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Abstract

The aim of this paper is to provide an explicit basis of the miniversal deformation of a
monomial curve defined by a free semigroup—these curves make up a notable family
C of complete intersection monomial curves. First, we dispense a general decompo-
sition result of a basis B of the miniversal deformation of any complete intersection
monomial curve. As a consequence, we explicitly calculate B in the particular case
of a monomial curve defined from a free semigroup. This direct computation yields
some estimates for the dimension of the moduli space of the family C .
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1 Introduction

Let (C, 0) ⊂ (Cg, 0) be a germ of irreducible complex monomial curve singularity.
This means that C can be defined through a parameterization C : (ta0, ta1 , . . . , tag )

where the set of exponents {a0, a1, . . . , ag} ⊂ N generates a semigroup with finite
complement over N and satisfies gcd(a0, a1, . . . , ag) = 1. In particular, this is equiv-
alent to the fact that the coordinate ring of the curve is isomorphic to the semigroup
algebra C[Ŵ] =

⊕

s∈Ŵ Cts ⊂ C[t] defined by the numerical semigroup

Ŵ = a0N + a1N + · · · + agN = 〈a0, a1, . . . , ag〉.

The module T 1
C of first order infinitesimal deformations of a monomial curve C

plays a central role in the study of two important moduli problems. It has a natural
Z–graded structure, i.e. T 1

C =
⊕

n∈Z
T 1

C(n). For the definition of first order infinites-
imal deformations and further details, see for example Greuel et al.[13, Chapter II,
Sect. 1.4]; see also the first author [1, Sect. 2.3] and Buchweitz [3] for the specific
case of monomial curves and the definition of the natural grading of T 1

C . Let us briefly
summarize the context and state of the art of each problem.

Regarding the first problem, consider a smooth algebraic curve X with genus g and
fix a point p ∈ X . The Weierstraß semigroup of X at p is defined as

Ŵp = Ŵ :=

{

h ∈ N :
there exists a meromorphic function defined on X ,
holomorphic on X \ p with a pole of degree h at p

}

.

One can then define the moduli space Mg,1 of pointed smooth algebraic curves (X , p)

of genus g (see for example Deligne & Mumford [8]), i.e. the set of isomorphism
classes of pointed smooth algebraic curves (X , p) with its natural scheme structure.
In his seminal work [17], Pinkham showed that the subscheme M Ŵ

g,1 of Mg,1 of
isomorphism classes of pointed smooth algebraic curves (X , p) with prescribed Weier-
straß semigroup Ŵ is mapped bijectively to the negatively graded part of the module
of infinitesimal deformations of the monomial curve defined by the semigroup Ŵ. Let
us be more precise; it is well known that the Weierstraß semigroup Ŵp is a numerical
semigroup (for a basic insight into Weierstraß semigroups the reader is referred e.g. to
the second author [14] and the references therein). Thus, Pinkham’s result [17, Theo-
rem 13.9] provides a bijection between M Ŵ

g,1 and the C–vector space
⊕

n∈Z<0
T 1

C(n).

The study of M Ŵ
g,1 has led to numerous results, far too many to list comprehensively.

In what follows, we summarize the main known results and refer to the cited litera-
ture for further information, while acknowledging that some contributions may not be
mentioned, not deliberately. In [22], Stöhr provided a description of M Ŵ

g,1 for a sym-
metric semigroup Ŵ, i.e. the monomial curve is a Gorenstein curve, in terms of Gröbner
bases and the analysis of the syzygies of the defining ideal of the monomial curve.
Deepening in that description, Contiero and Stöhr [6] provided a method to obtain
upper bounds for the dimension of this moduli space for symmetric semigroups in
terms of the combinatorics of the semigroup. In [20], Rim and Vitulli provided a clas-
sification of negatively graded semigroups, which is a particular family of numerical
semigroups for which T 1

C has no positively graded part, and provided some formulas
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for the dimension of M Ŵ
g,1 in those cases. Some other noteworthy results to mention

are those by Nakano [15], Polishchuk [18], and Stevens [21], which follow similar
ideas to those provided in Stöhr’s work. Lastly, the work by Buchweitz [3] computes
the dimensions of the corresponding graded components of T 1

C using a rather intricate
combinatorial formula in terms of some combinatorial invariants of the semigroup.

