

Potential of enriched phototrophic purple bacteria for H₂ bioconversion into single cell protein

3 María del Rosario Rodero ^{a,b,c*}, Jose Antonio Magdalena ^{a,d}, Jean-Philippe Steyer ^a, Renaud
4 Escudié ^a, Gabriel Capson-Tojo ^a

5

⁶ ^a INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France

⁷ ^b Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011
⁸ Valladolid, Spain

⁹ ^c Department of Chemical Engineering and Environmental Technology, School of Industrial
¹⁰ Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain

11 ^d Vicerrectorado de Investigación y Transferencia de la Universidad Complutense de Madrid,
12 28040 Madrid, Spain

13 *corresponding author: maria-del-rosario.rodero-rayo@inrae.fr / mariarosario.rodero@uva.es

14

15 Abstract

16 Single cell protein (SCP) has emerged as an alternative protein source, potentially based on
17 the recovery of carbon and nutrients from waste-derived resources as part of the circular
18 economy. From those resources, gaseous substrates have the advantage of an easy
19 sterilization, allowing the production of pathogen-free SCP. Sterile gaseous substrates allow
20 producing pathogen-free SCP. This study evaluated the use of an enriched phototrophic
21 purple bacteria (PPB) consortium for SCP production using H_2 and CO_2 as electron and C
22 sources. The influence of pH (6.0-8.5), temperature (15-50 °C) and light intensity (0-50 $W \cdot m^{-2}$)
23 on the growth kinetics and biomass yields was investigated using batch tests. Optimal
24 conditions were found at pH 7, 25 °C and light intensities over 30 $W \cdot m^{-2}$. High biomass and
25 protein yields were achieved (~ 1 g $COD_{biomass} \cdot g COD_{H2consumed}^{-1}$ and 3.9-4.4 g protein $\cdot g H_2^{-1}$)

26 regardless of the environmental conditions, being amongst the highest values reported from
27 gaseous streams. These high yields were obtained thanks to the use of light as a sole energy
28 source by the PPB consortium, allowing a total utilization of H₂ for growth. Hydrogen uptake
29 rates varied considerably, with values up to 61 ± 5 mg COD·d⁻¹ for the overall H₂ consumption
30 rates and 2.00 ± 0.14 g COD·g COD⁻¹·d⁻¹ for the maximum specific uptake rates under optimal
31 growth conditions. The latter value was estimated using a mechanistic model able to represent
32 PPB growth on H₂. The biomass exhibited high protein contents (>50% w/w) and adequate
33 amino acid profiles, showing its suitability as SCP for feed. PPB were the dominant bacteria
34 during the experiments (relative abundance over 80% in most tests), with a stable population
35 dominated by *Rhodobacter* sp. and *Rhodopseudomonas* sp. This study demonstrates the
36 potential of enriched PPB cultures for H₂ bioconversion into SCP.

37

38 **Keywords:** anoxygenic photosynthesis; autotrophy; hydrogen; purple non-sulphur bacteria;
39 mechanistic modelling

40

41 **1. Introduction**

42 Sustainable food and feed production is nowadays a serious global concern due to population
43 growth, climate change and limited natural resources. The global population has increased
44 from 2.5 to 8.0 billion people since 1950 and it is expected to reach 9.7 billion by 2050
45 (United Nations Department of Economic and Social Affairs, 2022). Current human diets rely
46 on conventional agriculture, farming and fishing. These activities have associated problems
47 such as high greenhouse gas emissions, nitrogen losses, pesticides and antibiotics pollution,
48 and land, nutrients and water depletion (Ciani et al., 2019). Therefore, there is an urgent need
49 to develop new sustainable food and feed alternatives, especially for products used as a
50 protein source. Proteins play a key role in human and animal diet as a source of nitrogen and

51 essential amino acids (Ritala et al., 2017). The demand for protein has increased 5-fold in the
52 last 50 years, reaching a consumption of 250 million tonnes in 2020 due to a change in
53 consumption habits and higher living standards worldwide (Bertasini et al., 2022).

54 The use of microorganisms as a protein-rich feedstock, the so-called single cell protein (SCP),
55 is a promising alternative to plant or animal-based proteins, since microorganisms can use
56 resources such as nutrients (e.g. nitrogen and phosphorous) or water more efficiently (Puyol et
57 al., 2017b) . The production of SCP avoids some of the environmental drawbacks of plant- or
58 animal-based proteins, through reduced land requirements, lower nitrogen losses, lower
59 emissions of greenhouse gases and smaller water footprints (Alloul et al., 2022). Some SCP
60 products are commercially available for animal feed and human food supplements, mainly
61 from yeast, microalgae, fungi and bacteria (e.g. methylotrophs, acetotrophs and hydrogen
62 oxidizing bacteria (HOB)) (Sharif et al., 2021). Despite the aforementioned advantages,
63 current SCP is mostly produced from costly agricultural feedstocks or unsustainable raw
64 materials such as sucrose, starch, n-alkanes, fossil-derived methanol or natural gas (Nasseri et
65 al., 2011). This reduces the environmental benefits of using SCP as alternative protein source.

66 A potential alternative to the unsustainable feedstocks mentioned above is the utilisation of
67 waste-derived resources for the production of SCP. This approach, generally referred to as
68 biological resource recovery, has been widely researched in the last years, aiming at favouring
69 the implementation of a more circular economy. Amongst all the different options that can be
70 used as substrates for resource recovery, gaseous substrates (e.g., H₂, CO₂ and/or CH₄) have a
71 huge advantage over other alternatives (e.g., soluble compounds in wastewaters): they can be
72 easily sterilized, simply by filtering the gaseous input. This is crucial for ensuring the safety
73 of the generated product, which is particularly important for SCP within the food industry.
74 Furthermore, the influent composition is relatively easy to measure, manipulate and maintain
75 by simply controlling the gas flowrate, facilitating the generation of a consistent product.

76 Coupled with well-established gas-producing waste treatment technologies such as anaerobic
77 digestion or dark fermentation, the valorisation of the generated gases (CH₄, CO₂ and H₂) by
78 their transformation into SCP has the potential to produce a high value product, while
79 providing a more sustainable alternative to traditional protein production. Ideally, the
80 nutrients (e.g., N or P) for biomass growth should be safely recovered (e.g. via
81 electrochemical processes or membranes) from waste effluents (e.g., from wastewater or
82 anaerobic digestate) (Khoshnevisan et al., 2019; Matassa et al., 2015).

83 The feasibility of using H₂ and CO₂ as raw materials for the production of SCP by HOB has
84 been demonstrated (Hu et al., 2022). Despite the high quality of the biomass obtained, the low
85 biomass yields (0.07-0.20 g COD·g COD_{H2}⁻¹; COD being chemical oxygen demand), which
86 result in the need of high amounts of H₂ for biomass production, is one of the main
87 bottlenecks of this technology (Ehsani et al., 2019; Hu et al., 2020). The use of purple
88 phototrophic bacteria (PPB) grown on pathogen-free gases is another interesting option for
89 safe SCP production. Compared to HOB, PPB can potentially offer higher biomass yields
90 (i.e., 1 vs. 0.2 g COD·g COD_{removed}⁻¹), while having also a high content on amino acids,
91 pigments and vitamins (Hülsen et al., 2018; Sasaki et al., 1998). These high biomass yields
92 represent the most relevant advantage of PPB compared with non-phototrophic
93 microorganisms, since the latter consume substrate for internal energy production (e.g. ATP).
94 PPB use light for this. Therefore, lower amount of substrate is needed to produce the same
95 amount of biomass. PPB exhibit a highly versatile metabolism, capable of performing
96 anoxygenic photosynthesis, using solar light as energy source, and a wide range of
97 electron/carbon donors such as organic compounds (photoheterotrophic growth), or H₂/H₂S
98 with CO₂ as carbon source (chemolithoautotrophic and photoautotrophic growth) (Capson-
99 Tojo et al., 2020). The photoheterotrophic capabilities of PPB have been explored
100 considerably in the recent years for resource recovery from wastewaters (Alloul et al., 2019;

101 Hülsen et al., 2022c, 2022b). However, the use of H₂ for PPB growth has received less
102 attention (Madigan and Gest, 1979; Rey et al., 2006; Spanoghe et al., 2022, 2021).
103 The uptake by PPB of H₂ from processes such as dark fermentation or gasification (in the
104 form of syngas), or from water electrolysis using surplus of electricity from renewable
105 sources, could be a promising option for the sustainable and pathogen-free production of SCP
106 usable as feed/food. In this context, this process could be integrated as a part of a future
107 hydrogen biorefinery. CO₂ from off-gases could be used as carbon source. The proof of
108 concept of SCP production from H₂ using PPB pure cultures and autotrophic isolates has been
109 recently conducted (Spanoghe et al., 2022, 2021). In this regard, the use of a mixed culture for
110 the production of animal feed would lead to cost reduction due to non-sterile conditions.
111 Indeed, the suitability of a heterotrophic PPB mixed culture as a partial substitute of fishmeal
112 has been previously demonstrated (Delamare-Deboutteville et al., 2019). Otherwise, the study
113 of an enriched community is also useful to elucidate which are the most adequate species to
114 perform the process if pure cultures are used for generating a target product, such as food-
115 related products (which higher market price than feed), or feed products in countries with
116 restrictive legislations would not allow using mixed cultures. To the best of our knowledge,
117 the potential of an enriched PPB community (without requiring axenic conditions) growing
118 photoautotrophically on H₂ as SCP source remains unexplored. The effect of abiotic operating
119 conditions on yields and H₂ uptake rates have never been assessed.
120 In this study, the use of an enriched PPB consortia for the bioconversion of H₂ into SCP has
121 been assessed. The influence of environmental conditions (*i.e.*, temperature, pH and light
122 intensity) on microbial growth kinetics, biomass characteristics, protein contents, and
123 bacterial populations, has been evaluated. A mechanistic model has also been developed to
124 represent the H₂ uptake process and to determine the specific H₂ uptake rates under different
125 environmental conditions.

126

127 **2. Materials and methods**

128 **2.1. Mineral salt medium and reagents**

129 The mineral salt medium (MSM) was composed of (g·L⁻¹): 4.2 NaHCO₃, 4.0 KH₂PO₄, 0.4
130 NH₄Cl, 0.2 MgSO₄·7H₂O, 0.075 CaCl₂·2H₂O, 0.02 g EDTA, 0.012 g FeSO₄·7H₂O, and 1 mL
131 of trace elements solution. The trace elements solution contained (g·L⁻¹): 2.8 H₃BO₃, 2.5
132 MnCl₂·4H₂O, 0.75 Na₂MoO₄·2H₂O, 0.24 ZnSO₄·7H₂O and 0.04 Cu(NO₃)₂·3H₂O. The
133 medium was based on the MSM used for photoheterotrophic purple bacteria growth proposed
134 by Ormerod et al. (1961), modified to ensure photoautotrophic growth (no organic carbon
135 source such as acetate was added). NaHCO₃ was used as an inorganic carbon source instead
136 of CO₂ to avoid carbon limitation due to limited gas-liquid mass transfer. KH₂PO₄ was used
137 as buffer to avoid a pH increase above 8.5 (Spanoghe et al., (2021). All reagents were
138 obtained from Sigma-Aldrich (France) with a purity above 99%. Pure nitrogen (≥99.999%)
139 and hydrogen (≥99.999%) were supplied by Linde France S.A.

