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Abstract
In this paper, we propose a theoretical comparison of two types of value-based 
methods within the field of Multiple Criteria Decision Making/Aiding. Both meth-
ods make use of qualitative information to produce a value on an interval scale for 
each alternative, assessed on a set of criteria, for ranking or classification purposes. 
The two methods are known in the literature as the deck of cards and the one based 
on ordinal proximity measures. The deck of cards method allows managing the 
intensities of preferences in a qualitative way by making pairwise comparisons to 
produce a value for each alternative, while the ordinal proximity measures method 
allows managing the proximities between the terms of ordered qualitative scales in 
a pure ordinal way and produces a value for each alternative. This paper provides 
the mathematical background on the concept of closeness between objects of a 
linear order, which is common to both methods and the way of assigning values or 
scores to the terms of ordered qualitative scales. It is presented a proof that, under 
certain circumstances, these two methods are equivalent. An illustrative example 
shows how to build an interval scale with the two methods.

Keywords  Multi-criteria analysis · Deck of cards method · Ordered qualitative 
scales · Ordinal proximity measures
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1  Introduction

The field of multiple criteria decision-making/aiding (MCDA) became more and 
more important over the last few decades. It helps decision-makers (DMs) navigate 
the complexities of real-world decision situations with wisdom and appears as a 
guiding light for DMs. MCDA is not merely an approach for dealing with complex 
problems, it also encompasses methodologies, methods, procedures, and algorithms, 
i.e., tools that empower DMs to deal with the multidimensional facets of decision 
situations.

Let us point out that an MCDA decision situation presupposes the existence of 
three fundamental elements: (1) a decision-maker or her/his representative and an 
analyst; (2) a set of alternatives; and (3) a set of criteria. In a subsequent step, three 
main expected results can be stated, each one leading to different problem statements 
(see Greco et al. 2016): choice (i.e., select the best or a small set of the best alterna-
tives), ranking (i.e., rank the alternatives from the best to the worst, sometimes with 
the possibility of incomparabilities), and classification (i.e., assign the alternatives to 
pre-defined categories or classes).

In MCDA, there are mainly three types of methods (see Greco et al. 2016): value 
– or scoring-based methods, relational-based methods, and rule systems-based meth-
ods. The most popular type of methodology worldwide is the first one, i.e., when a 
value is assigned to each alternative under assessment (see Keeney and Raiffa 1976), 
for ranking or classification purposes.

The panoply of value-based methods is vast. Some require great cognitive effort 
from DMs while others make use of qualitative preference judgments, which greatly 
facilitate the DMs’ task. Going from qualitative information to values attributed to 
the actions is not a simple task, it requires the design of meaningful methods. The 
value-based methods encourage a thoughtful exploration of trade-offs, enabling DMs 
to easily compare alternatives. This is one of the main reasons they are immensely 
popular in the field of MCDA. They have been confirmed to be very effective for 
dealing with real-world decision-making situations in a vast range of areas.

The origins of the deck of cards method date back to the early nineties, when 
Simos (1990a, 1990b) proposed a procedure for computing the weights of criteria (on 
a ratio scale) for relational-based methods, more precisely for outranking methods. 
This procedure was later improved by Figueira and Roy (2002). Siskos and Tsotsolas 
(2015) enhanced the deck of cards method by adding a robustness analysis procedure 
and surveying the use of this method in real-world applications. Pictet and Bollinger 
(2008) adapted the method to determine the value functions (interval scales) of an 
additive multi-attribute value theory (MAVT) model (see Keeney and Raiffa 1976). 
We note that this method can be used in the context of MAVT to build ratio scales for 
the weights and value or cardinal scales for the performance assessment criteria. A 
comprehensive explanation is provided in Figueira et al. (2023).

Bottero et al. (2018) improved the method and adapted it to build the utility func-
tions and determine the capacities of the Choquet integral aggregation model.

The most important theoretical developments of the deck of cards method, with 
the possibility to identify and deal with inconsistent judgements, were proposed by 
Corrente et al. (2021). Two additional applications of the deck of cards methods with 
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some minor theoretical developments can be seen in Dinis et al. (2023) and Figueira 
et al. (2023).

We note that the deck of cards method can be used to construct cardinal, ratio, or 
interval scales. In this case it is used on difference measures and the blank cards are 
used to model the less or more attractiveness between pairs of successive levels in 
the scale. The method can be used to compare all pairs of alternatives as in Corrente 
et al. (2021). In this sense, it is used to build a comparison pairwise table as in AHP, 
but the meaning of the blank cads is different from AHP, where the scale is absolute.

