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Abstract

The aim of this paper is to provide an explicit basis of the miniversal deformation of a
monomial curve defined by a free semigroup—these curves make up a notable family
% of complete intersection monomial curves. First, we dispense a general decompo-
sition result of a basis B of the miniversal deformation of any complete intersection
monomial curve. As a consequence, we explicitly calculate B in the particular case
of a monomial curve defined from a free semigroup. This direct computation yields
some estimates for the dimension of the moduli space of the family %’.
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1 Introduction

Let (C,0) C (C&,0) be a germ of irreducible complex monomial curve singularity.
This means that C can be defined through a parameterization C : (1%, %' ..., %)
where the set of exponents {ag, a1, ..., ag} C N generates a semigroup with finite
complement over N and satisfies gcd(ao, ay, ..., ag) = 1. In particular, this is equiv-
alent to the fact that the coordinate ring of the curve is isomorphic to the semigroup
algebra C[I'] = @, Ct* C C[r] defined by the numerical semigroup

I'=aN+aN+---+a;N=(ap,a1,...,a).

The module TC1 of first order infinitesimal deformations of a monomial curve C
plays a central role in the study of two important moduli problems. It has a natural
Z—graded structure, i.e. T! = ®D, <7 Té (n). For the definition of first order infinites-
imal deformations and further details, see for example Greuel et al.[13, Chapter II,
Sect. 1.4]; see also the first author [1, Sect. 2.3] and Buchweitz [3] for the specific
case of monomial curves and the definition of the natural grading of TCI. Let us briefly
summarize the context and state of the art of each problem.

Regarding the first problem, consider a smooth algebraic curve X with genus g and
fix a point p € X. The Weierstrall semigroup of X at p is defined as

r —r=lnen-: there exists a meromorphic function defined on X,
P " holomorphic on X \ p with a pole of degree h at p

One can then define the moduli space ./, 1 of pointed smooth algebraic curves (X, p)
of genus g (see for example Deligne & Mumford [8]), i.e. the set of isomorphism
classes of pointed smooth algebraic curves (X, p) with its natural scheme structure.

In his seminal work [17], Pinkham showed that the subscheme /// 1 of M1 of
isomorphism classes of pointed smooth algebraic curves (X, p) with prescrlbed Weier-
stral} semigroup I" is mapped bijectively to the negatively graded part of the module
of infinitesimal deformations of the monomial curve defined by the semigroup I'. Let
us be more precise; it is well known that the Weierstra3 semigroup I'j, is a numerical
semigroup (for a basic insight into Weierstral} semigroups the reader is referred e.g. to
the second author [14] and the references therein). Thus, Pinkham’s result [17, Theo-
rem 13.9] provides a bijection between .’ ; , and the C—vector space P, Zoo TC1 (n).

The study of .Z gF’ | has led to numerous results, far too many to list comprehensively.
In what follows, we summarize the main known results and refer to the cited litera-
ture for further information, while acknowledging that some contributions may not be
mentioned, not deliberately. In [22], Stohr provided a description of ./, ; | for a sym-
metric semigroup I, i.e. the monomial curve is a Gorenstein curve, in terms of Grobner
bases and the analysis of the syzygies of the defining ideal of the monomial curve.
Deepening in that description, Contiero and Stohr [6] provided a method to obtain
upper bounds for the dimension of this moduli space for symmetric semigroups in
terms of the combinatorics of the semigroup. In [20], Rim and Vitulli provided a clas-
sification of negatively graded semigroups, which is a particular family of numerical
semigroups for which Té has no positively graded part, and provided some formulas
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for the dimension of .Z Fl in those cases. Some other noteworthy results to mention
are those by Nakano [15], Polishchuk [18], and Stevens [21], which follow similar
ideas to those provided in Stohr’s work. Lastly, the work by Buchweitz [3] computes
the dimensions of the corresponding graded components of Té using a rather intricate
combinatorial formula in terms of some combinatorial invariants of the semigroup.

For the description of the second problem, consider a germ (C, 0) C (Cz, O) of an
irreducible complex plane curve singularity. Let R denote its local ring at the origin
and let R >~ C[ ¢] be its normalization. The normalization morphism R < R induces
a discrete valuation v : R — Z from which § = v(R) has a natural structure of a
finitely generated subsemigroup of the semigroup (N, +) of natural numbers with 0
element, which is in fact a complete topological invariant of the curve (see Zariski
[25] for details). The moduli space of irreducible plane curve singularities with fixed
semigroup is the set of analytic classes (modulo biholomorphisms of C{x, y}) of
irreducible plane curves with fixed semigroup. Teissier [23] proved that any analytic
class can be realized as a fibre of a positively graded deformation of the monomial curve
C*% with semigroup algebra C[S]; this means that the understanding of b, €Zoo Té s(n)
is a good tool to understand that moduli space. He also showed that, in this particular
case, CS is in fact a complete intersection monomial curve. Following these ideas,
Cassou-Nogues [5] provided a monomial basis of Té ¢ in an iterative way using the
combinatorial properties of the semigroup of an irreducible plane curve. Moreover,
she supplied a closed formula for the dimension of the positively graded part of TC1 s
in terms of the generators of the semigroup.

Our work can be understood as a natural continuation of Cassou-Nogues paper [5],
as our initial aim is to address the following question: how general can her results [5,
Theorems 2 and 3] be? As already said, those theorems are stated for the monomial
curve associated to the semigroup of an irreducible plane curve singularity, which is a
particular example of a complete intersection monomial curve. In order to generalize
these theorems, we introduce a new ingredient in the topic which up to the authors’
knowledge has not been exploited yet. The new ingredient builds upon the approach
introduced by Delorme [9], who proposed a combinatorial decomposition of the semi-
group algebra of a complete intersection monomial curve, yielding a particularly useful
ordering of its implicit equations.

A numerical semigroup I' = (ao, ay, ..., ag) is said to be a complete inter-
section semigroup if its semigroup algebra is a complete intersection. Set the ring
R = Clug, uy, ..., ug] and write CT for the complete intersection monomial curve
with ‘coordinatering’ R/I, where I is the ideal of R generated by f1, ..., fg. Setting
appropriate coordinates in a neighborhood of 0 € C8*!, the curve C' is parametrically
defined by u; = t% fori =0, 1, ..., g. For complete intersection curves, Tjurina [24]
(see also [13]) showed that Tclr is isomorphic as C—-algebra to

Cluo, ..., ugl®
(g’bﬁ)”uuo,...,ug]ﬁl + (fir- s fOCluo, ... ugl8

We realized that the order provided by Delorme of the implicit equations of the curve
reflects in a very good structure of the Jacobian matrix. In fact, it provides a block
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decomposition on it (see Sect. 2 for further details). In light of these considerations,
the purpose and main results of this paper can be summarized in three main points:

(1) To give a general decomposition in “separate variables” of a basis B of the miniver-
sal deformation of any complete intersection monomial curve following Delorme’s
decomposition of the semigroup algebra. This is achieved in Theorem 2.3.

(2) To study the previous decomposition in order to compute a monomial basis of the
miniversal deformation of a complete intersection. Such a basis is obtained for the
particular case of a free monomial curve, see Theorem 2.7. This constitutes a spe-
cific, yet sufficiently general, family within the category of complete intersection
monomial curves in which the combinatorics inherent to the problem becomes
more accessible.

(3) Using Pinkham’s bijection, to study recursive formulas for the dimension of the
moduli space . ; | of a free monomial curve from the generators of the free
numerical semigroup I" associated to the curve. Sharp upper and lower bounds
for this dimension are obtained in Theorem 3.4 as well as closed formula in some
particular cases: Theorem 3.6 and Theorem 3.8.

We conclude this introduction by setting forth the conventions and notation that will
be useful to the reader in the remainder of the paper.