140 **2.2. Inoculum and autotrophic PPB enrichment**

141 An enriched photoheterotrophic PPB culture grown in continuous photobioreactors treating
142 wastewater was collected in Madrid (Spain) and used as a pre-inoculum. A series of batch
143 enrichments in 500 mL Schott flasks were performed to obtain a PPB consortium able to
144 provide a stable photoautotrophic growth. Stable performance was considered to be achieved
145 when consistent results, i.e. similar biomass yields, COD and N contents in the biomass, and
146 consistent time spans needed to attain pressures below 1.0 bar, were observed over five
147 consecutive enrichment cycles. During each enrichment, aliquots of 20 mL from the previous
148 culture were added into Schott flasks with 230 mL of fresh medium. The bottles were closed
149 and the headspace was flushed with N₂ to minimize the presence of O₂ and ensure anaerobic
150 conditions. Then, the headspace was flushed with H₂ for 2-3 min and H₂ was supplied to

151 reach an initial headspace pressure of ~1.3 bar, to increase the gas-liquid mass transfer
152 without exceeding the maximum safe pressure in the flasks (1.5 bar). The flasks were
153 incubated under continuous illumination at ~50 W·m⁻², using infrared LED lights (850 nm;
154 INSTAR IN-905, Germany). The flasks were covered with an UV/VIS absorbing foil (Lee
155 filter ND 1.2 299) to prevent the growth of competitors, such as microalgae, by minimizing
156 the input of visible light (Capson-Tojo et al., 2021). A temperature of 25±4 °C was
157 maintained. The enrichments were grown under continuous magnetic agitation at 600 rpm.
158 The headspace pressure was monitored daily. Once the pressure dropped below 1.0 bar,
159 hydrogen was added again to reach 1.3 bar. In addition, 2 mL of liquid sample were
160 withdrawn twice a day to monitor biomass growth by optical density (OD), measured at 660
161 nm and 808 nm according to the wavelengths applied previously to follow PPB mixed
162 consortium growth (Hülsen et al., 2014; Sepúlveda-Muñoz et al., 2020). However, the OD
163 curves did not correlate consistently with the volatile suspended solids concentrations, as they
164 varied considerably between consecutive enrichments (probably due to different pigment
165 composition and contents, Supplementary Material). For this reason, the use of OD for
166 following biomass growth was discarded. Total and soluble COD concentrations were
167 measured instead. Each enrichment batch lasted for around one week. After this time, an
168 aliquot was taken and the procedure was restarted. A total of 14 cycles were carried out to
169 ensure that the obtained inoculum showed consistent performances in terms of biomass yields.
170 Photoheterotrophic enrichments, using 0.47 g·L⁻¹ of acetate as a carbon source, instead of
171 bicarbonate, and 0.02 g·L⁻¹ of yeast extract according to Ormerod et al. (1961), were also
172 performed for comparison purposes. Absorption spectra (300-1000 nm) of autotrophic and
173 heterotrophic enrichments were also determined.

174 **2.3. Influence of environmental conditions on autotrophic PPB grow and protein
175 production**

176 Once the enrichment was stable and showed a constant performance in terms of yields and
177 nutrients consumption, batch assays at two different stirring speeds of 150 and 600 rpm were
178 run to evaluate different gas-transfer kinetics and to corroborate that, at 600 rpm, the limiting
179 factor was not the H₂ gas-liquid mass transfer. A similar experimental setup as for the
180 enrichments was used (see Section 2.2). The working volume of the flasks was decreased
181 down to 200 mL (190 mL of MSM and 10 mL of enriched PPB consortium with an initial
182 biomass concentration in terms of volatile suspended solids of 0.11±0.02 g·L⁻¹) to increase the
183 volume of H₂ in the headspace and thus the interface surface to liquid volume ratio, favouring
184 H₂ transfer from the gas to the liquid phase. The stirring speed was fixed at 600 rpm and the
185 influence of environmental conditions (e.g., initial pH, temperature and light intensity) on the
186 batch performance was tested. Autotrophic batch assays at initial pH values of 6, 7 and 8.5,
187 temperatures of 15, 25, 38 and 50 °C, and infrared light intensities of 0, 5, 15, 30 and 50
188 W·m⁻² were carried out in triplicate (Figure 1). Two control assays, one without light and one
189 without H₂ were also conducted under equivalent conditions. The gas composition and the
190 pressure in the flask headspace were monitored 4-5 times per day. Gas composition changed
191 over time due to biological uptake. The headspace was not only composed of H₂, but also of
192 some CO₂ that was stripped from the MSM and of trace concentrations of N₂. These data were
193 used to calculate H₂ consumption rates and overall H₂ consumption. In these assays, hydrogen
194 was added twice: initially until an initial pressure of ~1.3 bar, and once again when the
195 pressure dropped below 1.1 bar (based on previous unpublished results), trying to avoid H₂
196 limitation as well as operating at negative pressures in the flasks. Liquid samples were drawn
197 at the beginning and end of each assay to determine biomass yields and productivities, crude
198 protein contents, amino acid profiles and to study the microbial communities. In addition, 2
199 mL of liquid sample were drawn twice a day to follow the pH evolution. The experiments

200 lasted for 2.2-2.3 days (until the second H₂ injection was consumed and the pressure dropped
201 again to around 1.1 bar).

202 <Figure 1>

203

204 **2.4. Analytical procedures and microbial analysis**

205 The physical-chemical analyses were performed at the Bio2E platform (Bio2E INRAE, 2018).

206 Gas composition (H₂, CO₂, O₂ and N₂) was determined using a GC Perkin Clarus 580 coupled

207 to a thermal conductivity detector and equipped with the following columns: a RtUBond (30

208 m × 0.32 mm × 10 µm) and a RtMolsieve (30 m × 0.32 mm × 30 µm), both with argon (31.8

209 mL·min⁻¹) as the carrier gas at 350 kPa. The ambient and cultivation temperatures were

210 monitored every minute using a temperature sensor PT 100 (Jumo, Germany). Incident light

211 intensity was measured at the beginning of each experiment by an Ocean HDX

212 spectrophotometer (Ocean Optics, USA). The pressure inside the bottles was monitored using

213 a manual pressure sensor LEO2 (Keller, Switzerland). The pH was monitored using a FiveGo

214 F2 pHmeter (Mettler Toledo, Switzerland). Concentrations of total and volatile suspended

215 solids (TSS and VSS) and total Kjeldahl nitrogen (TKN) were determined according to

216 standard methods (Eaton et al. 2005). Concentrations of total and soluble COD were

217 measured using an Aqualytic 420721 COD Vario Tube Test LR (0-150 mg·L⁻¹) and MR (0-

218 1500 mg·L⁻¹). Dissolved N-NH₄⁺ concentrations were determined following sample filtration

219 through a 0.22 µm pore size filter (as for soluble COD), using a Gallery Plus sequential

220 analyser (Thermo Fisher, USA). The elemental composition of the PPB biomass (C, N and H

221 contents) was determined using a LECO CHNS-932 analyser (LECO, Italy). Amino acid

222 profiles were analysed from nine chosen samples. Four samples from the enrichments were

223 chosen to confirm the robustness of the consortium. The rest of the samples allowed to study

224 the impact of the pH (6, 7 and 8.5), temperature (25 and 38 °C) and light intensity (15 and 50

225 W·m⁻²) on the amino acid profiles. These analyses were carried out at the Biological Research

226 Centre of the Spanish National Research Council (Madrid, Spain). Liquid samples for amino
227 acid analysis were dried using a speed vacuum. After that, these samples were hydrolysed by
228 the addition of 200 µL of 6 N HCl and a phenol crystal and keep at 110 °C during 21 h. Then,
229 samples were dried again by vacuum and were then re-dissolved in a loading buffer (citrate at
230 pH 2.2) before their analysis in an ion exchange chromatography column (Biochrom 30 series
231 Amino Acid Analyser; Biochrom Ltd., United Kingdom). Absorption spectra were measured
232 using a SPARK® multimode microplate reader (Tecan, Switzerland). Dissolved oxygen (DO)
233 was measured using a FDOTM 925 oximeter (WTW, Germany).

234 The structure of the bacterial communities from the same nine samples used for amino acid
235 analyses were also studied via 16S rRNA sequencing. The centrifuged biomass was used for
236 DNA extraction by means of the FastDNA SPIN kit for soil following manufacturer's
237 instructions (MP biomedicals, LCC, California, USA). Sequencing of the extracted DNA was
238 done at the GeT PlaGe sequencing centre of the Genotoul life science network (Toulouse,
239 France). The V3-V4 regions of the 16S rRNA gene were amplified by PCR using universal
240 primers (forward primer

241 CTTCCCTACACGACGCTTCCGATCTTACGGRAGGCAGCAG and reverse primer
242 GGAGTTCAGACGTGTGCTTCCGATCTTACCAAGGGTATCTAACCT, as in
243 Carmona et al. (2015)). The amplification products were verified by a 2100 Bioanalyzer
244 (Agilent, USA). Then, the libraries were loaded onto the Illumina MiSeq cartridge for
245 sequencing using a 2 x 300 pb paired-end run. The raw sequences obtained were analysed
246 using bioinfomatic tools. Mothur v.1.48.0 was used for reads cleaning, paired-ends joining
247 and quality checking. SILVA release 132 was used for alignment and taxonomic outline.

248 **2.5. Calculations and statistical analysis**

249 The volumetric H₂ mass transfer coefficients (K_{LaH₂}) in the bottles at different stirring speeds
250 were estimated from K_{LaO₂} values, obtained under the same conditions, based on their
251 different diffusion coefficients (D) according to the Higbie model (Ndiaye et al., 2018):

252
$$\frac{K_{LaH_2}}{K_{LaO_2}} = \sqrt{\frac{D_{H_2}}{D_{O_2}}} \quad (1)$$

253 D values of H₂ and O₂ of 4.5×10^{-5} cm²·s⁻¹ and $2 \cdot 10^{-5}$ cm²·s⁻¹, respectively at 25 °C were used
254 (Spanoghe et al., 2021). The determination of K_{LaO₂} was carried out in 500 mL Schott flasks
255 open to the atmosphere by adding 200 mL of MSM (abiotic conditions) at ~25 °C. Firstly, DO
256 in the MSM was removed down to values below 1 mg O₂·L⁻¹ by N₂ bubbling. After that,
257 agitation was turned on and the DO concentration was recorded every 15 s, until the
258 saturation concentration was reached. The K_{LaO₂} was calculated from the slope of the
259 linearization of DO concentration vs. time (Spanoghe et al., 2021).

260 Since hydrogen gas was the electron donor for the enriched PPB consortium, the biomass
261 yield is expressed according to the consumed COD-H₂ equivalent. This biomass yield (Y) was
262 calculated as:

263
$$Y(g \text{ COD} \cdot g \text{ COD}^{-1}) = \frac{([COD_{END_T}] - [COD_{END_S}]) \cdot V_{liq}(g \text{ COD}) - ([COD_{0_T}] - [COD_{0_S}]) \cdot V_{liq}(g \text{ COD})}{H_2 \text{ CONSUMPTION}(mol) \cdot 16(g \text{ COD} \cdot mol^{-1})} \quad (2)$$

264 where COD_{END} is the total (T) and soluble (S) COD concentrations measured in the
265 cultivation broth at the end of the batch assays and COD₀ is the initial COD concentration.
266 V_{liq} is the volume of liquid. H₂consumption represents the amount of H₂ that was consumed
267 during the batch assays. The number of moles of H₂ at a given time was calculated using ideal
268 gas law, as:

269
$$nH_2(mol) = \frac{P \text{ (bar)} \cdot V_h(L) \cdot \%H_2}{R(L \cdot bar \cdot K^{-1} \cdot mol^{-1}) \cdot T(K) \cdot 100} \quad (3)$$

270 where P is the absolute pressure, V_h is the volume of the headspace, % H₂ the percentage of
271 H₂ in the gas, R the ideal gas constant (0.08314 L·bar·K⁻¹·mol⁻¹) and T the temperature. V_h
272 was calculated as the difference between the total volume of the Schott flask and the volume

273 of the cultivation broth (MSM and inoculum) and the magnetic stirrer. The volume of the
274 cultivation broth was determined by measuring the differences between the weight of the
275 flasks with and without cultivation broth addition, taking into account the water density at the
276 liquid temperature.

277 Biomass yields were also calculated as measured VSS mass:

$$278 Y(g \text{ VSS} \cdot g \text{ H}_2^{-1}) = \frac{([VSS_{END}] - [VSS_0]) \cdot V_{liq}(g \text{ VSS})}{H_2 \text{ CONSUMPTION}(mol) \cdot 2(g \text{ H}_2 \cdot mol^{-1})} \quad (4)$$

279 The overall H_2 uptake rates were calculated from the slope of the linearization of cumulative
280 H_2 consumption *vs.* time. The specific uptake rates were estimated by the mechanistic model
281 developed (see section 2.6). The overall N uptake rates were calculated as the difference of
282 the N-NH_4^+ concentrations at the beginning and the end of the tests, divided by the time
283 difference between the measurements.

284 Biomass productivity (P) during the effective growing period (disregarding the latency and
285 cellular death phases) was calculated as particulate COD produced:

$$286 P(g \text{ COD} \cdot L^{-1} \cdot d^{-1}) = \frac{([COD_{iT}] - [COD_{iS}]) (g \text{ COD} \cdot L^{-1}) - ([COD_{i-1T}] - [COD_{i-1S}]) (g \text{ COD} \cdot L^{-1})}{t_i - t_{i-1} (d)} \quad (5)$$

287 where COD_i and COD_{i-1} are the total (T) and soluble (S) COD concentrations calculated at
288 times i and i-1, respectively, whereas t is the time.

289 The crude protein content of the biomass was estimated based on TKN measurements as
290 follows (Eding et al., 2006):

$$291 \text{Crude Protein content}(\%) = \frac{([TKN_T] - [TKN_S]) (g \text{ N} \cdot L^{-1}) \cdot 6.25 (g \text{ protein} \cdot g \text{ N}^{-1})}{VSS(g \cdot L^{-1})} \cdot 100 \quad (6)$$

292 where TKN_T and TKN_S are the total and soluble TKN concentrations, respectively.

