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The employment of deep convolutional neural networks (CNNs) signifies a substantial progression in the domain of image
analysis. The application of this method is particularly suitable when the image set represents a spatial structure and
predictive analysis can only be performed using Gaussian processes, which are computationally complex. The uncontrolled
airflow of air into buildings, known as infiltration, poses a significant challenge in terms of characterisation and
quantification. The irregular contours of gaps and cracks through the enclosure create a virtually endless variety of cases,
making a generalizable scientific interpretation that can be applied to existing buildings very difficult. This circumstance is
always clearly manifested by an irregular, three-dimensional incoming airflow. This study presents an innovative
methodology for estimating airflow rates based on three-dimensional thermal patterns captured through infrared
thermography. The experimental setup employs a 3D-printed matrix of spheres, facilitating the characterisation of the
spatial temperature distribution within the airflow. The resulting thermal images are processed using a CNNs, which
integrates the spatial information contained in the thermograms with a scalar input representing the inlet air temperature.
The model's performance was assessed under a range of conditions, including reduced image resolutions, varying
experimental configurations (involving different flow apertures) and a comparison between full thermographic inputs and
thermal difference-based features. The results indicate that the model can accurately infer airflow rates within the same
aperture (medium absolute error MAE < 2%). While generalisation to new apertures presents a greater challenge, the
experiments demonstrate that a sufficiently diverse training dataset can enhance the model's predictive capacity for
configurations not included in the training phase. These findings underscore the potential of deep learning as a
nonintrusive and efficient tool for estimating airflow in systems where conventional measurement techniques are either
difficult to apply or impractical.

Keywords: building airtightness; deep convolutional neural network; infiltration; pressurisation test; thermography

1. Introduction

Buildings are responsible for a substantial portion of global
energy consumption, with heating, ventilation and air condi-
tioning (HVAC) systems accounting for nearly half of this
usage [1]. Leakages, the unintentional movement of air
through gaps and cracks in the building envelope, signifi-

cantly impact both thermal comfort, ventilation perfor-
mance and energy efficiency [2]. In this regard, it is
estimated to contribute between 30% and 50% of HVAC
loads [3].

Minimising air leakage is a key focus in modern building
energy codes and standards to reduce overall energy demand
[4]. Beyond energy loss, uncontrolled airflow can also
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compromise material durability and promote mould growth
due to moisture transport, as well as affect indoor air quality
with these pollutants [2]. Improving airtightness is therefore
a critical aspect of enhancing building performance and
reducing greenhouse gas emissions, aligning with targets
set by various regulations and directives aimed at achieving
more energy-efficient and net-/nearly-zero-energy buildings
(nZEBs) [5–8].

Conventional methods are employed to assess building
airtightness and to identify air leakage paths. Pressurisa-
tion tests, such as the well-known and widely used Blower-
Door test, are effective in quantifying the overall air
leakage rate through the building envelope [9, 10]. How-
ever, one of their main limitations is the inability to pin-
point the exact shapes and flow rates of the leaks [4].
Infrared thermography (IRT) offers a noninvasive
approach to visualise surface temperatures and detect ther-
mal anomalies associated with energy gains or losses [7,
11]. IRT can effectively identify leakage points by detecting
temperature differences on building surfaces, often high-
lighting areas around windows, doors and service penetra-
tions, provided there is a temperature differential between
the interior and exterior. Nevertheless, these methods offer
only a qualitative, rather than quantitative, assessment of
the airflow rate associated with infiltration. Quantitative
IRT methods aim to correlate surface temperature patterns
with leakage characteristics; however, they often necessi-
tate complex heat transfer models and numerous parame-
ters and can be complicated by thermal bridging effects.
Early applications of IRT for air leakage detection were
not always accurate, requiring precise parameters and
environmental conditions [12]. Furthermore, traditional
methods may involve extensive data collection.

Recent years have seen advances in both the character-
isation of air infiltration and the application of machine
learning techniques to thermographic data. Novel method-
ologies that approach the characterisation of infiltrations
from a three-dimensional perspective using IRT have
emerged [9, 10]. By capturing temperature data from mea-
surement points and transposing them into a digital
model, it is possible to analyse these points in three
dimensions, allowing for the extraction of planes to under-
stand airflow behaviour. This approach characterises infil-
tration using a single thermographic image, providing a
“steady-stage” airflow image and significantly reducing
data acquisition and processing time compared to previous
methods. This characterisation method is one of the base-
lines of this research.