Conventions and notation.

e The set of natural numbers N consists of nonnegative integer numbers. For every
a, b € N we define
[a,b] :={neN:a <n <b}.

e We write C* = C \ {0} for the multiplicative group of the units of the field C.

e The vectorsey, ..., e, denote the canonical basis of Cluo, . .., ug]8 as well as the
standard basis of Z8.

e Usually we will work in a graded polynomial ring Cluo, ..., ug] = @jes
Cluo, ..., ugl; with S C N and deg(u;) = a; for some a; € N. For a homo-
geneous element f € Cluo, ..., ug]; for some j we denote deg(f) = j =
apap + - - - + agag for some a; € N.

2 Deformations of complete intersection monomial curves

This section will be devoted to provide two of our main results. We will start with
some basic definitions as well as recall the decomposition theorem of Delorme [9]
about the semigroup algebra of a complete intersection monomial curve. Moreover,
we will prove the decomposition theorem of the basis of the miniversal deformation
of a complete intersection monomial curve. Finally, we will use the decomposition
Theorem 2.3 to provide an explicit basis of the miniversal deformation of a monomial
curve associated to a free numerical semigroup.
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2.1 Complete intersection monomial curves

LetT" = {ap, a1, ..., ag) be a numerical semigroup. Let ¢ € C be a local coordinate
of the germ (C, 0) and let (uo, u1, ..., ug) € C8*! be local coordinates of the germ
(Cs +1 0). The monomial curve (C r 0) c (Cs 1 0) defined via the parameterization

Cl:u; =14, i €[0,g]

is called the monomial curve associated to I'. Write C[C'] := C[" : v €
I'], which coincides with the semigroup algebra C[I'] associated to I". We will use
either notation depending on whether we want to highlight the geometric or algebraic
interpretation. The numerical semigroup I' is said to be complete intersection if C[I"]
is a complete intersection; this means that, if I' = {(ao, ..., ag) is generated by g + 1
elements, then we have an exact sequence

Cluo, . .., ugl® — Cluo, ..., ug] > C[C"] — 0, @2.1)

withkerg = (f1,..., fg) and f1, ..., f, defining a regular sequence. (Observe that
the mapping Cluo, ..., ugl® — Cluo, ..., ugl is juste; — f; foreveryi € [1, g]).
In particular, this implies that the monomial curve (CT', 0) is a complete intersection.
For a comprehensive synthesis of the existing results on monomial curves that arise as
complete intersections (and, in particular, the details pertaining to complete intersec-
tion curves) we guide readers to the survey [1] and its cited bibliography for additional
references and context.

In 1976, Delorme [9, Lemme 7] showed the following combinatorial characteri-
zation of a complete intersection numerical semigroup. Set A := {ao, ..., ag}; for
I’ = (A) we have that T" is a complete intersection numerical semigroup if and only
if there exists a partition A = A Ll A; of the set of generators A with A # @ # A
such that the following two conditions holds:

(1) C[I';] are complete intersections defined by I; := ker ¢;, where I'; stands for the
numerical semigroup I'4, /4, generated by the elements of A; divided by d; :=
gcd(Aj), fori = 1,2;

(2) C[I'] is defined by I} 4+ I, + (p), where {p) is a binomial ideal whose generator
has degree deg(p) = deg(f,) = lem(d1, d>).

More precisely, if we set g; := |A;| — 1, then g1 + g2 = g — 1 and we have the
exact sequences

Clxo, ...,
Clxo, ..., xg1%! —>(C[xo,...,xgl]ﬂ> [xo Tal ~C[I'i]— 0
I
Clyo, - -+ yg,l (22)
Clyo, ..., g, 152 = CIyo, .. ., yg1 BLY b 824 ~ Crz1— 0

In addition —as pointed out before— we can define a binomial p in separated
variables with total degree lcm(d, d2). Thus there is a natural decomposition of the
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semigroup algebra of I" in the form

CIr] = ClMl® (C[le’ 23)
()

where we write Cluo, ..., ug]l = Clxo, ..., Xg;3 Y0, ..., Yo .

Remark 2.1 The set of generators A of I' does not need to be a minimal generating
set.

2.2 Deformations

Before moving forward, we briefly recall some fundamental concepts and essential
terminology from the theory of curve deformations. A deformation of an isolated
singularity (X, 0) over a complex germ space (S, 0) is a pair (¢, i), where

1) ¢:(Z,0) — (S,0) is a germ of flat morphism.
(2) i :(X,0) = (¢~'(0), 0) is an isomorphism onto the special fibre.

Here, we say that (27, 0) is the total space, (S, 0) is the base space, and (Z5, 0) =
(X, 0) is the special fibre of the deformation.

In a somewhat informal sense, one says that ¢ : (Z7,0) — (S, 0) constitutes a
deformation of (X, 0). Notice that the point 0 around which we define the germs might
not have been chosen, so that we can think of a commutative diagram as

(X, x) ——= (2, x)

L

{pt} ———=(S.9)

The deformation ¢ is called versal if any other deformation v : (%¢/,0) — (T, 0)
is induced by ¢ by base change (T,0) — (S,0). A versal deformation is called
miniversal if it is versal and the base space S has minimal possible dimension. The
existence of a miniversal deformation for isolated singularities is a celebrated result
by Grauert [10]. The reader is refereed to [13, Part II, Sect. 1] for further details.

A useful point of view to study the singularity (X, 0) is the one given by the concept
of “first order deformations”, encoded as vector spaces T(]X,O) which can be understood

as linearizations of the deformations of a germ (X, 0). The writing T(lx’o) refers to the
fact that it can be identified —whenever it exists— with the Zariski tangent space to
the semiuniversal base of (X, 0); for further details, interested readers are referred to
[13]. Under the previous notation and in the particular case of a complete intersection
singularity (X, 0), the base space of the deformation (S, 0) is smooth so we can
identify it with the Zariski tangent space. Moreover, as we are only interested in the
dimension of the base space and the section is usually fixed, we will abuse notation to
refer to T(l)(’o) =THX).

In the particular case of a complete intersection monomial curve C r. (t%, ..., %)
defined by I = (f1, ..., fg), we can apply Tjurina’s theorem [24] which states that
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the base space of the miniversal deformation of (C r 0) is

Cluo, ..., ugl®

T'(C") = » 1 .
((,,,d"’_)l_]_(C[ld(),...,ug]g‘Ir + (f1,--s f)Clug, ..., ugls

Moreover, Pinkham [16] (see also Buchweitz & Greuel [4], Buchweitz [3], Deligne [7],
Rim [19]) showed that, for a complete intersection monomial curve CT, the dimension
of T1(CT) as a C—vector space equals the conductor of the semigroup, i.e.

dimc T'! (CF) =c():=minfvel : v+ NcCT}L
Even more, by a result of Greuel [11], as CT is a quasi-homogeneous complete inter-

section singularity, then ¢(I") = dim¢ T! (CF) =u (CF) where 1 (CF) is the Milnor
number associated to CT (see also [4]).

Considerabasis sy, ..., s; € Clug, ..., ugl of T1 (C'), wheres; = (s}, ..., s?)
fori € [1, r]. Then the miniversal deformation of CT can be described as follows:
Foru = (uo, u1,...,ug), w = (wg, wa, ..., wy) we define

Fi(u, w) = fi(w)+ Y wjs} (@),
j=1
2.4)

Folu, w) = fo(w)+ Y w;si (@)

j=1

andlet (Z7,0) :=V(F,..., Fy) C (C8H x C!, 0) be the zero set of Fy, . . ., Fg;

then the deformation defined by (Cr , 0) 5 (2,0 2 (C*, 0) is the miniversal
deformation of (C r 0), where i is induced by the inclusion and ¢ by the natural
projection. In fact, if one chooses deg(w;) = — deg(s;), then we endow the algebra
Cluo, ..., ug, wi, ..., we] with the unique grading for which deg(u;) = a; and the F;
are homogeneous with deg(F;) = deg(f;). Under this grading, we obtain a partition
of the base space CT into two parts. Define the sets

Pp:={jel{l,...,t}: deg(w;) < 0}
P_:={je{l,...,t}: deg(w;) > 0}.