293 Protein yields and productivities were calculated from those of the biomass, as:

$$294 Y_{protein}(g \text{ protein} \cdot g \text{ H}_2^{-1}) = Y(g \text{ VSS} \cdot g \text{ H}_2^{-1}) \cdot \text{protein content} (g \text{ protein} \cdot g \text{ VSS}^{-1}) \quad (7)$$

296 $P_{protein}(g\ protein \cdot L^{-1} \cdot d^{-1}) = P(g\ VSS \cdot L^{-1} \cdot d^{-1}) \cdot protein\ content\ (g\ protein \cdot$
297 $g\ VSS^{-1})$ (8)

298 The results here presented are provided as average values of triplicate flasks, along with their
299 corresponding standard deviations for measured values, and 95% confidence intervals in the
300 case of calculated parameters. In the case of productivities, the average values were calculated
301 with the results of different measurements obtained during the exponential phase (n=12). t-
302 student tests or one-way ANOVAs were performed to compare between means.

303 **2.6. Mechanistic model development and parameter estimation**

304 A mechanistic model was developed to represent accurately the H₂ consumption process by
305 PPB and, most importantly, to avoid biased estimations of the H₂ uptake rates due to physical
306 gas-transfer rate limitations (not biological). The developed model considered
307 photoautotrophic growth of PPB as the main biological process, together with biomass death.
308 Gas-liquid mass transfer kinetics were considered for both H₂ and CO₂, as in Capson-Tojo et
309 al. (2023). This is crucial for modelling gas-fed processes, as models must account for rate
310 limitation by mass transfer due to the low solubility of gaseous substrates.

311 The proposed model is based on previous PPB modelling work (Capson-Tojo et al., 2023;
312 Puyol et al., 2017a), being compatible with the IWA ADM1 and ASM series, following the
313 IWA Benchmark (Batstone et al., 2002; Jeppsson et al., 2006). The Petersen Matrix for the
314 model can be found in the Supplementary Material, as well as a table with the values used for
315 the required parameters. Rates were calculated assuming Monod kinetics for biological
316 reactions. Physiochemical rates were implemented as in Batstone et al. (2002). MATLAB
317 (MATLAB R2021a, The MathWorks Inc., Natick, MA, USA) was used for model
318 implementation. The codes corresponding to the developed model and the run file can be
319 found in GitHub (<https://github.com/GabrielCapson/PPBauto>).

320 Calibration of kinetic parameters (i.e., maximum specific hydrogen uptake rates (k_{m,H_2}) and
321 saturation constants (K_{S,H_2})) was performed by minimization of the residual sum of squares
322 (lsqcurvefit in MATLAB). The variable chosen for parameter calibration was the
323 concentration of biomass in the liquid, calculated according to the measured yields and the
324 hydrogen consumed from the headspace. The 95% confidence intervals and the corresponding
325 parameter uncertainties were calculated based on two-tailed t-tests from the standard error of
326 the parameter (nlparci function).

327 As in Capson-Tojo et al. (2023) and (2022), the impact of temperature and light intensity on
328 the estimated k_{m,H_2} values was modelled according to the cardinal temperature model with
329 inflexion (CTMI; (Ruiz-Martínez et al., 2016)) and the Steele's equation (Wágner et al.,
330 2018), respectively. The results were fitted to these equations also via minimization of the
331 sum of squares.

332

333 **3. Results and discussion**

334 **3.1. PPB enrichments**

335 A total of 14 enrichment cycles were carried out. H_2 consumption was detected from the third
336 cycle onwards, confirming the ability of the mixed PPB culture for growing
337 photoautotrophically. Biomass yields of $0.96 \pm 0.02 \text{ g COD}_{\text{biomass}} \cdot \text{g COD}_{\text{consumed}}^{-1}$ were
338 obtained consistently during the last five enrichments, which allowed us to assume that the
339 developed enrichment had reached a stable performance. Results of 16S rRNA gene
340 sequencing confirmed this (see Section 3.4). These biomass yields are in agreement with
341 those achieved during photoheterotrophic growth for both pure and enriched PPB cultures
342 ($0.9\text{--}1.1 \text{ g COD}_{\text{biomass}} \cdot \text{g COD}_{\text{consumed}}^{-1}$) (Capson-Tojo et al., 2020). These values correspond to
343 $6.8 \pm 0.9 \text{ g VSS} \cdot \text{g H}_{2\text{consumed}}^{-1}$, also in agreement with those obtained for pure PPB cultures
344 grown autotrophically ($5.1\text{--}7.8 \text{ g TSS} \cdot \text{g H}_{2\text{consumed}}^{-1}$) (Spanoghe et al., 2021). Average COD

345 contents in the biomass (showing the degree of biomass reduction) of 1.29 ± 0.15 g
346 $\text{COD}_{\text{biomass}} \cdot \text{g VSS}^{-1}$ were obtained during the last five enrichment cycles, further confirming
347 the culture stability. These values were slightly lower than those obtained in the parallel
348 heterotrophic enrichment (1.48 ± 0.10 g $\text{COD}_{\text{biomass}} \cdot \text{g VSS}^{-1}$) and those previously reported for
349 PPB with heterotrophic growth (1.35 - 1.96 g $\text{COD}_{\text{biomass}} \cdot \text{g VSS}^{-1}$) (Alloul et al., 2019; Hülsen
350 et al., 2020), but comparable with the degree of biomass reduction commonly reported for
351 activated sludge biomass (1.2 - 1.6 g $\text{COD}_{\text{biomass}} \cdot \text{g}^{-1} \text{VSS}$) (Bullock et al., 1996). A stable N
352 content (143 ± 19 mg N·g VSS $^{-1}$) was also observed during the last five enrichments. Similar N
353 proportions (165 ± 30 mg N·g VSS $^{-1}$) were observed in the heterotrophic reactor growing in
354 parallel.

355 Results from 16S rRNA gene sequencing from samples taken from the cycles of enrichments
356 seven, thirteen and fourteen confirmed that the consortium was stable and dominated by PPB
357 ($>83\%$), with *Rhodobacter* sp. and *Rhodopseudomonas* sp. as dominant genera (see Section
358 3.4). In addition, absorption spectra measurements (Supplementary Material) showed typical
359 absorption peaks of PPB cultures, confirming the presence of common pigments in PPB
360 cultures, such as bacteriochlorophylls a and b.

361 **3.2. Impact of environmental conditions on overall rates and biomass yields**

362 No biomass growth nor H₂ consumption were observed under the absence of light or H₂.
363 Environmental conditions had a noticeable impact on H₂ consumption kinetics (Figure 2,
364 Table 1). Overall H₂ consumption rates of 35 ± 1 , 58 ± 7 and 14 ± 1 mg $\text{COD}_{\text{H2consumed}} \cdot \text{d}^{-1}$ were
365 obtained at initial pH values of 6, 7 and 8.5, at temperatures of 25 ± 4 °C and a light intensity of
366 50 W·m $^{-2}$. Therefore, the optimum initial pH was 7, which increased up to 8.4 at the end of
367 the experiment due to CO₂ consumption. The overall H₂ consumption rates were lower at both
368 initial pH values of 6 (final pH of 6.3) or 8.5 (final pH of 9.0) (Figure 2a). The latter resulted
369 in the lowest overall H₂ consumption rates. Initial pH values of 7 have been reported as

370 optimum for hydrogen production by heterotrophic PPB consortia (Capson-Tojo et al., 2020;
371 Lazaro et al., 2015). pH values between 6 and 8.5 have been reported as appropriate for the
372 heterotrophic growth of PPB such as *Rhodopseudomonas palustris* (van Niel, 1944), but
373 values of 8.5 and higher have been found to decrease hydrogen yields and growth rates
374 (Capson-Tojo et al., 2020). Regarding temperature (initial pH of 7 and light intensity of 50
375 $\text{W}\cdot\text{m}^{-2}$), the most favourable value for H_2 uptake by PPB was 25 °C, decreasing from overall
376 uptake rates of $58\pm7 \text{ mg COD}_{\text{H}_2\text{consumed}}\cdot\text{d}^{-1}$ to values of $37\pm3 \text{ mg COD}_{\text{H}_2\text{consumed}}\cdot\text{d}^{-1}$ at a
377 temperature of 38 °C. Although the increase in the temperature from 25 °C to 38 °C did not
378 entail an increase in the H_2 consumption rates by PPB, the use of an inoculum previously
379 acclimated to 38 °C could have improved H_2 consumption under this condition. Negligible H_2
380 consumption was recorded at 50 °C due to growth inhibition. Finally, a decrease in the overall
381 H_2 uptake rate down to $10\pm3 \text{ mg COD}_{\text{H}_2\text{consumed}}\cdot\text{d}^{-1}$ was also observed when the temperature
382 was decreased down to 15 °C, despite a higher H_2 solubility in the cultivation broth, indicating
383 lower biological uptake rates. Similar optimal ranges were reported by Capson-Tojo et al.
384 (2023) for enriched purple phototrophic bacteria cultures grown photoheterotrophically. In
385 agreement, Hülsen et al. (2016) reported higher PPB heterotrophic growth rates at a
386 temperature of 30 °C compared to 10 °C, with a drop of 20% in PPB activity. This study
387 confirmed a higher relative tolerance to higher temperatures than to lower values, since the
388 decrease in rates at 38 °C was less pronounced than at 15 °C (using an inoculum acclimated to
389 25±4 °C). Concerning light intensities (initial pH of 7 and temperature of 25±4 °C), light
390 limitation was observed at intensities lower than $30 \text{ W}\cdot\text{m}^{-2}$, whereas similar overall rates were
391 measured at both 30 and 50 $\text{W}\cdot\text{m}^{-2}$, with values of 61 ± 5 and $58\pm7 \text{ mg COD}_{\text{H}_2\text{consumed}}\cdot\text{d}^{-1}$,
392 respectively. This minimum threshold needed to achieve the maximum H_2 uptake rate was
393 similar to that estimated by Capson-Tojo et al. (2022) using acetate as substrate for PPB
394 growth. An optimum light intensity of 30-100 $\text{W}\cdot\text{m}^{-2}$ has been previously reported for the

395 production of H₂ by heterotrophic PPB (Li and Fang, 2009). In a real scale, the use of sunlight
396 as a free energy source would be mandatory to reduce capital and operating costs (Capson-
397 Tojo et al., 2020). Under these outdoor conditions, the use of a low-cost UV/VIS filter can
398 limit the growth of PPB competitors (Hülsen et al., 2022c).

399 Overall N-NH₄⁺ consumption rates of 23±5 mg N_{consumed}·L⁻¹·d⁻¹ were obtained under the
400 optimal conditions of initial pH of 7, temperature of 25±4 °C and a light intensities > 30 W·m⁻
401 ². In this respect, taking into account an initial N-NH₄⁺ concentration in the cultivation broth
402 of ~ 105 mg N·L⁻¹, the PPB growth was not limited by N (confirmed by minimal residual N-
403 NH₄⁺ concentrations at the end of the tests of 44 mg N·L⁻¹). Inorganic C consumption rates
404 could not be reported due to measurement errors induced by equipment sensitivity and initial
405 CO₂ stripping.

406 <Figure 2>

407
408 <Table 1>

409
410 In agreement with the H₂ consumption rates, the biomass productivities were also affected by
411 the environmental conditions (Figure 3). Average biomass productivities decreased from
412 351±36 to 202±23 mg COD·L⁻¹·d⁻¹ when the initial pH was decreased from 7 to 6 (at 25 °C
413 and a light intensity of 50 W·m⁻²). The decrease was even more significant (p<0.05) at pH
414 8.5, with average biomass productivities of 77±16 mg COD·L⁻¹·d⁻¹ under the same
415 temperature and illumination conditions. Compared to 25 °C, lower biomass productivities of
416 56±28 and 182±36 mg COD·L⁻¹·d⁻¹ were obtained at 15 °C and 38 °C, respectively. No
417 significant differences (p>0.05) between biomass productivities were obtained under no light
418 limitation (50 and 30 W·m⁻²), whilst the reduction of the light intensity to 15 and 5 W·m⁻²,
419 resulted in a 71% and 83% decrease in productivities. The maximum average biomass
420 productivities hereby achieved with the enriched PPB culture (of 380 mg COD·L⁻¹·d⁻¹;

421 corresponding to $0.31 \text{ g VSS} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$) were slightly higher than those reported for pure
422 photoautotrophic PPB cultures ($\sim 0.25 \text{ g TSS} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$), also obtained in batch reactors
423 (Spanoghe et al., 2021). Moreover, these results are comparable to those from non-axenic
424 photoheterotrophic PPB growth under batch, fed-batch and continuous reactors (Capson-Tojo
425 et al., 2020). However, the maximum biomass productivities were 6-times lower than those
426 achieved by aerobic HOB in sequencing batch reactors (Matassa et al., 2016b). These lower
427 biomass productivities with PPB are mostly a consequence of the generally faster kinetics of
428 aerobic processes, thanks to the highly efficient energy utilization when oxygen is the final
429 electron acceptor (Schmidt-Rohr, 2020). In addition, the mode of cultivation of PPB in the
430 presence of light as compared to other non-phototrophic microorganisms might also lead to
431 different productivities. Although PPB exhibit lower biomass productivities compared with
432 HOB, the high biomass yields in PPB might compensate this drawback. The biomass
433 productivities were also approximately 2-times lower than those obtained for pure
434 photoheterotrophic PPB cultures operating in batch mode (Capson-Tojo et al., 2020).
435 Nevertheless, batch durations or biomass concentrations were not optimized here, so higher
436 values can be expected from continuous reactors.