Convolutional neural networks (CNNs) have emerged
as a central tool in image-based diagnostics, renowned
for their capacity to learn hierarchical representations
from raw data without the need for manual feature engi-
neering [13]. Within the context of IRT, CNNs have
shown remarkable performance in thermal image classifi-
cation [14, 15], anomaly segmentation [12, 16], concealed
object detection [17] and internal defect localisation in
materials [18]. These capabilities render them particularly

promising for building diagnostics, especially in the identi-
fication of air leakages, thermal bridges and envelope
anomaly factors directly linked to energy losses and occu-
pant discomfort [15, 19].

CNN-based models have proven effective across a
range of real-world scenarios. They have been used to
detect structural damage postdisaster [20], identify subsur-
face defects through dual-stream processing of thermal
and visible imagery [21] and automate flashpoint recogni-
tion in chemical testing using minor thermal signatures
[22]. Furthermore, hybrid approaches—such as CNNs
coupled with support vector machines (SVMs) and
graph-based localisation—have demonstrated reliable leak
detection in complex fluid distribution networks [23].
Advanced architectures employing multiscale feature
extraction and attention mechanisms have also improved
fault detection in HVAC systems where datasets are inher-
ently imbalanced [13].

Recent studies have also examined CNNs under con-
strained data regimes and portable diagnostic platforms.
Notably, the DeepRadiation system demonstrated that
energy performance prediction is achievable using only 36
annotated thermal images [19], and passive thermographic
learning approaches have been validated through transfer
learning in varying operational conditions [14]. These
advances, alongside foundational work on deep learning the-
ory [11], highlight CNNs' growing integration in real-time,
edge-level applications.

Within the specific domain of air infiltration in build-
ings, accurate quantification of airflow rates remains a chal-
lenge. Although transient IRT has proven that it is possible
to identify air leaks without the need for sustained pressuri-
sation [2], no effective IRT quantification method has been
developed, and few studies have addressed the use of CNNs
to infer volumetric airflow from thermal patterns. Most
existing work focuses on the localisation of thermal anoma-
lies [12, 16], not on predictive estimation of airflow magni-
tude, and generalisation to unseen geometries or openings
remains largely unexplored.

Preliminary efforts, such as those by Gertsvolf et al. [12],
have prepared data pipelines for CNN-based thermal diag-
nosis of building envelopes, while Deng et al. [18] validated
the applicability of CNNs to internal defect recognition even
under low thermal contrast. These findings suggest that with
appropriate training protocols, CNNs could reliably infer air
leakage rates from thermograms alone. This study contrib-
utes to the evolving field by proposing a CNN-based
approach trained on passive thermal imagery for the infer-
ence of airflow rates through uncharacterised building open-
ings. The method seeks to offer a scalable, accurate and
nonintrusive diagnostic framework for real-time energy loss
detection in buildings.

Despite progress in generating three-dimensional ther-
mal data for airflow characterisation and applying deep
learning to thermographic analysis, a gap remains in directly
leveraging 3D thermal patterns with deep neural networks
for the specific task of quantifying infiltration airflow rates.
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While 3D characterisation methods can produce detailed
thermal datasets [10] and neural networks can infer airflow
from surface temperatures [24], a method that explicitly
takes the volumetric or multiplanar thermal information
derived from the 3D characterisation techniques as direct
input into a deep learning model for nonintrusive airflow
estimation has not been widely demonstrated in the
literature.

This paper addresses this knowledge gap by proposing
and evaluating a novel methodology for estimating infiltra-
tion airflow rates. Our objective is to develop a method
based on CNNs trained on 3D thermal patterns, obtained
from advanced IRT characterisation techniques, to infer
the airflow rate through building envelope discontinuities
directly. This approach is aimed at providing a more accu-
rate and nonintrusive means of quantifying air infiltration
at specific leakage points, combining the spatial richness of
3D thermal data with the powerful pattern recognition
capabilities of deep learning.

2. Materials and Methods

The experimental setup, described in detail in a previous
study by the authors [10], was used in this study to capture
three-dimensional thermal patterns using IRT. Unlike the
previous work, this investigation employed thermal video
sequences instead of individual frames, allowing for a suffi-
cient data volume to train the model.