Ordinal proximity measures, introduced by García-Lapresta and Pérez-Román 
(2015), allow for the management the proximities between the terms of ordered qual-
itative scales in a pure ordinal way. Some applications of ordinal proximity measures 
to several decision-making problems can be found in García-Lapresta and Pérez-
Román (2017, 2018), García-Lapresta et al. (2018, 2021, 2025), García-Lapresta and 
González del Pozo (2019, 2023), González del Pozo et al. (2020), González del Pozo 
and García-Lapresta (2021) and García-Lapresta and Marques Pereira (2022), among 
others.

In this paper, we are interested in dealing with the problem of how to build a car-
dinal value function from ordinal judgments. Indeed, the purpose of this article is to 
provide a mathematical comparison between the two methods and outline the com-
mon features as well as their practical relevance when both are applied to build car-
dinal scales within the range 0-100. It is targeted at readers with a theoretical interest 
in methods for constructing interval scales from ordinal data. Since the methods are 
also described in a simple way, they can also be of a particular interest to practitioners 
in real-world applications.

In this paper, we have introduced the notion of proximity measure, which gen-
eralizes the notion of ordinal proximity measure, by allowing different intensities 
of proximity between the terms of ordered qualitative scales. The reason for this is 
to bring the approach of ordinal proximity measures closer to the the deck of cards 
method. We have shown that, under certain assumptions, both approaches can be 
considered formally equivalent.

While both the deck of cards method (adapted to the context of this paper) and 
the new proximity measures approach seek to capture the intensities of proximity 
between terms on ordered qualitative scales, there are some differences in the way 
individuals display their perceptions. From a practical point of view, the deck of 
cards method requires individuals to insert an integer number of blank cards between 
consecutive terms of an ordered qualitative scale. In contrast, in the proximity mea-
sures approach, individuals display their perceptions by means of ordinal degrees 
of proximity, either directly or through sliders (as in García-Lapresta et al. (2025)).

The paper is organized as follows. Section 2 provides the mathematical back-
ground on the concept of closeness between objects of a linear order. Section 3 is 
devoted to the two methods, which assign values or scores to the terms of ordered 
qualitative scales. Finally, Sect. 4 provides some conclusions and outlines avenues 
for future research.
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2  Closeness between the objects of a linear order

This section presents the deck of cards method, (ordinal) proximity measures and 
some relationships between them.

Consider a linear order L = {l1, l2, . . . , lg} , with g ⩾ 2, arranged from the low-
est to the highest: l1 ≺ l2 ≺ · · · ≺ lg , where ≺ means “strictly less preferred than”. 
The terms of L can be alternatives, criteria, linguistic terms of an ordered qualitative 
scale1 (OQS), etc. Without loss of generality, in what follows we will say that L is 
an OQS.

2.1  The deck of cards method

In this subsection, we provide a brief presentation of the deck of cards method 
adapted to the context of this paper. For more details the reader can refer to Corrente 
et al. (2021).

Let ers ⩾ 0  be the number of blank cards inserted between lr and ls, whenever 
r ̸= s. First, insert blank cards in between consecutive terms:

	 l1 [e12] l2 · · · lr [er (r+1)] lr+1 · · · lg−1 [e(g−1) g] lg.

By convention, err = −1, for every r ∈ {1, 2, . . . , g}. 
The meaning of er (r+1) is as follows: 

1.	 er (r+1) = 0  means that the psychological distance between lr and lr+1 is the 
minimal between two different terms, i.e., the maximal proximity between two 
different terms, equal to the value of the unit (see below).

2.	 er (r+1) = 1  means that the psychological distance between lr and lr+1 is twice 
the unit.

3.	 er (r+1) = 2  means that the psychological distance between lr and lr+1 is three 
times the unit, and so on.

In the next step, insert blank cards in between non-consecutive pairs of the scale lev-
els. All this information can be arranged in a comparison table (see Table 1).

The following consistency condition plays a relevant role in some results of the 
paper (Propositions 2, 3 and 8). In particular, that condition determines the number 
of cards between each pair of non-consecutive terms of the OQS from the number 
of cards between consecutive terms. This fact makes it easier for agents to provide 
their perceptions of the proximity intensities between the objects considered, avoid-
ing inconsistencies.

Condition 1  ( Corrente et al. 2021, p. 741) Given a comparison table, Condition 1 
requires that the following equality must be verified:

	 ers + est + 1 = ert� (1)

1 For instance, {‘very bad’, ‘bad’, ‘fair’, ‘good’, ‘very good’, ‘excellent’}
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for all r , s, t ∈ {1 , 2 , . . . , g}  such that r < s < t.

Remark 1  If a comparison table satisfies Condition 1, then ert > ers  and ert > est, 
whenever 1 ⩽ r < s < t ⩽ g: since r < s < t, we have ers ⩾ 0 and est ⩾ 0. Then, 
by Condition 1, we obtain ert = ers + est + 1  and, consequently, ert > ers  and 
ert > est.