437 <Figure 3>

438 Similar overall biomass yields ($0.99 \pm 0.04 \text{ g COD}_{\text{biomass}} \cdot \text{g COD}_{\text{consumed}}^{-1}$) were obtained
439 regardless of the environmental conditions tested in this study (Table 1). These yields
440 corresponded to $7.7 \pm 0.5 \text{ g VSS} \cdot \text{g H}_2\text{consumed}^{-1}$, a value higher than those reported for pure
441 cultures of *Rhodobacter capsulatus* and *Rhodobacter sphaeroides* ($5.1\text{--}6.7 \text{ g TSS} \cdot \text{g H}_2\text{consumed}^{-1}$),
442 and similar to *Rhodopseudomonas palustris* (Spanoghe et al., 2021). The fact that high
443 yields could be maintained using PPB enriched cultures is promising for the scale up of this
444 process, since the costs of axenic conditions are prohibitive at full-scale installations (at least
445 when resource recovery is considered). In addition, the high substrate to biomass conversion

446 is a key benefit compared with other microorganisms such as HOB for SCP production.
447 Average biomass yields of $0.2 \text{ g COD}_{\text{biomass}} \cdot \text{g COD}_{\text{consumed}}^{-1}$ have been reported for a HOB
448 enrichments using ammonium as N source as in this study (Hu et al., 2020). Maximum
449 biomass yields of 1.3 and $2.3 \text{ g VSS} \cdot \text{g H}_2_{\text{consumed}}^{-1}$ have been obtained for an enrichment of
450 HOB under batch and continuous operation mode, respectively (Matassa et al., 2016a). In this
451 context, the use of PPB instead of HOB could increase in almost 3-fold the production of SCP
452 for a given amount of H_2 . In comparison, aerobic methanotrophs have biomass yields of $0.26 \text{--} 0.79 \text{ g VSS} \cdot \text{g}^{-1} \text{CH}_4_{\text{consumed}}$, which correspond to values of $0.07 \text{--} 0.20 \text{ g VSS} \cdot \text{g COD}_{\text{consumed}}^{-1}$,
453 much lower than for PPB ($0.96 \pm 0.06 \text{ g VSS} \cdot \text{g COD}_{\text{consumed}}^{-1}$) (Tsapekos et al., 2019;
454 Valverde-Pérez et al., 2020). PPB growth using hydrogen as an electron donor is 4.3 times
455 more efficient than aerobic methanotrophs in terms of COD conversion into bacterial
456 biomass. This is explained by the total conversion of COD into biomass by PPB (using light
457 as energy source), compared to the utilization of methane (a strongly bonded molecule) as
458 both C and energy source by methanotrophs.
459

460 **3.3. Impact of environmental conditions on biomass composition and overall protein 461 yields and productivities**

462 The elemental PPB biomass composition remained constant regardless the pH, temperature
463 and light intensity (Table 1). The average C, N and H contents of the biomass (on a dry
464 weight basis) were $42 \pm 2\%$, $9 \pm 1\%$ and $6 \pm 0\%$, respectively. Based on these values, the
465 empirical formula of the biomass was $\text{CH}_{1.71}\text{N}_{0.18}$. Despite similar N contents (8-12% N), the
466 C and H contents of PPB growing under autotrophic conditions were lower than those
467 previously reported for heterotrophic PPB growth, of 52-55% C and 8-9% H (Carlozzi et al.,
468 2006; Sepúlveda-Muñoz et al., 2022). Despite these lower contents, the C:H ratio remained
469 similar (around 6) to those obtained during heterotrophic growth. More research is needed to
470 further clarify the lower C and H content in the PPB biomass under autotrophic conditions.

According to the TKN contents in the biomass (Table 1), average crude protein yields of 4.2 ± 0.6 and 3.9 ± 0.8 g protein·g $\text{H}_{2\text{consumed}}^{-1}$ were obtained at initial pH values of 7 and 8.5, respectively (at 25°C and $50 \text{ W}\cdot\text{m}^{-2}$). In agreement with the biomass yields, a negligible impact of pH in the crude protein yields was observed in this pH range. Similarly, no significant differences ($p > 0.05$) were found between the crude protein yields obtained at different temperatures (4.4 ± 1.4 , 4.2 ± 0.6 and 4.3 ± 1.2 g protein·g $\text{H}_{2\text{consumed}}^{-1}$ at 15, 25 and 38°C , respectively) and different light intensities (4.0 ± 0.3 , 4.4 ± 1.3 and 4.2 ± 0.6 g protein·g $\text{H}_{2\text{consumed}}^{-1}$ at 15, 30 and $50 \text{ W}\cdot\text{m}^{-2}$, respectively). This was expected, as both the biomass yields and the crude protein contents were similar. These values confirm the robustness of the consortia under different environmental conditions, with a crude protein content in the PPB biomass higher than 50% (Table 1). These values of crude protein contents may have been slightly overestimated since the factor 6.25 is not always representative of actual protein contents (François Mariotti and Mirand, 2008). In this respect, the amino acid concentration in selected samples analyzed was between 32-62% lower than the crude protein content. This difference was attributed to the overestimation of the factor 6.25 but also to the non-determination of certain amino acids, underestimating total protein contents. The crude protein yields obtained in this study using an enriched autotrophic PPB consortia were 1.5-fold higher than those reported for pure autotrophic PPB cultures (2.6 - 2.9 g protein·g $\text{H}_{2\text{consumed}}^{-1}$) at pH below 8, 28°C and a light intensity of $18 \text{ W}\cdot\text{m}^{-2}$. As for the biomass yields, the crude protein yields in this study were also higher than those reported for HOB, assuming a 71% protein content in the biomass (maximum values of 0.9 and 1.6 g protein·g $\text{H}_{2\text{consumed}}^{-1}$) (Matassa et al., 2016b). Lower protein yields were also reported for methanotrophic bacteria, taking into account the lower biomass yield aforementioned and the lower protein content in the biomass (around 41%) (Tsapekos et al., 2019). Protein productivities of 0.18 ± 0.02 and 0.04 ± 0.01 g protein·L $^{-1}$ ·d $^{-1}$ were obtained at pH values of 7 and 8.5, respectively. Although

496 analogous crude protein contents in the biomass were achieved at pH 8.5, the lower protein
497 productivity at this pH was a result of the lower biomass productivities. Protein productivities
498 also decreased to 0.10 ± 0.02 and 0.04 ± 0.02 g protein·L⁻¹·d⁻¹ at 38 °C and 15 °C, respectively.
499 Similar protein productivities were obtained at 50 and 30 W·m⁻², while a decrease in the light
500 intensity to 15 W·m⁻² led to a decrease in the protein productivities down to 0.03 ± 0.02 g
501 protein·L⁻¹·d⁻¹. The maximum protein productivities (0.20 g protein·L⁻¹·d⁻¹) are higher than
502 those reported for pure autotrophic PPB cultures (0.09-0.12 g protein·L⁻¹·d⁻¹) (Spanoghe et
503 al., 2021). However, the productivities were lower than those achieved by PPB consortia
504 growing under heterotrophic conditions (0.29-0.64 g protein·L⁻¹·d⁻¹) (Alloul et al., 2019;
505 Hülsen et al., 2022c) and those from HOB (0.27 g protein·L⁻¹·d⁻¹) (Matassa et al., 2016b). As
506 mentioned previously, the overall productivities given here are far from being optimal. Higher
507 values will be obtained in continuous reactors working at optimal retention times and feeding
508 rates.

509 Total amino acid contents on a dry basis in the PPB biomass of $42 \pm 2\%$, 35% and 20% were
510 obtained from the autotrophic enrichments (4 samples), from samples drawn from bioreactors
511 operating under optimal conditions (25°C, pH of 7 and light intensity of 50 W·m⁻²) and from
512 samples from bioreactors with a low performance (pH of 6), respectively (more information
513 in the Supplementary Material). The stable biomass composition in terms of amino acid and
514 protein contents during the enrichments and efficient conditions underline the suitability of
515 using biomass derived from a PPB mixed community for the production of animal feed. The
516 maximum total amino acid content in the PPB biomass was lower than that of fishmeal but
517 similar to soybean meal (72% and 40%, respectively). The biomass contained all essential
518 amino acids (Figure 4; it must be considered that tryptophan was not measured), representing
519 approximately 40% of the total amino acids under most conditions. Similar proportions of
520 essential amino acids are found in important protein sources for feed such as soybean meal

521 and fishmeal, and in the biomass of pure strains of *Rhodobacter capsulatus*, *Rhodobacter*
522 *sphaeroides* and *Rhodopseudomonas palustris* under autotrophic growth (FAO, 1981;
523 Spanoghe et al., 2021). Glutamic acid, aspartic acid, alanine and leucine were the
524 predominant amino acids in PPB biomass, accounting for more than 8% of the total amino
525 acid content. Similarly, glutamic acid+glutamine and aspartic acid+asparagine are the most
526 abundant amino acids in soybean meal and fishmeal. Compared to fishmeal, PPB biomass
527 was deficient in all amino acids (Figure 4). In agreement, the PPB biomass from poultry and
528 red meat processing wastewater exhibited also lower contents of almost all amino acids
529 compared to fishmeal (Hülsen et al., 2018). Otherwise, the amino acid profile of the
530 autotrophic PPB biomass was comparable to that of soybean meal, except for glutamic acid
531 and cystine, which were more abundant in soybean meal, and alanine, which was more
532 abundant in PPB biomass. These results highlight the potential of PPB biomass to replace
533 commercial protein meals. The capital/operating costs would need to be balanced out with a
534 high product cost such as food-related products or high-value feed for making the process
535 economically feasible. Specifically, although the amino acid content of the biomass was lower
536 than that of fishmeal, the potential application of the PPB mixed culture biomass would be as
537 a partial substitute of fishmeal since its market price is higher (2 € kg^{-1} protein) than the one of
538 soybean meal (0.7 € kg^{-1} protein) (Alloul et al., 2021a; Hülsen et al., 2022a). In this regard, the
539 application of PPB biomass as a substitute for feed for aquaculture species has been
540 previously demonstrated in diverse species (Alloul et al., 2021b; Delamare-Debouteville et
541 al., 2019).

542 <Figure 4>

543

544 **3.4. Impact of environmental conditions on the microbial communities**

545 The microbial analyses corroborated the development of an autotrophic PPB community, with
546 relative abundances over 0.8 in the reactors working efficiently (Figure 5). The inoculum of

547 the first autotrophic enrichment (a heterotrophic PPB enriched culture) was composed mainly
548 of the PPB genus *Rhodobacter* (81%) along with the PPB genus *Rhodopseudomonas* (2%)
549 and non-phototrophic bacteria such as *Acinetobacter* sp. (9%) and *Cloacibacterium* sp. (4%).
550 As for the inoculum, the main PPB genera under autotrophic growth were *Rhodobacter* sp.,
551 with a maximum relative abundance of 75% and *Rhodopseudomonas* sp. (up to 42%).
552 *Rhodocista* sp. was another PPB genus detected in a minor proportion. Specifically, the
553 dominant species were *Rhodobacter capsulatus* (99% similarity according to the NCBI 16S
554 rRNA database), *Rhodobacter sphaeroides* (99%), *Rhodobacter sediminis* (99%) and
555 *Rhodopseudomonas palustris* (99%). Most of these PPB species are known to perform
556 photoautotrophic growth using hydrogen as electron donor (Spanoghe et al., 2021). The same
557 PPB species are also typically reported as dominant during the treatment of different types of
558 wastewaters (heterotrophic growth) (Alloul et al., 2019; Capson-Tojo et al., 2021; Hülsen et
559 al., 2022b, 2014). This suggest that most commonly known photoheterotrophic PPB are also
560 those having the competitive advantage in mixed cultures during autotrophic growth.
561 *Rhodobacter* sp. was the predominant PPB genus during most of the enrichments and batch
562 experiments used to screen the operational parameters except for the test at 38 °C, where the
563 *Rhodopseudomonas* sp. abundance increased and became dominant. In this regard, Hülsen et
564 al. (2020) reported a population shift from *Rhodopseudomonas* sp. towards *Rhodobacter* sp.
565 due to the decrease in the batch duration from 3 to 2 days, but the correlation between the
566 batch duration and the relative abundance of *Rhodopseudomonas* sp. was far from conclusive
567 and the observation could not be repeated. Other articles have reported the opposite effect,
568 with *Rhodobacter* sp. dominating at short retention times and *Rhodopseudomonas* sp. at
569 longer times (Alloul et al., 2019). Therefore, the batch duration was discarded as potential
570 explanation for the dominance of *Rhodobacter* sp. in our reactors. In addition, the duration of
571 the batch enrichments was around one week and the predominant genus in those was also

572 *Rhodobacter* sp. Otherwise, the predominance of *Rhodopseudomonas* sp. at 38 °C could be
573 explained as a proliferation due to a high temperature tolerance. *Rhodopseudomonas palustris*
574 (the most similar strain in this study, 99%) indeed presented superior growth under
575 temperatures between 35-40 °C than at 30 °C (du Toit and Pott, 2021). Nevertheless, the
576 impact of the environmental and operational conditions on *Rhodobacter-Rhodopseudomonas*
577 interactions in PPB-enriched cultures is far from clear, and more research needs to be done
578 using dedicated co-cultures.