The main equipment consisted of a FLIR E75 thermal
camera for the detection of low-magnitude temperature
variations (temperature accuracy ± 2%) with a spatial reso-
lution of 320 × 240 pixels and calibrated optics. The air-
flow passed through a three-dimensional matrix of
spheres, manufactured using resin-based 3D printing.
The periodic matrix of the spheres induced local thermal
differences without causing interference in the path of
the flow field (Figure 1).

Five different inlet configurations (A1–A5) were ana-
lysed, each with a different flow area and geometry. Open-
ings A1–A3 had regular dimensions, the same height and
different widths, while A4 and A5 had irregular form but
the same area as the others (Figure 2). Specifically, the A5
opening has an irregular shape with no parallel sides, resem-
bling more of a crack in the wall. For each configuration, two
independent data collections were conducted and grouped
under the labels 01–10 (Table 1).

The airflow rate (Qm) was measured using an IST FS5
sensor with an accuracy of ≤ 3%. The inlet air temperature
was measured using a TSIC 501F sensor, with an accuracy
of ±0.1K. Environmental conditions were maintained at a
constant level and recorded for each test. The primary
objective in terms of environmental conditions is to main-
tain a thermal differential of 5°C as constant as possible.
This is achieved thanks to the management of the cham-
ber's climate control system. The temperature of the inlet
air and the temperature in the chamber are constantly
measured in the measurement area. The logger continually

calculates the temperature differential between the test
chamber air and the inlet air. At the same time, it controls
the ignition of the underfloor heating, thus maintaining a
stable temperature differential of 5°C. The inlet air is out-
door air, as it would be in a real house, and is somewhat
tempered as it passes through the ducts, similar to what
would happen when passing through an architectural
enclosure. In this way, the inlet air temperature changes
slightly between tests, as the outside temperature fluctu-
ates. These slightly changing conditions enable us to
obtain a broader range of temperatures. The humidity
conditions remain unchanged, corresponding to the actual
humidity of the outside air.

2.1. Image Acquisition and Processing. Thermal images of the
airflow were recorded in video format at acquisition fre-
quencies of 10 and 30 fps (Table 1). Each thermogram
extracted from the videos had an original resolution of 320
× 240 pixels. To ensure spatial consistency, all images were
cropped to a uniform size of 200 × 200 pixels by removing
areas outside the sphere matrix.

To evaluate the influence of resolution on model perfor-
mance, a series of tests was conducted in which the cropped
images were resampled using bicubic interpolation to resolu-
tions of 120 × 120, 80 × 80, 40 × 40 and 20 × 20 pixels
(Figure 3). For each of these resolutions, the model was
trained from scratch using the corresponding thermographic
series.

In parallel, given the notable improvement in flow visu-
alisation achieved by computing thermal differences
between preexcitation and postexcitation frames—an
approach validated in previous studies—a comparative anal-
ysis was conducted. For this purpose, thermal difference
images were computed by subtracting the thermogram

Figure 1: Three-dimensional matrix of spheres.
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recorded before depressurisation from each subsequent
frame (Figure 4).

All inputs were normalised to the range [0, 1] before
training to eliminate the effect of absolute temperature
values and focus on relative thermal patterns. Each input
was labelled with its corresponding experimentally mea-
sured airflow rate (Qm).

2.2. Dataset Preparation. The thermographic images were
organised according to the experimental collection (01–
10) and their corresponding opening configuration

(A1–A5). Each image was labelled with its experimen-
tally measured airflow rate (Qm), thus forming a
supervised dataset.

Three main data partitioning strategies were defined:

• Intratest (IT-XX): The model was trained and vali-
dated using data from the same collection.

• Intraopening (AX-XX): The model was trained on one
collection and validated on the other collection corre-
sponding to the same aperture.
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Figure 2: Opening configurations.

TABLE 1: Data collection timing and ambient conditions.

Data collection Opening Freq. (fps) Duration No. of thermography μ°C chamber μ°C flow %HR

01 A1 10 0:11:00 6600 24.84 19.68 45

02 A1 30 0:10:45 19,350 25.05 19.76 44

03 A2 10 0:11:21 6810 24.45 19.87 45

04 A2 30 0:11:00 19,800 24.89 20.10 45

05 A3 10 0:11:40 7000 24.78 20.15 44

06 A3 30 0:11:30 20,700 25.15 20.07 44

07 A4 10 0:11:00 6600 25.28 20.18 44

08 A4 30 0:11:00 19,800 24.99 20.20 45

09 A5 10 0:11:00 6600 25.09 20.15 45

10 A5 30 0:10:50 19,500 25.45 20.24 45

200 × 200 120 × 120 80 × 80 40 × 40 20 × 20

Figure 3: Comparison of IRT images at different resolutions.

