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Abstract

We consider the numerical approximation of the asymptotic behavior of an
age-structured compartmental population model for the dynamics of the sex-
ual phase of Monogonont rotifera. To cope with the difficulties of the infinite
lifespan in long-time simulations, the main approach introduces a second
order numerical discretization of a reformulation of the model problem in
terms of a new computational size variable that evolves with age. The main
contribution is to establish second order of convergence of the steady-state
solutions of the discrete equations to the theoretical steady states of the
continuous age-structured population model. Moreover, we report numerical
evidence of a threshold for the male-female encounter rate parameter in the
model after which the steady solution becomes unstable and a stable limit
cycle appears in the dynamics. Finally, we confirm the effectiveness of the
numerical technique we propose, when considering long-time integration of
age-structured population models with infinite lifespan.
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1. Introduction

Population dynamics are described using various models. In particular,
the variables that drive the modelling might be continuous, but the events
in the population could occur at certain discrete values. Such a combination
of discrete and continuous dynamics is a challenge. For instance, continuous
models might include features that relate its behavior to discrete models.
As a first example, discrete events in a compartmental model modify the
balance equations for the individuals of the different subpopulations in the
model. This is the case, for example, in particular differential-difference
models [3], or in general structured epidemiological models [14]. As another
example, the source term of certain population models may be impulsive to
represent the encounter of two kinds of individuals; this event could only
last for a short period of time and dissapear suddenly [9]. Also, discrete
delays in a model may introduce different discrete artifacts in the evolution
of the population [12, 4]. Most of these models cannot be solved analytically
and the use of numerical techniques to approach these dynamics is essential.
However, the study of discrete and continuous dynamics is quite different
and it is worth showing how the dynamics of the numerical technique that
approximates the solution of a model also approaches the dynamics of such
model.

In this paper, as an illustration of this situation, we are going to revisit a
model that describes the dynamics of a population of Monogonont rotifera,
firstly introduced and analyzed by Calsina et al. [9, 11]. The study of the
dynamics of this kind of microorganisms is worthwhile because of its intrin-
sic biological value as a model in evolutionary biology, namely its uncommon
reproduction that mixes sexual and asexual phases. Moreover, as reported
recently in [17], both marine and freshwater rotifera have a main role in the
degradation of microplastics and their transformation into nanoplastics. Mi-
croplastics and nanoplastics are the last two stages of plastic debris before
degradation to molecules during the global plastic-carbon cycle. And since
nanoplastics are small enough to be in every biological trophic chain, regard-
less of the control systems of organisms, they represent a serious ecological
problem.

The model describes the dynamics of the sexual phase of Monogonont
rotifera by means of a compartmental model that divides the population



into three classes [9]: virgin mictic females, 0(«, 7), which are responsible for
sexual reproduction because they produce the haploid males; mated mictic
females, h,,(a,7), which are devoted to the asexual reproduction and pro-
duce the resting eggs; and haploid males, 71(0(, 7). All of these population
densities depend on both the age « and the time 7. The total population
of each subclass is, respectively, V' fo (o, 7) dav, fo (o, 7) dev, and

fo (v, 7) dav. These populatlon densities fulfill the followmg system
of mtegro partial differential equations

(0, 7) + Vo, T) + 1 0(a, 7) = ~E~:ﬁ(7) o(a, 7) Xpo,77(@0),
() (5 7) + (a0 7) + ibon(,7) = B F(7) 50 ) xp07(@),
h-(a,7) + ho(a, 7) + 6 h(a, ) = 0,

a >0, 7 > 0, which are completed with boundary conditions

9(0,7) =B, hn(0,7) =0, ﬁ(O,T):b/ (o, T)da, T>0, (1.2)
M

and an initial data
o(a, T) = 170(04), hm(a, T) = h?n(a), iL(Oz,T) = ﬁo(a), a>0, (1.3)

where 4 and [ are the mortality rates for males and females, respectively; F
is the male-female encounter rate; B is the recruitment rate of mictic females;
b is the fertility of male-producing mictic females; M is the age at maturity
for females; and, T is the threshold age of fertilization (T < M). The source
terms include the discrete event in the problem, and gives an account of the
encounter among virgin mictic females and haploid males’ populations. Here
X[oj’](a) represents the characteristic function of the interval [0, 7], because
the event does not occur beyond the threshold age of fertilization of virgin
mictic females. We should pay attention to the discontinuity at the age
o = T of the source term in (1.1) that, suddenly, changes the evolution of
the populations. Following [11], the model (1.1)-(1.3) is simplified because
the density of mated mictic females can be obtained once we know the other
two densities. Moreover, after an appropriate change of variables

a=Ma, ) T=Mt1,
(e, 7) = Bu(a,t), h(a,7) = BbM h(a,t),

and the following notation for new non-dimensional parameters, p = g M,
§=0M,E=FEBbM?3 and A =T /M, we arrive at the system of equations
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to be satisfied by the new population densities for the virgin mictic females
and haploid males, that become

ve(a,t) +vgla,t) + po(a,t) = —EH(t)v(a,t)xpa(a), a>0,1t>0,
hi(a,t) + ho(a,t) +dh(a,t) = 0,a>0, t>0,
(1.4)
with boundary conditions
o(0,6) =1, h(0,1) = / o(a,t)da, >0, (1.5)
1
and initial data
v(a,0) =1%a), h(a,0)=ha), a>0. (1.6)

The new variables a and ¢ represent again age and time (scaled in terms of
maturity). The age structures the individuals in the population, and age
at maturity is 1. We denote the total number of haploid males and virgin
females as

H(t)= /000 h(a,t)da, V()= /Ooov(a,t) da. (1.7)

The existence and uniqueness of solutions for nonlinear age-dependent
population models as (1.4)-(1.7) are well established when either classical
analysis or nonlinear semigroups theory is used [16, 10, 15, 13]. Also, the
basic linearization principle for the study of the stability of equilibria in these
models is developed.