579 The remaining genera detected corresponded mostly to anaerobic fermenters such as
580 *Cloacibacterium* sp., *Paludibacter* sp., *Acholeplasma* sp. and *Dysgonomonas* sp., and to a
581 lesser extent, to aerobic bacteria such as *Chryseobacterium* sp. and *Acinetobacter* sp. Despite
582 the anaerobic conditions in the enrichments, the presence of air during the transport of the
583 inoculum and/or during the enrichment preparation could justify the presence of these
584 bacteria. Most of these genera were also found in previous mixed PPB consortia growing
585 heterotrophically (Alloul et al., 2019). An increase in the proportions of anaerobic fermenters,
586 mainly the genera *Cloacibacterium* sp. and *Dysgonomonas* sp. was observed under non-
587 optimal conditions (pH 6 and 8.5 and light intensity of 15 W·m⁻²). *Cloacibacterium* sp. was
588 the most abundant fermenter at pH 6, while *Dysgonomonas* sp. was favoured by neutral-
589 alkaline pH values. The decline in the abundance of PPB could be attributed to a lesser
590 growth extent, resulting in higher proportions of fermenters. Efficient continuous operation
591 should be able to reduce the presence of both fermenters and aerobic bacteria in the reactors.
592 As a result, a higher abundance of PPB and a more stable population would be expected in an
593 optimized system thanks to the specific conditions applied in the process (i.e. anaerobic
594 conditions, H₂ as a COD source, and near-infrared light as light source).

595 <Figure 5>

596 **3.5. Modelling autotrophic PPB growth: estimation of specific uptake rates**

597 The model was calibrated by minimization of the residual sum of squares using the
598 concentration of biomass in the liquid as experimental data. Figures in the Supplementary
599 Material show, as examples, the results for one of the batch tests, mixed at 150 rpm. The
600 results show that the model predicted accurately the experimental behaviour, with R^2 values
601 from Pareto plots for biomass and hydrogen gas concentrations of 0.995 and 0.900,
602 respectively. Despite the change in limiting rates throughout the batch test, the model was
603 able to represent the whole process. Before 0.9-1.0 d, H_2 was sufficient, and consumption
604 rates were limited by biological uptake (typical exponential curve, soluble H_2 concentrations
605 higher than saturation constants for H_2 (K_{S,H_2} ; below 0.05 mg COD·L⁻¹ in all the tests
606 performed) and the calculated uptake rates increased with supply rates). After 0.9-1.0 d, the
607 H_2 transfer rate became limiting due to the high biomass concentrations and the low H_2 K_{La}
608 (28.7 d⁻¹ in this test), a situation that did not change despite the injection of extra H_2 in the
609 headspace. After this point, the concentration of H_2 in the liquid was always close to zero, the
610 growth curve became linear and the uptake rate was limited by the transfer rate. The model
611 predicted accurately this behaviour, confirming its applicability for estimating the specific
612 uptake rates. It must be considered that, at the moment, the model only considers one biomass
613 as state variable (lumped PPB; see Supplementary Material). Therefore, the shifts in PPB
614 populations described above cannot be account for by the model. Further work should be done
615 to study these microbial interactions, including them in coming models.

616 The tested environmental conditions affected considerably the H_2 specific uptake rates (Figure
617 6 and Table 1). In agreement with the overall rates, optimal specific rates of 1.9-2.0 g COD·g
618 COD⁻¹·d⁻¹ were achieved at initial pH values of 7, 25 °C, and light intensities over 30 W·m⁻²
619 (Table 1). Lower or higher pH values and temperatures resulted in decreased rates. No
620 photoinhibition was observed at 50 W·m⁻². With R^2 values of 0.97 and 0.91, the Steele's
621 equation and the CTMI were able to represent the impacts of light intensity and temperature

622 accurately, respectively (Figure 6). The optimal conditions are similar to those reported for
623 photoheterotrophic PPB growth, confirming these values and suggesting that the growth mode
624 does not affect optimal conditions (Capson-Tojo et al., 2022, 2020). Optimal specific uptake
625 rates of $2 \text{ g COD} \cdot \text{g COD}^{-1} \cdot \text{d}^{-1}$ are close to those for photoheterotrophic processes (2.3-2.7 g
626 $\text{COD} \cdot \text{g COD}^{-1} \cdot \text{d}^{-1}$ (Capson-Tojo et al., 2023; Puyol et al., 2017a) and similar to those reported
627 for pure PPB cultures grown autotrophically (below 2.3 g $\text{COD} \cdot \text{g COD}^{-1} \cdot \text{d}^{-1}$ (Spanoghe et al.,
628 2021)). These results show that the developed model can effectively be used to represent the
629 process dynamics at different conditions, allowing determining potential gas-transfer
630 limitations. The model has only been validated so far for laboratory scale batch tests. Further
631 work will aim at further validating the model with different reactor configurations (e.g. in
632 continuous systems) and using it to simulate different scenarios for process optimisation and
633 efficient reactor design.

634 <Figure 6>

635

636 **4. Conclusions**

637 This study demonstrates the applicability of PPB enriched cultures to produce SCP using H_2
638 efficiently. Neutral pH, temperatures of $25 \pm 4 \text{ }^\circ\text{C}$ and light intensities higher than $30 \text{ W} \cdot \text{m}^{-2}$
639 were the best conditions for biomass growth for the PPB enriched consortium used here. High
640 biomass and protein yields, up to $8.4 \text{ g VSS} \cdot \text{g H}_2^{-1}$ ($\sim 1 \text{ g COD} \cdot \text{g COD}^{-1}$) and $4.4 \text{ g protein} \cdot \text{g}$
641 $\text{H}_2_{\text{consumed}}^{-1}$, were reached. Amino acid contents up to 42%, with a similar profile to that of
642 soybean meal, underline the potential of PPB biomass as a feed substitute. These results
643 confirm the effective photoautotrophic PPB enrichment in non-sterile environments (over
644 81% under optimal conditions), with *Rhodobacter* sp. as the most abundant genus. The high
645 yields and rates achieved (maximum overall H_2 uptake rates of $61 \text{ mg COD} \cdot \text{d}^{-1}$ and specific
646 uptake rates of $2 \text{ g COD} \cdot \text{g COD}^{-1} \cdot \text{d}^{-1}$) highlight the great potential of enriched PPB cultures
647 for H_2 valorisation, allowing to reach specific uptake rates similar to those reached in pure

648 PPB cultures. Further experiments should focus on the optimization of the biomass
649 productivities and the overall uptake rates, using continuous reactors.

650

651 **Acknowledgements**

652 María del Rosario Rodero and Jose Antonio Magdalena acknowledges the NextGenerationEU
653 Margarita Salas programme from the European Union for their research contract. The authors
654 would like to acknowledge INRAE Bio2E Facility (Bio2E, INRAE, 2018. Environmental
655 Biotechnology and Biorefinery Facility (<https://doi.org/10.15454/1.557234103446854E12>)
656 where all experiments were conducted.

657

658 **References**

659 Alloul, A., Muys, M., Hertoghs, N., Kerckhof, F.M., Vlaeminck, S.E., 2021a. Cocultivating
660 aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and
661 chemotrophic reactors. *Bioresour. Technol.* 319, 124192.
662 <https://doi.org/10.1016/j.biortech.2020.124192>

663 Alloul, A., Spanoghe, J., Machado, D., Vlaeminck, S.E., 2022. Unlocking the genomic
664 potential of aerobes and phototrophs for the production of nutritious and palatable
665 microbial food without arable land or fossil fuels. *Microb. Biotechnol.* 15, 6–12.
666 <https://doi.org/10.1111/1751-7915.13747>

667 Alloul, A., Wille, M., Lucenti, P., Bossier, P., Van Stappen, G., Vlaeminck, S.E., 2021b.
668 Purple bacteria as added-value protein ingredient in shrimp feed: *Penaeus vannamei*
669 growth performance, and tolerance against *Vibrio* and ammonia stress. *Aquaculture* 530,
670 735788. <https://doi.org/10.1016/j.aquaculture.2020.735788>

671 Alloul, A., Wuyts, S., Lebeer, S., Vlaeminck, S.E., 2019. Volatile fatty acids impacting
672 phototrophic growth kinetics of purple bacteria: Paving the way for protein production
673 on fermented wastewater. *Water Res.* 152, 138–147.

674 https://doi.org/10.1016/j.watres.2018.12.025

675 Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V, Pavlostathis, S.G., Rozzi, A.,

676 Sanders, W.T.M., Siegrist, H., Vavilin, V.A., 2002. The IWA Anaerobic Digestion

677 Model No 1 (ADM1). Water Sci. Technol. 45, 65–73.

678 https://doi.org/10.2166/wst.2002.0292

679 Bertasini, D., Binati, R.L., Bolzonella, D., Battista, F., 2022. Single Cell Proteins production

680 from food processing effluents and digestate. Chemosphere 296, 134076.

681 https://doi.org/10.1016/j.chemosphere.2022.134076

682 Bio2E INRAE, 2018. Environmental Biotechnology and Biorefinery Platform.

683 https://doi.org/10.15454/1.557234103446854E12

684 Bullock, C.M., Bicho, P.A., Zhang, Y., Saddler, J.N., 1996. A solid chemical oxygen demand

685 (COD) method for determining biomass in waste waters. Water Res. 30, 1280–1284.

686 https://doi.org/https://doi.org/10.1016/0043-1354(95)00271-5

687 Capson-Tojo, G., Batstone, D.J., Grassino, M., Hülsen, T., 2022. Light attenuation in enriched

688 purple phototrophic bacteria cultures: Implications for modelling and reactor design.

689 Water Res. 219, 118572. https://doi.org/10.1016/j.watres.2022.118572

690 Capson-Tojo, G., Batstone, D.J., Grassino, M., Vlaeminck, S.E., Puyol, D., Verstraete, W.,

691 Kleerebezem, R., Oehmen, A., Ghimire, A., Pikaar, I., Lema, J.M., Hülsen, T., 2020.

692 Purple phototrophic bacteria for resource recovery: Challenges and opportunities.

693 Biotechnol. Adv. 43, 107567. https://doi.org/10.1016/j.biotechadv.2020.107567

694 Capson-Tojo, G., Batstone, D.J., Hülsen, T., 2023. Expanding mechanistic models to

695 represent purple phototrophic bacteria enriched cultures growing outdoors. Water Res.

696 229, 119401. https://doi.org/10.1016/j.watres.2022.119401

697 Capson-Tojo, G., Lin, S., Batstone, D.J., Hülsen, T., 2021. Purple phototrophic bacteria are

698 outcompeted by aerobic heterotrophs in the presence of oxygen. Water Res. 194,

699 116941. <https://doi.org/10.1016/j.watres.2021.116941>

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 Carlozzi, P., Pushparaj, B., Degl'Innocenti, A., Capperucci, A., 2006. Growth characteristics of *Rhodopseudomonas palustris* cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. *Appl. Microbiol. Biotechnol.* 73, 789–795. <https://doi.org/10.1007/s00253-006-0550-z>

Carmona-Martínez, A.A., Trably, E., Milferstedt, K., Lacroix, R., Etcheverry, L., Bernet, N., 2015. Long-term continuous production of H₂ in a microbial electrolysis cell (MEC) treating saline wastewater. *Water Res.* 81, 149–156.