4 Indoor Air
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Figure 4: Comparison of the original thermography with the differential temperatures.

TABLE 2: Test configurations.

Intratest

No. of
test

Training data
collection (80%)

No. of
thermography

Inferred data collection
(10%)

No. of
thermography

MAE MSE
MAE
(%)

IT-01 01 5280 01 660 0.014 0.003 0.2

IT-02 02 15,480 02 1935 0.030 0.001 0.5

IT-03 03 5448 03 681 0.054 0.005 0.9

IT-04 04 15,840 04 1980 0.044 0.003 0.7

IT-05 05 5600 05 700 0.078 0.011 1.3

IT-06 06 16,560 06 2070 0.049 0.004 0.8

IT-07 07 5280 07 660 0.043 0.004 0.7

IT-08 08 15,840 08 1980 0.030 0.002 0.5

IT-09 09 5280 09 660 0.085 0.012 1.4

IT-10 10 15,600 10 1950 0.045 0.003 0.7

Intraopening

No. of
test

Training data
collection (80%)

No. of
thermography

Inferred data collection
(100%)

No. of
thermography

MAE MSE
MAE
(%)

Comments

A2-01 03 5448 04 19,800 0.263 0.154 4.4

A2-02 03 5448 04 19,800 1.356 2.682 22.6 Resizing 20 × 20
A2-03 03 5448 04 19,800 0.737 0.859 12.3 Resizing 40 × 40
A2-04 03 5448 04 19,800 0.724 0.801 12.1 Resizing 80 × 80

A2-05 03 5448 04 19,800 0.715 0.683 11.9
Resizing 120 ×

120

A2-06 03 5448 04 19,800 0.745 1.113 12.4
Temperature
difference

Interopening

No. of
test

Training data
collection (60%)

No. of
thermography

Inferred data collection
(100%)

No. of
thermography

MAE MSE
MAE
(%)

IO-01 01 and 05 8160 03 6810 0.578 0.511 9.6

IO-02 01, 03 and 05 12,246 03 6810 0.048 0.004 0.8

IO-03 01, 03, 05 and 07 16,206 09 6600 0.652 0.617 10.9

IO-04 01, 03, 05, 07 and 09 20,166 09 6600 0.098 0.013 1.6

5Indoor Air
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• Interopening (IO-XX): The model was trained using
data from multiple apertures and validated on an aper-
ture not included in training.

These combinations (Table 2) made it possible to evaluate
the model performance under low variability conditions
(within the same collection), moderate generalisation (within

the same aperture) and high generalisation complexity (across
different apertures).

In the process of creating the dataset for each test, the data is
shuffled before being divided into training, validation and test
sets. This ensures that all flows are represented in each dataset.

For each configuration, the metrics mean absolute error
(MAE) and mean squared error (MSE) were calculated,

TABLE 3: Test to estimate the influence of thermal resolution.

No. of test Training data collection (80%) Inferred data collection (100%) MAE MSE MAE (%) Comments

A2-01 03 04 0.263 0.154 4.4

A2-02 03 04 1.356 2.682 22.6 Resizing 20 × 20
A2-03 03 04 0.737 0.859 12.3 Resizing 40 × 40
A2-04 03 04 0.724 0.801 12.1 Resizing 80 × 80
A2-05 03 04 0.715 0.683 11.9 Resizing 120 × 120

Thermography index
0

5
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Figure 5: Comparison of Qp between full (A2-01) and reduced 80 × 80 px (A2-04) thermograms.

TABLE 4: Comparison test of complete thermography and thermal differences.

No. of test Training data collection (80%) Inferred data collection (100%) MAE MSE MAE (%) Comments

A2-01 03 04 0.263 0.154 4.4

A2-06 03 04 0.745 1.113 12.4 Difference temperature

6 Indoor Air
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expressed in absolute units (cubic meters per hour) and as a
percentage of the operating range (0–6m3/h).