Remark 2.2 Tt is worth noting that—when dealing with a deformation—we have the
parameter space with coordinates wi, ..., w; on the one hand, and the basis of T!
given by Theorem 2.7 on the other hand. Therefore, from the choice of the grading,
a parameter with negative weight provides a monomial with positive grading in 7'!.
This is the reason that motivates the definition of P4 and P_ as we will use them to
refer to positive/negative weight deformations. Observe that the way we have defined
these sets is then the opposite of the one given by Teissier in [23].
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Denote by 74 (I') := 4+ := |P4| and t_(I") := t_— := | P_|. Since there are no
w; of degree zero, we have the equality T = 7 + 7_. Moreover, there is a natural
action of the multiplicative group C* = C\ {0} over (2", 0) which is compatible with
the previous construction and that induces the natural action on ¢~'(0) = C'. The
notations introduced here will play a significant role in Sect. 3.

2.3 Decomposition of the base space a la Delorme

After this brief digression into deformation theory, we now return to our objective.
From the decomposition (2.3) of the semigroup algebra C[I'] it is easily deduced that
the Jacobian matrix presents a simple-to-describe block decomposition. Indeed, if we
setl; :=T'4,/4;, (h%, e, hé1) = [y and (hz, el héz) = I, then the Jacobian matrix
of the defining equations of CT has a block decomposition in terms of the Jacobian
matrices of C'i and an extra row in terms of the extra new relation as follows:

du j 03; 0 (i?y; ) ’
where we identify

1 1 1 2 2 2
fl =h ’ f2=h27 tee fgl :hg17 fg1+1 =h17 fg1+2=h2’ e fg1+g2 zhgz’

and f, = p1 + p2 for p1 = (3p/duq, ..., 90/dug,) and po = (3p/dug +1, ...,
0p/dug). The consideration of this block decomposition leads to the proof of the fact
that the base spaces of the miniversal deformations of C'# are contained in the base
space of the miniversal deformation of CT.

To do so, first observe that (31{’) Clug, ..., ug]f’”r1 is just the Cluo, ..., uglé-
ilij

submodule

Nr=<(8f1 y afé’),...,(af1 . 8fg)>c©[uo,...,ug]g. 2.5)

dug dug dug dug

Let us now define the Cluo, . . ., u,]%'—submodules

1 1 1 1
Nr, = 8h1,...,8hg1 R 8h1,...,8hg1 C Clxo, ..., xg, 1%,
9x0 9x0 0xg, 0xg,

ah? ah2 ah? dh2
Nr, = LU I L% ) cClyo, ..., yel®.
? <(8y0 9y0 0yg, 0xyg, “
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For each i = 1, 2 we have the canonical projections

8 81
71 : C[T]8 = @C[r]ej — C[r)¥ = @(C[F]ej,

j=1
81t82
7 :CIME > CIM¥2 = @ Cilley,
j=g1+l1

where the e; build the standard Z-basis. We shall denote by ti_l the maps

81 8
@D CIMlej s v 1 () = (v.0) e HCITe;

j=l j=1
81182 g

' @ CIllej 3 v 157 () = (0,v) e @ CITle;
Jj=g1+1 J=1

We are now ready to prove the first main result of the paper.

Theorem 2.3 Let I be a complete intersection numerical semigroup. Under the pre-
vious notation, write Nr := ¢(Nr) and N; := ¢;(Nr;) fori = 1,2. Then, the linear
maps 11, T2 induce the following injective morphisms

& : C[I'1¥' /Ny — C[I'1¥/Nr, @, : C[I'2]%2/N, — C[I']®/Nr,

Proof First we observe that

o= { (Sl (o))

j=1

g
is a submodule of @ C[I']e;. Hence, in order to compare N; with Nt we need first
j=1
to understand the relation between the maps ¢; and the map ¢. Thanks to the tensor
product decomposition of C[I'] we can write

p=mokpol(p1®¢), (2.6)

where A, is the multiplication by p in C[I';] ® C[I'2] and 7 is the canonical
projection. By the hypothesis, p is a regular element of C[I";] ® C[I"2] and thus yields
the exact sequence

= C[T r
0— C[I"]®C[I'7] ——) C[l]® C[T] = [ 1](?)((:[ 2] 0
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Therefore the following diagram commutes:

Cluo, . . ., ug] ———— C[CT] —— 0
2 . wors |
Clxo, -+ X 1@ Clyo, -, ¥ "= CIT11 @ CIT2] — 0.

Now we are ready to prove the statement. We will only check that @ is injective, as
the result for ®, may be handled in much the same way.

81
Let us denote by .4 := 71 (Nr), the submodule of @ C[I']le; which is generated
=1
as ’
g1 g1
. afj dfj
AT MY
81 okl 81 ohl
— JY,. J .
_<Z¢(axo)e,,...,Zq)(axgl)e, |
j=1 j=1

The equality follows from the identification x; = u; fori € [0, g1] and the fact that
ah;/au,- =0forje[g +1,gl
The previous considerations yield the commutative diagram

81
@B Cirie;
81 01802 81 mor, Bl . j=0
@C[uo ..... ugle; 129 @C[FIJ@)C[FZJej — @Clr]ej — —0
j= Jj=0 Jj=0 A
<1>/1/
i] ’] 81

C[I'1le;
a .o . 6_90 [T1le;
P cixo. ... xglej —— @ CIMile; —— '~ Ny — 0
j= j=0

As &y = 7 To @/, for the proof of the injectivity of ®; it is enough to prove the
injectivity of ®/. In order to show the injectivity of ®/ it is enough to prove that

ToApo0i(Ny) =N

however this follows by definition of Ny, which is

oh)
_<Z‘”‘<axo> Z‘”‘<8xg1>ej>’
j=1
and the fact that the map i is defined as z(xo, ..., xg;) = 2® 1 € Clup, ..., ugl. O
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Remark 2.4 Observe that Theorem 2.3 implies that the base spaces of the miniversal
deformations of C'! and CT2 are embedded in the miniversal deformation of CT .
Recall that T' (C™1) ~ C[T'118!/N; as Cluo, ..., ug, J-algebra and T'(C™2) ~
C[I'2182 /Ny as Clug 41, ..., ugl-algebra. As the maps @, @, are injective, we
can identify 7' (C'1) (resp. T'(C'2)) with its image by ®; (resp. ®;) so that
Tl(Crl) e T! (CFZ) is a Clu, ..., ugzl-submodule of T! (CF) . Hence it is pro-
vided an embedding of the corresponding miniversal deformations.

2.4 Miniversal deformation of a free semigroup curve

In this part, we will consider a particular class of complete intersection numerical
semigroups which are called ‘free semigroups’. Consider a numerical semigroup I'
generated (not necessarily minimally) by G := {ag, a1, ..., ag}. Assume that G sat-
isfies the condition

nia; € {ap, at, ..., ai—1), 2.7)

where n; := gcd(ag, a1, ..., ai—1)/ ged(aog, ai, ..., a;), foralli € [1, g]. A numer-
ical semigroup admitting a set of generators G satisfying (2.7) for all i > 1 was
named free numerical semigroup by Bertin and Carbonne [2]. Moreover, without loss
of generality we can further assume that n; > 1 foralli € [1, g]. We therefore define:

Definition 2.5 A numerical semigroup I' = (G) generated by a set G satisfying the
condition (2.7) foralli > 1 andn; > 1foralli € [1, g] is called free. The monomial
curve CT corresponding to a free numerical semigroup I" will be called free numerical
semigroup curve —or free semigroup curve in short.

