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Abstract

Considering the numerical approximation of the density distribution for an
age-structured population model with unbounded lifespan on a compact in-
terval [0, 7], we prove second order of convergence for a discretization that
adaptively selects its truncated age-interval according to the exponential rate
of decay with age of the solution of the model. It appears that the adaptive
capacity of the length in the truncated age-interval of the discretization to the
infinity lifespan is a very convenient approach for a long-time integration of
the model to establish the asymptotic behavior of its dynamics numerically.
The analysis of convergence uses an appropriate weighted maximum norm
with exponential weights to cope with the unbounded age lifespan. We report
experiments to exhibit numerically the theoretical results and the asymptotic
behaviour of the dynamics for an age-structured squirrel population model
introduced by Sulsky.

Keywords:
2010 MSC: 92D25, 656M25, 65M12
Age-structured population; Unbounded life-span; Convergence analysis;

*Corresponding author at: Departamento de Matematica Aplicada. Facultad de Cien-
cias. Universidad de Valladolid. Paseo de Belén, 7 - Campus Miguel Delibes, 47011
Valladolid, Spain. Phone: +34 983 423000 (Ext: 6646)

Email addresses: 1mabia@uva.es (Luis M. Abia), oscar.angulo@uva.es (Oscar
Angulo), lopezmar@uva.es (Juan Carlos Lépez-Marcos), malm@uva.es (Miguel Angel
Lépez-Marcos)

Preprint submitted to Mathematics and Computers in Simulation September 12, 2024



Numerical methods; Squirrel model

1. Introduction

When the dynamics of a general population are modelled, there are bio-
logical reasons to distinguish the individuals in the population according to
some relevant physiological characteristics. Thus, we say that the physiolog-
ical variables structure the population. In human demography, for instance,
the age of each individual is the physiological characteristic generally ac-
counted for and, consequently, we say that the population is age-structured.

Age-structured population models were first considered by Sharpe and
Lotka [15], and MacKendrick [13], and formulated in terms of a linear integro-
partial differential equation with a nonlocal boundary condition, driving the
evolution of the age-dependent density of individuals u(a,t). These first age-
structured population models were proposed under an infinite lifespan for
individuals. Besides, we should mention age-structured population models
in which the maximum age of individuals in the population is finite and fixed
along the time evolution, as considered in [3, 11, 8]. Nonlinear models arise
when the vital rates of the population are made depending on functionals of
the density function as, for example, the total population size [10]

P(t) = /0+OO u(a,t)da, t>0. (1.1)

The evolution of the population is modeled in terms of a hyperbolic partial
differential equation

w +ug = —p(a, I,(t),t) u, a>0,1t>0, (1.2)

and a nonlocal boundary condition, which represents the birth law of indi-
viduals in the population,

u(0,t) = /000 Bla,I5(t),t) u(a,t) da, t>0. (1.3)

In (1.2), the nonnegative age-specific mortality rate function is given by
p(a, 1,(t),t) > 0 and, in (1.3), S(a, Is(t),t) represents the nonnegative age-
specific fertility rate function. The nonlinearity of the problem comes from



the dependency of both functions on linear functionals of the age-dependent
density function

I,(t) = /000 Yola) u(a,t) da, t >0, a = p, 5, (1.4)

to take into account the influence of the age-distribution of the population
on the life history of individuals. For instance, I,(t) and Ig(t) could be
taken as the total population size (1.1), as it was first considered by Gurtin-
MacCamy [10]. Finally, an initial condition

u(a,0) =up(a), a>0, (1.5)

defines the initial age-distribution of individuals in the population.

Nowadays, existence, uniqueness, and asymptotic behaviour of solutions
to physiological structured problems are well established [17, 14, 9, 11]. For
example, the existence of a unique solution up to time 7" > 0 (i.e. nonnegative
function v on R* x [0, T'], with directional derivatives along the characteristics
lines, and wu(-,t) € L£4(R"), 1,(t), I5(t) continuous for ¢ € [0,7]) to the
nonlinear problem (1.2)-(1.5), with bounded autonomous functions v,(a),
a >0, a=u,f, was attained with the following hypotheses [10]

o uy € L1(R"), piecewise continuous and nonnegative;
+ + + . Ou op :
e 1,0 € C(RT xR xR"), and nonnegative; a—(a, 2, t), a—(a,z,t) exists
z z
foralla >0,t >0, and z > 0;

on 0
e L, [, 8—”, 9 are continuous and bounded functions with domain R,
2z 0z

for fixed values of age and time: a,t € RT.

Moreover, again in [10], if 3 = sup{B(a,z,t),a >0,z >0,t >0} < oo,
and p = inf {p(a, z,t),a > 0,2 > 0,t > 0} > 0, and u(a,t) is a solution in
R* x [0,T], then u(a,t) < BP(0)e#Hte #e when a < t, and u(a,t) <
e 1% sup ¢ (uo(7)), for @ > t. In particular, this implies an exponential
decay rate with age of the solution to (1.2)-(1.5).

From a numerical point of view, a general approach to discretize the prob-
lem (1.2)-(1.5) consists in the use of a truncation of the age-domain to a finite
fixed interval [0, A]. This is justified when we assume that the age-dependent



density function decays, fast enough, to zero when the age increases to in-
finity. This is the case, for example, when the initial condition uy has a
compact suport and a finite time integration interval is assumed. Then, any
of the methodologies considered in the past can be used: finite-difference
schemes, characteristics methods, finite-element schemes, or discretizations
of the identity

k
u(a+k,t+k) = u(a,t) exp (—/ pla+s,I,(t+s),t+s) ds> ,a>0,t>0,
0

(1.6)
(see, for instance, [1] and the references therein). Nevertheless, this setting
would not be useful enough if we were interested in a very long time in-
tegration in order to look for its equilibria and their asymptotic stability.
Numerical methods that cope with the unbounded interval should be stud-
ied. A first approach was made in [4]. The authors introduced a change of
independent age-variable and dependent density function that transforms the
age-structured population problem in a population model structured by an
artificial size variable whose domain is bounded. Thus, the original problem
was analyzed through the properties of this model which was structured with
the new artificial variable. A second order numerical method was proposed
and analyzed to obtain an approximation to its solution by using a numerical
subgrid of the so-called natural grid associated.

In this paper, we focus on a discretization in which the finite truncated
age-interval [0, A] is changing with the discretization parameter, according to
the exponential rate of decay with age of the solution. In fact, the selection
of A is given in terms of the last point in the natural grid provided by the
artificial structural variable. Therefore, the only effect of the natural grid
in the discretization is by means of the definition of the quadrature rules
to approximate the nonlocal terms in (1.2)-(1.5) with the unbounded age-
domain. In this way, the analysis of the new proposed numerical scheme
avoids the difficulties of the unbounded age-interval.

The paper is organized as follows. In the next section, we propose a second
order numerical method, described in detail. We carry out its convergence
analysis in section 3. It is the highest order method analyzed for this setting,
therefore we require the data functions and the solution of the problem to
satisfy some technical restrictive smoothness conditions. We conclude with
a section devoted to numerical results, with an experiment that confirms the
theoretical order of convergence, and another one that describes the evolution



of a squirrel population.