Example 1  Given an OQS L = {l1, l2, l3, l4}, consider that 1 card is inserted between 
l1 and l2, 2 cards are inserted between l2 and l3, and no cards are inserted between l3 
and l4, i.e., e12 = 1, e23 = 2  and e34 = 0. If Condition 1 is assumed, then we obtain

	

e13 = e12 + e23 + 1 = 4
e24 = e23 + e34 + 1 = 3
e14 = e12 + e24 + 1 = e13 + e34 + 1 = 5.

All this information is collected in Table 2.

2.2  Proximity measures

The notion of ordinal proximity measure, introduced by García-Lapresta and Pérez-
Román (2015), requires four conditions: exhaustiveness, symmetry, maximum prox-
imity and monotonicity.

Table 1  Comparison table
l1 · · · lr · · · ls · · · lt · · · lg

l1 ■

lr ■ ers ert

ls ■ est

lt ■

lg ■

l1 l2 l3 l4

l1 ■ 1 4 5
l2 ■ 2 3
l3 ■ 0
l4 ■

Table 2  Comparison table of 
Example 1
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In order to analyze the relationships between the deck of cards method and ordinal 
proximity measures, we now introduce the more general notion of proximity mea-
sure, by removing exhaustiveness.

A proximity measure on L  is a mapping that assigns an ordinal degree of proxim-
ity to each pair of terms of L. The ordinal degrees of proximity belong to a linear 
order ∆ = {δ1, δ2, . . . , δh}, with δ1 ≻ δ2 ≻ · · · ≻ δh. Note that the members of ∆ 
are not numbers, but ordinal degrees of proximity: δ1, for the maximum degree of 
proximity; δ2, for the second degree of proximity; and so on until δh, for the mini-
mum degree of proximity.

Definition 1  A proximity measure (PM) on L  with values in ∆ is a mapping 
π : L × L −→ ∆, where π(lr, ls) = πrs  represents the degree of proximity between 
lr and ls, satisfying the following conditions: 

1.	 Symmetry: πsr = πrs, for all r, s ∈ {1, 2, . . . , g}.
2.	 Maximum proximity: πrs = δ1 ⇔ r = s, for all r, s ∈ {1, 2, . . . , g}.
3.	 Monotonicity: πrs ≻ πrt  and πst ≻ πrt, if 1 ⩽ r < s < t ⩽ g.

Symmetry means that the ordinal degree of proximity between two terms does not 
depend on the order of comparison. Maximum proximity means that the maximum 
degree of proximity, δ1, is only reached when comparing a term with itself. And 
monotonicity means that, given three different terms of the scale arranged from the 
lowest to the highest, the ordinal degree of proximity between the first term and the 
second one is greater than the ordinal degree of proximity between the first and the 
third; and the ordinal degree of proximity between the second term and the third one 
is greater than the ordinal degree of proximity between the first and the third.

We shall assume that the minimum degree of proximity, δh, has been used in the 

pairwise comparisons: h = max
{

ρ(πrs) | r, s ∈ {1, 2, . . . , g}
}

, where ρ(δk) = k.
Note that, if π is a PM, by monotonicity we have πrs = δh  if and only if 

(r, s) = (1, g)  or (r, s) = (g, 1).

Definition 2  If π : L × L −→ ∆  is a PM that satisfies exhaustiveness: for every 
δ ∈ ∆, there exist lr, ls ∈ L  such that δ = πrs, we say that π is an ordinal proximity 
measure (OPM) on L.

Exhaustiveness means that all the ordinal degrees of proximity are used at least 
once. This fact prevents the use of proximity intensities: the degrees of proximity are 
purely ordinal.

Definition 3  A PM π : L × L −→ ∆  is uniform if πr(r+1) = πs(s+1)  for all 
r, s ∈ {1, 2, . . . , g − 1}, i.e., π12 = π23 = · · · = π(g−1) g, and totally uniform if 
πr(r+t) = πs(s+t)  for all r, s, t ∈ {1, 2, . . . , g − 1}  such that r + t, s + t ⩽ g.
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Uniformity means that the ordinal degree of proximity between consecutive terms is 
always the same. In turn, total uniformity means that the ordinal degree of proximity 
between terms with the same jump is always the same.

Remark 2  For each g ⩾ 3, there is one and only one totally uniform OPM (see Gar-
cía-Lapresta et al. 2018, Remark 6) and it is metrizable (see García-Lapresta et al. 
2018, Prop. 4).