LetT" = (ag, a1, . .., ag) be a free semigroup. From the condition (2.7), for each i
there exist numbers Z(’) . Z(l)l € N such that
nija; = E(i)a + -+ E(l) j 1
idi =ty Ao i—14%i— 1, i €1, ¢l (2.3)

Therefore, it is easy to see that the equations

n; l(l) l(l) Z(l)
f,-:u —uO “1 . 11_0 for i e[l,g] 2.9)

define the curve C". In this case, we will explicitly describe the C—basis of T!1(CT). To
do so, we need first to define some auxiliary sets parametrized by some distinguished
coefficients in the identities (2.8), as the following diagram points out:
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nia; = ZO ap

nya) = 50 ap + 5(2)

niaz = ﬂ(g)ao + C(g)al + C(x)

(€] () (4)

n4a4:€ a0+€ ay + £, a + €5

ngdg = E(()g)ao + E(g)al + Zég)az + - Z(g)zag 2+ E(g_)lag_l.
(1) :
To £, we assign the set

Eg, ={ko k) e N 1 0<ko = " =2 A ki e 10.m —21),

which depends on Z(()l) and n1; this corresponds to the simply plain box in the diagram
above.

In a next step, we need an iteration process to introduce a second auxiliary family
of sets as follows: for s € [2, g] we consider

1&‘3 {(ko, k) eN? @ ko e [o, - 1] A ki €[0,n) — 1]}

ﬂlj) = {0k e s ko€ e [0.6 = 1] A ki e 0.6~ 1]}

(These sets depend on the coefficients enclosed in a grey-shaded square and the

one with a yellow background corresponding to 6(12) in the preceding diagram). Now

Z(S)

we define the sets D’ | depending on the annihilation of £, °, namely
KI

o If ¢ =0, then Dy = 1&‘,3 fori €2, gl.

o If ¢\ #0, then Dy = 1<(” U I((,),forz €2, gl.

These base cases allow us to define 1terat1ve1y the sets D/m for s € [3, g] from
v 1
the construction of sets D;m fori e[l,g—1],jeli+2,g]withj—i>1.

To do so, we set for ¢ 61[3, g—1l,selt+1,¢g]
’(fn V= {(ko,--.,kz_l) €N kit €01 =11 A ko, ki) € Dy }
Iz((t’) V= {(kov coiski—) eN' kg € [0, Zt(s)] ] A

(ko= €8, k2 = ) eD;M}
=2
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Fort € [3,g— 1]and s € [t + 1, g] we finally define

140 if ¢

=0
(s) t—1 ’
515—2

/ p—
Dyw =

(=) (=) 4 p®
hio VLG 6D £,

We focus on the sets D’(A) (those corresponding to coefficients highlighted in

yellow in the diagram above) they have the following interpretation:

Lemma 2.6 Foreverys € [2, g], the set

ko -k -k _ks—1 | /
{uoou ke b (koukrs k) € DM}
o
is a system of generators of Clug, ..., usl/(f1,..., fs); the writing ug, uy, ..., ug

points out the classes by the canonical projection.

Proof The statement can be proved in much the same way as [5, Lemme 4]. m]

Finally, depending on the vanishing of E(_l , we define for s € [2, g]

D/, \max {(ko, ki,.... ks_1) € 1&1) ”} if ¢ =0,

A -2

D, =
esil

A 1

D/, \max {(ko,kl, cokson) € 15T ”} if €, #0,

where the maximal point is considered with regard to the lexicographical order in N*.
Thesets D) allow us to describe a basis of the quotient C-vectorspace C[I"]8/Nr:
s—1

Theorem 2.7 Let I' = (ao,ai,...,ay) be a free numerical semigroup. Consider
the standard basis given by the (column) unit vectors ey, ..., egs. A basis of the
C-vector space T' = C[I'|8/Nr consists of the images by the C-linear map

Cluo, ..., ugl®/Nr, — C[Fg+1]g+1/N]"g+l where Nr, is defined in eqn. (2.5) (and
similarly for Nr, ) of the following column vectors of monomials:

_k
o (@i i .. 72 ) eq, where (ko, k1) € E, iy ,and ky, € [0,n, — 1], m =
0 "1 72 g £y’

2,...,8
ko ki ko kg
o (”0 uyuy g )ez, where (ko, k1) € Deﬁz)’ and ky =0,...,n0 —2, k,, =
0,....np—1form=3,...,¢g
o (”0 u]fl ugz '-ﬁlg,g) em, where (ko ki, ..., km—1) € D, ; hereky € [0, ny, —2]
m—1
form=3,...,g —landk, €[0,n,y —1]form’ € [m + 1, gl.
o (ggo,zllq,;gz . ..g’;g) e, where (ko, k1, ... kg 1) € Do and kg € [0,ng =21
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Proof We will proceed by induction on the number of generators of the numerical
semigroup I'. Write I'y, = (ag, a1, ...,ap)forh =1,..., g

As base case, assume & = 1; here the claim is easy since the monomial curve is
the plane curve with equation fi(uo, 1) = “1 — “0 Therefore, as f1 is quasihomo-
geneous it belongs to the Jacobian ideal (d f1/dug, 0 f1/0u1) = (ual_1 ao 1) and

then
Cluo, u1]

ai—1 _ap—1
i)

Inthiscasewedenoteﬁ(() = a; and a C—basis of T'! (Crl)lsthesetiuooulf' o (ko, k1)

S E@él),n] }

T'(c™) =

Now suppose by induction that the result is true for 2 < g and let us assume we
are in the case i + 1. Recall that, since I',41 is a free semigroup, we may write
Th+1 = np+1Tn + ap+1N. Also, by Delorme [9, Proposition 10] we have c(T'j41) =
np+1¢(Cp)+(mpr1—1)(ap4+1—1), which according to Pinkham [ 16, Sect. 10] coincides
with the dimension of T'! (CF”“); observe that nj,+1 # 1 since 'y is free.

From now on, we will denote N;, := Nr,. Let us denote by %), the basis of the
C-vector space C[I';]"/ N, provided by induction hypothesis. Theorem 2.3 yields the
injective C-linear map

()
CIT1" /Ny = CITh1 1"+ / N1

Z — (z,0)

Then,
[#,0@ : 2e B, "k el0.me - 11}

is a set of C-linearly independent non-zero elements of (C[l"h+1]h+l /Np+1 whose
cardinality is np4+1¢c(I'y). Moreover, by induction hypothesis those are precisely the
set of vectors defined by parts (1), (2) and (3). Therefore, it remains to show that

ko k] k2 kh+l
(I/to l/t] u2 . uh 6h+1

for (ko, k1, ..., kn) € De<h+|) with k, € [0, nj, — 2] are (np4+1 — )(ap+1 — 1) non-

zero elements which together with the previous vectors build a system of generators
of C[Th 411" /Ny 1. .
By Lemma 2.6 we have that iy - - ﬁi” i, with (ko, ..., kp) € D’ e is a system

of generators of Clug, ..., up+11/(f1,---, fa+1). Observe that, as each fi is homo-
geneous of degree n;a;, our definition of D, i+1) from Dz(” +1) eliminates the unique
h h

element of Dé(h +1y that goes to 0 after taking quotient with Nj 1. Therefore, to con-
h

clude the proof we only need to show that the number of elements of Dé(h 4 1S apg.
h
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To prove that, we recall the definition of the sets D;(S) , namely
t—1

(=1 ep(s)
I o if¢,”, =0.
D/ . t -2
e T =D D it 69, £0
), 1), 1 #0.
fors > 2and ¢t =3, ...,s. From this definition it is easily seen that
D, |=n _1‘D/ ) ‘D (2.10)
‘ ), 1 43 ¢¢5D

Recall also that Zél) =aj/e1 = ay1/(ny---np4+1) and then

h+1) (h+1)
ﬁ( ap+ 4 ai
‘D N S O I and
¢ ny -« Mpyl
, a a
1 e N3-ccNp4d
Recursively, we can use eqn. (2.10) to show
Ctag+ o+ 00, ar ar
‘D o | = 0 =2 and D' =" b= -
& Ri—1- " Nhtl by €—1 M2 Mpy]

(2.11)
Finally, applying the previous computations to the case s =h + 1 andt = h + 1 and
the identity

= B+ g (h+1) h+1)
=L, “+ ¢, ¢,

Nh410h+1 ap—1+

we obtain ‘Déw +n| = any1. In this way, the number of vectors of the form (4) is
h

exactly the product (ny4+1 — 1)(ap+1 — 1), which is the desired conclusion. O

Remark 2.8 (1) Theorem 2.7 is a generalization of [5, Théoréme 3] in the sense that,
if I' is the value semigroup associated to a plane branch (hence irreducible), then our
Theorem 2.7 recovers [5, Théoreme 3].