2. Numerical approximation

In this section, a numerical method is developed to compute the solution
to model (1.2)-(1.5) at a final integration time 7' € R. With this aim, time
and age variables will be discretized to introduce a grid where the solution to
the model will be approximated. Thus, we consider N € N, which provides
us the time-discretization step, k = T//N, and the discrete time levels which
are described as t" = kn, n =0,1,..., N. In the case of the age variable, the
lifespan is unbounded and, initially, we will introduce the age discretization
defined by a; = jk, j =0,1,... Besides, the solution u of (1.2)-(1.5) satisfies
the identity

k
u(a; + k, t" + k) = u(a;,t") exp <—/ plaj + s, 1,(t" +s),t" +s) ds) :
0

(2.1)
as the result of the integration of the problem along its characteristic lines,
and the boundary condition

(0,47 = /0 " Bla, ("), %) u(a, 1) da. (2.2)

Then, after replacing the integral terms with appropriate quadrature
rules, we obtain the following explicit scheme for advancing the solution
from time t" to time t"*1, 0 <n < N —1,

USSR = Ul exp(=kpf), >0,
U[1)1+1,* — Qk (ﬂn-i-l (Un+1,*) . Un+1,*) ,

Uit = Uj exp (‘5 (1 + piy ))v j =0,

U(?)H-l — Qk (ﬂn—i—l (Un—l-l) . Un—H) 7

O
= W

[\]
(@3]
S~ N N N~

N
=

where
p"(U") = (B (U"), 7 (U"),...), B;(U") = Blas, Q(vs - U"), "),
M}l = :u(ajv Qk(7u ) Un)ﬁtn)’ 0<n<N,

,3n+1(Un+1’*) _ (53+1(Un+1’*),B?—H(UN—H’*), N ) 7
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B (UM )=Bay, Qu(ys UM), t7h), i Spuag, Qu(y,, U HHe), ¢n+1),
0<n<N-—1,and v,, s = f3, 1, represent vectors with components (7,); =
vs(a;j), 7 > 0. The vectorial products B"(U") - Ur, gr(Un+s) . Untis
Yg- U, 5, - U, 45 - U"* and v, - U *are considered componentwise.

We have not completely determined the numerical method yet, because
we should cope with the difficulties arising from the approximation of the
integrals over the unbounded age interval. Assuming that the solution u
decays exponentially fast enough to zero when age tends to infinity, an usual
numerical procedure is to consider first a truncation of the age interval before
proceeding with the time and age discretization. In this case, the numerical
contribution of the individuals of the population after an a priori maximum
age A is neglected and the numerical scheme (2.3)-(2.6) is well defined for
approximations U}, 0 < j < J, with J = |A/k|. Alternatively, we propose
a discretization in which the truncation of the age interval changes with the
discretization parameter and depends on how we fix the last grid point of
the age discretization.

Although the integrals we want to approximate

/Oooﬂ(a, I5(t),t) u(a,t) da, /000 vs(a)u(a,t)da, s=p,p, (2.7)

are given in terms of an age variable, we propose a change of the integration
variable that transforms the unbounded age interval in a bounded compu-
tational interval. In general, we assume for the sake of simplicity that the
new integration variable is related with the age by means of a = «(x), with
x € [0,1), and a(x) a monotone increasing and unbounded function. Then
the uniform age grid a;,7 = 0,1,..., is transformed into a non uniform
grid for the new variable x that evolves with time as given by 2/ = g¢(z),
x € [0,1), where g(z) = 1/d/(x). We emphasize that the transformed grid
{x;};>0 is a natural grid in the sense that the grid point z;;; at time ¢"*!
is always in the solution curve of 2’ = g(x) that goes through (z;,t"). Al-
though this kind of grid has been used in the numerical approximation along
the characteristics for size-structured population models [2, 5, 6, 7], its role
in the numerical scheme we propose is only a convenient tool for defining
the quadrature nodes in approximating (2.7). In particular, we propose the
following specific expression for the change of variable

alx) = —Kialog(l —z), z€]|0,1),



where K, is an appropriate positive constant. As we will see below, the choice
of the constant K, will be made in terms of the exponential rate of decay of u
and its derivatives. This change of variable transforms the integrals in (2.7)

J e R e YO

to be approximated with a quadrature rule based on quadrature nodes given
by z; =1—exp(—K,kj), j=1,2,... With this explicit expression for the
quadrature nodes, we close the selection of the grid nodes in the algorithm
(2.3)-(2.6) by choosing the one corresponding to the first x; of the z-grid
that satisfies the following inequality

l—xzy=exp(—K.kJ) < Kk, (2.8)

as the last node in the age-grid, with K a fixed constant that does not depend
on the discretization parameter. We can assume, from the beginning, that k&
is small enough to satisfy J > N. We note that, in terms of the age-grid, we
are just truncating the age-interval in the discretization using a maximum
age given by a; that increases as the discretization parameter tends to zero.

Now we define the quadrature rule Q; that approaches / f(a)da, in
0
terms of the quadrature grid given by the nodes z;, j =0,...,J, as

fla(x)) fi

/O Ko—a) &% Qu(f) = 21 Ko(l—a1)

= 2 Ka (]_ —$j> Ka (1 —l'j+1) Ka’

note that f; = f(a(x;)) = f(a;),  =0,...,J. We can rewrite this quadra-
ture rule by using the description of z;, 7 =0,...,J,

Qr(f) = KL {(eKak <1— %eK‘*%) — %) fi
oKak (1- e—KQQk) f; —l—% (1+6Ka’f) fJ} . (2.10)

Now the numerical method is fully described.
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In the following section, the convergence analysis of this numerical method
is developed. First, we show that the quadrature rule is second order of ac-
curacy. Thus, we introduce the regularity requierements for the solution and
the data functions involved that we will need in our consistency and stability
analysis. Let T, o0 € R*; we define

A, = {f € C*([0,00)); Tao(f) > 0, |f(”)(a)\ <Ce 7% a>ay(f),n=0,1,2}
and

AY = {f e C*0,00)); f bounded
and Jao(f) > 0, [f™(a)] < Ce™ % a> ag(f),n=1,2}.

Throughout the paper, we assume the following hypotheses,
(H1) @ u € C*([0,00) x [0,T]), is nonnegative and u(-,t) € A,, t > 0,

(H2) @ 8 € C*([0,00) x Ds x [0,T]), is nonnegative and (-, z,t) € A2,
(2,t) € Dg x [0,T], and Dg is a compact neighbourghood of

{/Ooo’m(a)u(a,t)da, OStST},

(H3) o 1 € C*([0,0) x D, x [0,T7), is nonnegative and pu(-, z,t) € A2,
(2,t) € D, x [O,T], and D is a compact neighbourghood of

u(a, t) da, OStST},

(H4) o v,,75 € A2, are nonnegative.