For the description of the second problem, consider a germ (C, 0) ⊂
(

C2, 0
)

of an
irreducible complex plane curve singularity. Let R denote its local ring at the origin
and let R ≃ C[ t] be its normalization. The normalization morphism R →֒ R induces
a discrete valuation v : R → Z from which S = v(R) has a natural structure of a
finitely generated subsemigroup of the semigroup (N,+) of natural numbers with 0
element, which is in fact a complete topological invariant of the curve (see Zariski
[25] for details). The moduli space of irreducible plane curve singularities with fixed
semigroup is the set of analytic classes (modulo biholomorphisms of C{x, y}) of
irreducible plane curves with fixed semigroup. Teissier [23] proved that any analytic
class can be realized as a fibre of a positively graded deformation of the monomial curve
C S with semigroup algebra C[S]; this means that the understanding of

⊕

n∈Z>0
T 1

C S(n)

is a good tool to understand that moduli space. He also showed that, in this particular
case, C S is in fact a complete intersection monomial curve. Following these ideas,
Cassou-Noguès [5] provided a monomial basis of T 1

C S in an iterative way using the
combinatorial properties of the semigroup of an irreducible plane curve. Moreover,
she supplied a closed formula for the dimension of the positively graded part of T 1

C S

in terms of the generators of the semigroup.
Our work can be understood as a natural continuation of Cassou-Noguès paper [5],

as our initial aim is to address the following question: how general can her results [5,
Theorems 2 and 3] be? As already said, those theorems are stated for the monomial
curve associated to the semigroup of an irreducible plane curve singularity, which is a
particular example of a complete intersection monomial curve. In order to generalize
these theorems, we introduce a new ingredient in the topic which up to the authors’
knowledge has not been exploited yet. The new ingredient builds upon the approach
introduced by Delorme [9], who proposed a combinatorial decomposition of the semi-
group algebra of a complete intersection monomial curve, yielding a particularly useful
ordering of its implicit equations.

A numerical semigroup Ŵ = 〈a0, a1, . . . , ag〉 is said to be a complete inter-
section semigroup if its semigroup algebra is a complete intersection. Set the ring
R = C[u0, u1, . . . , ug] and write CŴ for the complete intersection monomial curve
with ‘coordinate ring’ R/I , where I is the ideal of R generated by f1, . . . , fg . Setting
appropriate coordinates in a neighborhood of 0 ∈ Cg+1, the curve CŴ is parametrically
defined by ui = tai for i = 0, 1, . . . , g. For complete intersection curves, Tjurina [24]
(see also [13]) showed that T 1

CŴ is isomorphic as C–algebra to

C[u0, . . . , ug]g
(

∂ fi
∂u j

)

i, j
C[u0, . . . , ug]g+1 + ( f1, . . . , fg)C[u0, . . . , ug]g

.

We realized that the order provided by Delorme of the implicit equations of the curve
reflects in a very good structure of the Jacobian matrix. In fact, it provides a block
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decomposition on it (see Sect. 2 for further details). In light of these considerations,
the purpose and main results of this paper can be summarized in three main points:

(1) To give a general decomposition in “separate variables” of a basis B of the miniver-
sal deformation of any complete intersection monomial curve following Delorme’s
decomposition of the semigroup algebra. This is achieved in Theorem 2.3.

(2) To study the previous decomposition in order to compute a monomial basis of the
miniversal deformation of a complete intersection. Such a basis is obtained for the
particular case of a free monomial curve, see Theorem 2.7. This constitutes a spe-
cific, yet sufficiently general, family within the category of complete intersection
monomial curves in which the combinatorics inherent to the problem becomes
more accessible.

(3) Using Pinkham’s bijection, to study recursive formulas for the dimension of the
moduli space M Ŵ

g,1 of a free monomial curve from the generators of the free
numerical semigroup Ŵ associated to the curve. Sharp upper and lower bounds
for this dimension are obtained in Theorem 3.4 as well as closed formula in some
particular cases: Theorem 3.6 and Theorem 3.8.

