasible because the
resource constraints are exceeded between time 73 and #4. In Figure 1b, the solution is feasible, as the setups

are adjusted to respect the resource constraints

the setups simultaneously. In Figure 1b the start of the setup on machine 2 is postponed,
thereby satisfying the resource constraint and resulting in a feasible solution.

The detailed mixed integer linear programming model of the UPMSR-S is given by Yepes-
Borrero et al. (2020). Before detailing the model, the following variables are defined:

e Y;; € {0, 1}: Binary variable that takes the value 1 if job j is processed on machine i,

and 0 otherwise.

e X;jx € {0, 1}: Binary variable that takes the value 1 if job k follows job j on machine i,

and 0 otherwise.

e H;ji, € {0, 1}: Binary variable that takes the value 1 if the setup between jobs j and k
on machine i ends at time #, and O otherwise.
e Chpax > 0: Non-negative variable representing the maximum completion time

(makespan) of the schedule.

Moreover, the set Ny = N U{0} is defined, where O represents adummy job. Each machine
starts and finishes processing at job 0, which has zero processing and setup times as well as
zero resource consumption. The parameters are set as p;o = Sjox = Sik0 = Tiok = riko = 0,

Vi € M;Vk € No.

The mathematical formulation for the UPMSR-S problem is as follows:

min Cpax, (D
sty X <1.VieM (2)
keN
Y Yj=1VjeN 3)
ieM
Yij = Z Xijk,YieM,jeN 4)
keNo, j £k
Y= Y Xijg.VieMkeN (5)
JE€No, j#k
Z Hijre = Xijk, Vi € M, j € No,k € N,k #] (6)

1 <Imax

@ Springer

Annals of Operations Research

D tHijwe = > > Huji(t +sije + pij) — M (1= Xiji) .
t

leNp t <tmax
VieM,jeNg,keN,k+#j (7)
Z riijijkz’ =< Rmax, V' = fmax ®)
ieM,jeNy.keN k#j.1'e{t,...t+sijk—1}
Y tHijis < Conax. Vi € M. j € No,k € No, k # ©)
1 <fmax

Y;je{0,1},VieM,jeN

Xijk €{0,1},YieM,je N,ke N

Hiji, €{0,1},VieM,j e N,k € N,t < tyax.
Cmax > 0.

Objective (1) aims to minimize the makespan. Constraints (2) ensure that each machine i is
assigned only one job at the first position of its sequence. Constraints (3) guarantee that every
job j is assigned to exactly one machine. Constraints (4) ensure that every job j processed
on machine i has exactly one successor k. Similarly, constraints (5) ensure that each job k
on machine i has exactly one predecessor j. Constraints (6) specify that for each machine i
and successive jobs j and k, the setup time between these jobs must end at a specific point
before tyax. Constraints (7) enforce that the setup time between jobs j and k on machine i
is completed as early as possible. Constraints (8) limit the number of resources used at any
moment to be less than or equal to Rp,,x. Finally, constraints (9) ensure that Cpax 1S greater
than or equal to the time at which all setups, including the final dummy setup, are completed.

With this model, only very small instances can be solved (see Yepes-Borrero et al. (2020));
therefore, to address larger and more realistic instances, it is necessary to propose heuristic
algorithms.

4 Proposed metaheuristic

In this section, we present an enhanced metaheuristic algorithm that improves the methods
presented in Yepes-Borrero et al. (2020). The motivation for this improvement comes from the
limitations observed in the original approach, mainly related to the repair process required
to address infeasibilities caused by violations of the setup-resource constraint, which was
frequently triggered and computationally expensive.

The improvements introduced in the proposed algorithm focus on making the solution
repair process significantly more efficient. First, the algorithm is designed to generate solu-
tions that require fewer adjustments to become feasible. Second, it reduces the number of
solutions that are actually repaired. As a result, the algorithm can perform many more itera-
tions within the Greedy Randomized Adaptive Search Procedure (GRASP) framework (Feo
& Resende, 1989), leading to a more comprehensive exploration of the solution space.

Figure 2 shows the flowchart of the proposed algorithm. The method begins with an
enhanced construction phase, aimed at generating initial solutions with low resource con-
sumption and short makespan. These solutions are then refined through an enhanced local
search phase, focused on further improving solution quality while maintaining low resource
consumption. Both phases are designed to produce solutions that require few adjustments
to become feasible. Instead of repairing every solution, we evaluate each one to determine
whether it is promising in terms of makespan and resource consumption. Only those solu-

@ Springer

Annals of Operations Research

Fig.2 Flowchart of the
E-GRASP to solve the UPMSR-S Start

problem

Enhanced
construction phase

Enhanced
local search

potential

. no
candidate

yes

add to
promising list

t < tmax yes

no

Repairing phase
(promising list)

{ solution /
Stop

tions considered promising are stored in a list. At the end of the algorithm execution, only
the solutions from this list proceed to the repair phase, significantly reducing the number of
repairs.

Although the new algorithm proposed in this work builds on the approach of Yepes-Borrero
et al. (2020), there are several key differences that lead to a substantially different behavior
and efficiency. The most relevant changes are: (i) the introduction of the g parameter in both
the construction and local search phases, (ii) a simplified neighbourhood evaluation to reduce
computational overhead, and (iii) a selective repair mechanism driven by the promising list.
These modifications aim to generate better initial solutions, reduce the number of required
repairs, and allow more iterations within the same runtime.

Before describing the phases of the algorithm, it is important to clarify how the solutions
are encoded. Each machine is represented as a list, where the jobs assigned to it are placed
sequentially. If a job appears in a machine’s list, it indicates that the job is processed on that
machine, with its position in the list representing the processing order. For each job, we track

@ Springer

Annals of Operations Research

the process start time, setup start time, and final end time. This encoding allows efficient
scheduling, ensuring that all necessary times and constraints are respected throughout the
algorithm’s different phases, such as the construction phase and local search. Hereafter, we
will provide a detailed explanation of the proposed algorithm, emphasizing the differences
compared to the original algorithm.

4.1 Enhanced Construction phase

In the construction phase, the objective is to generate initial solutions by assigning and
sequencing all jobs to the machines. As in Yepes-Borrero et al. (2020), setups are scheduled
following an earliest-start policy, in which setups begin as soon as the preceding operations
allow, which provides a computationally efficient way to construct the initial sequences
without explicitly checking global resource feasibility at each insertion. Consequently, the
solutions generated during this phase are not necessarily feasible, as they may require more
resources than those available, so these solutions are evaluated and, if necessary, repaired in
the repair phase that we will explain in Section 4.3.

Since the solutions generated in this phase are not always feasible, it is crucial to ensure that
they are promising before moving on to the repair phase. A promising solution is one that has
a low makespan and low resource consumption. To evaluate whether a solution is promising,
Yepes-Borrero et al. (2020) propose a A value. This value combines the information from
both setup times and resource consumption into a single metric. The idea is to guide the
insertion process, favouring jobs that not only minimize the increase in makespan but also
maintain low resource consumption, so that a lower A value implicitly indicates shorter setups
and reduced resource usage.