These assumptions would be enough to assure the convergence of our numer-
ical approximations. In particular, in the following sections and for f € A,,
we use a negative exponential bound on the values of f,

|fla)] <Ce™?%  acl0,+00), (2.11)

with an appropriate constant C', depending on f. Thus, under the assump-
tions (H1), at t = 0, (H2)-(H4) the problem (1.2)-(1.5) has a unique nonneg-
ative solution, which is global in time (they are more restrictive hypotheses,
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about the regularity of the solution, than the ones assumed in [10]). Further-
more, it could be proved that u € C*(R™ x [0,7T]) with an additional second
order compatibility condition. And, hypotheses (H1), at t = 0, (H2)-(H4)
ensure u(-,t) € L'(R). However, we would note that the aim of the paper is
the proposal of a new numerical method to approach an age-structured pop-
ulation model with an unbounded domain and its corresponding convergence
analysis. Therefore, we are not involved in the theoretical study of existence,
uniqueness, regularity and other properties of the solution to the problem.

Thus, we first show that under the problem hypotheses the quadrature
rule is second order of accuracy.

Proposition 1. Let be feA, 3K, <o,a; =jk 0<j < J =
(f(ao), f(ar),..., f(as)), then

/f ) da — Qi (f) = O(k?), (2.12)

for k sufficiently small.
Proof. First, we should remember the change on the integration variable

1
given by a = a(z) = K log (1 — «). Thus,

| s = (|G e )

S _<>>) ( )

Ty

—l—(/wmdx—f(%iﬂ))'

The rectangular and trapezoidal quadrature errors in the above expression
can be bounded by O(k?) and O(k?) terms, respectively, by assuming that
f(a(z))
h =
@)= 0
and 3 K, < o are sufficient for it to be true [4, Lemma 1]. Thus,

has an C? extension in [0,1]. The hypotheses f € A,

a)da — Qu(f )‘

= O + (a;j+1 —z;) O(k*) + O(k*) = O(K*), (k—0).m

k4

<.
Il



3. Convergence analysis

In this section we analyze the convergence of the numerical method pre-
sented in section 2 by means of the study of its consistency and stability
properties. It will be analyzed following the discretization framework de-
veloped by Lépez-Marcos and Sanz-Serna [12]. Therefore, we introduce the
following notation.

We assume that the discretization parameter k£ takes values in the set
H={k>0:k=T/N,N € N}, and for each k € H, and J as in (2.8), we
define the vector spaces X}, = (R7T1)V*1 and ), = (R7H) x RY x (R7)N. If
V=WVy,Vi,...,V;) € R and ||V |1 = Jax {e®=*71V;|}, we define

the following norm on A, if (VO, Vi ..., VN) e &,

IOV, VE L V), = max [V |sori1.

0<n<N

On the other hand, If Z € RY, W € RY| | Z||on = 1r<na<:>§V|Z”|, |Wloo,s =
max {e”*"7 |W;|}, then for (Z°, Zy, ZL,...,ZY) € Vi, we define

1<j<J

N
(Z°,Zo, Zs, ., Z) |1y, = 120 e,1 + W Zolloon + D K122 oo,

n=1

We also define the following seminorm based on the definition of the
corresponding quadrature rule,

1 1 1
VI, = i {(eKak (1_§ezxak> _5) vl

J—1
1
ZeKak(1_€72Kak) “/J’+§ (1+€Kak) ’VJ’},

+

DO | —

<

with V = (Vp, V4, ..., V). This seminorm plays a crucial role in the stability
study. Finally, we employ the usual notation in the maximum norm ||V =
max {|V;|}, with V = (Vp, V4,...,V;) € R/TL

0<j<J

_j_NOW, for each k € H, we introduce the grid restriction of the solution, let
be up = (0, u', ..., u") € A, u” = (ug,uf,. .., uf) € R ) = ufay,t"),
0<j7<J,0<n<N,where u is the solution of (1.2)-(1.5). Let r > 0, we
denote by B(ug,r) C X}, the open ball with center u; and radius r.
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Let R be a fixed positive constant, we introduce the mapping ®; :
B(ug, Rk) C X, — Yy defined by the equations

&, (WO W ... W) =(Z°,Z,Z,...,Z0), (3.1)

Z° = W'-U° (3.2)
Zj-IJ-rll = E (Wj—:rll - Wj exXp (_5 (:u (aj’ Qk(W/,L -W )7t )

11 (@41, Qr(y, - W), 1) )> : (3.3)

Zpt = Wt - QBT (UM - W, (3.4)

where W = (Wb withs L W) with
WIS = W exp (—k p (a5, Qul(vy, - W™),t")), 0<j<J—1,
and
Wgz-{—l,* _ Qk(ﬁn-i-l (Wn+1,*) . an-l—l,*)7

0 <n < N —1. We emphasize that W;™"* is an approximation to u(0, t**")

that is not used in the numerical scheme. We also introduce the vector

1 1 Ly .
wth = (wg T L ulTY) given by the equations

u?j:ll* = uj exp (=& (aj, (v, - u"),t")), 0<j<J-1,
and
ug-i—l,* — Qk(lgn-‘rl (un+1,*) . un—i—l,*),

0<n<N-1.

We can study the properties of the numerical scheme (2.3)-(2.6) through
this mapping due to the following main property: U, = (U°, U ..., UV) €
Xk, is a solution of the scheme (2.3)-(2.6) if and only if

®,(Uy) =0. (3.5)

Now, we study the convergence of our scheme.
The following result shows that the operator (3.1) is well defined.

11



Proposition 2. Assuming hypotheses (H1)-(H4), with 3K, < o, on the
functions data and the solution to (1.2)-(1.5). If (VO V1 ... .VN) € B(u, Ry),
with Ry = o(1), then, for k sufficiently small,

(v, V") €Dy, Qilvs- V") € Dg, (3.6)
0<n<N, and
(v, - V") € Dy, Qilys- V™) € Dg, (3.7)
1<n<N.