(2) If we allow n; = 1 for some i € [1, g 4+ 1], then observe that there is no loss
of generality in the proof of Theorem 2.7. In that case the conductor in the iteration
remains constant and the induction is trivial by Theorem 2.3.

We illustrate Theorem 2.7 by showing an explicit construction of a basis of the
C-vector space C[I'g]¢ /N, .

Example 2.9 Set the sequence of positive integers A = (18,27, 21, 32). It is easily
seen that the sequence of (11, n2, n3) associated to A is (2, 3, 3) and that the numerical
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semigroup I'y = (A) generated by A is free, since

niar=2-27=3-18 = ¢{"ay,
npay=3-21=2-18+41-27 = ¢{%ao + ¢Pa (2.12)
nyaz=3-32=3-1840-27+2-21 = ¢ ag + £Va; + £ ar.

Now, let us describe a basis of the quotient C-vector space C[I" nE /Nr, taking into
account both Theorem 2.7 and eqns. (2.12). First we calculate the elements belonging
to the set Ez“) s this is

0 3

E,n, = {(ko,kl) eN? : ko=0,1 and k :0] —{(0,0), (1,0)}.
o -

After this base case, the following two steps are the computation of the elements in the
sets D e and D o But before that, we need to calculate the corresponding sets Il((lz)) ,

I ((12)), I ((2%)) 1 ((23)) (along with the set I (a)’ which is necessary for defining the set D; o
1tse1f requlred in the definition of Itff))) giving rise to them. We start computing the

elements in the set D (- In this particular case, as 6(2) =1 # 0, we have to calculate

1 1
Ilf(;), 12((;), D) and h(ﬂ(;)) = max | (ko, k1) € 1(<2))}

Ilfgz)):[(ko,kl)eNz c0<ko<t?—1=1and 05k15n1—1=1]
={(0,0), (0, 1), (1,0), (1, D}.

1<(‘;) = {0k e 1 0 ko — ¢ <) —1and 0 <k < € — 1}
={(2,0),(3,0), (4,0)}.

1 1 1
D5<2) = I(<2)> U I((z)) and h( ((z))) =(4,0).
This yields the set D2, namely
1
thﬁz) = {(0,0), (0, 1), (1,0), (1, 1), (2,0), (3, 0)}.

To conclude, we obtain the set D a) In this case, first we have to compute / ((;) and
0

D; 3 since Zf) = 0 and after the sets 12(23)), 12(23)), and D; 3> because Zg) # 0, and the
1 1 2 2
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2 2
vector h(Ilf;;)) ‘= max {(ko, ki, ko) € IZ(?)))}

ﬂ?)_{(ko,kl)eNz 0<ko <€ —1=2and O<k1<n1—l—l}

=1{0,0), (0, 1),(1,0), (1, 1), (2,0), (2, D}.

_
Dy =10

115(523)) Z{(ko’kl’kZ) €N’ : 0<ky<ny—1=2and (ko. ki) € D;zﬁz,)}

={(0,0,0), (0,0, 1), (0,0, 2),(0,1,0), (0, 1, 1), (0, 1, 2), (1,0, 0), (1, 0, 1),
(1,0,2),(1,1,0), (1,1, 1), (1, 1,2), (2,0,0), (2,0, 1), (2,0, 2), (2, 1, 0),
2,1,1),(2,1,2)}.

1
={(3,0,0),(3,0,1),(3,1,0),(3, 1, 1), (4,0,0), (4,0, 1), (4, 1,0,
(4,1,1),(5,0,0),(5,0,1),(6,0,0), (6,0, 1), (7,0,0), (7,0, D}.
Dy = 1@?2) U 1%{ and h(l((?)) = (7,0, 1).

As aresult, we get

D,s =1{(0,0,0), (0,0, 1),(0,0,2), 0, 1,0), (0, 1, 1), (0, 1, 2), (1,0, 0), (1, 0, 1),
2

(1,0,2),(1,1,0), (1,1, 1), (1, 1,2), (2,0,0), (2,0, 1), (2,0, 2), (2, 1, 0),
2,1,1),2,1,2),3,0,0),(3,0,1),(3,1,0), (3,1, 1), (4,0,0), (4,0, 1),
(4,1,0),4,1,1),(5,0,0), (5,0, 1), (6,0, 0), (6,0, 1), (7,0,0)}.

A straightforward application of Theorem 2.7 shows that the image in C[["4 13/ N A
of the following monomials provides a C-basis:

(1,0, 0), (g, 0, 0), (2, 0, 0), (ug,o, 0) . (u3,0,0), (ug,o, 0) :

(upu3, 0, 0), (uzug,o, 0) (u§u§, 0) (0, 1,0), (0, u1, 0), (0, g, 0),

(0, uou1, 0), (0, u3, 0), (o, uO,O) (0, u2, 0), (0, uyuz, 0), (0, ugua, 0),

0, uguua, 0), (0, Wuy, 0) , (0, wuy, 0) , (0, 13, 0), (0, uyu3, 0), (0, ugu3, 0),

0, uguu3, 0), (0, wus, 0) , (0, uuz, 0) : (0, i3, 0) , (0, w3, 0) : (0, uou3, 0) :

(0. ugu13.0) . (0. ufu3.0) . (0. uju3. 0) , (0. uau3, 0), O, wruzu3, 0, (0. wouzu3, 0),
0, wouyuzu3, 0), (o, WBuyus, 0) , (0, wduyus, 0) : (0, w3, 0) :

(O, uluzu%, O> , <0, uouzu%, 0) s
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(0. uouru23,0) . (0. ufuu3. 0) , (0. uguau3, 0. 0,0, 1), (0,0, u2). (0.0, 13).
0,0, u1), 0,0, ujuz), (0 0, u1u2> 0,0, ug), (0,0, ugua), (0, 0, u0u§>,

0,0, uguy), (0,0, uouiu), (0 0, u0u1u2> (o 0, uo) (o, 0, u%uz) : (o, 0, ugug),
(0, 0, u(z)m) , (0, 0, ugum) (o 0, uouluz) (o 0, u0> (0, 0, u3u2> , (0, 0, ugul),
(0 0, uouluz) (o, 0, ug) , (o, 0, uguz) : (o, 0, ugul) , (o, 0, uguluz),
(0.0,43). (0,0, u3u2).
(

0,0, uo) (0, 0, uguz) : (0, 0, ug) ,(0,0,u3), (0,0, uau3), (0, 0, u§u3),

(0,0, u13), 0,0, uyuu3), (0,0, uru3us) , (0, 0, ugus3),

(0,0, uguu3), (0,0, ugu3u3 ),

(0,0, ugu13), (0,0, ugurz3), (0,0, wourudus) . (0. 0, ufus)

(o 0, u0u2u3> , (0 0, u0u2u3)

( ) (0, 0, u0u1u2u3> , (0, 0, u3u1u§u3) , (o, 0, u3u3) , (o, 0, u3u2u3> ,
(0.0, uguruz) . (0.0, uduruzus ) . (0,0, uus) , (0,0, ufuzus ),

( ) ( )

( (

0,0, u0u1u3 , 10,0, uouluzug

0,0, u8u3) , 10,0, u0u2u3) s (O, 0, u8u3) , (O, 0, u8u2u3> s (O, 0, u8u3) .