2.3. Neural Network Model. In a previous study by Royuela-
del-Val [24], four neural network architectures were evalu-
ated for the inference of airflow rate during an infiltration
process. The study concluded that the most balanced option
in terms of accuracy and generalisation capability was a deep
CNN with a multimodal architecture. This model incorpo-
rates two inputs: a thermal image (single-channel matrix)
and a scalar value corresponding to the inlet air temperature.
In the present work, this previously validated model is
adopted.

The convolutional branch of the model consists of two
consecutive Conv2D layers (20 filters, 5 × 5 and 3 × 3,
respectively), both using ReLU activation and “same” pad-
ding. The convolutional output is then flattened using a flat-
ten layer.

The scalar value is fed through a second independent
input. Both inputs are concatenated and passed to a dense
layer with 100 neurons and ReLU activation. The final out-
put of the model is a single linear neuron that predicts the
airflow rate (Qp).

The model was compiled using the Adam optimiser [25]
(learning rate = 1e−3, clipnorm = 1 0), with MSE as the loss
function and MAE as the evaluation metric. All graphs
showing the progress of the training sessions are located in
Appendix 1.

3. Results

3.1. Influence of IR Resolution. To assess the impact of ther-
mal image resolution on the model performance, indepen-

dent neural networks were trained using resampled subsets
at resolutions of 120 × 120, 80 × 80, 40 × 40 and 20 × 20
pixels. In all cases, training and inference were performed
on data from the same aperture (Table 3).

The network was trained with the data corresponding to
Data Collection 3 using 80% of the data for training, 10% for
validation and 10% for testing. Posttraining test results
showed that the neural network remained stable in terms
of accuracy up to a resolution of 80 × 80, with a loss of only
2% accuracy. Below this resolution, the accuracy worsens
significantly.

Subsequently, each trained network was used to infer the
second dataset of the same aperture, each resampled to
match the training resolution of the network. In these cases,
a marked decrease in accuracy was observed as the resolu-
tion decreased, as illustrated in Figure 5.

The results indicate that lowering the resolution
degrades the model's accuracy and significantly reduces its
generalizability, as the MAE increases from 4.4% using the
full resolution to 11.9% at 120 × 120 pixels. As we continue
to reduce the resolution, accuracy and generalisation con-
tinue to deteriorate, reaching an MAE of 22.6% in the case
of a resolution of 20 × 20 pixels.

3.2. Comparison Between Full Thermographic Images and
Thermal Differences. The test was performed using Aperture
2 (Data Collections 03 and 04). Two models were trained:
one using full thermographic images and another using ther-
mal differences. Both models were trained on data from Col-
lection 03 and evaluated on Collection 04, corresponding to
the same aperture (Table 4).

The results favoured the use of full thermographic
images (view in Figure 6), with significantly lower errors

Thermography index
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Figure 6: Comparison of Qp between full (A2-01) and thermal differences (A2-06) thermograms.
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across all evaluated metrics. The model based on thermal
differences showed a reduced generalisation capacity when
switching the dataset, suggesting a loss of relevant spatial
information.

This comparison supports the use of full images as input
to the model, especially when aiming to extend its applica-
bility to new conditions within the same geometric
configuration.

3.3. Intratest Inference. This section evaluates the model's
accuracy when it is both trained and tested using data
from the same experimental collection, without changing
the aperture configuration or flow conditions. This sce-
nario represents the lowest possible variability and serves
as a baseline reference for model performance. Every data
collection was tested and corresponds with tests IT-01 to
IT-10.

The errors obtained in this configuration were consis-
tently low, with MAE values below 1% of the full range in
most cases. This consistency indicates that the model is
capable of learning and reproducing the thermal patterns
of a specific dataset with high precision.

Additionally, as shown in Figure 7, there is no difference
in accuracy and fit between the 10 and 30 fps tests. There-
fore, in other test phases where more simultaneous data
frames will be collected, the 10 fps data frames will be used,
thereby reducing the size of the data frame.

This result is anticipated, as the model does not encoun-
ter any variations in geometry or flow distribution. Nonethe-
less, it provides a useful indicator of the maximum
achievable performance under controlled conditions.

3.4. Intra-Aperture Inference. This section analyses the mod-
el's performance when trained on one dataset and evaluated

Figure 7: Comparison of Qp versus Qm between data collection at 10 and 30 fps.