<https://doi.org/10.1016/j.watres.2015.05.041>

Ciani, M., Lippolis, A., Fava, F., Rodolfi, L., Niccolai, A., Tredici, M.R., 2019. *Microbes : Food for the Future. Foods* 13–14.

Delamare-Deboutteville, J., Batstone, D.J., Kawasaki, M., Stegman, S., Salini, M., Tabrett, S., Smullen, R., Barnes, A.C., Hülsen, T., 2019. Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. *Water Res. X* 4, 100031.

<https://doi.org/10.1016/j.wroa.2019.100031>

du Toit, J.P., Pott, R.W.M., 2021. Heat-acclimatised strains of *Rhodopseudomonas palustris* reveal higher temperature optima with concomitantly enhanced biohydrogen production rates. *Int. J. Hydrogen Energy* 46, 11564–11572.

<https://doi.org/10.1016/j.ijhydene.2021.01.068>

Eaton, M.A.H., Clesceri, A.D., Rice, L.S., Greenberg, E.W., Franson, A.E., 2005. APHA: Standard Methods for the Examination of Water and Wastewater, Centen. ed., APHA, AWWA, WEF, Washington, DC.

Eding, E.H., Kamstra, A., Verreth, J.A.J., Huisman, E.A., Klapwijk, A., 2006. Design and operation of nitrifying trickling filters in recirculating aquaculture: A review. *Aquac. Eng.* 34, 234–260. <https://doi.org/10.1016/j.aquaeng.2005.09.007>

724 Ehsani, E., Dumolin, C., Arends, J.B.A., Kerckhof, F.M., Hu, X., Vandamme, P., Boon, N.,
725 2019. Enriched hydrogen-oxidizing microbiomes show a high diversity of co-existing
726 hydrogen-oxidizing bacteria. *Appl. Microbiol. Biotechnol.* 103, 8241–8253.
727 <https://doi.org/10.1007/s00253-019-10082-z>

728 FAO, 1981. AMINO-ACID CONTENT OF FOODS AND BIOLOGICAL DATA ON
729 PROTEINS, 3rd ed, FAO Food and Nutrition Series. Rome.

730 François Mariotti, D.T., Mirand, P.P., 2008. Converting Nitrogen into Protein—Beyond 6.25
731 and Jones' Factors. *Crit. Rev. Food Sci. Nutr.* 48, 177–184.
732 <https://doi.org/10.1080/10408390701279749>

733 Hu, X., Kerckhof, F.M., Ghesquière, J., Bernaerts, K., Boeckx, P., Clauwaert, P., Boon, N.,
734 2020. Microbial Protein out of Thin Air: Fixation of Nitrogen Gas by an Autotrophic
735 Hydrogen-Oxidizing Bacterial Enrichment. *Environ. Sci. Technol.* 54, 3609–3617.
736 <https://doi.org/10.1021/acs.est.9b06755>

737 Hu, X., Vandamme, P., Boon, N., 2022. Co-cultivation enhanced microbial protein production
738 based on autotrophic nitrogen-fixing hydrogen-oxidizing bacteria. *Chem. Eng. J.* 429,
739 132535. <https://doi.org/10.1016/j.cej.2021.132535>

740 Hülzen, T., Barnes, A.C., Batstone, D.J., Capson-Tojo, G., 2022a. Creating value from purple
741 phototrophic bacteria via single-cell protein production. *Curr. Opin. Biotechnol.* 76,
742 102726. <https://doi.org/10.1016/j.copbio.2022.102726>

743 Hülzen, T., Barry, E.M., Lu, Y., Puyol, D., Batstone, D.J., 2016. Low temperature treatment
744 of domestic wastewater by purple phototrophic bacteria: Performance, activity, and
745 community. *Water Res.* 100, 537–545. <https://doi.org/10.1016/j.watres.2016.05.054>

746 Hülzen, T., Batstone, D.J., Keller, J., 2014. Phototrophic bacteria for nutrient recovery from
747 domestic wastewater. *Water Res.* 50, 18–26.
748 <https://doi.org/10.1016/j.watres.2013.10.051>

749 Hülsen, T., Hsieh, K., Lu, Y., Tait, S., Batstone, D.J., 2018. Simultaneous treatment and
750 single cell protein production from agri-industrial wastewaters using purple phototrophic
751 bacteria or microalgae – A comparison. *Bioresour. Technol.* 254, 214–223.
752 <https://doi.org/10.1016/j.biortech.2018.01.032>

753 Hülsen, T., Sander, E.M., Jensen, P.D., Batstone, D.J., 2020. Application of purple
754 phototrophic bacteria in a biofilm photobioreactor for single cell protein production:
755 Biofilm vs suspended growth. *Water Res.* 181, 115909.
756 <https://doi.org/10.1016/j.watres.2020.115909>

757 Hülsen, T., Stegman, S., Batstone, D.J., Capson-Tojo, G., 2022b. Naturally illuminated
758 photobioreactors for resource recovery from piggery and chicken-processing
759 wastewaters utilising purple phototrophic bacteria. *Water Res.* 214, 118194.
760 <https://doi.org/10.1016/j.watres.2022.118194>

761 Hülsen, T., Züger, C., Gan, Z.M., Batstone, D.J., Solley, D., Ochre, P., Porter, B., Capson-
762 Tojo, G., 2022c. Outdoor demonstration-scale flat plate photobioreactor for resource
763 recovery with purple phototrophic bacteria. *Water Res.* 216, 118327.
764 <https://doi.org/https://doi.org/10.1016/j.watres.2022.118327>

765 Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K. V, Pons, M.N., Vanrolleghem, P.A.,
766 2006. Towards a benchmark simulation model for plant-wide control strategy
767 performance evaluation of WWTPs. *Water Sci. Technol.* 53, 287–295.
768 <https://doi.org/10.2166/wst.2006.031>

769 Khoshnevisan, B., Tsapekos, P., Zhang, Y., Valverde-Pérez, B., Angelidaki, I., 2019. Urban
770 biowaste valorization by coupling anaerobic digestion and single cell protein production.
771 *Bioresour. Technol.* 290, 121743. <https://doi.org/10.1016/j.biortech.2019.121743>

772 Lazaro, C.Z., Varesche, M.B.A., Silva, E.L., 2015. Effect of inoculum concentration, pH,
773 light intensity and lighting regime on hydrogen production by phototrophic microbial

774 consortium. *Renew. Energy* 75, 1–7. <https://doi.org/10.1016/j.renene.2014.09.034>

775 Li, R.U.Y., Fang, H.H.P., 2009. Heterotrophic Photo Fermentative Hydrogen Production.

776 *Crit. Rev. Environ. Sci. Technol.* 39, 1081–1108.

777 <https://doi.org/10.1080/10643380802009835>

778 Madigan, M.T., Gest, H., 1979. Growth of the photosynthetic bacterium *Rhodopseudomonas*

779 *capsulata* chemoaerotrophically in darkness with H₂ as the energy source. *J. Bacteriol.*

780 137, 524–530. <https://doi.org/10.1128/jb.137.1.524-530.1979>

781 Matassa, S., Boon, N., Pikaar, I., Verstraete, W., 2016a. Microbial protein: future sustainable

782 food supply route with low environmental footprint. *Microb. Biotechnol.* 9, 568–575.

783 <https://doi.org/10.1111/1751-7915.12369>

784 Matassa, S., Boon, N., Verstraete, W., 2015. Resource recovery from used water: The

785 manufacturing abilities of hydrogen-oxidizing bacteria. *Water Res.* 68, 467–478.

786 <https://doi.org/10.1016/j.watres.2014.10.028>

787 Matassa, S., Verstraete, W., Pikaar, I., Boon, N., 2016b. Autotrophic nitrogen assimilation

788 and carbon capture for microbial protein production by a novel enrichment of hydrogen-

789 oxidizing bacteria. *Water Res.* 101, 137–146.

790 <https://doi.org/10.1016/j.watres.2016.05.077>

791 Nasser, A.T., Amini, R.S., Morowvat, M.H., Ghasemi, Y., 2011. Single Cell Protein:

792 Production and Process. *Am. J. food Technol.* 6, 103–116.

793 Ndiaye, M., Gadoin, E., Gentric, C., 2018. CO₂ gas–liquid mass transfer and k_{La} estimation:

794 Numerical investigation in the context of airlift photobioreactor scale-up. *Chem. Eng.*

795 *Res. Des.* 133, 90–102. <https://doi.org/10.1016/j.cherd.2018.03.001>

796 Ormerod, J.G., Ormerod, K.S., Gest, H., 1961. Light-dependent utilization of organic

797 compounds and photoproduction of molecular hydrogen by photosynthetic bacteria;

798 relationships with nitrogen metabolism. *Arch. Biochem. Biophys.* 94, 449–463.

799 Puyol, D., Barry, E.M., Hülsen, T., Batstone, D.J., 2017a. A mechanistic model for anaerobic
800 phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM).
801 Water Res. 116, 241–253. <https://doi.org/10.1016/j.watres.2017.03.022>

802 Puyol, D., Batstone, D.J., Hülsen, T., Astals, S., Peces, M., Krömer, J.O., 2017b. Resource
803 recovery from wastewater by biological technologies: Opportunities, challenges, and
804 prospects. Front. Microbiol. 7, 1–23. <https://doi.org/10.3389/fmicb.2016.02106>

805 Rey, F.E., Oda, Y., Harwood, C.S., 2006. Regulation of uptake hydrogenase and effects of
806 hydrogen utilization on gene expression in *Rhodopseudomonas palustris*. J. Bacteriol.
807 188, 6143–6152. <https://doi.org/10.1128/JB.00381-06>

808 Ritala, A., Häkkinen, S.T., Toivari, M., Wiebe, M.G., 2017. Single cell protein-state-of-the-
809 art, industrial landscape and patents 2001-2016. Front. Microbiol. 8.
810 <https://doi.org/10.3389/fmicb.2017.02009>

811 Ruiz-Martínez, A., Serralta, J., Seco, A., Ferrer, J., 2016. Modeling light and temperature
812 influence on ammonium removal by *Scenedesmus* sp. under outdoor conditions. Water
813 Sci. Technol. 74, 1964–1970. <https://doi.org/10.2166/wst.2016.383>

814 Sasaki, K., Tanaka, T., Nagai, S., 1998. Use of photosynthetic bacteria for the production of
815 SCP and chemicals from organic wastes, in: Martin, A.M. (Ed.), Bioconversion of Waste
816 Materials to Industrial Products. Springer US, Boston, MA, pp. 247–292.
817 https://doi.org/10.1007/978-1-4615-5821-7_6

818 Schmidt-Rohr, K., 2020. Oxygen Is the High-Energy Molecule Powering Complex
819 Multicellular Life: Fundamental Corrections to Traditional Bioenergetics. ACS Omega
820 5, 2221–2233. <https://doi.org/10.1021/acsomega.9b03352>

821 Sepúlveda-Muñoz, C.A., de Godos, I., Puyol, D., Muñoz, R., 2020. A systematic optimization
822 of piggery wastewater treatment with purple phototrophic bacteria. Chemosphere 253.
823 <https://doi.org/10.1016/j.chemosphere.2020.126621>

824 Sepúlveda-Muñoz, C.A., Hontiyuelo, G., Blanco, S., Torres-Franco, A.F., Muñoz, R., 2022.

825 Photosynthetic treatment of piggery wastewater in sequential purple phototrophic

826 bacteria and microalgae-bacteria photobioreactors. *J. Water Process Eng.* 47.

827 <https://doi.org/10.1016/j.jwpe.2022.102825>

828 Sharif, M., Zafar, M.H., Aqib, A.I., Saeed, M., Farag, M.R., Alagawany, M., 2021. Single cell

829 protein: Sources, mechanism of production, nutritional value and its uses in aquaculture

830 nutrition. *Aquaculture* 531, 735885. <https://doi.org/10.1016/j.aquaculture.2020.735885>

831 Spanoghe, J., Ost, K.J., Van Beeck, W., Vermeir, P., Lebeer, S., Vlaeminck, S.E., 2022.

832 Purple bacteria screening for photoautohydrogenotrophic food production: Are new H₂-

833 fed isolates faster and nutritionally better than photoheterotrophically obtained reference

834 species? *N. Biotechnol.* 72, 38–47. <https://doi.org/10.1016/j.nbt.2022.08.005>

835 Spanoghe, J., Vermeir, P., Vlaeminck, S.E., 2021. Microbial food from light, carbon dioxide

836 and hydrogen gas: Kinetic, stoichiometric and nutritional potential of three purple

837 bacteria. *Bioresour. Technol.* 337, 125364.