Proof The use of the hypotheses (H1) and (H4), the convergence properties
of the quadrature rule Q; allows us to arrive at

L") = Qi(vs - V)| < [L(87) = Qr(ys - u™)[ +[Qk (75 - (0" = V7))
1
< O(k*) + A Vs lloo B (3.8)
s=06,1,0<n<N—1,and (3.6) is done.
With respect to (3.7), we use the definition (2.5), the Mean Value The-

orem, Proposition 1 and regularity hypotheses (H1) and (H3), using the
bound (2.11), to obtain

k
nl oyl = u} exp (—/0 plaj+ s, 1,(t" +s),t" +s) ds)

‘ujﬂ j+1

— V" exp (—k p(aj, Qu(v, - Vn)’tn))‘

<um
u]

exp (—/Z(aj + 5, L,(t"+5),t" +3) ds) —exp (—k p(ay, 1,(t"), t”))‘

0
+uf |exp (—k p(aj, I(t"),t")) — exp (—k pu(aj, Qr(v, - u"),t"))]
+ uj |eXp (=k p(ay, Ok, -u"), t")) —exp (—k p(aj, (v, - V"), t”))‘
+ |uf = V| exp (=k pla, Qi(y, - V"), "))
<Ce %Ok +Ce 7% kO(k?)
+Ce 7%k ‘Qk (v, (u" - V"))} + Ry e Kati

0<7<J—-1,0<n<N —1, where, with the fact that K, < o, we arrive

at
n+l V?H—L*

‘U’J'Jrl J+1 < R/: e_Ka ajv (3'9)
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with Ry = 0(1),0<j < J—-1,0<n < N —1. And, again, we employ
hypotheses (H1) and (H4) and inequality (3.9) to achieve

|[s(tn+1) . Qk('}’s . Vn+l’*)
< LY = Qe - w )| [ Qx (v, - (= VL))

1 *
< Ok + . v lloo R

s=pB,u, 0 <n < N —1, that finishes with the desired result (3.7). =

3.1. Consistency

We define the local discretization error as

and we say that the discretization (3.1) is consistent if, as k — 0,
lim [[ @ (u)[|y, = lim [[L[l, = 0. (3.11)

The next theorem establishes the consistency of the numerical scheme (2.3)-

(2.6).

Theorem 1. Assuming hypotheses (H1)-(H4) on the functions data and the
solution to (1.2)-(1.5) and 3K, < o, as k — 0, the local discretization error
satisfies

15 (ur) [y, = [0 = U°loc, g1 + O(K?). (3.12)

Proof Before we demonstrate the main result of the theorem, we need
to obtain some complementary inequalities. On the one hand, we obtain
the consistency of the auxiliary terms; therefore, we describe the following
difference,

up =T =l - exp (< p(ag, Qu(y, - u), 1),

0<j<J—1, 0<n< N —1. The bound is achieved through the Mean
Value Theorem applied to the exponential function and the error proper-
ties of Oy and the rectangular quadrature rule, due to the smoothness and

13



boundness properties of the functions u, 1y ~,, hypotheses (H1)-(H4), and
bound (2.11),

k
\u;fll — ;Lj:ll | < ] {exp (—/0 pla;+ s, 1,(t" +s),t" +s) ds>
—exp (ko Qulo, ). 17)
k
< |uj {exp (—/Ou(aj + 5, 1,(t" +5),t" + s)ds)— exp (—k p(aj, 1,(t"),t"))

+ exp (—k play, L(t"), 1)) — exp (—k p(a, Qi(y, - u”),t”))}
<Ce 7%k, (k—0), (3.13)

0<73<J—-1, 0<n < N —1. We also obtain the following inequality
from ( 13) (and considering that K, < o)

’Qk (75 . (un+1 _ un+1,*))| < H,YSHOO |Qk (un+1 _ un+1,*)’ < Ckz, (314>

0<n<N-1.
On the other hand, we have the following inequality from the error prop-
erties of Qy, because of hypotheses (H1)-(H4), and inequality (3.14)

| L") — Qi(y, - u™)
‘[S(thrl) _ Qk('ys . un+1)} 4 ‘Qk (73 . (un+1 _ un+1,*))‘
< Ok, (3.15)

s=0,u0<n<N-—1.
In the following, we obtain the main result of the theorem. We denote
®,(u;) = (LO, Ly, LY, ..., LY), thus

gt = 7 (gt - o (<5 (sl Qula, - ut)
+:u(aj+la Qk(’)’y ’ un+17*>’ tn—H)) )) )

0<53<J—-1, 0<n < N —1. We applied the Mean Value Theorem
to the exponential and mortality functions. The error properties of Q. and

14



the trapezoidal quadrature rule, hypotheses (H1)-(H4) and inequality (3.15)
with s = p, allow us to arrive at

k
exp (—/ (a4 s, L,(t" + 5),t" + 5) ds)
0

n 1 n
< gl {

—exp (—§ (1, L") ) + p(aga, fu<t”“>7t”“>>>) \

k
+ |exp (_5 (/L(aj, Iu(tn), tn) + N(aj+1, [M<tn+1)7 thrl)))
k
TP (_§ ((aj, Quly,, - u™),t") + p(aji1, Qi(y, - u"“’*),t”“))) ‘}
< Ol {2 + L") = Qu(y, - u)| + L") = Quly,, - )|}
= G (3.16)

0<j<J—-1, 0<n<N-1
The last step consists in the treatment of the boundary term by means

of
Ly = ug — Qr(B"(u") - u"),

1 < n < N. This term can be bounded with the use of the convergence
properties of the quadrature rule Qp, the Mean Value Theorem and the
hypotheses (H1)-(H4) and the inequality (3.15) with s = 3,

Lo | =

/000 Bla,I5(t"),t") u(a,t") da — Qx(B™(u"™) - u")

<

+1Qk (BT — B"(u")) - u")]

/Oo;(a, Is(t"), t") u(a,t") da — Qr(BY} - u™)

< CE +C |87 - B (") |Qx (u") |
< CR+C |I5(t") — Qulys - u™)| [ Qe (u™) |

1 <n < N, where we have introduced the following auxiliar notation (87); =
Blaj, Is(t"),t"), 0 < j < J. Finally, the bound [u}| < Ce™%, 0 < j < J,
given by (2.11), within the quadrature term |Qy (u™) | and the convergence
properties of the quadrature rule Qy allow us to arrive at, for £ enough small,

|Lg| < Ck?, (3.17)

1 <n < N. Thus, the combination of (3.16) and (3.17) provides (3.12). =
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3.2. Stability

Another notion that plays an important role in the analysis of our nu-
merical method is the stability. For each k € H, let Ry be a positive real
number or +oo (the stability threshold). We say that the discretization (3.1)
is stable for uy restricted to the thresholds Ry, if there exist two positive
constants ko and S (the stability constant) such that, for any k in H with
k < ko the open ball B(ug, Ry) is contained in the domain of ®; and for all
Vi, W, € B(uk,Rk)

Vi = Willx, <5Pr(Vi) — @(Wi)|ly,-

Theorem 2. Assuming the hypotheses of Theorem 1, the discretization (3.1)-
(3.5) is stable for wy with stability threshold Ry = Rk, (k —0).

Proof Let (VO, V1 ... VN) (WO W! ... W) bein the ball B(uy, Ry)
of the space X;. We set

E'=V"-W"eR/™ 0<n<N;

&.(VO V. VYY) =(Z2° 20,7, ..., Z"),
&, (WO, W' .. W) = (8" S, S, ..., 8Y).