In this work, we explore the impact of adjusting the weight given to setups and resource
consumption in the A calculation. Specifically, we introduce a new parameter, 8, which allows
us to control the weight we give to resource consumption and setups in the insertion process.
For this purpose, we propose a modified A# value, defined as:

B
Aiik = Ci + pij

+ B[(Osi k—1.6) * Orik=1.0)) + (Osi k1) - Oriiek+)) — (Vs - vrab)] s (10)

where C/ represents the current completion time of machine i in the partial solution after job
J 1is inserted, while p;; is the processing time of job j on machine i. B is the new scaling
factor introduced to adjust the weight of the setup times and resource consumption. The terms
O5(i k—1,k) and Oy k k+1) denote the setup times required when inserting job j in position
k on machine 7, and 0,(; x—1,x) and 0, k k+1) correspond to the resources needed for these
setups. Finally, ys k) and y, k) represent the setup time and resources that are no longer
necessary due to the insertion of job j in position £ on machine i.

The new B parameter allows us to adjust how much we penalize insertions with longer
setups and higher resource consumption. Higher 8 values will penalize insertions with higher
resource consumption and longer setup times. Several values of 8 were tested to calibrate
its influence on the algorithm’s performance and the results of this calibration are shown in
Section 5.1.

The construction phase starts with the list of pending jobs, which initially consist of the
entire set of N jobs. For each pending job, we evaluate every possible insertion position
within the current partial solution, considering all machines. For each possible insertion,

the corresponding A? ik value is computed. The best candidate for insertion is the job j at

@ Springer

Annals of Operations Research

Algorithm 1: Enhanced construction phase.

PendingJobs < N;
foreach i € M do
| PartialSolution; < @,
end
while PendingJobs # () do
foreach j € PendingJobs do
foreach i € M do
for k = 0 to |Partial Solution;| do
‘ Calculate)»5 ik with Equation (10);
end
end
end

RCL (a) < {(i, joal < min(L k) ta <max (Aﬁj,k) — min (Af’j’k»};
Randomly choose (i*, j*, k*) € RCL (a);

Update Partial Solution;«: Assign job j* on machine i* in position k*;

Remove j* from PendingJobs,

end

position k on machine i that yields the lowest Aﬂ ik value. However, as this is a GRASP
algorithm, instead of selecting the best candldate dlrectly, a candidate is chosen at random
from a restricted candidate list (RCL). The RCL consists of the top candidates that meet a

threshold determined by Upper Bound = min ()\’ZB] k) +a (max (Af} k) min (klﬁj k))
The parameter o € [0, 1] controls the size of the restricted candidate list. Lower values lead
to a more greedy behavior (smaller RCL), while higher values introduce greater randomness

(bigger RCL). One candidate is then drawn uniformly at random from the RCL, after which
the corresponding job is assigned and the job is removed from the list of pending jobs.

4.2 Enhanced Local search

The local search phase aims to enhance the current solution by performing job swaps across
all machines. Unlike the approach proposed in Yepes-Borrero et al. (2020), it was simplified
to improve efficiency. While the original version explored both internal and external job
insertions, the enhanced algorithm only performs swap moves between pairs of jobs. This
modification significantly reduces the number of neighbourhood evaluations and therefore
the computational time per iteration. Additionally, we incorporate the new g factor (explained
in Section 4.1) to weigh the importance of setup times and resource consumption in each
potential swap. For each job, a potential swap is considered with every other job on all
machines. For each possible swap between job j on machine i and job k on machine i’ a
value, denoted as LS(J;, kl.r), is computed. This value LS (Jis ki/) is defined as:

LS (ji-ky) = Ap (jisky) + B - (As (i k) - Ar (jis k) (1D
where:

e Ap (Jis kl./) indicates the difference in processing times when swapping job j from
machine i with job k from machine i’. This difference is calculated as the sum of the new
processing times p;s; and pjy after the swap, minus the sum of the old processing times
pij and p;/ before the swap. It is important to note that if i = i’, then Ap (ji, k;) = 0.

e [1is the same factor that was explained in the construction phase.

@ Springer

Annals of Operations Research

o As (Jis ki/) indicates the difference in setup times when swapping job j from machine i

with job k from machine i . This difference represents the new setup times that must be
performed due to the swap, minus the setup times that are no longer necessary.
o Ar (Jis ki/) indicates the difference in resource consumption when swapping job j from

machine i with job k from machine i . This difference represents the resources needed for
the new setups that must be performed due to the swap, minus the resources consumed
by the old setups that are no longer necessary.

After evaluating all possible swaps, the swap that yields the most negative LS (Jis ki/)
value (indicating the greatest improvement) is executed. The process is iteratively repeated
until no further swaps yield negative LS (Jis ki/) values, at which point the local search
terminates. Algorithm 2 illustrates the general procedure of the local search.

Algorithm 2: Enhanced local search.

Improvement < TRUE;

while /mprovement # FALSE do
Improvement <— FALSE,
BestImprovement < o0;
foreach j € N do

foreach k € N \ {j} do

Calculate LS (ji, ki/);

if LS (ji, kl,/) < BestImprovement then
Improvement < TRUE;

BestImprovement <— LS (ji, ki/);
BestSwap < (ji. k;r);

end

end

end

Do BestSwap;

end

4.3 Repairing phase

Since the generated solutions do not necessarily satisfy the resource constraint, it is necessary
to evaluate the resource consumption at each time instant. If the constraint is not satisfied at
some point, the solution must be repaired. For this purpose, we employ the same mechanism
proposed by Yepes-Borrero et al. (2020).

The algorithm evaluates the resource consumption at each time instant. When the resource
constraint is not satisfied, the algorithm delays by one time unit the start of the setup that
started later among all the setups that are running at that time instant. Then, the resource
consumption is evaluated again at the same time instant. If the constraint is satisfied, the
process advances to the next time instant. This procedure is repeated until the resource
constraint is satisfied throughout the solution. Algorithm 3 illustrates the general procedure
of the repairing phase.

@ Springer

Annals of Operations Research

Algorithm 3: Repairing phase.
t < 0;
while 1 < Cpax do
if Resources consumption > Rpax then
Postpone the start of the setup that began the latest at time instant ¢;
Update Cmax;
else
| 1 <—1+1;
end
end

4.4 Enhanced algorithm

The enhanced metaheuristic algorithm, as illustrated in Algorithm 4, iteratively performs
the construction and local search phases, running for a predefined runtime (RT). A key
innovation in this new approach is the selective repair mechanism, where only the solutions
in the promising list at the end of the runtime are repaired, in contrast to the method in
Yepes-Borrero et al. (2020), which repairs all solutions immediately.

As seen at the start of Algorithm 4, the algorithm begins by initializing the Promising List
to store the most promising solutions and setting the Best Solution to an infinite value. During
the construction phase, in each iteration, a new solution (New Solution) is generated. While
this step is similar to the original algorithm, it is important to note that the assignment rule
has been modified due to the introduction of the new 8 parameter in this work. Following the
construction phase, the local search seeks to improve the solution by performing job swaps
across machines. This phase differs from the original algorithm by being faster, as it performs
fewer swaps per iteration.

Once the local search is completed, the solution is evaluated to determine if it is promis-
ing. The most promising p solutions (those with the lowest makespan) are stored in the
PromisingList until the algorithm reaches the total RT. It is important to clarify that solu-
tions with the lowest makespan are considered promising because both the construction and
local-search phases follow the same evaluation principle introduced through the A metric,
which penalizes long setups and high resource consumption. As a result, the candidate solu-
tions reaching this stage already exhibit low resource usage, and selecting those with the
smallest makespan naturally favours both short completion times and low resource con-
sumption.