We conclude this introduction by setting forth the conventions and notation that will
be useful to the reader in the remainder of the paper.

Conventions and notation.

• The set of natural numbers N consists of nonnegative integer numbers. For every
a, b ∈ N we define

[a, b] := {n ∈ N : a ≤ n ≤ b}.

• We write C∗ = C \ {0} for the multiplicative group of the units of the field C.
• The vectors e1, . . . , eg denote the canonical basis of C[u0, . . . , ug]g as well as the

standard basis of Zg .
• Usually we will work in a graded polynomial ring C[u0, . . . , ug] =

⊕

j∈S
C[u0, . . . , ug] j with S ⊂ N and deg(ui ) = ai for some ai ∈ N. For a homo-
geneous element f ∈ C[u0, . . . , ug] j for some j we denote deg( f ) = j =
α0a0 + · · · + αgag for some αi ∈ N.

2 Deformations of complete intersectionmonomial curves

This section will be devoted to provide two of our main results. We will start with
some basic definitions as well as recall the decomposition theorem of Delorme [9]
about the semigroup algebra of a complete intersection monomial curve. Moreover,
we will prove the decomposition theorem of the basis of the miniversal deformation
of a complete intersection monomial curve. Finally, we will use the decomposition
Theorem 2.3 to provide an explicit basis of the miniversal deformation of a monomial
curve associated to a free numerical semigroup.
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2.1 Complete intersection monomial curves

Let Ŵ = 〈a0, a1, . . . , ag〉 be a numerical semigroup. Let t ∈ C be a local coordinate
of the germ (C, 0) and let (u0, u1, . . . , ug) ∈ Cg+1 be local coordinates of the germ
(

Cg+1, 0
)

. The monomial curve
(

CŴ, 0
)

⊂
(

Cg+1, 0
)

defined via the parameterization

CŴ : ui = tai , i ∈ [0, g]

is called the monomial curve associated to Ŵ. Write C[CŴ] := C[tν : ν ∈
Ŵ], which coincides with the semigroup algebra C[Ŵ] associated to Ŵ. We will use
either notation depending on whether we want to highlight the geometric or algebraic
interpretation. The numerical semigroup Ŵ is said to be complete intersection if C[Ŵ]
is a complete intersection; this means that, if Ŵ = 〈a0, . . . , ag〉 is generated by g + 1
elements, then we have an exact sequence

C[u0, . . . , ug]g → C[u0, . . . , ug]
ϕ
−→ C[CŴ] → 0, (2.1)

with ker ϕ = ( f1, . . . , fg) and f1, . . . , fg defining a regular sequence. (Observe that
the mapping C[u0, . . . , ug]g → C[u0, . . . , ug] is just ei 7→ fi for every i ∈ [1, g]).
In particular, this implies that the monomial curve (CŴ, 0) is a complete intersection.
For a comprehensive synthesis of the existing results on monomial curves that arise as
complete intersections (and, in particular, the details pertaining to complete intersec-
tion curves) we guide readers to the survey [1] and its cited bibliography for additional
references and context.

In 1976, Delorme [9, Lemme 7] showed the following combinatorial characteri-
zation of a complete intersection numerical semigroup. Set A := {a0, . . . , ag}; for
Ŵ = 〈A〉 we have that Ŵ is a complete intersection numerical semigroup if and only
if there exists a partition A = A1 ⊔ A2 of the set of generators A with A1 6= ∅ 6= A2

such that the following two conditions holds:

(1) C[Ŵi ] are complete intersections defined by Ii := ker ϕi , where Ŵi stands for the
numerical semigroup ŴAi /di generated by the elements of Ai divided by di :=
gcd(Ai ), for i = 1, 2;

(2) C[Ŵ] is defined by I1 + I2 + 〈ρ〉, where 〈ρ〉 is a binomial ideal whose generator
has degree deg(ρ) = deg( fg) = lcm(d1, d2).