If π : L × L −→ ∆  is the totally uniform OPM on L, then h = g  and 
πr (r+s) = δs+1  for all r, s ∈ {1, 2, . . . , g − 1}  such that r + s ⩽ g. In particular, we 
have πr (r+1) = δ2, πr1 = δr  and πrg = δg−r+1, for every r ∈ {1, 2, . . . , g − 1}.

Every PM π : L × L −→ ∆  can be represented by a g × g  symmetric matrix 
with coefficients in ∆: (πrs), the proximity matrix associated with π.

Taking into account Definition 1, all the elements in the main diagonal are δ1. 
Since (πrs)  is symmetric, only its upper half will be shown:

	

(πrs) =




δ1 π12 π13 · · · π1(g−1) π1g

δ1 π23 · · · π2(g−1) π2g

· · · · · · · · ·
δ1 π(g−1)g

δ1


 .

Remark 3  The only difference between PMs and OPMs is exhaustiveness, which is 
only required in OPMs (Def. 2). Without exhaustiveness, there may be gaps between 
the ordinal degrees of proximity actually used, something that is not allowed in 
OPMs. This fact is illustrated in the following example.

Consider an individual that compares the closeness between Lisbon, Madrid and Milan 
(they are in a straight line). If this individual knows the distances between those three cit-
ies, she/he can define a PM as π( Lisbon , Madrid) = δ2, π( Madrid , Milan) = δ4  
and π( Lisbon , Milan) = δ5. But if that individual only is confident that Madrid is 
closer to Lisbon than to Milan, but not the real distances, then she/he only can show 
the ordinal proximities through the OPM defined as π( Lisbon , Madrid) = δ2, 
π( Madrid , Milan) = δ3  and π( Lisbon , Milan) = δ4.
A relevant family of OPMs is the one of metrizable OPMs (MOPMs). They were 
introduced by García-Lapresta et al. (2018) and they use linear metrics on OQSs.

An individual whose perceptions about the ordinal proximities between the terms 
of an OQS are represented by a MOPM behaves as if she/he had in mind a linear 
metric on the OQS. We note that the family of linear metrics is a proper subset of the 
family of metrics (see García-Lapresta et al. 2018, Prop. 1).

Definition 4  (García-Lapresta et al. 2018, Def. 2). A linear metric on L  is a mapping 
d : L × L −→ R  satisfying the following conditions for all r, s, t ∈ {1, 2, . . . , g}: 

1.	 d(lr, ls) ⩾ 0.
2.	 d(lr, ls) = 0 ⇔ lr = ls.

1 3
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3.	 d(ls, lr) = d(lr, ls).
4.	 d(lr, lt) = d(lr, ls) + d(ls, lt), if r < s < t.

It is worth noting that every linear metric on an OQS is determined in a univocal way 
from the distances between consecutive terms of the OQS (see García-Lapresta et al. 
2018, Remark 1).

Definition 5  (García-Lapresta et  al. 2018, Def.  3). An OPM π : L × L −→ ∆  
is metrizable if there exists a linear metric d : L × L −→ R  such that 
πrs ≻ πtu ⇔ d(lr, ls) < d(lt, lu), for all r, s, t, u ∈ {1, 2, . . . , g}. We say that π 
is generated by d.

Metrizable proximity measures (MPMs) can be defined in the same way of MOPMs, 
but considering PMs instead of OPMs. Note that for g = 3, 4, 5, 6, the number of 
MOPMs is 3, 25, 473 and 18,262, respectively. However, there are infinitely many 
MPMs in all cases.

2.3  Relationships between deck of cards and proximity measures

In this subsection we show that the deck of cards method is very related to the PM’ 
approach.

In the following result, we justify that each comparison table generates a PM.

Proposition 1  Given a comparison table, the mapping π : L × L −→ ∆  defined as 
ρ(πrs) = ers + 2  is a PM on L.

Proof  Symmetry is satisfied by definition.

Maximum proximity: πrs = δ1 ⇔ ers = ρ(πrs) − 2 = −1 ⇔ r = s.
Monotonicity: By Remark 1. � □

Example 2  Applying Proposition 1 to the comparison table of Example 1, we obtain 
the PM associated with the following proximity matrix

	

A342 =




δ1 δ3 δ6 δ7
δ1 δ4 δ5

δ1 δ2
δ1


 ,

that is one the MOPMs appearing in (García-Lapresta et al. 2018, page 154).
In the following result, we justify that each comparison table satisfying Condi-

tion 1 generates a MOPM.

Proposition 2  Given a comparison table satisfying Condition  1, the mapping 
d : L × L −→ R  defined as d(lr , ls) = ers + 1  is a linear metric on L  and, conse-
quently, it defines a MOPM on L.