As shown in Algorithm 4 the PromisingList is continuously updated throughout the
runtime. Only at the end of RT, the solutions in the Promising List move on to the repairing
phase. This step differs significantly from the previous algorithm, where every solution was
repaired immediately, limiting the number of iterations due to high computational costs
during the repair phase. Finally, after repairing the solutions in the list, the best solution is
chosen by comparing the outcomes of all repaired solutions.

This approach ensures that more solutions are explored before the costly repair phase,
allowing for a more comprehensive search of the solution space. Furthermore, the intro-
duction of the new B parameter enhances this process by allowing for adjusted penalties
on sequences with high resource consumption, ultimately contributing to potentially bet-
ter results. By focusing only on promising solutions and adjusting the trade-off between
makespan and resource consumption, this new method is expected to yield higher-quality
solutions compared to previous algorithms. Several values of p were tested to calibrate its

@ Springer

Annals of Operations Research

influence on the algorithm’s performance and the results of this calibration are shown in
Section 5.1.

Algorithm 4: Enhanced metaheuristic.

PromisingList < 0 ;
BestSolution < o0 ;
while (Execution Time) < RT do
Construct a new solution, NewSolution, using the construction phase;
Improve New Solution using the local search phase;
if NewSolution is promising then

Add NewSolution to PromisingList;

if PromisingList exceeds size p then

| Remove the least promising solution from PromisingList;

end
end
end
foreach solution in PromisingList do
Repair the solution using the repairing phase;
if the repaired solution is better than BestSolution then

| Update BestSolution with this repaired solution ;

end
end
return BestSolution ;

5 Experimental analysis

To evaluate the performance of the metaheuristic proposed in this paper, hereafter referred
to as Enhanced GRASP (E-GRASP), we conducted experiments on the same large-scale
instances introduced by Yepes-Borrero etal. (2020). These instances already model additional
setup resources and generate processing and setup times in accordance with established
benchmarks (e.g., Taillard (1993), Vallada and Ruiz (2011), Béez et al. (2019), Berthier et
al. (2022), Fanjul-Peyr6 et al. (2019)).

For comparison, we include three reference algorithms. The GRASP of Yepes-Borrero et
al. (2020) (denoted as Baseline GRASP or B-GRASP) is used as the main benchmark, since
it was designed for the same UPMSR-S problem addressed in this work. In addition, two
algorithms from the UPMS family were adapted because, in our judgment, they represent the
most similar approaches in the literature, as they consider unrelated parallel machines with
sequence-dependent setups.

The hybrid GRASP+VNS of Béez et al. (2019) (B4ez-Hybrid), originally designed for the
UPMS without resource constraints, was adapted by adding a repair phase to each generated
solution to enforce feasibility with respect to setup resources. An additional variant incor-
porating the E-GRASP repair mechanism was tested, but this version did not yield better
results, since the algorithm was not capable of generating sufficiently promising solutions
for the repair procedure to be effective.

The algorithm of Lopez-Esteve et al. (2023) (Lopez-GRASP), developed for the UPMS
with both processing and setup resources (UPMSR-P+S), was modified by removing all
components related to processing-resource evaluation and repair, focusing only on setup-

@ Springer

Annals of Operations Research

resource feasibility. As in the previous case, this adaptation did not lead to improvements, as
the algorithm was unable to generate promising solutions for the repair phase.

It is important to highlight that the enhancements introduced in E-GRASP are not limited
to the repair mechanism. The inclusion of the new B factor, which penalizes sequences with
high setup-resource requirements, allows the algorithm to guide the search toward promising
regions of the solution space. This combination of selective repair and guided penalization is
expected to enable E-GRASP to obtain higher-quality solutions than the reference methods.

The test instances are defined by varying the number of jobs n € {50, 100, 150, 200, 250}
and the number of machines m € {10, 15, 20, 25, 30}. Setup times were drawn from uni-
form distributions with four different ranges: 1 — 9,1 — 49,1 — 99, and 1 — 124. Processing
times were uniformly drawn between 1 and 99. For each instance, the maximum resource
availability (Rpnax) was randomly set between 3 and 4. The resource consumption of each
setup was also generated using a uniform distribution between 1 and Ryax.-

By combining all possible values for the number of jobs (5), machines (5), and setup times
distributions (4), a total of 100 different configurations was obtained. For each configuration,
10 random replicates were generated, resulting in a total of 1000 instances. Additionally, an
extrareplicate was generated for each configuration to create a separate set of instances, which
was used to calibrate the algorithm parameters. This means that a total of 1000 instances were
generated to evaluate the algorithms and 100 additional instances for calibration.

To compare the quality of the solutions, we use the Relative Percentage Deviation (RPD),
which is calculated as follows:

Solution_Value — Best_Known_Value
RPD = - 100, (12)
Best Known_Value

where Best_Known_Value is the best makespan obtained among all methods tested for
each instance.

All the experiments were carried out on virtual machines, each equipped with 2 virtual
processors and 16 GB of RAM, running Windows 10 Enterprise 64-bit. All algorithms were
implemented in C# using Microsoft Visual Studio 2022.

Before conducting the final comparison, we calibrated E-GRASP to identify its optimal
settings, tuning the parameter o alongside the newly introduced 8 and p factors. The other
algorithms (B-GRASP (Yepes-Borrero et al., 2020), Badez-Hybrid (Béez et al., 2019), and
Lopez-GRASP (Lopez-Esteve et al., 2023)) were configured using the parameter values
recommended in their original publications.

5.1 Algorithm calibration

For the calibration of the algorithm parameters, we tested different values for «, the size
of the promising solution list (p), and the scaling factor 8. Specifically, for «, we evalu-
ated 9 different values: {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1}. For p, we tested 7 values:
{1, 5, 10, 20, 50, 100, 500}. For B, we also evaluated 7 levels: {1, 2, 4, 6, 8, 10, 20}.

We conducted a full factorial design of experiments, testing all possible configurations of
the algorithm, resulting in9-7-7 = 441 different parameter combinations. Each configuration
was run on the 100 instances from the calibration set, leading to a total of 44100 executions.
All configurations have the same stopping criterion, which is based on the number of jobs
in the instance: ¢ = n seconds, resulting in more than 62 days of CPU time to complete the
calibration.

To compare the performance of all configurations, we performed an analysis of vari-
ance (ANOVA) (Montgomery, 2019) to determine whether there were significant differences

@ Springer

Annals of Operations Research

Table2 ANOVA p-values for

. Factor p-value
calibration factors (response
variable: RPD) < 0.001
0 < 0.001
B < 0.001
1.25 1.25+ 1.25
pu—
1.00 1.00+ == 1.00
a E pu— - E
& o075 2 075+ = & ors —
o = o —— —_——
=
0.50 = = 0.50- 0.50
IIIIII

0 005 01 015 02 025 05 075 1
o

(a) (b) (c)

Fig. 3 RPD Means plots with Fisher’s LSD 95% confidence intervals for o (Figure 3a), p (Figure 3b) and 8
(Figure 3c) factors in metaheuristic calibration. Noting that in Figure 3a the average RPD for o = 1 is greater
than 3

between them. The response variable for the ANOVA was the RPD. Table 2 shows the p-
values obtained from the ANOVA, indicating that all three factors are statistically significant
and that variations in their values have a meaningful impact on the algorithm performance.