More precisely, if we set gi := |Ai | − 1, then g1 + g2 = g − 1 and we have the
exact sequences

C[x0, . . . , xg1]
g1 → C[x0, . . . , xg1]

ϕ1
−→

C[x0, . . . , xg1]

I1
≃ C[Ŵ1] → 0

C[y0, . . . , yg2]
g2 → C[y0, . . . , yg2]

ϕ2
−→

C[y0, . . . , yg2]

I2
≃ C[Ŵ2] → 0

(2.2)

In addition —as pointed out before— we can define a binomial ρ in separated
variables with total degree lcm(d1, d2). Thus there is a natural decomposition of the
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semigroup algebra of Ŵ in the form

C[Ŵ] =
C[Ŵ1] ⊗ C[Ŵ2]

〈ρ〉
, (2.3)

where we write C[u0, . . . , ug] = C[x0, . . . , xg1; y0, . . . , yg2].

Remark 2.1 The set of generators A of Ŵ does not need to be a minimal generating
set.

2.2 Deformations

Before moving forward, we briefly recall some fundamental concepts and essential
terminology from the theory of curve deformations. A deformation of an isolated
singularity (X , 0) over a complex germ space (S, 0) is a pair (φ, i), where

(1) φ : (X , 0) → (S, 0) is a germ of flat morphism.
(2) i : (X , 0) → (φ−1(0), 0) is an isomorphism onto the special fibre.

Here, we say that (X , 0) is the total space, (S, 0) is the base space, and (Xs , 0) ∼=
(X , 0) is the special fibre of the deformation.

In a somewhat informal sense, one says that φ : (X , 0) → (S, 0) constitutes a
deformation of (X , 0). Notice that the point 0 around which we define the germs might
not have been chosen, so that we can think of a commutative diagram as

(X , x)
i

(X , x)

φ

{pt} (S, s)

The deformation φ is called versal if any other deformation ψ : (Y , 0) → (T , 0)

is induced by φ by base change (T , 0) → (S, 0). A versal deformation is called
miniversal if it is versal and the base space S has minimal possible dimension. The
existence of a miniversal deformation for isolated singularities is a celebrated result
by Grauert [10]. The reader is refereed to [13, Part II, Sect. 1] for further details.

A useful point of view to study the singularity (X , 0) is the one given by the concept
of “first order deformations”, encoded as vector spaces T 1

(X ,0)
which can be understood

as linearizations of the deformations of a germ (X , 0). The writing T 1
(X ,0)

refers to the
fact that it can be identified —whenever it exists— with the Zariski tangent space to
the semiuniversal base of (X , 0); for further details, interested readers are referred to
[13]. Under the previous notation and in the particular case of a complete intersection
singularity (X , 0), the base space of the deformation (S, 0) is smooth so we can
identify it with the Zariski tangent space. Moreover, as we are only interested in the
dimension of the base space and the section is usually fixed, we will abuse notation to
refer to T 1

(X ,0)
= T 1(X).

In the particular case of a complete intersection monomial curve CŴ : (ta0 , . . . , tag )

defined by I = ( f1, . . . , fg), we can apply Tjurina’s theorem [24] which states that
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the base space of the miniversal deformation of
(

CŴ, 0
)

is

T 1 (

CŴ
)

:=
C[u0, . . . , ug]

g
(

∂ fi
∂u j

)

i, j
C[u0, . . . , ug]g+1 + ( f1, . . . , fg)C[u0, . . . , ug]g

.

Moreover, Pinkham [16] (see also Buchweitz & Greuel [4], Buchweitz [3], Deligne [7],
Rim [19]) showed that, for a complete intersection monomial curve CŴ , the dimension
of T 1(CŴ) as a C–vector space equals the conductor of the semigroup, i.e.

dimC T 1 (

CŴ
)

= c(Ŵ) := min{ν ∈ Ŵ : ν + N ⊂ Ŵ}.

Even more, by a result of Greuel [11], as CŴ is a quasi-homogeneous complete inter-
section singularity, then c(Ŵ) = dimC T 1

(

CŴ
)

= µ
(

CŴ
)

where µ
(

CŴ
)

is the Milnor
number associated to CŴ (see also [4]).

Consider a basis s1, . . . , sτ ∈ C[u0, . . . , ug]g of T 1
(

CŴ
)

, where si =
(

s1
i , . . . , sg

i

)

for i ∈ [1, τ ]. Then the miniversal deformation of CŴ can be described as follows:
For u = (u0, u1, . . . , ug),w = (w1, w2, . . . , wτ ) we define

F1(u,w) = f1(u) +

τ
∑

j=1

w j s
1
j (u),

...
...