By (3.3), we can write

k o
Eff =V exp (—5 ((az, Qu(v, - V), ") + plajin, Qil(y, - V)t +1))>

k
=7 e (= (g Qulr - W) + player, Qul, W12, 0041

+k (ijf Sj"jll)

k “
= EJ exp (—5 (1(ay, Qu(y, - V"), ") + plajer, Qul(y,, - VL) ) >
k o~ n
+Wy (eXp <_§ ((plaz, Qr(y, - V"), t") + plajer, Quly, - VP, ¢ H))
k
—exp (_5 ( ulay, (v, - W), ") + plajyr, Qul(y, - W) ) )

+k (Z15 = ST, (3.18)
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0<j<J-1, 0<n<N—1. Due to hypothesis (H3), we derive

k
exp (_5 ( p(z;, Qk('?’u VI + (@ Qk(7u SV, tn+1)) =1

(3.19)
0<j<J—-1, 0<n < N -—1. Now, we obtain the following inequality
with the use of hypotheses (H3) and (H4),

k
exp (_5 (M(aja Qr(v, - V"), t") + pu(ajsr, Q- v, t”“)))

k
— exp (_5 ((plaz, Quly, - W), t") + plajr, Qu(y, - W), t”“))) '

k (ln(ag, Qu(y, - V™), t") — ulaj, Qr(v, - W™),t")]
T }M(aﬂl’ (V- VL) ) — (g, (v, - W) tn+l)|)
Ck (@, - (V" = W)+ Qi (- (V741 = W) )

Ck ||7u”°<> (|Qk (V' = W) + ‘Qk (V"H’* _ W"H’*) )

Ck <||V" — W, + [V — W LJ) , (3.20)

0<j<J-1, 0<n<N-—1. Now, formula in (2.3) allows us to write

IN

IA A

IA

Vin = WA = Vi exp <k (a;, Quly, - V7). 17))
— Wi exp (kg (a5, Qu(, - W), "))
— B exp (—k i (a5, Qv - V'), 7))
+ W7 (exp (—k p (aj, Q(vy, - V"), "))

— exp (—k,u (aj, (v, W), t”))) , (3.21)
0<j<J-1, 0<n<N-—1. Again, due to (H3), we derive,
exp (—k p* (aj, Qi(vy, - V"), 1")) <1, (3.22)

0<j;<J-1, 0<n<N -1 We use similar arguments as in (3.20), and
the fact that ]VVJ”| < CeFea (<4< J, for k small enough, to arrive at

Vi = Wi S |Ef |+ Che ™ B, , (3.23)
0<j<J—-1, 0<n <N —1. Finally, we obtain

an—i—l,* o Wn-l—l,*

1 S (HCE) (B, (3.24)

17



0 <n <N — 1. Thus, combining (3.18)-(3.24), we have

|EFH < B+ Che ™% |E"[|, , + k|Z}f) — SPH, (3.25)
0<j<J-1,

0 <n < N —1. The property [W'| < Ce Fet%, 0< < J
also implies

1 1 N
W™, ;= A {<€Kak <1 3¢ K"%) - 5) W'l

J—
—i—%ZeK“k(l—e_K"Qk) |w;1|+% (14 =) |Wj;|}
j=2
_ Kia {% (1_€—Kak) eKaklwm
1 J—1 ' . .
+ 5 (efKak(]fl) o efKak(j+1)) eK"“ kj ‘an|
j=1
1
T3

C

¢ Kl (1 4 efak) lak/ \W}l\} < (3.26)

where, in the last inequality, the cancellation of terms is due to the telescopic
sum of exponentials after bounding [W7| < C'e %%, 0 < j < J

Now, if n < 7 < J, by a recursive argument

|E7| < |Ej_,] +Ck’z I [ b PP ZI "t~ S nmls
(3.27)
and, when N > n > 7,
' n—1 n
’Ejn‘ S ‘EZ)L_]H_Ck Z e_Kaajian HEmHLJ—i_k Z | —n+m mn-‘rm‘
m=n—j m=n—j+1
(3.28)
Furthermore, equation (3.4), hypotheses (H2), (

H4), and property (3.26),

18



allow us to achieve

2] < QB (V") - V™) — Qu(B"(W™) - W) + |20 — S
<C|Qr(B™"(V")-E"[+C Qe ((B" (V") = B"(W")) - W) + | Zy — Sp]
<CIB" (V) IE"[, ; + C (B (V") = B" (W)l W"l, ; + 125 — S
<C (IE" I,y +Qk (vs - E")]) +125 - St

<C|E", ;+ 125 = 551, (3.29)
1 <n < N. Next, we deal with a bound for the seminorm [|[E"||, ;, 1 <n <

N. Since 1 < n < J, and inequalities (3.27)-(3.28) gives different bounds for
|E7| depending on j < n or j > n, we write down [|[E"|, ; as

. 1 1 N
I = { (e (1= 5eme) =) 1el

n—1
+1 eKak(l_e—KOQk) |E]n|
24
1 J—-1 1
+3 2 e (L) B4 5 (L) !Ef}l}. (3.30)
j=n

19



Therefore, if we substitute (3.27)-(3.28) into (3.30), we obtain

1 1 1
B, < {(ew (1 -1 e—fmk) - 5) (18571 + Ck [

+k|Z - S71)
1 n—1 ) n—1
+5 0 et (- <|E5”| +Ck Y e fewm BT,
7j=2 m=n—j
+ k Z | —n+m Sm n+m’)
m=n—j+1
1 J—1 n—1
+§ZeKak<1 —Ka Qk) <| n| _|_Okze—Kaaj*n+m HEmHLJ
j:n m=0

+k Z' —n+m ] n+m|>

n—1
1
+5 (L) <\E3n! +CkY e Kewmim B

m=0

+k Z |Z‘Tlnfn+m - STn+m|> } )

m=1

20



1 <n < J. Thus,

1 |1 1 o
1B, < 2 {5 (" = 1) [B 45 3 e (L= e B
[e% j=1

T
L

+
N —

Kok (1= e e28) |BY, | 4 5 (14 ¢F) ||

<.
Il
3

+
Q
5
N~ DN~

(et =) ',

n—1
el (L—enfioh) 3 1 e fetmmn B

j=1 m=n—j
n

+Ch =Y elfel (1= Kea2k) N " e Ketimmim g™

j:n m=0

i
L

_|_
Q
o~

1 — — a m 1 n n
+(Jk;5 (14 e"F) Ze Koas—nim | B ||1,J+k§(eKa’“—1) |zt — ST

m=0

n—1 n

effe® (1 o e—Kazk) Z ‘errinﬂn - Sjrrimrm

m=n—j+1

n
eKak (1 - G_KQQk) Z |Z]nin+m - Sjr’rin—&—m'
m=1

1 n
+ k 5 (1 + eKak) Z |ZT—n+m - ST—n+m|} )

m=1

_ KL (1) + (IT) + (ITT) + (IV)}, (3.31)

1 < n < J, where we have grouped the different terms in the right hand-side
of the inequality for |[E™[, ; (3.31), as indicated above to make the following
bounds clearer. 7