Figure 3 shows the mean RPD plots with Fisher’s least significant difference (LSD) 95%
confidence intervals for the three calibrated parameters. Non-overlapping intervals indicate
significant differences between groups. In Figure 3a, the intervals for the o parameter show
that the best level is « = 0.05. Higher values of « correspond to larger RCL sizes, which
introduce more randomness in the construction phase. The results suggest that controlling
the RCL size is important, as smaller lists lead to better solutions. However, the results also
indicate that setting o« = 0 (completely greedy construction phase) should be avoided, as it
yields inferior results.

Figure 3b shows the results for p, with the best level being p = 10. This suggests that
maintaining a moderately sized list of promising solutions is more efficient. Larger values
of p can lead to higher computational costs, as managing and updating large lists becomes
computationally expensive.

Finally, Figure 3c shows the intervals for the 8 parameter, where the best level is = 4.
The value 8 = 1 indicates that the parameter has no effect. Increasing 8 introduces more
penalties for long setups and high resource consumption, which is beneficial to a point.
However, excessively high values, such as g = 20, lead to worse solutions, likely due to
over-penalizing setups and resource constraints.

5.2 Comparative Analysis of the Algorithms

To evaluate the performance of E-GRASP, we compare it with B-GRASP (Yepes-Borrero
et al., 2020), Béez-Hybrid (Bdez et al., 2019), and Lopez-GRASP (Lopez-Esteve et al.,
2023) on the full set of 1000 instances. The stopping criterion for E-GRASP was t = n
seconds, plus the additional time required to repair the p = 10 solutions in the promising
list. Since this repair time cannot be known in advance and varies across instances, it was
measured after execution and averaged for each instance size. To ensure a fair comparison,

@ Springer

Annals of Operations Research

Table 3 Comparison of average RPD (%) between the E-GRASP, the B-GRASP (Yepes-Borrero et al., 2020),
Béez-Hybrid (Béezetal., 2019), and the Lopez-GRASP (Lopez-Esteve et al., 2023) algorithms across different
instance sizes. Best results in bold.

Jobs Machines E-GRASP B- Bé4ez-Hybrid Lopez-
GRASP Yepes- Bdez et al GRASP Lopez-
Borrero et al. (2019) Esteve et al.
(2020) (2023)
RPD (%) RPD (%) RPD (%) RPD (%)
50 10 3.39 5.07 26.93 20.03
15 0.82 16.86 53.90 48.13
20 0.00 21.19 63.47 63.29
25 0.20 17.24 56.90 56.22
30 2.52 9.21 38.84 57.31
100 10 1.23 9.10 46.22 25.16
15 0.11 32.07 98.13 70.19
20 0.00 54.59 133.56 112.99
25 0.00 63.32 151.86 140.95
30 0.00 68.93 161.98 163.59
150 10 0.97 13.01 57.51 20.83
15 0.00 38.94 114.08 77.44
20 0.00 58.70 152.82 122.65
25 0.00 72.57 167.17 148.08
30 0.00 75.89 177.90 164.97
200 10 1.05 14.59 58.86 20.87
15 0.02 42.77 119.59 80.60
20 0.00 67.27 154.10 124.15
25 0.00 70.61 169.71 145.80
30 0.00 72.12 177.75 163.98
250 10 0.71 13.82 59.27 21.53
15 0.00 47.78 125.37 86.09
20 0.00 63.90 157.33 126.24
25 0.00 70.36 168.33 143.14
30 0.00 71.52 178.92 155.96

this average repair time was then added to the base runtime of #+ = n seconds assigned to
the reference algorithms (B-GRASP (Yepes-Borrero et al., 2020), Bdez-Hybrid Béez et al.
(2019), and Lopez-GRASP Lopez-Esteve et al. (2023)), so that all methods were executed
under equivalent total runtimes.

Table 3 shows the average RPD results for all algorithms under different numbers of
jobs and machines. E-GRASP consistently outperforms the other algorithms across all
tested instance sizes, demonstrating robustness and efficiency regardless of the problem size.
Although Béez et al. (2019) and Lopez-GRASP (Lopez-Esteve et al., 2023) were included
in the comparison, their performance was significantly worse than that of E-GRASP and B-
GRASP (Yepes-Borrero et al., 2020). As shown in Table 3, their RPD values are considerably
higher. This can be explained by the fact that these algorithms were originally designed for
related problems, and their adaptations do not properly address the specific characteristics

@ Springer

Annals of Operations Research

150

“““““““““

.

B-GRASP B-GRASP

~o- Baez -o- Baez
-o- E-GRASP -o- E-GRASP

50 " Lopez

Average RPD (%)
Average RPD (%)

504 I Lopez

0 L e B S - 0+ L e B -

50 100 150 200 250 10 15 20 25 30
Jobs Machines

(2) (b)

Fig.4 Evolution of the RPD for all algorithms as a function of jobs (Figure 4a) and machines (Figure 4b)

of the UPMSR-S. These results underline the importance of designing specific algorithms
for the UPMSR-S, with mechanisms that explicitly handle the type of additional resources
involved in this problem.

Furthermore, while E-GRASP already outperforms all other methods, its advantage
becomes even more pronounced as the number of machines increases. This is particularly
noticeable in cases with 20 or more machines, where the RPD of E-GRASP is significantly
lower, or even equal to O in many instances, meaning that it finds the best solutions consis-
tently. On the other hand, B-GRASP (Yepes-Borrero et al., 2020), Biaez-Hybrid Béez et al.
(2019), and Lopez-GRASP Lopez-Esteve et al. (2023) yield much higher RPD values, with
B-GRASP (Yepes-Borrero et al., 2020) being the closest competitor yet still substantially
inferior.

Another important observation is that the E-GRASP is especially effective in larger
instances. In configurations with 100 or more jobs, the proposed algorithm maintains low
RPD values, while the other algorithms show a substantial increase, suggesting that the new
approach handles the increase in problem size much more efficiently.

Although the superiority of E-GRASP over the other algorithms is evident from the results,
we also conducted a hypothesis test for the difference in means. As expected, the test con-
firmed that there are statistically significant differences between the mean RPD of E-GRASP
and that of B-GRASP (Yepes-Borrero et al., 2020), further reinforcing the advantage of the
proposed approach.

It is also worth noting that, for smaller instances (such as those with 50 jobs and 10
machines), E-GRASP remains highly competitive. Although the differences between the
algorithms are less pronounced in these less difficult cases, E-GRASP still outperforms B-
GRASP (Yepes-Borrero et al., 2020) and maintains a considerable advantage over Biez et
al. (2019) and Lopez-Esteve et al. (2023).

Figure 4 presents the average RPD for the four algorithms, varying the number of jobs and
machines. Even for instances with 50 jobs, the differences between E-GRASP and the other
methods are already significant. However, as the number of jobs increases, these differences
become even more pronounced. For instances with 150 or more jobs, E-GRASP achieves
average RPD values close to 0%, while the other algorithms exhibit RPD values exceeding
50%, even in the case of B-GRASP (Yepes-Borrero et al., 2020), which performs better than
Béez et al. (2019) and Lopez-GRASP (Lopez-Esteve et al., 2023) but still far from the results
of E-GRASP. A similar trend is observed when increasing the number of machines. With
10 machines, the differences are smaller, but as the number of machines grows, E-GRASP

@ Springer

Annals of Operations Research

Table 4 Paired ¢-test p-values on Jobs

-val
the RPD values comparing p-value
E-GRASP and B-GRASP across 50 0,001
job sizes

100 < 0.001
150 <0.001
200 < 0.001
250 < 0.001

Table 5 Paired ¢-test p-values on
the RPD values comparing
E-GRASP and B-GRASP across 10 < 0.001
numbers of machines

Machines p-value

15 < 0.001
20 < 0.001
25 < 0.001
30 < 0.001

consistently maintains RPD values near 0%, while B-GRASP (Yepes-Borrero et al., 2020)
reaches almost 60% for instances with 25 and 30 machines.