Fg(u,w) = fg(u) +

τ
∑

j=1

w j s
g
j (u)

(2.4)

and let (X , 0) := V (F1, . . . , Fg) ⊂ (Cg+1 ×Ct , 0) be the zero set of F1, . . . , Fg ;

then the deformation defined by
(

CŴ, 0
) i

−→ (X , 0)
φ
−→ (Cτ , 0) is the miniversal

deformation of
(

CŴ, 0
)

, where i is induced by the inclusion and φ by the natural
projection. In fact, if one chooses deg(w j ) = − deg(s j ), then we endow the algebra
C[u0, . . . , ug, w1, . . . , wτ ] with the unique grading for which deg(ui ) = ai and the Fi

are homogeneous with deg(Fi ) = deg( fi ). Under this grading, we obtain a partition
of the base space Cτ into two parts. Define the sets

P+ :={ j ∈ {1, . . . , τ } : deg(w j ) < 0}

P− :={ j ∈ {1, . . . , τ } : deg(w j ) > 0}.

Remark 2.2 It is worth noting that—when dealing with a deformation—we have the
parameter space with coordinates w1, . . . , wτ on the one hand, and the basis of T 1

given by Theorem 2.7 on the other hand. Therefore, from the choice of the grading,
a parameter with negative weight provides a monomial with positive grading in T 1.

This is the reason that motivates the definition of P+ and P− as we will use them to
refer to positive/negative weight deformations. Observe that the way we have defined
these sets is then the opposite of the one given by Teissier in [23].
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Denote by τ+(Ŵ) := τ+ := |P+| and τ−(Ŵ) := τ− := |P−|. Since there are no
w j of degree zero, we have the equality τ = τ+ + τ−. Moreover, there is a natural
action of the multiplicative group C∗ = C\ {0} over (X , 0) which is compatible with
the previous construction and that induces the natural action on φ−1(0) ∼= CŴ . The
notations introduced here will play a significant role in Sect. 3.

2.3 Decomposition of the base space à la Delorme

After this brief digression into deformation theory, we now return to our objective.
From the decomposition (2.3) of the semigroup algebra C[Ŵ] it is easily deduced that
the Jacobian matrix presents a simple-to-describe block decomposition. Indeed, if we
set Ŵi := ŴAi /di , (h1

1, . . . , h1
g1

) = I1 and (h2
1, . . . , h2

g2
) = I2, then the Jacobian matrix

of the defining equations of CŴ has a block decomposition in terms of the Jacobian
matrices of CŴi and an extra row in terms of the extra new relation as follows:

(

∂ fi

∂u j

)

1 ≤ i ≤ g
0 ≤ j ≤ g

=













(

∂h1
i

∂x j

)

0

0

(

∂h2
i

∂ y j

)

ρ1 ρ2













,

where we identify

f1 = h1
1, f2 = h1

2, . . . , fg1 = h1
g1

, fg1+1 = h2
1, fg1+2 = h2

2, . . . , fg1+g2 = h2
g2

,

and fg = ρ1 + ρ2 for ρ1 = (∂ρ/∂u0, . . . , ∂ρ/∂ug1) and ρ2 = (∂ρ/∂ug1+1, . . . ,

∂ρ/∂ug). The consideration of this block decomposition leads to the proof of the fact
that the base spaces of the miniversal deformations of CŴi are contained in the base
space of the miniversal deformation of CŴ.