With respect to the first term, the different elements involving compo-
nents on the boundary, |Ef*|, 1 < m < n—1, are bounded using the inequal-
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1 i
([) 25 ( En 1‘+ ZeKa Ka2k) ‘EO J‘
1
< Lemer ) (|zn s B,
1n71 o . .
5> eRek (- e Ko (12570 — sy of[B, )
j=1
1 - . 1t - PR
S A L 1|+§jzleKak(1—e Ka2k) | Zg79 — 5577
L ko n—1 1 Kok —Ko2k m
+C’§ (e —1) HE Hl,J+C§ e (1—6 )||E ||17J
m=1
n—1 n—1
< CkY |20 =Sy +Ck > IE™,,
m=1 m=1
n—1
< Cl1Zo = Sollooy +Ck D> E™[ly,, (3.32)
m=0
1 < n < J. In the second part, we bound the terms related with the initial
condition,
1A 1
(II) = 3 efe (1 — e He2h) |E;?_n|+5 (14 e"%) |E9_,|
j=n
1 J—n—1
_ L Kok (1 _ —Kua2k ~Kakj Kakj |0
= 3¢ (1—e ) jzo e e 12
+%€—Kak(J—n) (1+€Kak:) oKak(T—n) \ED o
1 B 1—e —Kaok(J—n
S 2 Kak(l_e KQQk) 1_€—Ka ||E0HooJ+1
eI (L) B
1
LGSl
< C ||EY (3.33)

o0o,J+1"
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1 < n < J. Now, we treat the term corresponding to the sums of error
norms,

1
111 = CkL (@) e

—|—Cl{f%6Ka ( Ka2k (Z Z e —Ka j—ntm

j=1 m=n—j

J—1 n—1
+y ) e e ||EM||1,J)

Jj=n m=0

E™

n—1

1
+Chig (L4 efel) Y jerfotmn B, . (3.34)

m=0
We deal first with the double sums,

-1 J—-1 n—1

S LR VED D) Dl Lo IV

7 j=n m=0

—
3

n—

1 m

H |

n

.
Il

n—

S, 3 ko +ZHEWHUZe-K& )
m=1

j=n—m

e—Kakm 1t 1 — e—Kak(J-n)

n—1
ZHEmHU e+ 2 B e

m=0

n—1

1 E m - m
1 — e Kak ( ||E ||1,J (1_6 Rak )
m=1

n—1
£ 3B (1 eK&k“m))

m=0

—1 m - —n+m
T 1 _ ¢ Kak Z [E™]],, (1—e RalelJmntm)) (3.35)
m=0
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Then, we substitute (3.35) in (3.34) to obtain

(111 = Ch g (= 1) [,

n—1

1 m — —n+m
+Ck§(1+6K“k)n;)||E |,y (1= e ekt
1 n—1 ~ . .
+Chg (147 mzoe SR 1 o
) 1 n—1
= Ckg (MF—1) [B"]|,, + Ok (L+ 5 S EM,,
m=0
n—1
< Ok Y IE,,. (3:36)
m=0

1 <n < J. And, finally, the sums related with the residual

(IV) = k% (eFeF—1) |z} — 57
n—1 n
T DA (Rl W SNV N
7=1 m=n—j+1
1 — Kok —Kao2k - m m
+k526 “ (1—6 “ ) Z‘ijn+m_sjfn+m|
j:n m=1

1 n
+ k§ (1 + €Kak> Z |Z91—n+m B Sffn—"‘i'm|'

m=1

(3.37)
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Again, we treat first the double sums, which we bound as

J-1 n
Z Z ’ —n+m n+m‘+22| n+m_ j— n+m’
7=1 m=n— ]+1 j=n m=1

< Z S ek g s

7j=1 m=n—j+1

J—-1 n
S PP Dl A
j=n m=1
n n—1
= D NZr =Sy D oMot
m=2 j=n—m+1
n J—1
+ D 20 = 8|,y Y e ekl
m=1 j=n
n
B 1 — efKak(mfl)
= D1 = ST e
m=2
n
B 1 — e—Kak(J—n)
D INZT — ST ee
m=1

— e~ Kak (J—n+m—1)

. 1
= D112 = STl
m=1

and, therefore, we substitute (3.38) in (3.37) to arrive at

(3.38)

1
(V) < kg (L= e ™) 120 = Si{locs

N[ —

ks (L4 e M) |20 — 8P|y (1 — e Kok (Tmmm=1)
m=1

1 n
bl (1 eKak) 37 HakUmmmyzmn _gm)

m=1

1 — n n 1 —Ka - m m
= k5 (1= R 20 = Sty + kg (L+ 7" ’“)mZ_lHZ* =80l
< CY k|2 =S, (3.39)
m=1
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1 < n < J. Then, we combine (3.31) with (3.32), (3.33), (3.36), (3.39) to
arrive at,

n—1
1B, < CE 00 +Ck D IE", + CllZo — Sollon
m=0
+C Y k|ZI = ST |, (3.40)
m=1

1 <n < J. Finally, we use the Discrete Gronwall Lemma to obtain

1B, < C{I!Eolloo,m +11Zo = Sollsoy + > _ kIIZ - STHoo,J} :
m=1

(3.41)
Thus, from (3.29), the following inequality follows with respect to the bound-
ary terms,

Byl < C {HEolloo,J+1 +11Zo = Sollown + Y _ kIIZT — STHoo,J}(S-42)

m=1

1 < n < N. Now, on the one hand, if n < N, n < 5 < J, then by means
of (3.27) and (3.41), we arrive at

n—1
Kok |2 < Kok B | 4 C RS e Kok Bm|

m=0

n
Kuokj m m
+ke § :|Zj—n+m_Sj—n+m|

m=1

< C {HEOHOO,JH +11Zo = Solley + > KIIZI — SZ‘IIOO,J} . (3.43)

m=1

On the other hand, when N > n > j > 0, taking into account (3.28), (3.42)
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and (3.41) we obtain

n—1
R |7 < KB BRI 4 Ok Y e ek B
m=n—j
n
+keKakj Z |Zjnin+m_sjnin+m|

m=n—j+1

< C {||E0||oo,J+1 +11Zo = Sollooy + > KI|IZT — STHoo,J} - (3.44)

m=1

Thus by (3.42)-(3.44), we achieve
I(E’, ..., EM)|lx, < C |V =W Zy—So,Z} —S.,...,Z) — S|y, .=

3.3. FExistence and Convergence
We say that the discretization (3.1) is convergent if there exists kg > 0
such that for each k in H with k < k¢, (3.5) has a solution Uy, for which,

li — =0.
lim [[uy, — Uy [z, =0
We define the global discretization error as

e, =u, — U, € A,

To derive the existence and convergence of numerical solutions of (2.3)-
(2.6), we shall use a result of the general discretization framework introduced
by Lépez-Marcos and Sanz-Serna [12].