A theoretical study of the model shows the existence of unique stationary
population densities which are stable if the male-female encounter rate pa-
rameter F remains below a critical value. Also, a stable limit cycle appears
in the dynamics once the stability of the stationary solutions is lost [11]. In
this work, a linear approach to this limit cycle is proposed.

Models like (1.4)-(1.6) cannot be solved analytically and, therefore, a nu-
merical method to approximate its solution is needed. Moreover, the approx-
imation of the asymptotic stationary structures of the dynamics in models
like these requires long-time integrations with the numerical schemes. Differ-
ent authors have studied the numerical integration of age-structured models
during the last four decades [1] (and the references there in) In the case of
the asymptotic study of the model, an infinite setting for the age domain is
required; a fact that none of the proposed methods contribute to. Recently,
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new methods that deal with this issue have been studied [2], and we will
use them to give a straight approximation to the asymptotic behavior of the
model (1.4)-(1.6).

In this paper, we can afford an extension of the convergence analysis in [8]
of the stationary solution of the discrete equations of the numerical method
to the theoretical stationary solution of the model (1.4)-(1.6) as established
in [9, 11]. Now the novelty is that the approach to the discretization of
the model (1.4)-(1.6) proceeds without using the general strategy of consid-
ering an artificial truncation of the unbounded age-interval previous to the
discretization of the problem. Therefore, the actual asymptotic equilibria so-
lutions of the model (1.4)-(1.6) are approximated, and not the ones derived
from the truncated model as reported in [8].

The paper is organized as follows. In the next section, we propose a second
order numerical method, described in detail. We carry out an asymptotic
analysis about the convergence of the numerical stationary solution to the
corresponding theoretical equilibria in section 3. We conclude with a section
devoted to numerical experiments that confirm the theoretical results.

2. Numerical approximation

In the following lines, we propose a numerical method to obtain the ap-
proximation to the solution of the model (1.4)-(1.6) as described in the in-
troduction. As it was mentioned, the variables involved in the model, both
the age, which is the structuring variable, and the time, which describes the
evolution of the density of the population are unbounded.

We are going to introduce a numerical scheme to obtain the approxima-
tion of the solution in a fixed finite time-interval that we denote as [0, T]. The
amplitude of such temporal interval is undetermined with its corresponding
effect in the convergence error. Regarding the variable that structures the
individuals in the population, the discretization techniques require to work
in a bounded interval thus far. However, when we follow [2], where we have
developed a technique that allows us to propose a numerical method that
integrates the model using the unbounded age-interval, we avoid truncating
the age-interval as in [8], where a fixed maximum age A, was introduced
to deal with a finite setting in the whole numerical integration.

This technique requires to analyze an artificial size-structured population
problem that we obtain after a change of variable in both the dependent and
the independent variables. This new model is described as a size-structured



population problem with the size in a bounded interval. The proposed change
of variable, which links both structuring variables, is given by a = 5(z),
B(x) = —K%;log (1 —z), and we define g(z) = 1/6'(z). The new dependent

variables are defined as

v(B(x),t) = g(x) fz,1),  h(B(x),t) = g(x) m(z,1), (2.1)

and satisfy a size-structured population model given by a system of two
equations that describes the evolution of both new populations,

{ fe(@,t) + (g(2) f(@. 1) + p f(2,t) = —EH() f(z,t) xp0.09(2),
my(x,t) + (g(x) m(z, b)), + dm(z,t) = 0,

(2.2)
z € (0,1),t >0, where A = 1 — exp (—K3A), and the velocity in the rate
of change of the new variable is given by the growth rate g(z) = Kz (1 — 2)
that is the same in both populations. It is completed with the boundary
conditions

Kz f(0,t) =1, K/gm((),t):/]\lf(x,t)da:, t>0, (2.3)

where A =1 — exp (—Kp), and the corresponding initial conditions,

f(z,0) = f2%x), m(z,0) =m’(z),z €[0,1). (2.4)

e 1

Due to the fact that H(t) = h(a,t)da = / m(z,t) dx, we conserve the

same notation to describe the Ototal populationg in the new variables.

Once we perform the change of variable, the numerical method we pro-
posed is based on the integration along the characteristics curves in (2.2),
which are given by the solution of '(t) = g(x(t)). Therefore, we describe the
following integral representation formula of the solution of the model along
them,

flx(t™ 4+ k), t"+ k)= f(x(t"),t)x
exp (— /0 (n— Kg+ EH{" 4 7) xjon (z(t* + 7)) dT), (2.5)
m(x(t* + k), t" + k) = m(z(t"),t") exp (—(0 — Kp) k), (2.6)

with 0 < z(t*) < 1, 0 < t* < T + k. The characteristics curves can be
computed explicitly due to the suitable formula of the growth rate that is
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produced as a consequence of our choice in the change of variable. This
explicit expression is given by z(t) = 1 — e %#! and then ¢'(z) = —Kj that
is employed in (2.5)-(2.6). In this representation, it is assured that for each
k > 0 we have z(t* + k) < 1, due to the properties of the growth function.

The numerical method consists in the discretization of (2.5)-(2.6). First,
we introduce a grid on the physiologically structured variable but, considering
that there exists a discontinuity in the sink term when we arrive at the size
x = A (with corresponding age a = A), we will keep localized this jump by
setting A (A in the age variable) as a node of the grid on the size variable.
To this end, given a positive integer .J, we define the discretization time
parameter as k = A/.J.

The values of the nodes in the nonuniform grid on size can be explicitly
determined using the formula of the characteristics curves. Therefore, they
are given by x; = 1 — e X#%7 j > (0. At this point, we must select the last
node of the grid in the size variable that we define as x;«, which is the first
node that satisfies

1—ap =e KokT < Kk,

where K is a fixed constant that does not depend on the discretization pa-
rameter. For further details we refer to [5, 6, 2]. The selection of the time
discretization parameter makes that z; = 1 — e %8%7 = A, j.e. the discon-
tinuity point is a node of the grid. With respect to the time discretization
variable, we define the discrete time levels as usual, t, = nk, 0 < n < N,
where N = |T'/k].