To do so, first observe that
(

∂ fi
∂u j

)

i, j
C[u0, . . . , ug]g+1 is just the C[u0, . . . , ug]

g–

submodule

NŴ =

〈

(∂ f1

∂u0
, . . . ,

∂ fg

∂u0

)

, . . . ,

( ∂ f1

∂ug
, . . . ,

∂ fg

∂ug

)

〉

⊂ C[u0, . . . , ug]g. (2.5)

Let us now define the C[u0, . . . , ug]
gi –submodules

NŴ1 :=

〈(

∂h1
1

∂x0
, . . . ,

∂h1
g1

∂x0

)

, . . . ,

(

∂h1
1

∂xg1

, . . . ,
∂h1

g1

∂xg1

)〉

⊂ C[x0, . . . , xg1]
g1,

NŴ2 :=

〈(

∂h2
1

∂ y0
, . . . ,

∂h2
g2

∂ y0

)

, . . . ,

(

∂h2
1

∂ yg2

, . . . ,
∂h2

g2

∂xyg2

)〉

⊂ C[y0, . . . , yg2]
g2 .
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For each i = 1, 2 we have the canonical projections

τ1 : C[Ŵ]g =

g
⊕

j=1

C[Ŵ]e j → C[Ŵ]g1 =

g1
⊕

j=1

C[Ŵ]e j ,

τ2 : C[Ŵ]g → C[Ŵ]g2 =

g1+g2
⊕

j=g1+1

C[Ŵ]e j ,

where the e j build the standard Z-basis. We shall denote by τ−1
i the maps

τ−1
1 :

g1
⊕

j=1

C[Ŵ]e j ∋ v 7→ τ−1
1 (v) := (v, 0) ∈

g
⊕

j=1

C[Ŵ]e j

τ−1
2 :

g1+g2
⊕

j=g1+1

C[Ŵ]e j ∋ v 7→ τ−1
2 (v) := (0, v) ∈

g
⊕

j=1

C[Ŵ]e j

We are now ready to prove the first main result of the paper.

Theorem 2.3 Let Ŵ be a complete intersection numerical semigroup. Under the pre-
vious notation, write NŴ := ϕ(NŴ) and Ni := ϕi (NŴi ) for i = 1, 2. Then, the linear
maps τ1, τ2 induce the following injective morphisms

81 : C[Ŵ1]
g1/N1 −→ C[Ŵ]g/NŴ, 82 : C[Ŵ2]

g2/N2 −→ C[Ŵ]g/NŴ ,

Proof First we observe that

NŴ =

〈





g
∑

j=1

ϕ

(∂ f j

∂u0

)

e j , . . . ,

g
∑

j=1

ϕ

(∂ f j

∂ug

)

e j





〉

is a submodule of
g

⊕

j=1

C[Ŵ]e j . Hence, in order to compare Ni with NŴ we need first

to understand the relation between the maps ϕi and the map ϕ. Thanks to the tensor
product decomposition of C[Ŵ] we can write

ϕ = π ◦ λρ ◦ (ϕ1 ⊗ ϕ2), (2.6)

where λρ is the multiplication by ρ in C[Ŵ1] ⊗ C[Ŵ2] and π is the canonical
projection. By the hypothesis, ρ is a regular element of C[Ŵ1]⊗C[Ŵ2] and thus yields
the exact sequence

0 → C[Ŵ1] ⊗ C[Ŵ2]
λρ
−→ C[Ŵ1] ⊗ C[Ŵ2]

π
−→

C[Ŵ1] ⊗ C[Ŵ2]

〈ρ〉
→ 0.
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Therefore the following diagram commutes:

C[u0, . . . , ug] C[CŴ] 0

C[x0, . . . , xg1] ⊗ C[y0, . . . , yg2] C[Ŵ1] ⊗ C[Ŵ2] 0.

ϕ

∼ =

ϕ1⊗ϕ2

π◦λρ

Now we are ready to prove the statement. We will only check that 81 is injective, as
the result for 82 may be handled in much the same way.

Let us denote by N := τ1(NŴ), the submodule of
g1

⊕

j=1

C[Ŵ]e j which is generated

as

N =

〈 g1
∑

j=1

ϕ
(∂ f j

∂u0

)

e j , . . . ,

g1
∑

j=1

ϕ
(∂ f j

∂ug

)

e j

〉

=

〈 g1
∑

j=1

ϕ

(∂h1
j

∂x0

)

e j , . . . ,

g1
∑

j=1

ϕ

( ∂h1
j

∂xg1

)

e j

〉

.