Theorem 3. Assume that (3.1) is consistent and stable with thresholds Ry,.
If @y is continuous in B(ug, Rx) and ||l||y, = o(Ry) as k — 0, then:

i) for k sufficiently small, the discrete equations (3.5) possess a unique solution
m B(uk, Rk),
ii) as k — 0, the solutions converge and |lex||x, = O(||L]|y,)-

Now the existence and convergence are immediately obtained by means of
Theorem 1 (consistency), Theorem 2 (stability), and Theorem 3. We em-
phasize that this theorem establishes the existence of a unique solution of
the nonlinear system of equations for the approximation derived through
the discretization of the problem. The analysis can be extended even if the
quadrature rule (2.10) were closed at ap = 0, once we establish the consis-
tency and stability properties of the new numerical scheme.
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Theorem 4. Under the hypotheses of Theorem 2, let the numerical initial
condition U° be such that

IT" = ufloc,g11 = o(Re),
as k — 0. Then, for k sufficiently small, there exists a unique solution
(U, ut,...,u")
in the ball B(uy, Ri) of X, of equations (2.3)-(2.6) and

max U = s = O([U° = w0y + 1)

Note that, in particular, if U is taken as the grid restriction u® of the initial
condition (1.5), then our scheme is second order accurate.

4. Numerical results

We have carried out numerical experiments with the scheme (2.3)-(2.6)
in a theoretical test problem which presents meaningful nonlinearities. Let
c € R*; we choose the age-dependent mortality rate as u(a, z,t) = ¢z, the
age-specific birth rate as

43 zae (2 + e ct)?

1) =
Bla,z,) (14c¢2)? 14ect

Y

and the weight functions ~,(a) = y3(a) = 1. Thus, the solution to (1.2)-(1.5)
1s

—Cca

e
The numerical integration of this problem is carried out in the time interval
[0,10]. Since the exact solution is known, we can show the accuracy of
our numerical method through its global error and the numerical order of
convergence quantitatively.

In this test problem, parameter ¢ provides the ratio of the exponential
decay of the solution. We perform all the experimentation with the choice
¢ = 0.01, a small value that is considered to retard the rate of decline to zero
of the age-specific density function as much as possible.

u(a,t) =
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We try different values for parameters K, and K; to grasp the effect of
these parameters in the numerical order of convergence of the approxima-
tions. Both parameters K, and K; determine together the natural grid in
the interval [0, 1], and, correspondingly, the extension of the uniform grid on
the age variable. It is straightforward to derive from formula in (2.8) that
the number of nodes in the natural grid, J, should satisfy

_log (Kl k’)

J > K.k

Parameter K, is chosen in terms of the exponential rate decay of the so-
lution and for fixed K,, as K; decreases, the length of the truncated age
interval in the discretization increases to infinity. Alternatively, keeping K;
constant, we also get an increasing length for the truncated age-interval in
the discretization as we decrease K.

The existence of an analytical formula for the solution to model (1.2)-
(1.5) allows us to both compare with the numerical solution and compute the
error caused by the numerical approximation. Then, once the value of each
parameter K, K,, and the time-discretization parameter k are fixed, and
the corresponding numerical solution U, = (U° UL, ... UY) is computed,
we can obtain the global error, with the formula,

er = max [[u” — U oo, ss1. (4.1)
We can also obtain the numerical order of convergence ordery, by means of
the following well-known formula

log(ear/ex)
log(2)

Note that, errors are measured in a maximum norm in which nodal values
are weighted with an exponential increasing factor in age of rate K,. The
size of K, is naturally chosen to balance the assumed exponential decay of
the solution and the corresponding numerical approximations.

We have made a wide numerical experimentation with different values for
all the parameters. Some of the experimental results are shown on Tables 1-
3. Each table represents a different value of the parameter K, (K, = 0.01,
K, = 0.005, and K, = 0.02, respectively). In Tables 1-2, each column and
each row of the corresponding table represents a computation with different

orderyy, =
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k K1:16—1 K1:16—2 K1:16—3 K1:16—4 K1:16—5
5e-2 1.3179e-04 2.2027¢-06 2.8174e-07 2.5628e-07 2.5596e-07
5 500 3.7710e-05 5.9816e-07 7.0940e-08 6.4104e-08 6.4021e-08
' 1.81 1.88 1.99 2.00 2.00
Losey  1-0616e-05 1.6146e-07 1.7858¢-08 1.6031e-08 1.6009e-08
' 1.83 1.89 1.99 2.00 2.00
6950 2950906 4.3339¢-08  4.4947¢-09 4.0085¢-09 4.0027¢-09
' 1.85 1.90 1.99 2.00 2.00
5 1950.3 8.1205¢-07 1.1578¢-08 1.1312e-09 1.0023e-09 1.0007e-09
' 1.86 1.90 1.99 2.00 2.00
2.2157¢-07 3.0801e-09 2.8465¢-10 2.5059e-10 2.5020e-10
1.5625¢-3
1.87 1.91 1.99 2.00 2.00
6.0035¢-08 8.1644e-10 7.1635e-11 6.2663e-11 6.2556e-11
7.8125¢-4
1.88 1.92 1.99 2.00 2.00
3 906304 1.6169¢-08 2.1573e-10 1.8053e-11 1.5696e-11 1.5670e-11
1.90 1.92 1.99 2.00 2.00

Table 1: Theoretical Experiment. Errors and numerical order with parameters ¢ = 0.01,
K, =0.01.

values of the parameter K; (K; = le — 1, K1 = le — 2, K; = le — 3,
K, = le—4, and K; = le—5), and the discretization parameter k (k = 5e—2,
k=2be—2 k=125e—2, k=06.25e—3, k=3.125e — 3, k = 1.5625¢e — 3,
k = 7.8125e — 4 and k = 3.90625¢ — 4), respectively. The upper number of
each entry in columns two to six of the table represents the global error, e,
and the lower quantity is the experimental order of convergence, ordersy.

The results on Tables 1-2 show numerically the expected theoretical order
of convergence. This is the case in which the exponential rate of decay of
the solution is greater than the exponentially increasing rate of the weights
in the maximum norm (4.1). We emphasize that the second order of con-
vergence is obtained under a weaker restriction on K, than the one fixed in
the convergence analysis. Lower and higher values of parameters K; and K|,
have been considered but the results are not reported because they confirm
the second order of convergence shown on Tables 1-2. We also observe that
the effect of K, on the error is diminished with lower values of K.
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The values on Table 3 illustrate how the convergence fails when K, > c.
We only show results corresponding to Ky = le — 5, with ¢ = 0.01 and K, =
0.02, because the use of other values of K provides the same bad behaviour.
The method is effective even when the parameter K, underestimates c, the

theoretical rate of decay of the solution.

k K1:16—1 K1:1€—2 K1:1€-3 K1:1€—4 K1:1€-5

5e-2 3.7530e-06  2.6439e-07 2.3060e-07 2.3026e-07 2.3025e-07

5 50 9.3524¢-07 6.6131e-08 5.7682¢-08 5.7598¢-08  5.7597¢-08
' 2.00 2.00 2.00 2.00 2.00

L 9502 2.3360e-07 1.6537¢-08 1.4425¢-08 1.4404e-08 1.4403e-08
' 2.00 2.00 2.00 2.00 2.00

6.950.3 5.8384¢-08 4.1348¢-09 3.6067¢-09 3.6014e-09 3.6014e-09
' 2.00 2.00 2.00 2.00 2.00