Now, we consider that F}' and M} represent numerical approximations
to f(x;,t") and m(z;,t"), respectively, 0 < 7 < J*, 0 < n < N, where the
subscript j refers to the grid point ; and the superscript n to the time level
t". For convenience, we denote the discrete approximations in vector form:
F" = (F, F], ... Fh), M = (M§, M7, ..., M%), 0 <n < N. Thus, once
we know initial approximations FO, M € R”"*1 to the initial conditions (2.4),
which are usually the grid restriction of the initial functions

F}O = fo(l’j>, M]O = TTLO(.’I?]'), 0 S ] S J*, (27)
then the numerical method is defined from the following general recursion
that provides the numerical approximation, (F** M"*1) 0 <n < N —1,
at the time level "™ from the approximation, (F",M"), at the time level



tm:

k
Fjrf-ll — an e(Kﬂ_“)k exp (—5 E (Qk;(Mn) + Qk(Mn+1)))’

0<j<J-1, (2.8)
Fril = Fpelfommh << -1, (2.9)
MH = My eFeOR 0 <j < -1, (2.10)

where, on the one hand, we obtain (2.8) replacing the integral in (2.5) by the
trapezoidal quadrature rule, and the integral defining H with the correspond-
ing approximation by means of a quadrature rule. On the other hand, (2.9)
and (2.10) are the discrete versions of (2.5) and (2.6), respectively. In general,
Q. (U) represents a quadrature rule, based on the composite trapezoidal rule
with suitable rectangular rules on the first and last intervals, to approximate
an integral over the interval [0, 1], that can be described as

Jr—1
QU =z Uy + Y % U+ Uppt) + (1 — 2y) Upe,  (2.11)
j=1
given U = (Up, Uy, ...,Uy+). This is a second order quadrature rule (we find
further details in [2]).
We finish the description of the numerical method with the approximation
to the boundary values. The first boundary condition in (2.3) provides the
numerical boundary condition

1
n+1 __

FO — ?ﬁ.

The second boundary condition (2.3) involves an integral term in which the

size at maturity # = A (the corresponding age value is @ = 1) is not, in

general, a grid point. In order to minimize its impact, let be J the first

nonnegative integer such that A < z; (and, correspondingly, 1 < Jk). We

have the same purpose as in (2.11). That is why we define the following

approximation formula: in the first subinterval [A, z 7], we use a rectangular

quadrature rule and, for the remaining intervals, a similar quadrature rule
as in (2.11), that is

(2.12)

J*—1
1 - €T — X
n+1 n+1 +1 n+1 n+1 n+1
My =g \es = MEFT ) e R AR i R
j:

(2.13)



that also represents a second order approximation to the nonlocal term. It
is important to notice that the numerical method in (2.7)-(2.13) can be ex-
plicitly implemented because z; = A < A. We refer to [8] for further details
and a complete description of the problem and its solution with a numeri-
cal method that employed a truncated age. Finally, Q(F") and Q(M"),
provide approximations to the total populations of virgin mictic females and
haploid males, V' (t) and H (t), respectively, at the time ¢™.

Once we get the approximation to the solution in the size-structured
population model, we can obtain the corresponding ones to the solution to
the original problem. We can consider that a; = jk, and V)", H}' represent
numerical approximations to v(a;,t") and h(a;,t"), respectively, 0 < j < J*,
0 < n < N. Then, the following formulae define the approximations to the
solution to (1.4)-(1.5)

V' = KgFl'e Rk (2.14)

J

H' = KgM}e ", (2.15)

We also must point out that since it is unusual to carry out an analysis of
convergence of a model with a discontinuous sink term, this should be done
very carefully. However, when the vital functions of both populations are
smooth enough, the compatibility conditions at ¢t = 0 are satisfied, and the
(jump) points are represented on the grid, we can employ typical tools and
arguments as in [7] that allow us to conclude the second order of convergence
of the proposed numerical method.

3. Asymptotic analysis

The asymptotic study of model (1.4)-(1.5) was initiated by Calsina and
Ripoll in [11]. In their study, they described the equilibrium solution of the
problem. Thus, if H* denotes the male population at the equilibrium, H* is
the solution to the following transcendental equation

(o H* = e~ (WHEHTA) (3.1)

They showed that equation (3.1) has a unique solution that belongs to the
interval (0,e™*/(ud)), for any positive values of p, §, E and A. Once this
value is obtained, the total population of the virgin females is computed via
the following formula,

o+ E H* e—(;r‘rEH*)A

v ,
p(p+ EH)

(3.2)
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and, also, the equilibrium solution of both populations in (1.4)-(1.5) as

R e~ WHEHa g c 0, A,
@ ={ T el (33
h*(a) =0 H* e a € [0,00). (3.4)

They proved the stability of the equilibrium and the existence of a Hopf
bifurcation at which the stability of the equilibrium is lost and a stable
limit cycle appears. This limit cycle and its period was computed through
the linear approximation of the equations (3.1)-(3.4). Later, we performed
an analysis to obtain the convergence of a numerical method based on a
truncation of the age-interval to better approach the dynamics of the model
and the shape and period of the stable limit cycle [8]. Now, we improve
the approximation with a numerical method that do not employ the trick of
truncating the age-interval.