8 Indoor Air
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on another dataset corresponding to the same aperture.
Although the system's geometry remains unchanged, slight
variations in the flow may occur due to boundary or exper-
imental conditions.

The results showed a slight degradation in performance
compared to the intratest cases, but generally remained
within acceptable margins.

Figure 8 shows the A2-01 test data, which was trained
using data from Data Acquisition Number 3 and inferred
from Data Acquisition Number 4, both corresponding to
the A2 aperture.

The error values remained below 2%, indicating the
model's good ability to generalise across datasets corre-
sponding to the same aperture.

This behaviour demonstrates that the model is not lim-
ited to memorising training data, but can recognise thermal
patterns that represent a specific aperture and apply them to
new cases within the same geometrical configuration.

3.5. Interaperture Inference. Finally, the model's ability to
generalise across different apertures was evaluated. To do
so, we trained with several datasets corresponding to differ-
ent apertures and tested with another aperture that was not
included in the training set (see Table 5).

Two test sets were created, one with rectangular aper-
tures, training the model with the smallest and largest aper-
tures (A1 and A3, respectively) and then inferring on the
median aperture (A2) (test IO-01). The network was then
trained with all three apertures to observe the differences
(IO-02). Subsequently, another model was trained with the
apertures A1–A4. This test (IO-03) includes the irregular
aperture A4 and another irregular aperture A5, which was

inferred. As in the previous case, the model was retrained
with the data of this aperture (A5) to test the potential for
learning improvement (IO-04).

The results indicated a considerable increase in errors
compared to the intraopening cases. The MAE surpassed
9% (Figures 9 and 10), highlighting a significant loss of pre-
dictive accuracy when the model was exposed to unseen
geometries. Nonetheless, a gradual improvement was
observed as the diversity of the training set increased, sug-
gesting that the model improves from greater variability in
thermal patterns (Figures 11 and 12).

These results emphasise the model's sensitivity to geo-
metric changes while also demonstrating its potential for
generalisation when provided with a sufficiently representa-
tive dataset. This is particularly crucial when the model is
intended for application in real-world situations.
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Figure 8: Comparison of Qp between full and thermal differences of thermograms.

TABLE 5: Configuration tests interopening.

No.
of
test

Training data
collection (60%)

Inferred data
collection
(100%)

MAE MSE
MAE
(%)

IO-
01

01 and 05 03 0.578 0.511 9.6

IO-
02

01, 03 and 05 03 0.048 0.004 0.8

IO-
03

01, 03, 05 and 07 09 0.652 0.617 10.9

IO-
04

01, 03, 05, 07 and
09

09 0.098 0.013 1.6
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4. Discussion

The results obtained in this study provide valuable insights
into the capabilities, limitations and future potential of deep
learning techniques for nonintrusive airflow estimation

based on thermographic data. The proposed approach dem-
onstrates that CNNs can effectively learn complex spatial
features embedded in thermal patterns, enabling the quanti-
fication of airflow rate with high accuracy, particularly under
consistent geometric conditions.
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Figure 9: Qp versus Qm in test IO-01 for Data Collection 03.

Thermography index
0

5

Temporal evolution of Qp and Qm

3

4

2

1

0

Fl
ow

 ra
te

 Q

1000 2000 3000 4000 5000 6000

QpQp

Qm

Figure 10: Qp versus Qm in test IO-03 for Data Collection 09.
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In intratest and intra-aperture scenarios, where the aper-
ture geometry and boundary conditions remain constant,
the model consistently demonstrated low error rates, typi-

cally below 2% of the full range. This underscores the net-
work's strong capacity for pattern recognition and validates
the feasibility of employing thermography combined with
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CNNs as a rapid and efficient alternative to traditional mea-
surement methods such as anemometry or hot-wire probes,
which may be invasive or unsuitable in specific applications.

A key finding has been the significance of the
spatial resolution of the thermal images. Reduced res-
olution has been shown to diminish the generalisabil-
ity between different tests. This occurs due to the
reduction of thermal gradients and the loss of spatial
characteristics of the flow.

Another relevant contribution is the comparison
between the use of full thermographic images and differen-
tial thermograms (i.e., temperature difference images) as
model inputs. While thermal difference images can enhance
visual contrast and facilitate qualitative interpretation of
flow behaviour, the experiments demonstrated that full
images retain more robust spatial information, enabling bet-
ter generalisation when switching between datasets. The dif-
ferential preprocessing may inadvertently eliminate subtle
but important gradients and local variations that are infor-
mative for the network. Therefore, for machine learning
applications where predictive accuracy is paramount, com-
plete thermal data is preferable, especially in scenarios with
low signal-to-noise ratios or fine-scale temperature
structures.