3 On the dimension of the moduli space of a monomial curve
associated to a free semigroup

Let I" be a complete intersection numerical semigroup and C' its monomial curve.
Let t := dim¢ TclF be the dimension of the base space of the miniversal deformation

of CT. Following the notation of Subsection 2.2, we write t_ for the dimension of the
negatively graded part of TCIr (see also eqn. (2.4) and the text following it). At this
juncture, we now continue with the contents of Subsection 2.2. According to Pinkham
[17], we focus on the negative part P_ of the deformation in order to study the moduli
space associated to I.

To this purpose we need first to consider the base change in the deformation induced
by the inclusion map defined as V_ := (C*= x {0}, 0) — (C7, 0), on account of the
diagram

(cr, 0 (2, 0) (CT, 0)

T |

(%1“, 0) = (%, 0) X(C,0) (V_, 0) —_— (V_, 0)
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Let us denote by Gr : 21 — V_ the deformation induced by this base change.
Observe that this deformation can be described in terms of the eqns. (2.4) by making
w;j = 0 for all j € Py. This is now a negatively graded deformation. Following
Pinkham, we must projectivize the fibers of Gr without projectivizing the base space

. . . —degs; .
V_. This can be done by replacing s; with s; (uo, ..., ug)XgHeg %i so that we obtain

the projectivization 2 1 of 2T ; observe that we have the inclusion 2 C P&T2 x V_,
where the ring Cluo, ..., ug, Xy41] has degu; = a; and deg X,41 = 1. According
to Pinkham [16, Proposition 13.4, Remark 10.6] the morphism

T:Zr — V_

is flat and proper, and has fibres which are reduced projective curves, and all the fibres
lying over a given C*-orbit of V_ (i.e. orbits under the action of the multiplicative
group of units C*) are isomorphic.

This leads Pinkham [16, Theorem 13.9] to prove the following. (Our formulation
sticks to Buchweitz [3, Theorem 3.3.4]).

Theorem 3.1 (Pinkham) Let .#, 1 be the coarse moduli space of smooth projective
curves C of genus g with a section i.e. of pointed compact Riemann surfaces of genus
g. Let T be a numerical semigroup and set the subscheme of M, 1 parameterizing
pairs

Wrz{(Xo, p) : Xo is a smooth projective curve of genusg, and p € XowitthzF},

where I, is the Weierstraf3 semigroup at the point p. Moreover, write V~ for the open
subset of V™~ given by the points u € V_ such that the fibre of v — V_ above u
is smooth. This is C* equivariant, and so there exists a bijection between Wr and the
orbit space V.~ /C*.

As complete intersections can be deformed without obstructions, the following
corollary is an easy consequence of Theorem 3.1 and Deligne-Greuel’s formula [7,
12]:

Corollary 3.2 Let I be a complete intersection numerical semigroup. Then,

dmWr =1_ =c(T) — 74.

3.1 On the recursive computation of the dimension of the moduli space of a free
semigroup

Starting with the recursive presentation of a free semigroup, our aim is to compute 74,
and then the dimension of the moduli space, in a recursive way. We will focus on the
particular case of free numerical semigroups I'y = (ao, a1, ..., ag). Recall that I" is
a free semigroup if it satisfies the condition:

n;a; € {(ao,ai,...,aj—1) forall i €[l, g] (3.1)
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where eg = ap, ¢, = gecd(ag,...,a;) and n; = e’;'. A useful observation
about this class is that can be constructed in an iterative way. Let us denote by
I'; = (ao, a1, ..., aj)/e; the “truncated numerical semigroups". Observe that we have

'y =nol'1 + ax/eaN, I's = n3'y + az/e3N and thus we can write
S=eg 1Ig_1+---+agN.
We will provide sharp upper and lower bounds for the dimension of the moduli
space of I'y in terms of the dimension of the moduli space of I'y 1.

Before continuing with the procedure to compute the dimension of the moduli space
of a free semigroup, we need the following technical result.

Proposition 3.3 Let (ag, a1, ..., ag) be a free numerical semigroup and
Ask = {(ko, ki) € Ez(()” - koao + k1ay + kas > njaj and a; < nlal},

for2 <s <gandl <k <ns — 1. Set by 1= |As k|, then

ka
bs,k = T+ ) + L elsJ - Ul,k(as) - yl,k(as) +1,

(nl,gél)
where
0. if | | < el
o1k(t) =
1, otherwise,
and
|k (€))]
0 irli ] <m =L ]
|k
yik(t) = LKE{)J‘H, lftefj > ni,

n . !
BfJ —ny + M{)JZ(())’ ifmi— L;%)Je(()) = UfJ =
0 0

Proof First of all, observe that we have a partition of E IO
0 )

Ey, ={ko k) € Ego 5 koao +kiar > mai }
u{(ko, k1) € EE(()I)ynl : koao + ka1 < nlal}.
As by definition, {(ko, k1) € Ez(” n koao + k1a1 > nlal} C Ay then at least
0 )

there are t:n'l o points in Ag k.

0
Set the index s € [2, g] such that a; < nja; and k € [1,n; — 1]. Now, assume
(ko, k1) € EL’“) " such that kpag + k1a; < niar; we want to see how many of those
0 k)
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points satisfy koag + k1aj + kaa > nia; for some k > 0. Since koao + k1a; < niaj,
we have that kgag + k1a1 = n1a; — ey if and only if kon| + klﬁgl) = nlﬁ(()l) — ¢, for
& € N. We know that, in

B= {(ko,kl) ko € [0, b — 1], ki €[0,n) — 1]} C N2,

the line koni + klﬁ(()l) = nlﬁ(()l) — & contains a unique point. Assume for a moment
that (kg, k1) € B, then

koao + kia1 + kay — n1a1 > 0 < nia; —eey + ka — nia; > 0,

which is equivalentto 0 < ¢ < Lkgz J This means that there are, at most,

{kasJ i
€1
points such that (kg, k1) € El(()'),nl with koag + k1a1 < nia and kgag + kiai +kay >
nia; for some k > 0. At this stage, two distinct cases may be considered, namely:
Case 1: ¢ = ny + k1€ with ky € [0,n — 1] and €"ny + ki€l = niel — .
Case 2: & = £ — kony with kon1 +n1€0" — " = n1el" —e.

Without loss of generality we can assume that ap > a;. Since {(ao, a1, ..., ag) is
a free semigroup, we have n; = ap/n1 and Z(()l) = aj /ey, which implies n| > Z(()l).
Thus, in Case 2, as ¢ > 0, the only possibility is kg = 0. So, under the hypothesis of
Lk"“ J < 6(()1 ), there will be no points satisfying the conditions of Case 2, and under the

el
hypothesis of ijlSJ > Z(()l), there will be only one point satisfying the conditions of

Case 2. This justifies the definition of o  (a5). On the other hand, the points satisfying
the conditions of Case 1 can be studied through the function y x (ay), so that we obtain

n kag
b= o | 1= o1k = yiatay),
(n1,€y ") el

as wished. O

Now, we can proceed with the main result of this section which relates th{ and
r,;t_l. IfI' = {ap, a1, ..., ag) is a free semigroup, then its monomial curve is defined
by the ideal generated by the elements fi,..., f; € Cluo, ..., ug] with degrees
deg(f;) = nja;. According to the discussion at the beginning of this section, we
can endow T! with a grading in such a way deg(u;) = a; and the equations of the
deformation

Fi(u, w) = fi(w) + Y wjs}(u)
j=1

are homogeneous with deg(F;) = deg(f;), fori € [1, k]. In this way, the monomial
basis of T'! provided by Theorem 2.7 has the following weights:
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(1) deg ( (u](() ’ u’{l ’ u§2 .. ukm) el) Z;i] kia; —niap, where (ko, k1) € El(()'),nl’

and we have k, € [0, n, — 1] forr € [2, m].