In the following, we will show how the dynamics of the discrete model (2.8)-
(2.10) approach the behavior of the continuous one when the time discretiza-
tion parameter k is sufficiently small. First, due to the main role that the
artificial size-structured population model (2.2)-(2.3) has in our numerical
method, we determine the expressions of its steady states in terms of the
new variables. Due to the change of the variable, the equilibria of the to-
tal populations keep the values H* and V*. Then, with respect to the new
size-structured populations, the equilibrium solutions are given by

()
Bl (—a)% (1—-A) %, ze€l[A1).
m*(z) = 55*(1 _)% T ze). (3.6)
5

Now, we describe the equilibrium solution of the numerical method (2.8)-
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(2.13). Such solution (F, M) satisfies

1
Kp’

Fipn = Fje™ W exp(-kEQy(M)), 0<j<J-1,

Fjpn = Fpefomb o J<j<J -1,
1 T i —
M, = % (a;j—A)FﬁZ%(Fj+ﬂ+l)+(1—xﬂ)m* ,
j=J
(3.10
M.y = M eEs=k << g —1. 3.11
J J

We would like to mention that we can recover the asymptotic values of the
discretization of the original age-structured model from these formulae (3.14)-
(3.15) by means of

V; = KgFje ok, (3.12)
H; = KgM;e Reik (3.13)

0<j<Jm

Then, we describe the equilibrium solution of the numerical method in
terms of the approach to the total population of males. From (3.7)-(3.9), we
obtain

F

i= K E Q) (M) (3.14)

e(Kom)ik(1 N R J41< <IN

; { LMo F It 0 <<

From equation (3.11)
M, = MyelKs=9) 7k o< j < J*, (3.15)

Next, we can compute an expression for the approximation to the total num-
ber of virgin mictic females, Qx(F). It is given by the following quadrature
formula associated to the vector F,

J*—1

Qu(F) =z, F, + Z Tjt1 — 25

5 (Fj+ Fjp) + (1 —xy) Fys,

j=1
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then, we substitute (3.14)-(3.15), to obtain

J
K5 Qu(F) = #e(m—u—wk(M))kjLz%e(Ka—u—E%(M))ka
j=2
o STl
Y
j=J+1
. . ) B9, (M)
N (1 - w) (1) 7k )"

Next, we introduce the definition of the grid nodes in this expression, as
zp=1—e M0k 0<j<J,

~2Ksk | o—Kgk

Kp Qr(F) = (1 ¢ ) o(Ka—n—E @ (D) k

2
oKsk _ o—Kgk 5o, oKk _ o—Kgk T 7]
(—p—E Qr(M)) kj K —pnjk
+ Z a +(1—A) % 5 .Z e
j=J+1
oKk B9y (M)
ey R
2
in which we substitute 1 — A = e %84 to arrive at
e_KBk + 1 _
Ky QulF) = (o8 = S ) e
elsk _ o—Kpk o—(p+EQr(M))2k _ o—(u+E Qp(M)) k(J+1)
T 2 1 — e—(W+EQx(M)) k
EQ,M) ,Kgk _ —Kgk ,—p(J+1)k _ —pJ*k
+a _A)ifée e e e e
2 1—erk
Kgk (
e ﬁ2+1 —ukJ*(l_A)EQK,?ﬁM)
Kk Kk —Kgk —(u+E Qp(M)) A
_ 1 rpoue | € =T ipo ol — RSO
2 2 1 — e~ (WtEQx(M))k
E Q5 (M) Kﬂk) —ng‘ e—uk _ e—M(J*—J)k‘
H(A=A) s
Fet(l-4A) 2 —
erBk +1 E Q) (M)

5 e HET =)o (I1—A) *s
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efek —1 efok —e=Kek [ 1 — e (1 — A)EQ‘?;M)
2Kz 2 Kp et+EQ(M)k _
EQM) | _ o—u(JT—J-1) Kgk 4 1 . E Q9 (M)
+6—M(1 _ A) Kg eeuk: — I> | € QK_; e hk(J=J) o—n (1 _ A) Kg

(3.16)

On the other hand, in a similar way, we can obtain an expression for the
numerical value of the total number of haploid males at the equilibrium,
Q. (M), which is given by the quadrature formula associated with the vector
M

Y

J*—1
QM) = a1 My+ Yy o (M M) + (1= ) My
j=1
T+ — x x +x
1 2 j+1 — XTj—1 J*—1 J*
= M S 4 (1 ) M-
2 ' ; 2 it ( 2 ) !

Then, we substitute (3.15), and the definition of the grid nodes in this ex-
pression, as z; = 1 — e 529% () < j < J*, to arrive at

—Kgk _ ,—Kp2k
QM) = My ((1 L ‘ ) efokeok

2
Tl eKpk _ o= Kk , . 1 + eKsk
i Z o Kok oKekig=0kj | ~KgkJ Kok o= k]
— 2 2
=
—Kgk —Ky2k Kgk —Kgk ,—62k —8kJ*
B e At —em 8 Ksk, sk, €7 —e e —e
= M, 1-— 5 e e + 5 1 7
— 6_
1+efsk oo
+ > o0k
Kgk Kgk —Kgk ,—b6k —§kJ* Kgk
YA eﬁ—1_5k+eﬁ—e sRe " —e _I_l—i-eﬁe_ékﬁ
2 2 1 —e 9k 2
eK{gk‘ _ 1 _ eKBk _ e—ng 1 _ 6_5kj* 1 + e_KBk _ y
= M ok okJ
= o | ——=——e + T + e .
2 2 e'r —1 2

13



Now, we define ¢ as the following formula,

Kp
O = . 3.17
k Kﬁk_l —6k4+ o Kpk {_ =6k 1+€_Kﬁke—6kj* ( )
T2 2 ok 1 2

Note that d; is only depending on the time discretization parameter (k), and,
also, on the parameters K (through J*) and K4 of the numerical procedure.
In fact, we subsequently prove that §, represents a numerical approximation
to the mortality rate of the individuals in the male population. It means
that

K My = 6, Qp(M), (3.18)

and we substitute this expression in (3.15) to obtain
Ok ((K5—3)jk) - *
szfgk(M)e p J s OSJSJ
B