This behaviour can be explained by the nature of larger instances, particularly those
with more machines, where a greater number of simultaneous setups must be managed
across different machines, increasing the computational effort required by the solution repair
process. Similarly, instances with a higher number of jobs require a greater number of setups,
further complicating repairs. The results suggest that E-GRASP significantly outperforms the
other methods by adding improvements that simplify the repair process. By repairing fewer
solutions, the enhanced algorithm allocates more time to performing additional iterations,
leading to a more extensive exploration of the solution space. Additionally, the penalization
of sequences with longer setup times and higher resource consumption (through the factor)
simplifies the repairing process, contributing to the superior performance of E-GRASP across
all tested scenarios.

To statistically verify the differences between the two best performing algorithms, we per-
formed paired ¢-tests on the RPD values of E-GRASP and B-GRASP, grouping the instances
by the number of jobs and by the number of machines. Tables 4 and 5 show the corresponding
p-values for each group. In all cases, the results confirm that the differences between the two
algorithms are statistically significant (p < 0.001).

5.3 Sensitivity to resource availability

To further analyze the influence of setup-resource availability on algorithmic performance,
a dedicated sensitivity study was conducted. A representative subset of instance sizes was
selected, namely (50, 10), (50, 15), (100, 15), (150, 20), (200, 25), and (250, 30), and for
each size five random instances were generated.

The number of renewable resource units was varied across seven levels relative to the
number of machines: Ryox = 0.1m, Rpyax = 0.2m, Rpyax = 0.3m, Rypax = 0.4m,
Rmax = 0.5m, Rypax = 0.6m, and Rpnax = 0.7m. These levels were chosen to repre-
sent scenarios ranging from highly restrictive (0.1m) to less restrictive (0.7 m). The setup
resource requirements r; j; were generated as in the original benchmark instances, with values

@ Springer

Annals of Operations Research

1.5 A=
’ S e y]
/ \. //
’ ~ -
7 S e _ 7
7 \‘a”
/
¢
101
[a) —
o B-GRASP
o -0~ Baez
(0]
8 -~ E-GRASP
[
> Lopez
<< 0.51 p
0.0 ¢y ge---¢-""T™ -9
01 02 0.3 04 05 0.6 0.7

Fig. 5 Evolution of the RPD for all algorithms as a function of the resource availability ratio Ryax/m

sampled uniformly from [1, Rpax]. In total, 210 instances were generated for this sensitivity
analysis.

Table 6 and Figure 5 summarize the mean relative percentage deviations obtained for
different values of Rpyax. It can be observed that when the resource is highly restrictive
(Rmax = 0.1m—0.3m), E-GRASP clearly outperforms all other algorithms, showing dif-
ferences of more than one order of magnitude in the mean RPD with respect to the next
best approach. As the resource becomes less restrictive, the advantage of E-GRASP grad-
ually decreases, and from Rpn.x = 0.5m onward its performance becomes very similar to
that of B-GRASP (Yepes-Borrero et al., 2020). This behaviour is consistent with the design
of E-GRASP, which explicitly targets the setup-resource infeasibility during construction
and repair. When resources are scarce, these mechanisms provide an important advantage,
whereas when Ry« increases and the problem becomes less restrictive, the repair phase is
easier and the advantage of E-GRASP becomes less pronounced.

It is worth noting that E-GRASP remains competitive even in the least restrictive cases
(Rmax = 0.5m—0.7m), indicating that the additional mechanisms do not degrade performance
under less restrictive conditions.

Regarding the other algorithms, their performance is consistently worse across all config-
urations. Although Baez-Hybrid (Baez et al., 2019) and Lopez-GRASP (Lopez-Esteve et al.,
2023) are strong methods for similar unrelated parallel machine scheduling problems, they
are not tailored to handle the renewable setup-resource constraint. Their solutions yield much
higher RPD values even in moderately restrictive scenarios, highlighting the importance of
explicitly considering setup-resource feasibility in this problem variant.

Itis worth emphasizing that modelling a small number of setup resources is consistent with
real industrial conditions. In many manufacturing environments, such as ceramics, textiles,
or electronics, the number of specialized operators or tooling units is usually small compared
with the number of production machines, since such resources are expensive and shared across
several lines. This assumption is also consistent with recent literature, where both Avgerinos
etal. (2023) and Heinz et al. (2022) consider problems in which the number of setup resources
is very limited compared with the number of machines. These studies confirm that relatively
low resource levels are representative of practical and research-relevant settings. Therefore,
testing Rpax ratios between 0.1m and 0.7m provides a realistic spectrum of scenarios ranging
from highly restrictive to moderately relaxed conditions.

@ Springer

Annals of Operations Research

Table 6 Mean RPD by Rmax level. The best value for each row is highlighted in bold.

Rmax/m E-GRASP B- Béez-Hybrid Lopez-
GRASP Yepes- Béez et al GRASP Lopez-
Borrero et al. (2019) Esteve et al. (2023)
(2020)

0.10 0.57 68.08 113.09 86.81

0.20 0.14 56.08 151.60 112.81

0.30 0.24 34.10 148.07 112.18

0.40 2.78 18.48 136.08 102.53

0.50 4.91 4.91 122.17 81.88

0.60 1.58 4.51 129.77 99.59

0.70 3.27 5.32 141.45 107.01

Table 7 Average performance of E-GRASP and the MILP model on small instances.

MILP E-GRASP
Jobs Machines RPD RPD(gap) Time (s) Opt. (%) RPD RPD(gap) Time (s)

6 2 0.00 0.00 16.01 100.00 5.53 5.53 6.00
3 0.00 0.00 7.18 100.00 241 241 6.01
8 2 0.00 0.00 811.55 100.00 5.09 5.09 8.00
3 0.00 0.00 153.58 100.00 541 5.41 8.01
10 2 3.15 58.40 4934.12 50.00 1.64 58.14 10.01
3 1.36 21.16 3046.49 83.33 2.33 19.02 10.02
12 2 10.31 73.42 7200.00 0.00 0.65 71.72 12.01
3 10.12 49.82 7200.00 0.00 0.40 46.43 12.02

5.4 Comparison with the MILP model on small instances

To further evaluate the quality and computational efficiency of the proposed heuristic, we
compared E-GRASP with the exact MILP model presented in Section 3. The MILP was solved
using Gurobi 12.0.3 with a time limit of 7200 seconds and a relative MIP gap tolerance of
10~*. Because of the combinatorial nature of the problem, the MILP could only solve very
small instances to proven optimality. We therefore considered eight configurations, with the
number of jobs € {6, 8, 10, 12} and the number of machines € {2, 3}, and generated six
instances for each configuration ({(j, m) : j € jobs,m € machines}).

Table 7 reports, for each configuration, the average relative percentage deviation (RPD)
and the deviation with respect to the MILP lower bound, denoted as RPD(gap), for both the
MILP and E-GRASP. The column Opt. % indicates the percentage of instances for which the
MILP reached proven optimality, while the last two columns for MILP and E-GRASP show
the average computational times in seconds.