(2) deg < (ul(‘)‘), u]l”,u];2 . ~12]fy’{’) ez) = Y ity kia; — naay, where (ko, k1) € ngzn
with k» € [0, ny — 1], and k, € [0, n, — 1], r € [3, m].

(3) deg < (u’(‘) TN 'k’") er> =" kiai—na,,where (ko, ki, ..., kr—1) €
DL’(’,)l with k, € [0,n, — 1] for r € [3,m — 1], and k,» € [0,n,» — 1] for
r'elr+1,ml.

(4) deg ( (ug , u]fl , ﬁéz L_t];,,m) em) =Y, kiai—nmanm, where (ko, ki, . .., km—1)

De(m) with k,,, € [0, n,, — 2].
m—1

_ +
Set dpx = ‘Dl(m) L
m—1°

‘ where D‘Z")w = {(ko, e kmo1) € Defnm—)l : Z: kia; >
(nm — k)am} for k € [0, n, — 2]. We have therefore the following.

Theorem3.4 Let 'y, = (ag, ay, ..., an) be a free numerical semigroup with m gen-
erators. Then,

Ny —2

ka,,
Tn— ]+(nm_l)(ﬂm 1+dm 0)+ Z \‘ n J = Tr_nF = T,;,'—_l'f‘(nm_l)(rr;,'—_]"‘dm,O)s
k=1 m

where wm,—1 is the conductor of the semigroup U',—1 = ({ao, ..., am))/(gcd(ap,

S Am—1).

Moreover,

nj—1
+ 4j
rr_rl|— = T Z(l) + Z (nj_l)'c l“))+z ( Z bj, k>+(nm_l)< Z e; +dm,0)s
jé¢L jeL, j€m

J¢Jm

where J, == {j ell,m—1]:a, > njaj}, Ly := {i e2,m]:a < nlal} and
b i is defined as in Proposition 3.3.

Proof As in the proof of Theorem 2.7, let us denote by Z,,—1 the C-basis of
C[Fm_l]’"—l/Nm_l. By Theorem 2.3 we have the injective map

CITm—t 1"/ Np—t > C[T]™ /Ny
z — (z,0)
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Then, Theorem 2.7 shows that the basis %, decomposes as

By = {u’;nq>(z) : 7€ Bm-1, kel0,ny, — 1]}
I_I{ (uo ulflul? . ..ﬁﬁ;ﬂ)em c (ko k1, ... ko) € DZ<,1131}.

Let us first assume that a,, > ajn; forall j € [1,m — 1], then for all k > 1 and
denote by @ = ®(z) for z € %B,,,—1. We have

m—1
deg (iih,®) = deg(@) + kan = Y @iai — nja; +kay = 0,
i=0

Therefore, if a,, > ajn; forall j € [1, m — 1], then the decomposition of the basis

implies that
nm—2

Ty = Ty + (= Dot + D ik (3.2)
k=0
Now, let us assume the existence of an index jo € [1, m — 1] suchthata,, < aj,n .
Thus, there exists z € %,,—1 such that deg(u,,7) < 0. Hence, in this case we obtain
the strict inequality

nm—2
T < T4 (i = D1+ Y duie 33)
k=0
Let us now move to provide a lower bound. Set J,,, = {j ell,m—1]:ay > njaj}

and assume [1, m — 1]\ J,,, # @ as otherwise we are in the previous situation. Observe
that, by the decomposition of the basis %,,, any element 7 € %, with deg(z) > 0
also satisﬁes deg(amZ) > 0 for k € [0, n,, — 1]. This implies the inequality 7,5 >
nmT,_;.Analogously, forany j € J,, andany z € Dz(” such thatdeg(z) < O (here we

identify monomial residue class and its exponent for brev1ty), we have deg(amz) >0
for k € [1, n,, — 1]. Thus, if for j € J,, we set

d; =|{ze Dy | deg) <0},
J=1

then
Ny —2
T =T+ =D | D d |+ Z d k. (34)
J€Jm
Independently of the assumptionsona,, > nja;ora, < njaj,,letusnow estimate
N —2
the sum Z dm k. Recall that dy,, o = ‘D - andd 0= ‘D (m) =dno+ 1,
k=0 m—1,0

where
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m—
D;(;n) {(ko, o kme) € Dl(’") : 2;‘ kia; > nmam]
=

m—1,0

m—1
D {(ko,.. k1) € Dz(m) Y kiai > (i, —k)am]

m—1,k i=1

This implies that

!’
+
0= ‘D m \ D Gy
1.k m—1,0

k
ana:J,

therefore d,, o < d, = dy s+ 1 < d,, o+ |kam/ny]. We deduce then that

nm—2 -2
m km
(= Dy o= 1 =Y (d,o—1) < E dmk < (i —1)(d,, —1)+U’ J
k=0 k=0 m
(3.5)

As dj_ > 0 for all j € J,, then a combination of (3.2), (3.3), (3.4) and (3.5)
provides the desired inequalities

Ny —2
— | ka

T,;t_l‘i‘(nm_l)(,um—l‘i‘dm,O)‘i‘ E \‘ n mJ = Tn-: = Tnt_l‘i‘(nm_l)(fr;t_l‘i'dmﬁ)'
k=1 "

To finish, let us show the inequality

n,-—l

CESHPIED SIS LoInD 9) L) SR 3
JEL

+dm 0)
jeLy \ k=1 j€Im
JEIm

€j

Observe that the basis %), is computed through the sets E O and Dém .
0 - s—1

In this way, it is obvious that in %, there are at least T(+ oy positive weight
ni, ¢y

elements which are precisely those of the form (12]80122) e1 with (ko, k1) € E O
0 )

such that kgag + k1a; > nia;. Now, under the notations of Proposition 3.3, there are
n_,- —1

Z Z b x positive weight elements which are of the form (ﬁgoﬁ]fl ﬁ’s‘ ) e such that

jeLy k=1
koag + k1ay + kay > niay with (kg, k1) € EL,(<)1) " and a; < njaj.

Additionally, for any r € J, we have deg ((u0 u]fluéz ﬁf,,’”)er> > 0 if

(ko, k1, ..., k.—1) € Dz(r) with k. € [0,n, — 2] and 7’ € [r + 1,m — 1] so that
r—1
k,» € [0,n,» — 1] and k,,, € [1, n,,, — 1]. Observe that the number of such elements is
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precisely (1, — 1) |Dz(r) | Recall thateqn. (2.11) implies ‘Dz(r) ‘ = a, /e,. Therefore,
r—1 r—1
the previous discussion provides the desired inequality. O

An immediate consequence of Theorem 3.4 is the following:

Corollary 3.5 Let ' = (ag, ay, ..., an) be a free numerical semigroup. Then the
dimension t,,; of the moduli space Wr satisfies the following inequalities

Mm%, 1 — (nm — Ddpo+am—1) =21, > T — (nm — D(dm,0 + am — 1)
ni—:Z LkamJ
k=1 L Ttm
The sets D o) used to determine the monomial basis of T'! define recursively a
j—1

Jj-dimensional staircase in N”*. Observe that in order to determine dy, x or dj_ we need
to count how many points of this staircase are below and over the hyperplane defined
bynja; = Eéao 4+ 61._141 ;. Without any extra assumptions on the generators of
[y, it is quite a difficult task from a combinatorial point of view to provide an exact
formula for d,, ; or dj_ and hence for r,;f . However, we can be more precise if we
impose some extra conditions over the generators of the semigroup. In fact, we will
show that the bounds of Theorem 3.4 are sharp.