1 3
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Proof  1.	d(lr, ls) ⩾ 0, by definition.
2.	 d(lr, ls) = 0 ⇔ ers = −1 ⇔ lr = ls, by definition.
3.	 d(ls, lr) = d(lr, ls), by definition.
4.	 d(lr, lt) = ert + 1 = ers + est + 2 = d(lr, ls) + d(ls, lt), if r < s < t.

Taking into account (García-Lapresta et  al. 2018, Prop.  2), the linear metric, 
d, generates an MOPM π : L × L −→ ∆  on L, being π exhaustive such that 
πrs ≻ πtu ⇔ d(lr, ls) < d(lt, lu), for all r, s, t, u ∈ {1, 2, . . . , g}. � □

In the following example, we show how Proposition 2 can be applied. Starting 
from a comparison table that satisfies Condition 1, we calculate the distances between 
the terms of the OQS provided by the linear metric that appears in Proposition 2, and 
how the MOPM is generated from these distances.

Example 3  Consider the first example of (Corrente et al. 2021, 5.1) with the compari-
son table shown in Table 3.

In Table 4 we show the distances between the terms of the OQS L and the ordinal 
degrees of proximity between them, arranged from lowest to highest number of blank 
cards.

Thus, Table  3 generates the MOPM associated with the following proximity 
matrix:

	




δ1 δ4 δ6 δ7 δ9
δ1 δ3 δ4 δ8

δ1 δ2 δ6
δ1 δ5

δ1


 .

ers d(lr, ls) πrs δ

0 1 π34 δ2
1 2 π23 δ3
2 3 π12 π24 δ4
3 4 π45 δ5
4 5 π13 π35 δ6
5 6 π14 δ7
6 7 π25 δ8
9 10 π15 δ9

Table 4  Ordinal degrees of 
proximity in Example 3
 

l1 l2 l3 l4 l5

l1 ■ 2 4 5 9
l2 ■ 1 2 6
l3 ■ 0 4
l4 ■ 3
l5 ■

Table 3  Comparison table of 
Example 3
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In the following result, we justify that each PM that provides a linear metric from 
the ordinal degrees of proximity, in a specific way, generates a comparison table that 
satisfies Condition 1.

Proposition 3  Given a PM π : L × L −→ ∆, if the mapping d : L × L −→ R  
defined as d(lr , ls) = ρ(πrs) − 1  is a linear metric on L, then the comparison table 
defined as ers = ρ(πrs) − 2  satisfies Condition 1.

Proof  ers + est + 1 = d(lr, ls) − 1 + d(ls, lt) − 1 + 1 = d(lr, lt) − 1 = ert, for all 
r, s, t ∈ {1, 2, . . . , g}  such that r < s < t. � □

Example 4  Consider the OQS L = {l1, l2, l3, l4}  is equipped with the PM

	 π : L × L −→ ∆ = {δ1, δ2, . . . , δ14}

with associated proximity matrix

	




δ1 δ5 δ8 δ14
δ1 δ4 δ10

δ1 δ7
δ1


 .

Note that π is not an OPM, because it is not exhaustive: 
δ2, δ3, δ6, δ9, δ11, δ12, δ13 /∈ π(L × L) .

It is easy to see that the mapping d : L × L −→ R  defined as d(lr, ls) = ρ(πrs) − 1  
is a linear metric on L  and the comparison table shown in Table  5, defined as 
ers = ρ(πrs) − 2, satisfies Condition 1.

Taking into account Condition 1, we now introduce a similar condition in the set-
ting of proximity measures.

Condition 2  A PM π : L × L −→ ∆  is consistent if ρ(πrt) = ρ(πrs) + ρ(πst) − 1 , 
for all r , s, t ∈ {1 , 2 , . . . , g}  such that r < s < t.

It is obvious that for g = 3, the 3 MOPMs are consistent. However, for g = 4, 
only 10 out of the 25 MOPMs are consistent: A222, A′

223, A224, A232, A233, A243, 
A′

322, A332, A342  and A422 (these proximity matrices can be found in García-Lapre-
sta et al. 2018, pp. 154-155).

Definition 6  Given two PMs π : L × L −→ ∆  and π′ : L × L −→ ∆′, we say that they 
are ordinally equivalent if πrs ≻ πtu ⇔ π′

rs ≻ π′
tu, for all r, s, t, u ∈ {1, 2, . . . , g}.

l1 l2 l3 l4

l1 ■ 3 6 12
l2 ■ 2 8
l3 ■ 5
l4 ■

Table 5  Comparison table of 
Example 4
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In the following result, we justify that each proximity measure has associated a 
unique equivalent metrizable ordinal proximity measure.

Proposition 4  If π : L × L −→ ∆  is a PM, then there exists a unique MOPM 
π′ : L × L −→ ∆′  that is ordinally equivalent to π. We say that π′ is the MOPM 
associated with π.