Now, formula in (3.10) defines M, in a different way

J*—1
T
KsMy = (z7— A) Fy + Z J“ (F;+ Fi1) + (1 — 5:) Fye,

in which, first, we substitute (3.14), to have

i L B _ B Q) (M)
Kg M, = <J"J%+IJ — A) efaThe=nIk (1 — A)™ %
J—1
B Q) (M) o
+(1—A) X Z Titl = Tj1 Kyhj pkj
2
j=J+1
E Q. (M)

and, then, the definition of the grid nodes in this expression, as z; = 1 —
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e Keik 0 < j < J* to arrive at

E Qp (M) B —KgJk —Kg(J+1)k _ _
KjMe" (1—A) 7 :(1_/\_6 T Ae” ) K Tk g (J=T) K

2

_ Jr-1
oKsk _ o—Kgk eKek 41

+ # Z ei'ulk(ji‘]) + T (&
j=J+1

—Kgk
= ((1 _ ]\) Ko Tk _ 1—|—e—ﬁ> e (J=D)k
2

Kok _ o=Kgk o=nk(J=J+1) _ o=pk(J*=J) N il PR
2 1 — e mk 2

—pk (J*—J)

+

Now, we define p; as the following expression

Kgk
ﬁ = ((1 —A) eKBjk_—1+6 i >6_H(J_J)k
[k 2

eKBk _ e_KBk e—yk(j—J) _ e—uk(J*—J)

€Kﬁk + 1 e_uk(J*_J)7

* 2 1 —enrk * 2

in which, again, we emphasize the dependency on all the discretization pa-
rameters, not only the time discretization parameter k, but also the param-
eters K and Kp in the numerical procedure. In fact, we subsequently prove
that u, represents a numerical approximation to the value of the mortality
for the individual female population. Therefore,

E Qp (M)

Kg,ukMO:e_“ (1—A) Kg |

and, with the use of (3.18), a transcendental equation for the total population
of haploid males just involving the parameters of the problem is obtained,

E Qi (M)

O jogs Qk(M) =e M (1 — A) K, (319)

The following result shows that the equilibrium solution of the numer-
ical method (3.7)-(3.11) converges to the equilibrium solution of the prob-
lem (2.2)-(2.3) as k tends to zero. More precisely, the convergence is of second
order.

Theorem 1. For any positive values ui, §, E and A, let H* denote the unique
positive solution of (3.1), and let V*, f* and m* be defined by (3.2), (3.5)
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and (3.6), respectively. For any k > 0, let Qx(M) denote the unique positive
solution of (3.19), and let Qx(F), M and F be defined by (3.16), (3.15)
and (8.14), respectively. Then, as k — 0,

[H — Qu(M)| = O(k?), (3.20)
V' = Qu(F)| = O, (3.21)
[f*(2;) = Fj] = O(k*), 0<j<J, (3.22)
im*(z;) — M;| = O(*), 0<j<J. (3.23)

Proof We first deal with the existence and uniqueness of a solution
of (3.19). Then we define the function

O(z) = 0p prp " wePA% — 1.
This function is continuous and increasing and its value at z = 0 is negative,
then there exists a unique solution of the equation ®(x) = 0. As we show that
Q. (M) satisfies this equation, we find that this value is the unique solution
of (3.19).

On the other hand, the following expresion comes from the chosen change
of variable

o 5 [t 2
1:5/ e_‘sada:—/ (1—x)%  du. (3.24)
0 K/S‘ 0

Also, the properties of the quadrature rule ensure that

S 1

! 5 5
/ (1—x)%s Yz = 2, (1 —29)%s
0

)

J*
+Z : 2 = ((1—%‘1)1{5 + (1 —xy;)%s )+(1—$J*)K" +O(K?).
j=2

J*—1

5 . — . 5
i —; )™y > Ll — i1 5 DL — )R
j=2

* — * __ 5
+ %(1 —z) 58 + (9(]{;2)'

Now, we employ the definition of the grid nodes in this expression, as z; =
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1 —eKsik 0 < j < J* to arrive at

! 5
/ (1 —x)"s Ydr = (1 — e Hok) g0keok
0

g+
(eKﬁk B 1) (1 + e(a—Kﬁ)k) Ze—ékj 4otk 4 O(k:Q)

j=2
(eKBk _ 1) e 0k 4 % (1 _ e—KBk) (eKﬁk + eék) €

+e 0k 4 (9(1{:2)

Ll
2
—25k _ o0k (J*+1)

1 —e 9k

(3.25)

—0k _ p—0k(J+1)

1 —e 9k

(eKBk o 1) e*ﬁk + % (eKBk . 1) €
6k _ o0k
1 — e 9k
(eFok — 1) &0k + % (eFok — Kk
o0k (I H1) _ =0k
1 —e 9k

oKik _ 1) g0k 1 Kok _ o—Ksk
(9 1) e 4 L ( )

(1 +€_K’Bk) 6—5kJ* + O(kQ)

N |

(1 — e 5k ‘ +e kT L O(K?)

N | —

1_6—61:]*

edk — 1
+e Ok + O(k?)
1 — e—0kJ"

edk — 1

(1 — e‘Kﬁk)

L Lok (3.26)

Thus, we combine (3.24) with (3.26) to obtain

5 = 6 + O(K?). (3.27)

We can also follow similar steps with the following integral,

o0 H 1 T
1=¢e"n / e Hda = w/ (1 —x)"s ! dz. (3.28)
1 Ks Ji

In which we can also apply the properties of the quadrature rule and ensure
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that

~ |

/ (- )% e = (27— A) (1 —2)%
A

J*
T — T, - o X5
+ 3 BB (1 T (1)) 4 (a4 00).
j=J+1

Then, we substitute the expression of the grid nodes, and we use the definition
of F* to obtain

1
[ (1-— :C)Kiﬁ_l dr = (1 — e KokJ _ ]\) e (Ks—p)kJ
A

e
(eKﬁk — 1) (1 + e(“_Kﬁ)k) Z e MRI L emr kT L O(k?)
j=J+1

_|_

N —

_ (1 o A) 6(Kﬁ—ﬂ)kj i e—ukj

—(J+Dpk _ o—pk (J*+1)

Ly

+e T O(k?)