The MILP solved all instances with six and eight jobs to proven optimality. In these
cases, E-GRASP remained close to the optimal solutions, with average RPD values below
6%. For the 8-job configurations with either 2 or 3 machines, however, the MILP required
considerable computation time, on average 811 s and 154 s per instance, whereas E-GRASP
obtained comparable solutions in only 8 s.

@ Springer

Annals of Operations Research

As the instance size increases, the relative performance of both methods starts to diverge.
For the configurations consisting of 10 jobs and 2 machines, E-GRASP produced better
solutions on average than the MILP, with an average runtime of just 10 s compared with
nearly 5000 s for the MILP. For the configurations consisting of 10 jobs and 3 machines, the
MILP reached optimality in 83% of the instances, while E-GRASP achieved a mean RPD
of only 2.33%, showing that it can closely approximate optimal solutions even when the
problem becomes harder.

For the largest configurations, consisting of 12 jobs and either 2 or 3 machines, the MILP
failed to prove optimality in any instance and produced very loose bounds even after the full
7200 s limit, whereas E-GRASP found much better solutions within a few seconds. The large
MILP gaps observed in these cases confirm that the linear relaxation yields weak bounds and
that exact approaches become unreliable for such instance sizes.

Overall, these results show that E-GRASP maintains good solution quality across all
instance sizes while requiring negligible computation time, making it a practical and efficient
alternative to exact optimization.

6 Conclusions and further research

In this paper, we have introduced a new efficient metaheuristic algorithm for solving the
Unrelated Parallel Machine Scheduling problem with setup times and additional Resources
in the Setups (UPMSR-S). The proposed algorithm has been thoroughly evaluated through
an extensive computational campaign on a benchmark of 1000 instances. Furthermore, the
algorithm parameters were rigorously calibrated through a series of exhaustive experiments,
ensuring that the best values were selected to maximize its performance.

The results of these experiments, supported by statistical analysis, demonstrate that the
new approach significantly outperforms all compared algorithms, with performance improve-
ments exceeding 70% in several cases. This highlights the robustness of the algorithm across
different instance sizes and its ability to adapt to the increasing difficulty of the UPMSR-S
problem.

One of the key advantages of this algorithm lies in its practical relevance. By efficiently
managing limited setups and resources, the enhanced algorithm addresses a critical need in
real-world production environments, where resource constraints often represent a significant
challenge. The algorithm’s ability to deliver high-quality solutions in these restricted environ-
ments underscores its value for practical applications, making it a useful tool for industries
where scheduling efficiency is vital.

As future work, the approach could be extended to other scheduling problems involving
resource constraints. In particular, the proposed repair mechanism is not tied to the specific
structure of the UPMSR-S and can be adapted to other settings where infeasibilities arise
from limited renewable resources. This includes problems such as flowshop and jobshop
scheduling. Additionally, alternative objectives such as minimizing tardiness or the total
(weighted) completion time could be explored, and the method could be adapted to multi-
objective formulations to assess its performance across a wider range of scheduling scenarios.

Funding Open access funding provided by FEDER European Funds and the Junta de Castilla y Le6n under the
Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y Leén 2021-2027. J. C. Yepes-
Borrero was partially supported by the Spanish Ministry of Science and Innovation under the project “OPRES-
Realistic Optimization in Problems in Public Health” (No. PID2021-1249750B-100), partially financed with
FEDER funds.

@ Springer

Annals of Operations Research

J. Alcaraz was supported by grants PID2022-136383NB-100 funded by MICIN/AEI/10.13039/501100011033
and by ERDF/EU, and CIPROM/2024/34, funded by the Conselleria de Educacidén, Cultura, Universidades y
Empleo, Generalitat Valenciana.

This article has received funding from the European Union’s Horizon Europe research and innovation actions
under grant agreement No. 101168560 (CoEvolution). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the Commission. Neither the
European Union nor the granting authority can be held responsible for them.

Declarations

Conflict of Interest J. C. Yepes-Borrero, J. Alcaraz, M. Lopez-Garcia, and M. Villaizan-Vallelado declare that
they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by
any of the authors.

Informed consent Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Example instance and step-by-step E-GRASP of the UPMSR-S problem

A.1 Example Instance of the UPMSR-S Problem

To illustrate the proposed metaheuristic Enhanced GRASP (E-GRASP), we consider a spe-
cific instance of the Unrelated Parallel Machine scheduling problem with setup times and
additional Resources in the Setups (UPMSR-S). In this instance, a set N of n = 8 jobs must
be scheduled on a set M of m = 4 unrelated machines. Each job must be processed exactly
once on one of the available machines, and each machine can process only one job at a time
without pre-emption.

The processing time of job j on machine i is denoted by p;; (Figure 6a), which varies
across machines due to their heterogeneous characteristics. Moreover, whenever two jobs are
processed consecutively on the same machine, a setup operation is required. The setup time
sijk depends on the sequence of jobs, that is, on the ordered pair (j, k) (Figure 6b).

In addition to time-related constraints, setup operations consume limited auxiliary
resources (e.g., labour, tools, or material handling equipment). The amount of resource
required for the setup between jobs j and k on machine i is represented by r;jx (Figure
6¢). The total resource consumption at any given time cannot exceed the maximum available
capacity, which in this example is fixed at Rpax = 3.

@ Springer

Annals of Operations Research

jobs

1 1 ' o 9 < 9

2
5

jobs
jobs
jobs

4 21313212220 — T2 (22|11 (2|1

(a) (b) (c)

Fig.6 Example data of a UPMSR-S problem with Rynax = 3, 8 jobs and 4 machines. In Figure 6a processing
times of each job on each machine (p;;). In Figure 6b setup times between a job (row) and its successor
(column) on each machine (s; i x)- In Figure 6¢ resources between a job (row) and its successor (column) on
each machine (r; 1)

A.2 Step-by-step of the E-GRASP metaheuristic

In the following sections, each component of the proposed E-GRASP algorithm is illustrated
through specific examples. These components correspond to the main phases outlined in
Figure 2, which summarizes the overall structure of the method. The phases include: the
construction phase (Appendix A.2.1), the local search (Appendix A.2.2), the addition of
solutions to the promising list (Appendix A.2.3), and the repair phase (Appendix A.2.4).

A.2.1 Construction phase

The construction phase, previously described in Section 4.1, is responsible for generating
initial solutions. Its detailed procedure is described in Algorithm 1. In this section, we provide
an illustrative example to clarify how the last job is inserted into a partially constructed
solution.