838 <https://doi.org/10.1016/j.biortech.2021.125364>

839 Tsapekos, P., Khoshnevisan, B., Zhu, X., Zha, X., Angelidaki, I., 2019. Methane oxidising

840 bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste. *J.*

841 *Environ. Manage.* 251. <https://doi.org/10.1016/j.jenvman.2019.109590>

842 United Nations Department of Economic and Social Affairs, P.D., 2022. *World Population*

843 *Prospects.*

844 Valverde-Pérez, B., Xing, W., Zachariae, A.A., Skadborg, M.M., Kjeldgaard, A.F., Palomo,

845 A., Smets, B.F., 2020. Cultivation of methanotrophic bacteria in a novel bubble-free

846 membrane bioreactor for microbial protein production. *Bioresour. Technol.* 310, 123388.

847 <https://doi.org/10.1016/j.biortech.2020.123388>

848 van Niel, C.B., 1944. the Culture, General Physiology, Morphology, and Classification of the

849 Non-Sulfur Purple and Brown Bacteria. *Bacteriol. Rev.* 8, 1–118.

850 <https://doi.org/10.1128/mmbr.8.1.1-118.1944>

851 Wágner, D.S., Valverde-Pérez, B., Plósz, B.G., 2018. Light attenuation in photobioreactors

852 and algal pigmentation under different growth conditions – Model identification and

853 complexity assessment. *Algal Res.* 35, 488–499.