1—enrk

e~ () pk _ o~ (I +D)uk

N P |
= (1—A)eEe-mkl _¢ “k‘]+§(eK5k—1)

1 —enk

1 Ky €7 HE —emrET Sk J* 2
(1 5
+o (™) g +e + O(K?)
= (1—]&)6(&’_“”“7—%(6[(51‘3—1—1) e HkT
1, gk —kgry € FFT —em#RT ] Kak\ —pkJ 2
—|—§(ef3 e o) T +§(1+eﬁ)e“ + O(k?)
= Ly O (3.29)
Mok

Therefore, we combine (3.28) with (3.29) to arrive at
w=py, + O(K?). (3.30)

Next, the mean value theorem applied to ®~!, whose derivative is always
lower than one, equation (3.1) and approximations (3.27), and (3.30), allow
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us to obtain the bound (3.20) because

|H* — Q(M)|

IN

. . N 1
| P(H)| = |0 e H* AT — 1 :ﬁwk“k_ﬁﬁ\

< Ok

Next, for 0 < j < J, (3.5), and (3.14), the definition of the change of variable,
a = B(x), and the grid nodes z;, and (3.20), are enough to prove

. 1 (wtBHT) 4 o -
|f*(x) — Fy| = E(l—xj> e —Ee(Kﬁ W= Qx(M)) j
—(u—Kps) ik
. M‘Q—EH*M_G—EQ;C(M)M‘
Kp
Ejke(nKs)ik
< =2 - |H* — Qu(M)| < C k.
5

With the same arguments, for J + 1 < j < J*, we arrive at

1 o gat ] , By (M)
Fla) =Bl = |=—a)™ (1= ) - ek )
B B
Kg
(Ko=n)ikp A
< & TR H - QM) < O
K

Thus, we obtain (3.22).

Now, we use (3.6), and (3.15), the definition of the change of variable,
B(x), and the grid nodes x;, the relationships (3.18), and (3.27), and (3.20)
to obtain

o H* 5 .
m* () = My = | (L —ay) ™ b My elFa9)k
;
e(Kﬁ—(S)jk

=~ |08 H" + 5. (H" — Qu(M))| = O(K),
B

J+1<j < J* which confirms (3.23).
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All in all, (3.21) is demonstrated considering that

Ve = /Ooov*m) da= [ 1(a)da = Qu(E) + O,

and, due to (3.22)
Qi(f*) — Qu(F) = O(K?),

where f* = (f*(zo), f*(z1),..., f*(xs)). O
From this theorem, the following one is immediately obtained, that de-

scribes the second order of convergence to the asymptotic state of the original

age-structured functions for both haploid males and virgin females.

Theorem 2. For any positive values i1, 0, E and A, let H* denote the unique
positive solution of (3.1), and let h* and v* be defined by (3.4) and (3.3),
respectively. For any k > 0, let Qr(M) denote the unique positive solution
of (3.19), and let H and V be defined by (3.13), and (3.12), respectively.
Then, as k — 0,

v (a;) = Vi| = O(K?),
|h*(a;) — H;| = O(K?),

(3.31)

0<j<J
0<j<J (3.32)

<J
Proof We only sketch the proof of (3.31), because both are similar. Therefore,
the definitions (3.3) and (3.4), allow us to get the relationship

v'(ay) = Kge 08 f*(z5), 0<j< T,
and with equations (3.12), and (3.22), we arrive at the desired result,

v*(a;) — V;| = Kge "07%| f*(z;) — Fj.

4. Numerical results

In this section, we show the interest of the numerical method presented
for the simulation of the sexual phase of the Monogonont rotifera. To do
this, we compare the behavior of the numerical solution with the theoretical
analysis provided by Calsina and Ripoll [11]. In their work, they prove that
the model system has a unique stationary population density which is stable
as long as a parameter, related to male-female encounter rate, remains below
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a critical value. When the parameter increases beyond this critical value,
the stationary solution becomes unstable and a stable limit cycle (isolated
periodic orbit) appears.

Our aim in this section is to show that the proposed scheme is able to
simulate the behavior of the solution that the theoretical analysis predicts
for such model. That is, considering the rich dynamics of the problem we
show the good behavior of the numerical approximation for long-time simu-
lations. In this paper, as the discretization parameter decreases to zero, we
approximate the asymptotic steady solutions for the model problem without
previously considering a truncation of the age interval as it was in [8]. We
have dealt with two numerical tests taken from the analytical study of the
dynamics in Calsina and Ripoll [11]. Both experiments are representative
cases of the two possible situations: the stable and the unstable case.

In the first experiment, we consider the reference values u = 0.4, 6 = 0.7,
E =144 and A = 0.3 corresponding to realistic biological data. These are
the parameters (using the new units) for some rotifer species belonging to
the genera Brachionus [9, 11]. When considering a bifurcation analysis as the
parameter F in the model (the male-female encounter rate) varies, Calsina
and Ripoll [11] report an instability threshold value at F,, = 1617.928392.
For parameter values below this critical one the population densities evolve
towards the asymptotically stable equilibrium defined by (3.3)-(3.4), with H*
the positive solution of (3.1). In this case, using a nonlinear solver package,
we get H* = 1.341202 and then, from (3.2), V* = 1.458016.

We have performed simulations with different values of the parameters
K, Kg, and J (k= A/J, is the time discretization parameter), in which it is
shown how the numerical computation of both, the total population of males
and the total population of females, evolve towards and equilibrium, Q (M)
and Q(F), respectively. In the experiment, the approximations at 7" = 300
are compared with the theoretical ones, the total population of males and
females in the equilibrium solution of the original problem (1.4)-(1.5), H*
defined by (3.1), and V* defined by (3.2), and the error is measured as

ex = max {|Qx(M) — H"[, [Qx(F) — V7|},

for each value of the time discretization parameter k, once the other parame-
ters K, K3, and Apay are fixed in the numerical procedure at each case. The
initial conditions considered in the numerical integration are the restriction
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to the grid points of the functions

e ha, ae0,1),
vo(a) = { 0. 451 0,1) (4.1)
ho(a) =0, a>0, (4.2)

that corresponds to a biological initial stage in which there is not haploid
males,; as it is the case for the starting situation of the sexual phase.