Figure 7 illustrates an intermediate stage of the construction phase, where the last job (7)
is being evaluated for insertion into each partial solution. The figure shows the computation
of the evaluation criterion for each possible position, which corresponds to the values given
by Equation (10). In this example, the parameter S is set to the best value obtained across
the experiments reported in Section 5.1 (8 = 4). The computed values in Figure 7 of the
insertion of job 7 according to Equation (10) are:

M= 50=312,, =194, =19,
A370=120,237, =16,13 5, =24,
Myq0=234137,=3413,,=34,
M0 =230,A47, =14} (13)

Suppose that « = 0.1. The higher o value therefore promotes greater exploration by
enabling multiple feasible insertions at this stage. The set of insertions that would be consid-

@ Springer

Annals of Operations Research

4 _ 4 _ 4 _

Mg 3t [| [A7 =1 | M7, =19 [|
. [|
ma $1,1,5571,1,5 = 2 75 | [
| |
| [4| [|

A = 16 = 24
| | 2,7, 3

52,2,8:72,2,8 = 1
! 23,] =34
$3,4,6573,4,6 = 1

|
4
Aard =14

t1 to 3 t4 s te t7 s

Fig. 7 Results obtained from the evaluation of the insertion of job 7 according to Equation (10), considering

B =4

ered after applying the filtering process to the list of potential candidates is given by:
RCL (x¢ = 0.10)
= {(i, J.k):)‘?,j,k < min ()L?,j’k> +0.10 (max ()‘?,j,k> — min (A?,j,k))}
= {(i, J k))‘?,j,k < i1 +0.10- (2570 —)‘3,7,1)}
= {135, =16,13,, = 14}. (14)

Figure 8 presents the resulting solution after inserting job 7 into the candidate positions
identified in Equation (14). In particular, Figure 8a illustrates insertion)»‘2‘ 7 1» which shows

the inclusion of job 7 on machine 2 between jobs 2 and 8. Figure 8b illustrates Aj 71
corresponding to the placement of job 7 on machine 4 immediately after job 3. Both con-
figurations represent feasible alternatives derived from the candidate set defined in Equation
(14), and together they exemplify how the algorithm evaluates different insertion positions
before completing the construction phase. The final choice between the feasible insertions
()\‘2‘77, 1)»17, 1) is determined by GRASP, which balances greediness and randomness to guide
the construction of the solution.

A.2.2 Local search

The local search phase, previously described in Section 4.2, is responsible for improving the
generated solution by performing job assignment swaps aimed at reducing the makespan. Its
detailed procedure is described in Algorithm 2.

An example of this local search process is illustrated in Figure 8. If the construction
mechanism had generated the solution depicted in Figure 8a, a possible improving swap
would consist of assigning job 7 after job 3 (Figure 8b).

@ Springer

Annals of Operations Research

tio tn tiz lig

Fig. 8 The set of candidate solutions used for selecting the insertion position of job 7 is illustrated. Figure 8a
shows the insertion of job 7 on machine 2 between jobs 2 and 8 ()»‘2‘ 7 1)» while Figure 8b shows the insertion

on machine 4 after job 3 ()»1 71)

A.2.3 Add to promising list

The promising list phase is responsible for selecting the most promising solutions among
those explored during the previous iterations. In this phase, only the solutions that exhibit a
smaller makespan compared to the previously evaluated ones are retained for the subsequent
repairing phase. According to the analysis presented in Section 5.1, the size of the promising
list is set to ten elements (o = 10). This filtering mechanism ensures that the computational
effort of the repairing process is focused exclusively on high-quality solutions.

A.2.4 Repairing phase

The repair phase, previously described in Section 4.3, ensures that the solutions generated
during the previous stages satisty the resource constraint. This is achieved by evaluating the
total resource consumption at each time instant and applying corrective actions whenever the
constraint is violated. Specifically, when an infeasibility is detected, the algorithm postpones
by one time unit the start of the setup operation that began last among those active at that
instant. This repair mechanism is summarized in Algorithm 3.

An example of this repair procedure is illustrated in Figure 1. In Figure 1a, the solution is
infeasible because the resource constraint is violated between time instants #3 and #4. After
applying the repair mechanism, the adjusted solution shown in Figure 1b becomes feasible,
as the setups are delayed to ensure that the resource consumption does not exceed the limit
Rmax = 3.

References

Avgerinos, I., Mourtos, 1., Vatikiotis, S., & Zois, G. (2023). Scheduling unrelated machines with job splitting,
setup resources and sequence dependency. International Journal of Production Research, 61(16), 5502—
5524. https://doi.org/10.1080/00207543.2022.2102948

Béez, S., Angel-Bello, F., Alvarez, A., & Melidn-Batista, B. (2019). A hybrid metaheuristic algorithm for a
parallel machine scheduling problem with dependent setup times. Computers & Industrial Engineering,
131, 295-305. https://doi.org/10.1016/j.cie.2019.03.051

Berthier, A., Yalaoui, A., Chehade, H., Yalaoui, F., Amodeo, L., & Bouillot, C. (2022). Unrelated parallel
machines scheduling with dependent setup times in textile industry. Computers & Industrial Engineering,
174, Article 108736. https://doi.org/10.1016/j.cie.2022.108736

Chen, J. C., Chen, T.-L., Chen, Y.-Y., & Chung, M.-Y. (2024). Multi-resource constrained scheduling con-
sidering process plan flexibility and lot streaming for the cnc machining industry. Flexible Services and
Manufacturing Journal, 36(3), 946-993. https://doi.org/10.1007/s10696-023-09514-w

@ Springer

Annals of Operations Research

Chen, J., Chu, C., Sahli, A., & Li, K. (2024). A branch-and-price algorithm for unrelated parallel machine
scheduling with machine usage costs. European Journal of Operational Research, 316(3), 856-872.
https://doi.org/10.1016/j.ejor.2024.03.011

Durasevié, M., & Jakobovi¢, D. (2023). Heuristic and metaheuristic methods for the parallel unrelated machines
scheduling problem: a survey. Artificial Intelligence Review, 56(4), 3181-3289. https://doi.org/10.1007/
s10462-022-10247-9

Elidrissi, A., Benmansour, R., & Sifaleras, A. (2023). General variable neighborhood search for the parallel
machine scheduling problem with two common servers. Optimization Letters, 17(9),2201-2231. https://
doi.org/10.1007/s11590-022-01925-2

Fang, W., Zhu, H., & Mei, Y. (2022). Hybrid meta-heuristics for the unrelated parallel machine scheduling
problem with setup times. Knowledge-Based Systems, 241, Article 108193. https://doi.org/10.1016/].
knosys.2022.108193

Fanjul-Peyro, L. (2020). Models and an exact method for the Unrelated Parallel Machine scheduling problem
with setups and resources. Expert Systems with Applications: X, 5, Article 100022. https://doi.org/10.
1016/j.eswax.2020.100022

Fanjul-Peyrd, L., Ruiz, R., & Perea, F. (2019). Reformulations and an exact algorithm for unrelated parallel
machine scheduling problems with setup times. Computers & Operations Research, 101, 173-182.
https://doi.org/10.1016/j.cor.2018.07.007

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, 8(2), 67-T1. https://doi.org/10.1016/0167-6377(89)90002-3

Florescu, A., & Barabas, S. (2022). Development trends of production systems through the integration of lean
management and industry 4.0. Applied Sciences, 12(10), 4885. https://doi.org/10.3390/app12104885

Fonseca, G. H. G., Figueiroa, G. B., & Toffolo, T. A. M. (2024). A fix-and-optimize heuristic for the unrelated
parallel machine scheduling problem. Computers & Operations Research, 163, Article 106504. https://
doi.org/10.1016/j.cor.2023.106504

Geurtsen, M., Didden, J. B. H. C., Adan, J., Atan, Z., & Adan, 1. (2023). Production, maintenance and resource
scheduling: A review. European Journal of Operational Research, 305(2), 501-529. https://doi.org/10.
1016/j.ejor.2022.03.045

Heinz, V., Novék, A., VIk, M., & Hanzilek, Z. (2022). Constraint programming and constructive heuristics
for parallel machine scheduling with sequence-dependent setups and common servers. Computers &
Industrial Engineering, 172, Article 108586. https://doi.org/10.1016/j.cie.2022.108586

Klein, N. (2025). Integer programming for multi-mode resource-constrained project scheduling. Annals of
Operations Research. https://doi.org/10.1007/s10479-025-06572- 1