The study also reveals important insights into the gener-
alisability of the model when exposed to previously
unknown aperture geometries. Inference in untrained aper-
tures yielded significantly higher error rates. This finding
highlights a well-known challenge in supervised learning:
the tendency of deep models to perform worse when extrap-
olating beyond their training domain. However, a progres-
sive performance improvement was observed as more
varied training data was incorporated. This suggests that
increasing the variability of thermal patterns, either by
including additional aperture types or by simulating them,
may be an effective strategy to enhance model
generalisability.

In this context, transfer learning techniques could be
investigated in future work. By fitting a pretrained CNN to
a small dataset of a new aperture configuration, it may be
possible to adapt the model to new scenarios with minimal
additional training. Similarly, domain adaptation strategies
could assist in bridging the gap between synthetic data
(e.g., from CFD simulations) and real-world measurements,
providing a scalable path to wider deployment.

Beyond the technical evaluation, this work opens a
promising avenue of research for integrating deep learning
models into building diagnostic workflows. For instance,
the methodology could be applied in permeability testing
by swiftly identifying the most significant leakage paths.
Such systems could be particularly valuable during commis-
sioning phases or building energy audits, where time and
intrusion represent critical constraints.

However, several limitations remain to be addressed.
The current experimental setup is highly controlled, featur-
ing stable environmental conditions. In contrast, real-world
environments often present additional challenges, including
a diversity of materials and dynamic boundary conditions,

among others. These factors can impact the model's perfor-
mance and must be considered before it is implemented. In
any case, the test setup will be determined by the conditions
needed to maintain a constant pressure difference and a
minimal temperature gradient, which will be dependent on
the equipment used.

5. Conclusions

This study demonstrates the feasibility and effectiveness of
using deep CNNs to estimate leakage airflow rates from
three-dimensional thermal patterns. By combining thermo-
graphic input with a scalar inlet temperature in a multi-
modal architecture, the model achieved high predictive
accuracy in intratest and intra-aperture scenarios, with
MAEs typically below 2%. These results validate deep learn-
ing as a powerful tool for analysing thermographic data and
extracting quantitative flow information under controlled
conditions.

Among the most significant findings, it was confirmed
that reducing the resolution of thermal images results in a
decline in the model's generalisation capability. Similarly,
full thermographic images outperformed temperature differ-
ence images, likely due to their enhanced spatial richness
and the preservation of subtle gradients that are crucial for
accurate inference.

The results obtained from the interaperture tests have
also revealed the challenges the model faces when dealing
with previously unseen geometric aperture configurations.
Although a significant increase in prediction error was
observed in these cases, a gradual improvement became evi-
dent as the training dataset incorporated greater diversity.
This indicates that, with a sufficiently representative dataset,
the model's predictive capacity can be extended to more gen-
eral scenarios. This aspect becomes particularly relevant
when aiming for real-world implementation, where precise
reproduction of aperture conditions is not always possible.

In this context, the proposed methodology provides a
solid foundation for an alternative, nonintrusive approach
to estimating airflow resulting from infiltration. Compared
to conventional techniques, this deep learning-based strat-
egy enhances automation and accelerates analysis, poten-
tially contributing to the verification and characterisation
of the building envelope. However, for practical deploy-
ment, further research is required to assess the model's
robustness under dynamic and uncontrolled environmen-
tal conditions.

Future research will focus on extending the proposed
methodology by investigating the use of pretrained CNNs
and fine-tuning strategies. It is expected that these
approaches will exploit the representational capabilities of
large-scale visual models to improve the accuracy and gener-
alisation of air infiltration rate inference from thermo-
graphic imagery. Additionally, future work will explore
image transformation and augmentation techniques to
enhance model robustness and ensure consistent perfor-
mance across various building types and environmental
conditions.
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Appendix 1

Training Progress Graphs–MAE over Epoch

IT-01 IT-02 

IT-03 IT-04

IT-05 IT-06

IT-07 IT-08

IT-09 IT-10

A2-01 A2-02

Figure A1: Continued.
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