Proof  Given a PM π : L × L −→ ∆, let d : L × L −→ R  defined 
as d(lr, ls) = ρ(πrs) − 1. Taking into account (García-Lapresta et  al. 
2018,  Remark 1), let π′ : L × L −→ ∆′  be the only MOPM generated by 
d(l1, l2), d(l2, l3), . . . , d(lg−1, lg). Then, we have

	π
′
rs ≻ π′

tu ⇔ d(lr, ls) < d(lt, lu) ⇔ ρ(πrs) − 1 < ρ(πtu) − 1 ⇔ πrs ≻ πtu. �

Note that if two PMs are ordinally equivalent, then they share the same associated 
MOPM. This fact is illustrated if the following example. � □

Example 5  Consider L = {l1, l2, l3, l4}  and the PMs 
π : L × L −→ ∆ = {δ1, δ2, . . . , δ10}  and π′ : L × L −→ ∆′ = {δ1, δ2, . . . , δ8}  
with associated proximity matrices

	




δ1 δ4 δ5 δ10
δ1 δ2 δ7

δ1 δ6
δ1


 and




δ1 δ3 δ4 δ8
δ1 δ2 δ6

δ1 δ5
δ1


 ,

respectively.
Note that none of these PMs are OPMs because π and π′ are not exhaustive: 

δ3, δ8, δ9 /∈ π(L × L)  and δ7 /∈ π′(L × L).
Both PMs are ordinally equivalent, because π23 ≻ π12 ≻ π13 ≻ π34 ≻ π24 ≻ π14  

and π′
23 ≻ π′

12 ≻ π′
13 ≻ π′

34 ≻ π′
24 ≻ π′

14.
Taking into account the distances between consecutive terms, through 

d(lr, ls) = ρ(πrs) − 1, we have that the MOPM associated with both π and π′ is the 
MOPM π′′ : L × L −→ ∆′′ = {δ1, δ2, . . . , δ7}  with associated proximity matrix

	




δ1 δ3 δ4 δ7
δ1 δ2 δ6

δ1 δ5
δ1


 .

3  Assigning scores to the terms of ordered qualitative scales

In this section we show how to determine a value or score with the deck of cards 
method as well as with a proximity measure method. We also present a theoretical 
proof of the similarities between the two methods.
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3.1  The deck of cards method

In what follows we briefly present the computations of the deck of cards method to 
assign scores to the terms of an OQS L = {l1, l2, . . . , lg}, in a similar way to Cor-
rente et al. (2021): 

1.	 Count the number of units between l1 and lg: 

	
c =

g−1∑
s=1

(
es (s+1) + 1

)
.

2.	 Consider Sdc
w (l1) = 0.

3.	 Compute the value of each unit: 

	
α = 100

c
.

4.	 Compute the value of the remaining scale levels as follows by taking into account 
the (r, s) cells of the diagonal next to the main diagonal: 

	
Sdc

w (lr) = α ·
r−1∑
s=1

(
es (s+1) + 1

)
, r = 2, . . . , g.

Note that Sdc
w (lg) = 100.

3.2  Proximity measures

García-Lapresta and González del Pozo (2023) introduce and analyze several scoring 
functions in the setting of OQSs.

Definition 7  (García-Lapresta and González del Pozo 2023) Given an OQS 
L = {l1, l2, . . . , lg}, a scoring function on L is a function S : L −→ R  satisfying 
the following conditions for all r, s ∈ {1, 2, . . . , g}: 

1.	 S(lr) < S(ls) ⇔ r < s.
2.	 If π is the totally uniform OPM on L, then there exists λ > 0  such that 

S(lr) = S(l1) + (r − 1) · λ.

We now generalize some of the scoring functions appearing in García-Lapresta and 
González del Pozo (2023) from the framework of MOPMs to the one of PMs, with 
values within the range [0, 100].

The first scoring function, Sw, is based on the comparison between each linguistic 
term and the worst linguistic term, l1 (see Fig. 1).
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Proposition 5  If L = {l1 , l2 , . . . , lg}  is an OQS equipped with a PM 
π : L × L −→ ∆, then the function Sw : L −→ R  defined as follows

	
Sw(lr) = 100

h − 1
· (ρ(πr1) − 1)

is a scoring function on L.

Proof  Obviously, Sw(l1) = 0. By monotonicity, we have

	 r < s ⇔ πr1 ≻ πs1 ⇔ ρ(πr1) < ρ(πs1).

Then, Sw(lr) < Sw(ls) ⇔ r < s  and, consequently, the first condition is satisfied.
If π is the totally uniform OPM on L, taking into account Remark 2, we have

	
Sw(lr) = 100

g − 1
· (ρ(πr1) − 1) = (r − 1) · 100

g − 1
.