3.2 Some special families of free semigroups

Let us first start with the following new characterization of the semigroup of values
of an irreducible plane curve:

Theorem3.6 Let I' = {(ag,ay,...,an) be a free numerical semigroup. Then the
following statements are equivalent:

(1) nja; < ajy foralli, ie T is the semigroup of values of an irreducible plane
curve singularity.
(2) The dimension of the positive part of T can be computed recursively via the

formula
nm—2

o=t 4 = Dt + ) dk
k=0

Moreover for a free semigroup satisfying the conditions (1) we have

nm—2

Z dm,k _ (im _;)Mm—l + (nm — 3)(‘;m/em -3) + \‘ am J _9
k=0

Proof (1) < (2) is a consequence of the first part of the proof of Theorem 3.4 as
inductively equations (3.2) and (3.3) shows that the upper bound in Theorem 3.4 is
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nm—2

attained if and only if n;a; < a;4 for all i. The formula for Z dm  1is obtained by
k=0

[5, Théoreme 8]. O

Before to show that the lower bound is also sharp, let us first prove the following

Proposition 3.7 Ler I'y, = (ao, a1, ..., am) be a free numerical semigroup with m
generators. Under the previous notation, we have

i) = 1y(ny —2)

1
(eg)—l)(nl—z) ks X
+ —1>|D > 5 —|Cl -1,

2
2 ny 67k

where C is the triangle defined by the linesi = 0, j = ny and in| + jﬁ(()z) = nlﬁ(()z).

In particular, if npay > niay then the upper bound is attained. (See Fig. 1)

Proof Let us first denote go = ay/e>. We have noay = Z(()z)ao + Egz)al.
Assume 6(12) =0, then D;(lz) = Il((f); consider

A= i(l,]) € 14)2) ting +j£(()l) > qz} .

In order to count the points in A, we must distinguish two situations:
Case 1: npap > niay.
The inequality npap > njaj is equivalent to E(()l) n1 < q». The lines
r=iny+ jZ(()l) = nle(()l)
s=ini+ je = ¢

are parallel. The lines r, i = Z(()l) and j = n enclose a triangle B, and s, i = E(()z) and
j = nj the triangle A. We have that

(" = 1) om =1 _ e

Al = |B| = =
2 2

Case 2: npapy < niajy.
Consider again the parallel lines

r=iny+ j@gl) = nle(()”
s=im+ je = ¢

Now the inequality noap < njaj is equivalent to E(()l) ni| > q» so that a triangle C
delimited by the lines r, s and j = n; appears. The interesting area here is that of the
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n
1 SRR /
r S
(1) (2)
KO 60
Fig.1 Case £ = 0.and npay > njay.
R RS ni
N =
NN Q 5 R
S Q

o)
~

S
—~
\S)
—

\

—~
—
NI

Fig.2 Case £ = 0 and nyay < nyay.

quadrilateral A (see Fig. 2), namely

(zg” — 1) () —2)

Al = |A| = [C| = |B| = |C| = 5

—|C].
In this way we can bound the area of the region A both above and below.

Assume now that 42) # 0, then D; o =1 el ul @ and so the set A can be written
1 0 1

asaunion A = A U Aj, where
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N —

oY ) + 0"

Fig.3 Case E?) # 0and npay > nyay.

. 2) . Q2
A = {(l, Jj) € Ié(o) ting —}—]E(()) > qz}
. 2) .. .1
Aj :{(1,]) € IE(]) Tin —i—]ﬂ(()) > qg}.
We must distinguish again two cases:

Case 1: npap > niay.
As in the previous case, we have that |B| = c(gl) = |A|. (See Figures 3, 4)

We have to check that |A3| = IA/3 |, which is true, as the comparison of the following
two easy computations shows:

2)
2 g
As| :<q —Eé”) <n1 3 Zﬁ”) g TP o,
ny ni

2 2 1 q2
IA§|=£§)<£5)+eg)—nl)

Case 2: npyap < niajy.
As in the previous cases, |A| = |A| — |C| = |B| — |C| = C(gl) — |C], where C is
again a triangle. Moreover, as in the case 42) = 0, the part |C| which is loosed comes

from [ @
0
Finally, observe that the points in

A= {(i,j) € D;(z) tiag+ jai + kay > nzaz}
1
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ni

<l

Fig.4 Case £2 # 0 and npay < njay.

are those satisfying in; + TIQES ) — ka2 From the previous ictures, it is easy to
ying J€o q ng p p y

see that if noay > naj then there are exactly Lknqzzj points (i, j) € D;(z) satisfying
1

. . kg
@ >ing+ ) > g — nqz . (3.6)

However, if npar < najitmay happen that some of the possible solutions of eqn. (3.6)
may belong to the triangle C and thus not in Dz(z)' From which we obtain the desired
1

results. O

Proposition 3.7 will help us to show that —under certain assumption— we can give
a precise formula for 7,5 and in particular to show that the lower bound is sharp.

Theorem 3.8 LetT" = (ag, a1, a2) be a free numerical semigroup such thatnia; > as
and ag > ay such that nyay > niay. Then,

ny — D(c(Ty) =2 ny — a
T;:nﬂ;”r(z )(2(1) )_(261)2

np—1

+y @keﬂ —ovilas) — yir(as) + 1) :
k=1

In particular, if no = 2, then the lower bound in Theorem 3.4 is attained.

Proof As in the proof of Theorem 3.4, we have the basis of the miniversal deformation
described as

By = [,z’gcb(z)el L Ze By, kel ny— 1]] U { (:z’goﬁ’flﬁ’;?) ey (ko k) € ngz)}.
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Recall that 4 is in one to one to correspondence with E IO As by hypothesis we
have n1a; > ap, therefore deg (ﬁécb (12]5012]1”) 61) > 0if and only if
(ko, k1) € Ay = {(i, j) € EZ(I) " tiag+ jay + kay > niay and ay < n1a1].
0 ’

Finally, the number of positively weighted elements in D @ are those corresponding
1
to the the sets D;f),k with k € [0,ny — 2]. Hence, by using Proposition 3.7 and

Proposition 3.3 we obtain

— D) —2 -1
o =T + (na = D(c() =2)  (n2— Daz
2 el
no—1 k(lz
+) <2L J —Gl,k(a‘s)_yl,k(as)‘i‘l),
k=1 el
which completes the proof. O

As one may observe in Proposition 3.7 and Proposition 3.3, the computation of dy;, x
for a free numerical semigroup without any restriction can be extremely difficult. The
reason is that the numbers d,, ; depend on the relations between the different n ja; as
we realize looking at the proof of Proposition 3.7. Similarly to Proposition 3.7 one
should be able to write out an algorithmic formula or estimation for > _ d,, . However,
the algorithmic calculation is a hard combinatorial problem. Given the length and
tedious nature of these combinatorics for more than three generators, this is clearly
a suitable problem to assign to a computer program, since Theorem 2.7 provides an
explicit basis for the deformation.

A final remark on the dimension of the moduli space

Throughout the section we have been working without loss of generality with a sys-
tem of generators {ao, a1, . . ., ag} of the numerical semigroup satisfying the condition
n;a; € {(ap,ay,...,ai—1)andn; > lforalli = 1,..., g. However, our statements
encode more general information. More concretely, the monomial basis of 7' is clearly
not unique. Nevertheless, the dimension of the moduli space is intrinsic to the semi-
group itself, so in particular it does not depend on the generating set of the semigroup.
Our results should then be interpreted as follows: given a free numerical semigroup,
there exists a system of generators that allows us to explicitly compute a monomial
basis for 7'!. This monomial basis leads us to the estimation of the dimension of the
moduli space in a recursive way. By looking at Corollary 3.2, a part of this estimation
is independent of the system of generators —essentially the one given by Theorem
2.3— and the other part actually depends on {ag, a1, ..., ag} as it is linked to the
obtained monomial basis.
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