5 1950.3 1.4596e-08 1.0338¢-09 9.0174e-10 9.0042e-10 9.0041e-10
' 2.00 2.00 2.00 2.00 2.00

3.6489¢-09 2.5845e-10 2.2545e-10 2.2511e-10 2.2511e-10

1.5625¢-3

2.00 2.00 2.00 2.00 2.00

- 8195y -1223¢-10 6.4629¢-11 5.6374e-11  5.6293e-11  5.6293¢-11
2.00 2.00 2.00 2.00 2.00

500630 2-2808¢-10 1.6194c-11 1.4136e-11 1.4114e-11 1.4113e-11
2.00 2.00 2.00 2.00 2.00

Table 2: Theoretical Experiment. Errors and numerical order with parameters ¢ = 0.01,
K, =0.005

As a motivational test of the numerical approach considered with a more
biological insight, we propose the following numerical experiment introduced
by Sulsky [16]. The model describes the dynamics of a gray squirrel popula-
tion (Sciurus carolinensis) with a continuous age-structure. Fecundity as a
function of age and total population, P(t), is given by

1 75

0.438 4 19.56 ¢—4.04a’ (P) 2+ P
(4.2)

The constants in the function b are chosen to assure b(0) = 0.05, b(1) = 1.28,
and lim, , b(a) = 2.28 that match with field data experiment. On the

Bla, P) = ba) B(P), b(a)
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k €L
oe-2 1.3314468e-02
2.5e-2 1.3320279e-02
1.25e-2 1.3322284e-02
6.25e-3 1.3322941e-02
3.125e-3  1.3323129¢-02
1.5625e-3  1.3323160e-02
7.8125e-4  1.3323143e-02
3.90625e-4  1.3323117e-02

Table 3: Theoretical Experiment. Errors with parameters ¢ = 0.01, K, = 0.02, K; =
le — 5.

other hand the density dependence, which appears as a multiplicative factor,
concerns unavailable data; it is supposed to be a nonincreasing function with
Mortality is described as,

_ 15P
25+ P

(4.3)
In this case, mortality is due to a term which increases slowly and corresponds
with the main mortality for advanced ages, and another one that is higher but
whose influence disappears soon. With respect to the density dependence, it
is a nondecreasing bounded function. As a final data, the initial condition is
taken as

w(a, P) = d(a) D(P), d(a)=2.75e"2940.275¢%1(@=2  D(P)

uo(a) = 5 Xj05(a). (4.4)

Due to the difficulty to obtain an analytical solution of this particular model,
the use of numerical methods is necessary to get it. Besides, a principal in-
terest of this model is to identify, if any, the asymptotic age-structure equi-
librium of the population. Then, our approach consists in doing long-time
numerical integrations with the numerical scheme analyzed. We have em-
ployed as parameter values K, = 0.1, K; = 0.1, the discretization parameter
as k = 1.5625e — 03, and the final integration time is 7' = 100, which is
enough to capture the stability of the equilibria in the model.

If the dependence on age of the vital functions is avoided, it is simple
to obtain the asymptotic behaviour of the model, because we can describe a
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time-evolution model for the total population

whose stationary equilibria correspond to P* = 0, which is unstable, and to
the solution P* = 50 of equation p(P*) = B(P*), which is stable in the case
we are dealing with, as we can see on the left plot of Figure 1. However,
when the vital functions depend on the age, we need the help of an effective
numerical method to describe the model, not only the approximation to
the time evolution of the age-dependent density function, but also the age-
dependent structure of the asymptotically stable stationary equilibrium. The
theoretical study of equilibria led us to the following characteristic equation
for the nontrivial equilibrium solution of the model, u*(a) (and P*),

1= /OOO B(a, P*) exp (— /Oa,u(S,P*) ds) da. (4.5)

When our numerical method is applied to the age-dependent problem in a

100 T T 100
80 80
< <
) S
3 60 3 60
3 3
n. Q
o o
Q Q
3 40 3 40
Q Q
20 20
[ [
0 10 20 30 40 50 0 10 20 30 40 50
time (t in years) time (t in years)

Figure 1: Evolution of the total population with time, K, = 0.1, K1 = 0.1, k = 1.5625e —
03, and 7" = 100. Plot in the left hand side: age-independent case, P* = 50. Plot in the
right hand side: age-dependent case, P* = 80.3172290.

long-time integration, a steady state also appears. We perform a numeri-
cal simulation using the same parameter values (K, = 0.1, K; = 0.1, the
discretization parameter as k = 1.5625e — 03, and the final integration time
as T = 100). This allows us, on one hand, to establish the existence of
a nontrivial stable age-dependent steady state, and, on the other hand, to
compute an approximation to the total population of such age-structured
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Figure 2: Initial density (solid line) and equilibrium density (dotted line). Age-dependent
case.

distribution, P* = 80.3172290, as it can be observed on the right plot of Fig-
ure 1. In Figure 2, the normalized density of the distribution at equilibrium
is compared with the normalized initial density to describe the evolution
of the population age-structure. Equation (4.5) can be solved with stan-
dard algorithms for finding zeros of nonlinear equations, which results in
P* = 80.3171998, close to our predicted value and far from the numerical
prediction of [16], P* = 50.5. A crude estimation of the exponential rate of
decay of the age-dependent density profile is given by o = 4.827. Values of
K, that underestimate this rate are equally effective in the simulations to
obtain the right asymptotic steady state.

5. Conclusions

In age-structured population models, it is common to consider an un-
bounded age-interval for the lifespan. This is the case of the pioneering works
of Sharpe-Lotka [15], McKendrick [13] and Gurtin-MacCamy [10], among
other authors. Numerical discretization of this kind of problems should cope
with the unbounded age-interval through some strategy for truncating the
age-domain.

In this paper, we focus on a discretization in which the finite truncated
age-interval is adaptively increasing in length, as the discretization parameter
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decreases, according to the exponential rate of decay with age of the solution.
The long-time integration of these models in order to determine, if any, the
stationary asymptotic state and the asymptotic behaviour of the solutions
makes this approach very convenient.

Furthermore, we prove second order of convergence for a numerical scheme
that adaptively selects the truncated age-interval of the discretization in
terms of the last point in the natural grid provided by an artificial structural
variable. Convergence analysis is made straightforward through a weighted
maximum norm (with exponential increasing weights) on the nodal values
of the approximation errors to the age density function of the population.
We avoid any reformulation of the problem as an artificial size-structured
population model on a bounded domain and the corresponding discretiza-
tion, as reported in [4]. Numerical experiments with an appropriate test
problem confirm the second-order of convergence even when we relax some
of the hypothesis assumed by the convergence analysis. We also point out
the robustness of the method against an underestimation of the exponential
rate of decay of the solution given by o.

Lastly, we report the effectiveness of this methodology to approximate the
stationary equilibrium state for a model proposed in [16] for the dynamics
of an age-dependent squirrel population. With the technique introduced, we
improve some of the approximations to the asymptotic steady-state equilib-
rium reported in [16], and we support them analytically.
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