854 <https://doi.org/https://doi.org/10.1016/j.algal.2018.08.019>

855

856

857

858

859

860

861

862

863

864

865

866

867

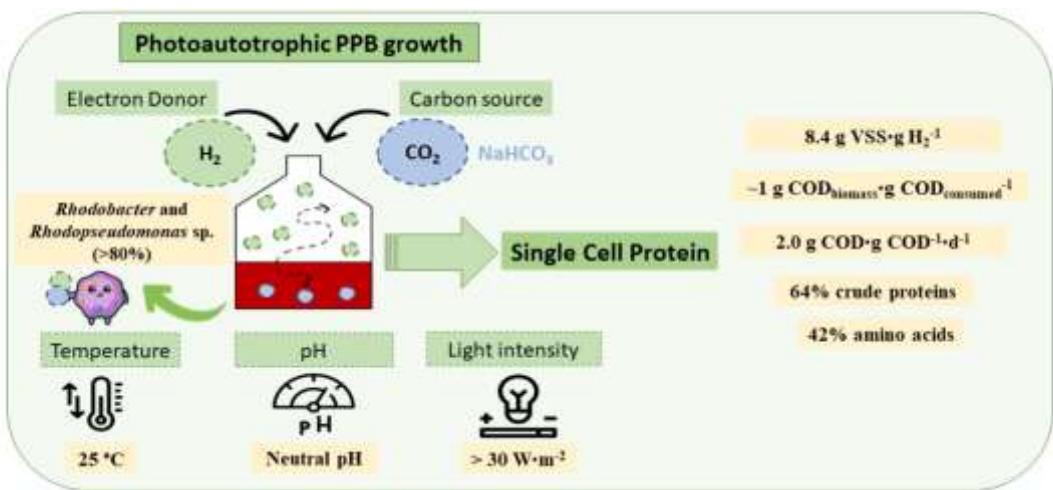
868

869

870

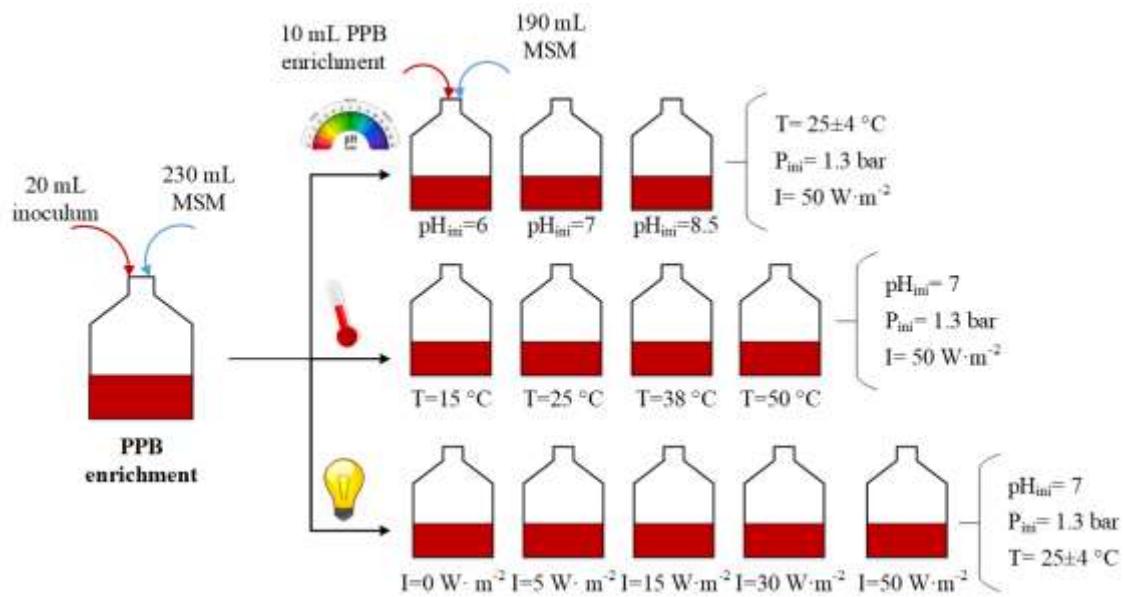
871

872

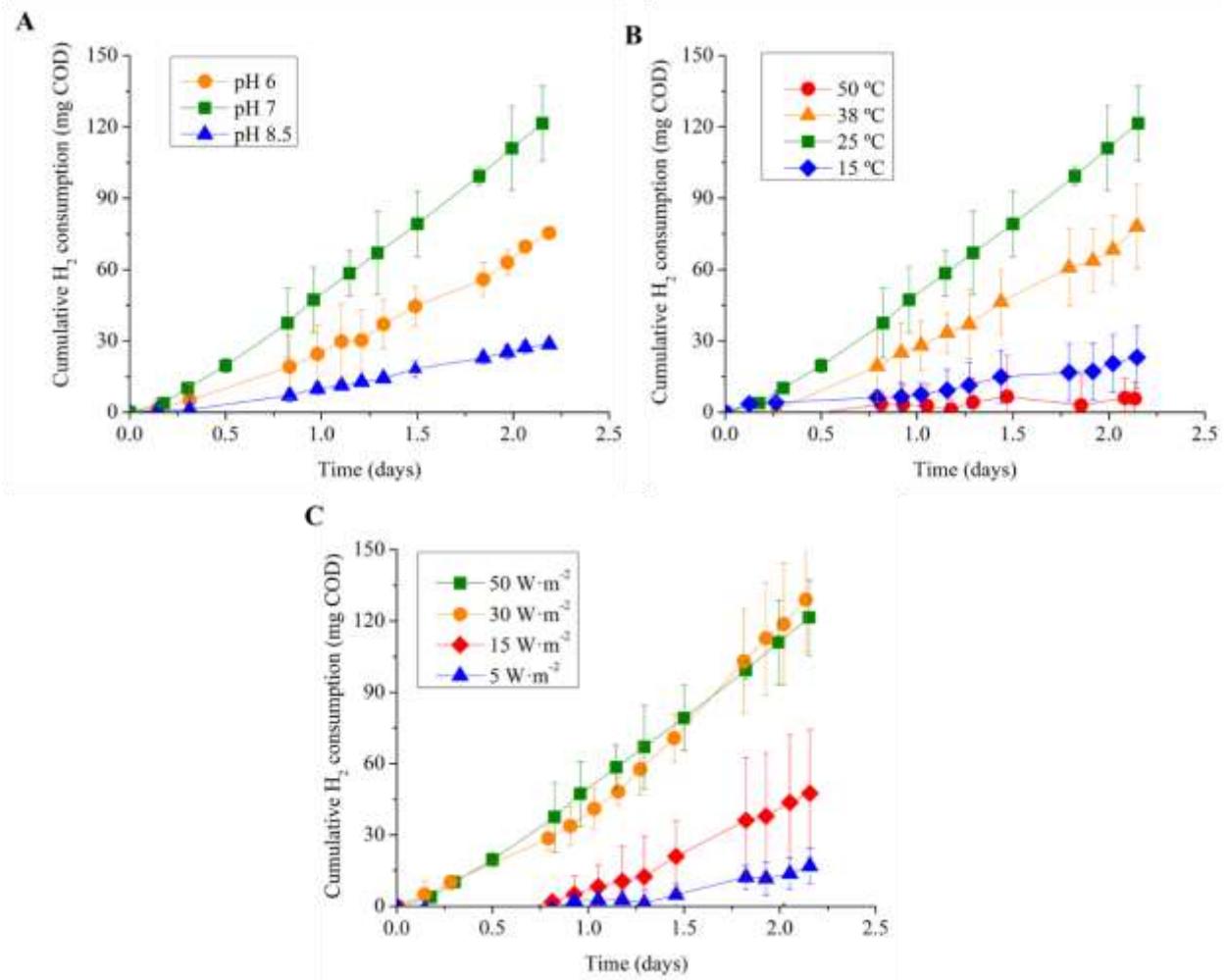

873

874

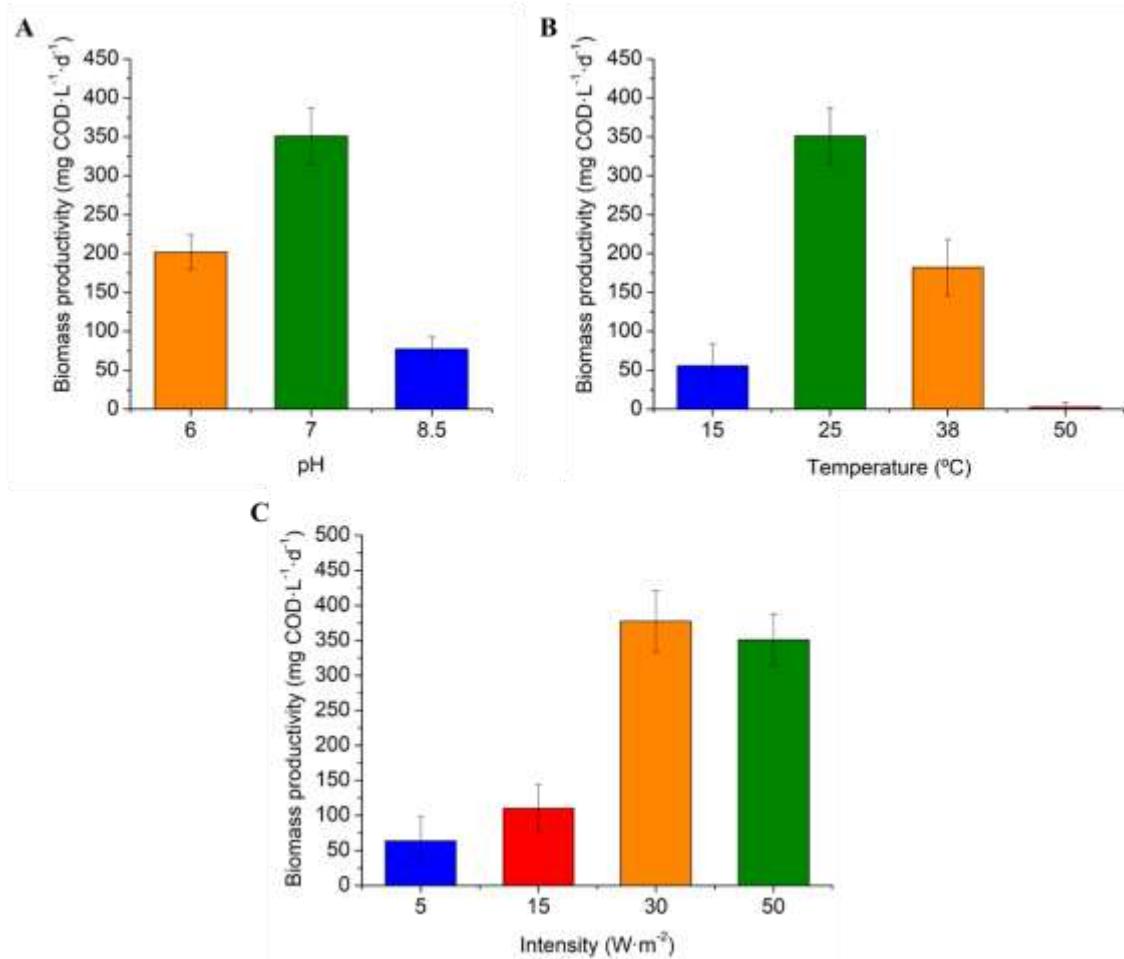
875

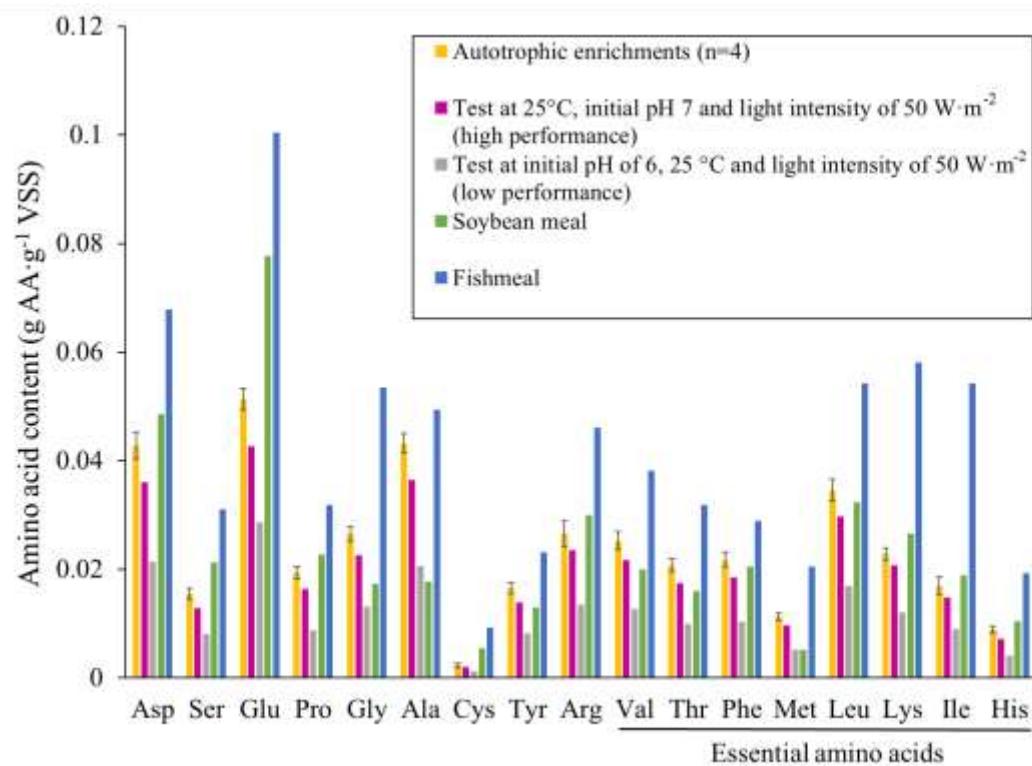

876

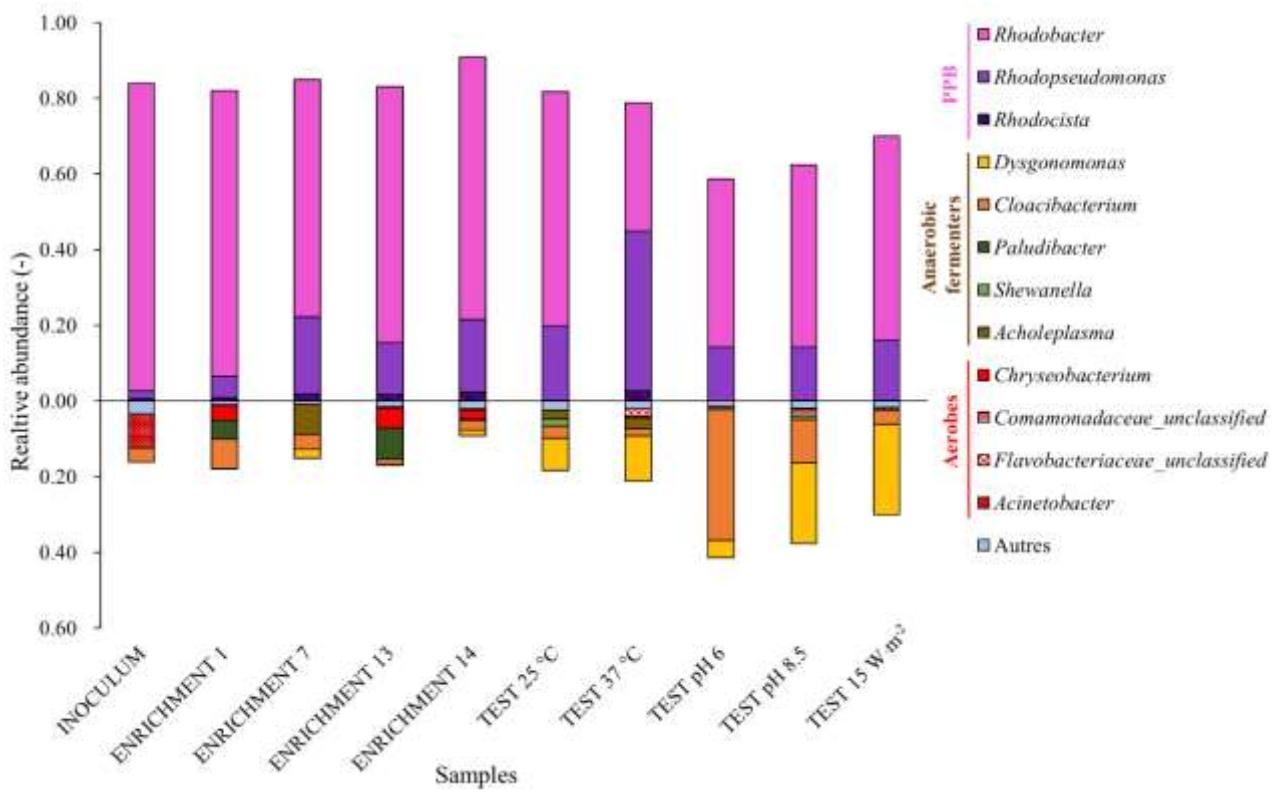
877



878


879 **Graphical abstract**


Figure 1. Simplified experimental procedure followed for assessing the influence of environmental conditions (i.e., pH, temperature and light intensity) on the bioconversion of H₂ into SCP using an enriched PPB culture. PPB stands for purple phototrophic bacteria, MSM for mineral medium, T for temperature, P_{ini} for initial pressure and pH_{ini} for initial pH.


Figure 2. Time course of H_2 consumption (as cumulative H_2 consumed from the headspace) by the enriched PPB cultures at (A) different pH values at $25\text{ }^\circ\text{C}$ and light intensity of $50\text{ W}\cdot\text{m}^{-2}$, (B) different temperatures at initial pH of 7 and light intensity of $50\text{ W}\cdot\text{m}^{-2}$ and (C) different light intensities at initial pH of 7 and $25\text{ }^\circ\text{C}$. Each data point shows the average and confidence intervals (95%; $n=3$).

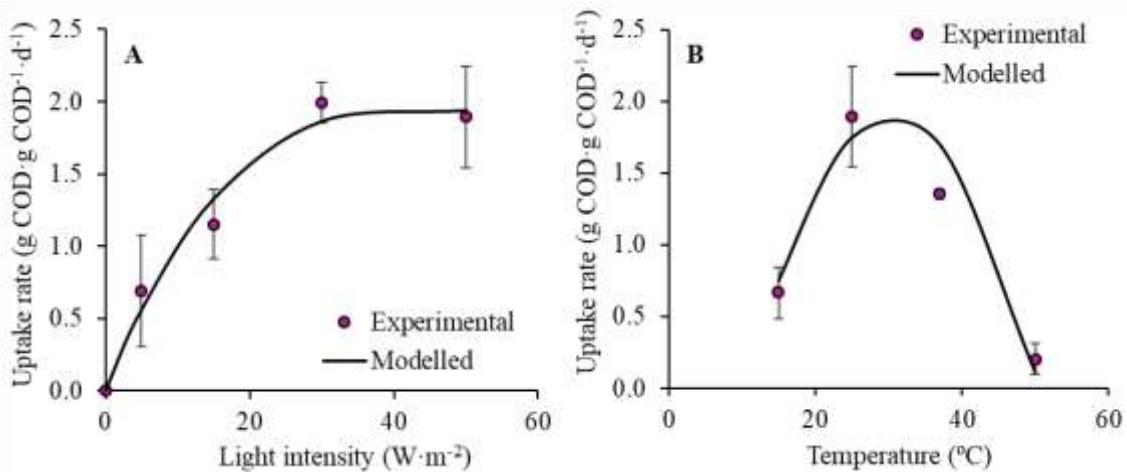

Figure 3. Average biomass productivities at (A) different pH values at 25 °C and light intensity of 50 W·m⁻², (B) different temperatures at initial pH of 7 and light intensity of 50 W·m⁻² and (C) different light intensities at initial pH of 7 and 25 °C. Each bar shows the average and confidence intervals (95%, n=12).

Figure 4. Amino acid (AA) profile of biomass samples at the end of the following tests: autotrophic enrichments (n=4); test at 25°C, initial pH 7 and light intensity of 50 W·m⁻² (high performance); test at initial pH of 6, 25 °C and light intensity of 50 W·m⁻² (low performance). Results are compared to AA profiles of soybean meal and fishmeal (FAO, 1981). AA included are: Aspartic acid+Asparagine (Asp), Serine (Ser), Glutamic acid+Glutamine (Glu), Proline (Pro), Glycine (Gly), Alanine (Ala), Cystine (Cys), Tyrosine (Tyr), Arginine (Arg), Valine (Val), Threonine (Thr), Phenylalanine (Phe), Methionine (Met), Leucine (Leu), Lysine (Lys), Isoleucine (Ile) and Histidine (His).

Figure 5. Community structure in the selected samples.

Figure 6. Influence of the (A) light intensity and (B) temperature on the specific H_2 uptake rates. Average and confidence intervals are shown (95%; $n=3$). The modelled results correspond to the Steele's equation (light intensity) and the cardinal temperature model with inflection (temperature).

Table 1. Overall and specific H₂ uptake rates, biomass yields and composition, final biomass concentrations, total and soluble Kjeldahl nitrogen (TKN) concentrations, crude protein concentrations and average protein productivities along with the corresponding standard deviations or confidence intervals (95%) during the batch tests

	pH			Temperature (°C)				Intensity (W·m ⁻²)			
	6	7	8.5	15	25	38	50	5	15	30	50
Overall H₂ uptake rates (mg COD·d⁻¹)	35±1	58±7	14±1	10±3	58±7	37±3	4±4	9±8	25±6	61±5	58±7
Specific H₂ uptake rates (g COD·g COD⁻¹·d⁻¹)	1.50±0.05	1.89±0.35	0.83±0.02	0.66±0.18	1.89±0.35	1.35±0.04	0.20±0.04	0.69±0.15	1.15±0.24	2.00±0.14	1.89±0.35
Biomass yield (g COD_{biomass}·g COD_{consumed}⁻¹)	1.00±0.17	1.04±0.05	0.93±0.02	0.85±0.18	1.04±0.05	0.99±0.17	0.13±0.02	1.01±0.45	1.02±0.14	1.05±0.05	1.04±0.05
Final biomass concentration (g VSS·L⁻¹)	0.46±0.06	0.79±0.04	0.29±0.02	0.23±0.01	0.79±0.04	0.54±0.02	0.10±0.00	0.19±0.03	0.32±0.02	0.67±0.02	0.79±0.04
Biomass yield (g VSS·g H₂⁻¹)	7.7±1.9	8.2±0.5	6.7±1.4	7.6±3.4	8.2±0.5	8.4±1.3	0.9±0.3	6.6±0.8	6.8±2.19	6.9±0.5	8.2±0.5
TKN_{total} (mg N·L⁻¹)	-*	102±3	101±5	109±2	102±3	107±3	-*	-*	107±0	117±14	102±3
TKN_{soluble} (mg N·L⁻¹)	-*	37±7	74±3	87±3	37±7	63±4	-*	-*	70±8	41±3	37±7
Crude protein content (%)	-*	51±5	59±17	54±5	51±5	50±6	-*	-*	61±24	64±11	51±5
Average protein productivities (g protein·L⁻¹·d⁻¹)	-*	0.18±0.02	0.04±0.01	0.04±0.02	0.18±0.02	0.10±0.02	-*	-*	0.03±0.02	0.20±0.03	0.18±0.02
C content of biomass (%w·w⁻¹)	42±1	41±2	-*	41±1	41±2	41±1	-*	-*	44±0	43±3	41±2
N content of biomass (%w·w⁻¹)	8±1	10±0	-*	8±0	10±0	9±0	-*	-*	10±0	10±1	10±0
H content of biomass (%w·w⁻¹)	6±0	6±0	-*	6±0	6±0	6±0	-*	-*	6±0	6±0	6±0

(n=3).

* These results could not be determined due to the low final biomass concentrations in these tests.