Hence, the two conditions of scoring functions are satisfied. � □
The second scoring function, Sb, is based on the comparison between each lin-

guistic term and the best linguistic term, lg  (see Fig. 2). Under a different approach 
to the present paper, these comparisons are in the basis of the group decision-making 
procedure introduced and analyzed by García-Lapresta and Pérez-Román (2018).

Proposition 6  If L = {l1 , l2 , . . . , lg}  is an OQS equipped with a PM 
π : L × L −→ ∆, then the function Sb : L −→ R  defined as

	
Sb(lr) = 100

h − 1
· (h − ρ(πrg))

is a scoring function on L.

Proof  By monotonicity, we have

Fig. 2  Scoring function Sb (García-Lapresta and González del Pozo 2023, Fig. 1)

 

Fig. 1  Scoring function Sw  (García-Lapresta and González del Pozo 2023, Fig. 2)
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	 r < s ⇔ πsg ≻ πrg ⇔ ρ(πsg) < ρ(πrg).

Then,

	 Sb(lr) < Sb(ls) ⇔ h − ρ(πrg) < h − ρ(πsg) ⇔ ρ(πsg) < ρ(πrg) ⇔ r < s.

Thus, the first condition is satisfied.
If π is the totally uniform OPM on L, taking into account Remark 2, we have

	
Sb(lr) = 100

g − 1
· (g − ρ(πrg)) = 100

g − 1
· (g − (g − r + 1)) = (r − 1) · 100

g − 1
.

Hence, the two conditions of scoring functions are satisfied. � □
The third scoring function, Sbw, is based on the comparison between each linguis-

tic term and the best and worst linguistic terms, lg  and l1 (see Fig. 3). This approach 
is related to the TOPSIS method (see Hwang and Yoon (1981)), discrete choice tasks 
(see Finn and Louviere (1992) and Marley and Louviere (2005)), voting systems (see 
García-Lapresta et al. (2010)) and the Best Worst Method (see Rezaei (2015)).

Proposition 7  If L = {l1 , l2 , . . . , lg}  is an OQS equipped with a PM 
π : L × L −→ ∆, then the function Sbw : L −→ R  defined as

	
Sbw(lr) = 50 ·

(
1 + ρ(πr1) − ρ(πrg)

h − 1

)

is a scoring function on L.

Proof  First condition:

⇒) If Sbw(lr) < Sbw(ls), then we have ρ(πr1) − ρ(πrg) < ρ(πs1) − ρ(πsg)  
and, consequently, ρ(πr1) + ρ(πsg) < ρ(πs1) + ρ(πrg). Obviously, 
r ̸= s. Suppose, by way of contradiction, that r > s. By monotonicity, πs1 ≻ πr1  
and πrg ≻ πsg . Then, ρ(πs1) < ρ(πr1)  and ρ(πrg) < rho(πsg). Consequently, we 
have ρ(πs1) + ρ(πrg) < ρ(πr1) + ρ(πsg), which is a contradiction.

⇐) If r < s, we have πr1 ≻ πs1  and πsg ≻ πrg . Then, ρ(πr1) < ρ(πs1)  and 
ρ(πsg) < πrg . Consequently, we have ρ(πr1) − ρ(πrg) < ρ(πs1) − ρ(πsg). Thus, 
Sbw(lr) < Sbw(ls).

Second condition: Let π be the totally uniform OPM on L. Note that Sbw(l1) = 0. 
By Remark 2, we have

Fig. 3  Scoring function Sbw  (García-Lapresta and González del Pozo 2023, Fig. 3)
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Sbw(lr) = 50 ·

(
1 + ρ(δr) − ρ(δg−r+1)

g − 1

)
= 50 ·

(
1 + r − g + r − 1

g − 1

)
= (r − 1) · 100

g − 1
.

Hence, the two conditions of scoring functions are satisfied. � □
Note that Sw(lg) = Sb(lg) = Sbw(lg) = 100  and, consequently, 

Sw(lr), Sb(lr), Sbw(lr) ∈ [0, 100]  for every r ∈ {1, 2, . . . , g}. We also note that 

Sbw(lr) = Sb(lr) + Sw(lr)
2  for every r ∈ {1, 2, . . . , g}.

Remark 4  The three scoring functions Sw, Sb and Sbw are different. For example, 
consider the OQS L = {l1, l2, l3, l4, l5}  equipped with the MOPM that has the fol-
lowing associated proximity matrix

	




δ1 δ2 δ6 δ9 δ11
δ1 δ3 δ7 δ10

δ1 δ5 δ8
δ1 δ4

δ1


 .