In Tables 1-2, we show numerical results for time discretization parameter
k=5-100%k=25-100% k=125-10"% k=6.25-10"3, k = 3.125- 1073,
k = 1.5625-1073. At each experiment, it is presented the error, e, the time
of computation in seconds, and the numerical order s as computed from

_ log ea/ex
log 2

Table 1 is devoted to the new numerical method with the following couples
of parameter values K = 1, Kg = 0.7, K = 1, Kg = 0.35; and K =
1, K3 = 0.175; while Table 2 shows the experiments performed with the
numerical method that employs a truncation in the age interval, where we
show A.x = 35, Apax = 45, and A,. = 50.

The results shown in Table 1 confirm the asymptotic behavior of the nu-
merical method and the second order of convergence of the numerical to the
theoretical steady states as it was predicted in Theorem 2. We show that is
important to fulfill the requirements of the convergence theorem [2] that are
not satisfied in case of K3 = 0.7 where the convergence with the expected or-
der fails. However, numerical evidence shows that is enough for convergence
to choose K3 = min{0.7,0.4} just to capture the exponential rate of decay
with age of the theoretical solution of the problem. Also, in the third column,
we manifest that the choice of the parameter Kz, which performs the change
of variable, is crucial because we increase the cost without the corresponding
effect in the error. With respect to the results shown in Table 2, we also
confirm the asymptotic behavior of the numerical method and the second
order of convergence of the numerical to the theoretical steady states as it
was predicted in [8]. In this case, the choice of the truncation parameter,
Anax 18 important. On one hand, if it is too short, we could saturate the
error soon, as we see in the case of A, = 35. On the other hand, the use

22



k | K=1,K3=07 | K=1,K3=035 | K=1, Kzg=0.175 |
5-1072 3.5343491 - 1077 1.8855845 - 10~* 2.0189815 - 10~
4.40510 - 10" 4.77965 - 10" 6.54907 - 10~

2.5-1077 2.3792497 - 1077 4.6690978 - 10~ 5.0569882 - 107
9.18715-10"" 0.57 |  1.48638 201 | 2.55776  2.00

1.25-1077 1.6044969 - 10~* 1.1380311-107° 1.2809986 - 10~°
310949 057 | 4.88814  2.04 | 1.41136-10" 1.98

6.25-107° 1.0805474 - 10~* 2.6773591 - 107° 3.1846739 - 10°°
1.10310- 10" 0.57 | 2.81737-10" 2.09 | 5.26242-10" 2.01

3.125-107° | 7.2720506- 10~ 5.9497584 - 1077 8.0364412- 107
6.12610- 10" 0.57 | 1.14004-10* 2.17 | 2.10902-10> 1.99

1.5625-107% |  4.8928730-10~" 1.2306731 - 10" 1.9941992 - 1077
2.43243-10*  0.57 | 4.58032-10* 2.27 | 7.62861-10> 2.01

Table 1: T = 300. Results performed with the numerical method in an unbounded age-
interval. ey, time of computation in seconds, and convergence order.

k Apax = 35 \ Apax = 45 Apmax = 50
5-1072 2.0164350 - 10~° 2.0711197-107° 2.0719998 - 10~°
4.46875 5.53125 6.32813

2.5-1072 5.3584525 - 107° 5.2052835 - 107° 5.2140847 - 10~°
1.75938 - 101 1.91 | 2.25625-10" 1.99 | 2.57031-10' 1.99

1.25- 1072 7.3884902 - 1077 1.2848417-107 1.2936448 - 1076
7.08125- 101  2.86 | 8.75938-10' 2.02 | 1.00438 - 10% 2.01

6.25-1073 9.9837920 - 1077 3.1956291 - 107 3.2836606 - 107
2.76313 - 10 -0.434 | 3.57578-10%> 2.01 | 3.96109 - 10> 1.98

3.125-1073 1.0197689 - 106 7.0756015 - 108 7.9559683 - 1078
1.10763 - 10*  -0.0306 | 1.41908 - 10 2.18 | 1.57620 - 103 2.05

1.5625 - 1073 1.0500887 - 106 1.5821398 - 108 2.0731288 - 10~®
4.48052 - 10° -0.0423 | 5.69825 - 10 2.16 | 6.32439 - 10° 1.94

Table 2: T = 300. Numerical method with truncation [8].

seconds, and convergence order.

23

ek, time of computation in




of larger values increases the computational cost without the corresponding
effect on the computed error. We have employed other values of parameters
K and Kpg, and A,y with similar results.

In Figure 1, we compare the efficiency among both methods: firstly, the
numerical method based on the discretization of the problem over a truncated
age-interval [0, Ayax]; secondly, the numerical method described in this paper.
The global errors versus the times of computation in logarithm scale are
shown. We represent all the experiments with the new numerical technique in
a (red) straight line and the numerical method provided in [8] with a (black)
dashed line. We show that the numerical method described in this paper
present the most efficient combination with parameters K = 1, Kg = 0.35.
The value of K has a clear influence on the efficiency due to the increment
on the cost of the computation of the natural grid employed in the artificial
size-structured model as Kp is increased. We can also point out that, as
we have previously noted, the choice of Kz must satisfy the requirements of
convergence theorem [2], otherwise (Kg = 0.7) convergence is not guaranteed.
For a fixed value of K3 and a given value of the global error, decreasing values
of K increase the size of the natural grid. However, the parameter K has
a lower overall effect than Kz on the computational cost. With respect to
the truncated age-interval numerical method, the choice of the value of the
Anax 18 important because an experiment with a short value can saturate the
computational error soon, and the choice of a larger value of A, does not
improve its efficiency.