Klein, N., Gnigi, M., & Trautmann, N. (2024). Mixed-integer linear programming for project scheduling
under various resource constraints. European Journal of Operational Research, 319(1), 79-88. https://
doi.org/10.1016/j.ejor.2024.06.036

Lee, J.-H., & Jang, H. (2019). Uniform parallel machine scheduling with dedicated machines, job splitting
and setup resources. Sustainability, 11(24), 7137. https://doi.org/10.3390/sul1247137

Lei, D., Yuan, Y., & Cai, J. (2021). An improved artificial bee colony for multi-objective distributed unrelated
parallel machine scheduling. International Journal of Production Research, 59(17), 5259-5271. https://
doi.org/10.1080/00207543.2020.1775911

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1977). Brucker, P.: Complexity of machine scheduling problems.
Annals of Discrete Mathematics 1(C), 343-362 https://doi.org/10.1016/S0167-5060(08)70743-X

Li, K., Chen, J., Fu, H., Jia, Z., & Fu, W. (2019). Uniform parallel machine scheduling with fuzzy processing
times under resource consumption constraint. Applied Soft Computing, 82, Article 105585. https://doi.
org/10.1016/j.as0c.2019.105585

Li, K., Xie, F,, Chen, J., Xiao, W., & Zhou, T. (2024). Mathematical models and an effective exact algorithm for
unrelated parallel machine scheduling with family setup times and machine cost. OR Spectrum. https://
doi.org/10.1007/500291-024-00778-8

Lopez-Esteve, A., Perea, F., & Yepes-Borrero, J. C. (2023). GRASP algorithms for the unrelated parallel
machines scheduling problem with additional resources during processing and setups. International
Journal of Production Research, 61(17), 6013—6029. https://doi.org/10.1080/00207543.2022.2121869

Luo, D., Thevenin, S., & Dolgui, A. (2023). A state-of-the-art on production planning in industry 4.0. Inter-
national Journal of Production Research, 61(19), 6602-6632. https://doi.org/10.1080/00207543.2022.
2122622

Mahmoodi, E., Fathi, M., Tavana, M., Ghobakhloo, M., & Ng, A. H. C. (2024). Data-driven simulation-based
decision support system for resource allocation in industry 4.0 and smart manufacturing. Journal of
Manufacturing Systems, 72, 287-307. https://doi.org/10.1016/j.jmsy.2023.11.019

Montgomery, D. C. (2019). Design and Analysis of Experiments. Hoboken, NJ, USA: John Wiley & Sons Inc.

@ Springer

Annals of Operations Research

Mor, B., & Berliniska, J. (2025). Scheduling problems on parallel dedicated machines with non-renewable
resource. Annals of Operations Research, 346(3), 2173-2193. https://doi.org/10.1007/s10479-025-
06471-5

Mor, B., Mosheiov, G., & Shabtay, D. (2025). Scheduling problems on parallel machines with machine-
dependent generalized due-dates. Annals of Operations Research, 347(3), 1455-1471. https://doi.org/
10.1007/s10479-025-06468-0

Munoz, L., Villalobos, J. R., & Fowler, J. W. (2022). Exact and heuristic algorithms for the parallel machine
total completion time scheduling problem with dual resources, ready times, and sequence-dependent
setup times. Computers & Operations Research, 143, Article 105787. https://doi.org/10.1016/j.cor.2022.
105787

Perrachon, Q., Olteanu, A.-L., Sevaux, M., Fréchengues, S., & Kerviche, J.-F. (2025). Industrial multi-
resource flexible job shop scheduling with partially necessary resources. European Journal of Operational
Research, 320(2), 309-327. https://doi.org/10.1016/j.ejor.2024.07.023

Sarag, T., & Tutumlu, B. (2022). A bi-objective mathematical model for an unrelated parallel machine schedul-
ing problem with job-splitting. Journal of the Faculty of Engineering and Architecture of Gazi University,
37(4), 2293-2307. https://doi.org/10.17341/gazimmfd.967343

Shafiee, M., Amiri-Aref, M., & Klibi, W. (2025). The integration of shared renewable resources considering
setup times for the parallel machine scheduling problem. Computers & Industrial Engineering, 200,
Article 110828. https://doi.org/10.1016/j.cie.2024.110828

Srinath, N., Yilmazlar, I. O., Kurz, M. E., & Taaffe, K. (2023). Hybrid multi-objective evolutionary meta-
heuristics for a parallel machine scheduling problem with setup times and preferences. Computers &
Industrial Engineering, 185, Article 109675. https://doi.org/10.1016/j.cie.2023.109675

Stefansdottir, B., Grunow, M., & Akkerman, R. (2017). Classifying and modeling setups and cleanings in lot
sizing and scheduling. European Journal of Operational Research, 261(3), 849-865. https://doi.org/10.
1016/j.ejor.2017.03.023

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2), 278-285. https://doi.org/10.1016/0377-2217(93)90182-M

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with
sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622. https://
doi.org/10.1016/j.ejor.2011.01.011

Vallada, E., Villa, F.,, & Fanjul-Peyro, L. (2019). Enriched metaheuristics for the resource constrained unrelated
parallel machine scheduling problem. Computers & Operations Research, 111,415-424. https://doi.org/
10.1016/j.c0r.2019.07.016

Villa, F., Vallada, E., & Fanjul-Peyrd, L. (2018). Heuristic algorithms for the unrelated parallel machine
scheduling problem with one scarce additional resource. Expert Systems with Applications, 93, 28-38.
https://doi.org/10.1016/j.eswa.2017.09.054

Yan, X., Wang, T., & Shi, X. (2025). Optimal scheduling on unrelated parallel machines with combinatorial
auction. Annals of Operations Research, 344(2), 937-963. https://doi.org/10.1007/s10479-024-06283-
z

Yazdani, M., & Haghani, M. (2024). Exploring the evolution of machine scheduling through a computational
approach. Engineering Applications of Artificial Intelligence, 133, Article 108572. https://doi.org/10.
1016/j.engappai.2024.108572

Yepes-Borrero, J. C., Villa, F,, Perea, F., & Caballero-Villalobos, J. P. (2020). GRASP algorithm for the
unrelated parallel machine scheduling problem with setup times and additional resources. Expert Systems
with Applications, 141, Article 112959. https://doi.org/10.1016/j.eswa.2019.112959

Yepes-Borrero, J. C., Perea, F., Ruiz, R., & Villa, F. (2021). Bi-objective parallel machine scheduling with
additional resources during setups. European Journal of Operational Research, 292(2), 443-455. https://
doi.org/10.1016/j.€jor.2020.10.052

Yilmaz Eroglu, D., Ozmutlu, H. C., & Ozmutlu, S. (2014). Genetic algorithm with local search for the unrelated
parallel machine scheduling problem with sequence-dependent set-up times. International Journal of
Production Research, 52(19), 5841-5856. https://doi.org/10.1080/00207543.2014.920966

Ying, K.-C., Pourhejazy, P, & Huang, X.-Y. (2024). Revisiting the development trajectory of parallel machine
scheduling. Computers & Operations Research, 168, Article 106709. https://doi.org/10.1016/j.cor.2024.
106709

Zeng, C., Liu, J., & Li, Q. (2025). A constraint programming approach for resource-constrained flexible
assembly flow shop scheduling problem with batch direct delivery. Computers & Operations Research,
173, Article 106855. https://doi.org/10.1016/j.cor.2024.106855

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