This MOPM can be visualized in Fig. 4.
Table 6 shows the scores obtained by the five terms of L according to the scoring 

functions Sw, Sb and Sbw.
Note that the three scoring functions provide different scores to l3 and l4. Since 

Sbw is the average of Sw and Sb, it can be considered more balanced than the other 
two.

In the following result we justify that, under some assumptions, the scores given 
by the deck of cards and the ones provided by the scoring functions Sw, Sb  and Sbw  
coincide.

Proposition 8  Given a comparison table satisfying Condition 1, if π : L × L −→ ∆  
is the PM defined as ρ(πrs) = ers + 2 , then Sdc

w = Sw = Sb = Sbw .

Proof  It is easy to check that π is a PM on L.

By Condition  1, we have 
r−1∑
s=1

(
es (s+1) + 1

)
= e1r + 1 = ρ(π1r) − 1. In 

particular,

	
c =

g−1∑
s=1

(
es (s+1) + 1

)
= e1g + 1 = ρ(π1g) − 1 = h − 1.

l1 l2 l3 l4 l5
Sw 0 10 50 80 100

Sb 0 10 30 70 100

Sbw 0 10 40 75 100

Table 6  Scores 
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Then,

	
Sdc

w (lr) = α ·
r−1∑
s=1

(
es (s+1) + 1

)
= 100

h − 1
· (ρ(πr1) − 1) = Sw(lr).

On the other hand,

	

Sdc
w (lr) = α ·

r−1∑
s=1

(
es (s+1) + 1

)
= α ·

(
g−1∑
s=1

(
es (s+1) + 1

)
−

g−1∑
s=r

(
es (s+1) + 1

)
)

=

α · (h − 1 − (erg + 1)) = α · (h − 1 − (ρ(πrg) − 1)) = 100
h − 1

· (h − ρ(πrg)) = Sb(lr).

Since Sdc
w (lr) = Sw(lr) = Sb(lr), we also have Sdc

w (lr) = Sbw(lr). � □
The previous result shows the importance of Condition 1. Considering the way a 

PM is generated from a comparison table provided by Proposition 1, in Proposition 8 
we have shown that Condition 1, introduced by Corrente et al. (2021), ensures that 
the four scores considered in this paper coincide.

4  Concluding remarks

The theoretical comparison presented in this paper between the deck of cards method 
and the proximity measures method represents a significant contribution to the field 
of Multiple Criteria Decision Analysis (MCDA). By focusing on the construction of 
an interval scale within the range of 0-100, we have demonstrated that, under cer-
tain fundamental assumptions, the scores or values derived from both methods are 
the same. This result underscores the robustness and reliability of these methods in 
quantifying preferences and facilitating decision-making processes within complex 
decision environments.

Moreover, our findings underscore the pivotal role of the deck of cards method 
and the proximity measures method within the MCDA framework, particularly in 
the context of building scoring functions. These methods serve as suitable tools for 
decision-makers seeking to systematically evaluate alternatives across multiple cri-
teria and arrive at informed decisions that align with their preferences. In particular, 
the additive Multi-Attribute Value Theory (MAVT) model (Keeney and Raiffa 1976) 
stands to benefit significantly from the insights provided by these methods, offering a 
structured approach, which can be used into a coherent decision-making framework. 
An application of the deck of cards method to design a MAVT procedure can be seen 
in Figueira et al. (2023).

Looking ahead, several promising avenues for future research emerge from our 
investigation. First, there is a compelling need to explore the design and implementa-
tion of a proximity measure method for computing criteria weights, thereby establish-
ing a coherent linkage with the weights obtained through the deck of cards method. 
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This endeavour promises to enhance the consistency of decision-making processes, 
fostering greater transparency and accountability.

Furthermore, the development of an additive MAVT model grounded in proximity 
measures represents a fertile area for future inquiry, offering new perspectives and 
methodologies for addressing complex decision problems characterized by diverse 
and often conflicting objectives. By leveraging the insights gleaned from the theo-
retical comparison between the deck of cards method and the proximity measures 
method, we can unlock new pathways for refinement within the realm of MCDA.

Additionally, our intention to explore the comparison of the two methods under 
conditions where more comprehensive information is available than that provided by 
the diagonal of the deck of cards method holds significant promise for advancing our 
understanding of their respective strengths and limitations. By delving deeper into 
the nuances of these methods and their interactions with varying degrees of infor-
mational granularity, we can glean valuable insights into their applicability across 
diverse decision contexts and stakeholder preferences.

In summary, the conclusions drawn from our theoretical comparison not only 
deepen our understanding of the deck of cards method and the proximity measures 
method but also catalyze further inquiry and innovation within the field of MCDA in 
those aspects where agents must show their perceptions about the closeness between 
objects in a non-numerical way.
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