In a second experiment, we use pu = 0.9355, 6 = 1.4463, F = 675.84 and
A = 0.4274, the instability threshold value of the encounter rate is minimal,
Eyn = 501.831883 [11]. It means that the reference value E = 675.84 makes
the equilibrium unstable and a Hopf-bifurcation appears. The equilibrium of
(1.4)-(1.5) is defined by (3.3)-(3.4), with H* = 0.0112499 (note that this is a
rounded value obtaining by using a nonlinear solver package to (3.1)). From
(3.2) we get V* = 0.141869. We do not expect that the reported results were
quite different than the ones proposed in [8], however we include them to
emphasize that the new numerical method is not based on a truncation of
the age domain.

We employ the value J = 20 that defines the step size, that is, k =
2.137-1072, and the parameters K = 0.01, and K = 0.1. In Fig. 2, we show
the evolution along the time of both populations, starting from the initial
condition (4.1)-(4.2), by means of its trajectory in the phase plane (H,V)
that is attracted to a limit cycle.
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Figure 1: Efficiency plot (e vs. CPU time): comparison of the efficiency of new method
and the method with truncated maximum age [8]. New method, (red) straight line with
K =1 Ks =035 (o), K =1, Kg = 0.7 (x); K = 1, K3 = 0.175 (0). Method
with truncated maximum age [8] (black) dashed line, Apax = 45 (0); Amax = 35 (x);
Apax = 50 (0).

Calsina and Ripoll [11] provided an approximation to the limit cycle
around its equilibrium by means of the linearization of (1.4)-(1.5) in a neigh-
borhood of the equilibrium point, and state the estimation 3.9163 of the pe-
riod of the cycle. A first numerical approximation to the nonlinear limit cycle
was provided in [8], they employed a truncated model of the original (1.4)-
(1.5), and provided an estimation of the period by means of interpolation
with the value about 3.9857. In Figure 3, we show, in the phase plane of
total populations (H, V'), our approximation to the limit cycle for different
values of the discretization parameters, the unstable steady state and the
linear approximation to the stable limite cycle given in [11]. In detail, we
employ a fixed value of K and Kp, to observe the convergence of the dy-
namics when the time discretization parameter, k, decreases to zero. In the
figure, we represent the results we obtain with & = 2.137 - 1072, by means of
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0 0.02 0.04 0.06 0.08 0.1
Males (H(t))

Figure 2: Evolution of the total populations in the unstable case.

a dashed line, k = 1.0685 - 1072, with a dotted line, and k& = 5.3425 - 1073,
in a solid line. Lower values of k£ match with the solid line. The same re-
sults are obtained with different values of the parameters K and Kjz (not
shown). Therefore, we can assure the convergence of the numerical solution
to a limit cycle that we expect to be an approximation to the theoretical one
(and quite different to the linear approximation). In this case, we can also
fix the convergence of the period of such cycle to the value 3.985505, slightly
different to the provided in the case of the truncated problem. Numerically,
we have also discovered that the dynamics of the problem do not change any
more until the extinction of both populations (not shown).

5. Conclusions

The main interest of modelling is to describe the behavior of the system
we are interested in, through the analysis of the dynamics of the solutions of
the mathematical model. In order to fit the dynamics of evolutionary prob-
lems, mathematical models could mix continuous and discrete features that
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Figure 3: Unstable case. Equilibrium (*). Stable limit cycle approximation. k = 2.137 -
1072 (dashed line), k = 1.0685 - 1072 (dotted line), k = 5.3425 - 10~3 (solid line). Dot-
dashed line corresponds to the stable limit cycle of the linearized problem [11].

complicate their analytical and numerical treatment. These features could
be similar to the ones presented in the model we study: a compartmental
age-structured population model with a sudden change in the balance law
equations. Its analytical solution is not feasible and its asymptotic analysis
is made by means of a linearization about the steady-state solution of the
model equations. An alternative approach is to numerically approximate the
asymptotic behavior of the solution through long-time integrations. In this
case, the challenge is to verify that the discrete dynamics of the numerical
method reports the continuous one faithfully.

We have employed a new numerical technique to solve age-structured
models with an unbounded domain that was analyzed in [2]. It introduces a
second order numerical discretization of a reformulation of the model prob-
lem in terms of a new computational size variable that evolves with age to
cope with the difficulties of the infinite lifespan in long-time simulations.
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This is employed to study the dynamics of a well-known model that describe
the evolution of the sexual phase of Monogonont rotifera. The asymptotic
behavior of this model was reported with classical analytical techniques in
Calsina and Ripoll in [11]. They employed the male-female encounter rate
parameter as a bifurcation parameter, and proved the existence of a Hopf bi-
furcation: a stable steady state that changes to unstable and the emergence
of a stable limit cycle. The new proposal allows to study the problem numer-
ically without the artificial truncation of the unbounded age interval as was
done in [8]. We find good concordance between numerical predictions and
the theoretical study. For the model problem we study, if the discretization
parameters, Kg and K, of the new numerical method are properly chosen,
then the new approach is more efficient, in terms of computational cost, than
other numerical methods based on the discretization along the characteristics
on a truncated domain. Parameter Kz should be chosen close to and below
the exponential rate of decay of the solution of the problem to minimize the
size of the natural grid of the discretization.

We study the dynamics of the numerical solution, and we discover the
existence of a numerical steady state in the discrete dynamics. We prove
the convergence of the numerical steady state to the theoretical one as the
time discretization parameter decreases to zero. Also, we discover how the
steady state loses its stability and a discrete limit cycle appears as the same
bifurcation parameter (the male-female encounter rate) increases through a
threshold value. We demonstrate numerically the convergence of this limit
cycle to the theoretical one when the time discretization parameter goes to
zero. Finally, we conclude that we provide an effective tool in the study of
complex dynamics of age-structured models with infinite lifespan in which
we can study the model without changing its complexity.
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