The equality follows from the identification xi = ui for i ∈ [0, g1] and the fact that
∂h1

j/∂u j = 0 for j ∈ [g1 + 1, g].
The previous considerations yield the commutative diagram

g1
⊕

j=0

C[u0, . . . , ug ]e j

g1
⊕

j=0

C[Ŵ1] ⊗ C[Ŵ2]e j

g1
⊕

j=0

C[Ŵ]e j

g1
⊕

j=0

C[Ŵ]e j

N
0

g1
⊕

j=0

C[x0, . . . , xg1 ]e j

g1
⊕

j=0

C[Ŵ1]e j

g1
⊕

j=0

C[Ŵ1]e j

N1
0

ϕ1⊗ϕ2 π◦λρ π1

i

ϕ1

i

π2

8′
1

As 81 = τ−1
1 ◦ 8′

1, for the proof of the injectivity of 81 it is enough to prove the
injectivity of 8′

1. In order to show the injectivity of 8′
1 it is enough to prove that

π ◦ λρ ◦ i(N1) = N ,

however this follows by definition of N1, which is

N1 =

〈 g1
∑

j=1

ϕ1

(

∂h1
j

∂x0

)

e j , . . . ,

g1
∑

j=1

ϕ1

(

∂h1
j

∂xg1

)

e j

〉

,

and the fact that the map i is defined as z(x0, . . . , xg1) 7→ z ⊗ 1 ∈ C[u0, . . . , ug]. ⊓⊔
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Remark 2.4 Observe that Theorem 2.3 implies that the base spaces of the miniversal
deformations of CŴ1 and CŴ2 are embedded in the miniversal deformation of CŴ.

Recall that T 1
(

CŴ1
)

≃ C[Ŵ1]
g1/N1 as C[u0, . . . , ug1]–algebra and T 1(CŴ2) ≃

C[Ŵ2]
g2/N2 as C[ug1+1, . . . , ug]–algebra. As the maps 81,82 are injective, we

can identify T 1
(

CŴ1
)

(resp. T 1
(

CŴ2
)

) with its image by 81 (resp. 82) so that
T 1(CŴ1) ⊕ T 1

(

CŴ2
)

is a C[u0, . . . , ug]–submodule of T 1
(

CŴ
)

. Hence it is pro-
vided an embedding of the corresponding miniversal deformations.

2.4 Miniversal deformation of a free semigroup curve

In this part, we will consider a particular class of complete intersection numerical
semigroups which are called ‘free semigroups’. Consider a numerical semigroup Ŵ

generated (not necessarily minimally) by G := {a0, a1, . . . , ag}. Assume that G sat-
isfies the condition

ni ai ∈ 〈a0, a1, . . . , ai−1〉, (2.7)

where ni := gcd(a0, a1, . . . , ai−1)/ gcd(a0, a1, . . . , ai ), for all i ∈ [1, g]. A numer-
ical semigroup admitting a set of generators G satisfying (2.7) for all i ≥ 1 was
named free numerical semigroup by Bertin and Carbonne [2]. Moreover, without loss
of generality we can further assume that ni > 1 for all i ∈ [1, g]. We therefore define:

Definition 2.5 A numerical semigroup Ŵ = 〈G〉 generated by a set G satisfying the
condition (2.7) for all i ≥ 1 and ni > 1 for all i ∈ [1, g] is called free. The monomial
curve CŴ corresponding to a free numerical semigroup Ŵ will be called free numerical
semigroup curve —or free semigroup curve in short.

Let Ŵ = 〈a0, a1, . . . , ag〉 be a free semigroup. From the condition (2.7), for each i

there exist numbers ℓ
(i)
0 , . . . , ℓ

(i)
i−1 ∈ N such that

ni ai = ℓ
(i)
0 a0 + · · · + ℓ

(i)
i−1ai−1, i ∈ [1, g]. (2.8)

Therefore, it is easy to see that the equations

fi = uni
i − u

ℓ
(i)
0

0 u
ℓ
(i)
1

1 · · · u
ℓ
(i)
i−1

i−1 = 0 for i ∈ [1, g] (2.9)

define the curve CŴ . In this case, we will explicitly describe the C–basis of T 1(CŴ). To
do so, we need first to define some auxiliary sets parametrized by some distinguished
coefficients in the identities (2.8), as the following diagram points out:
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n1a1 = ℓ
(1)
0 a0

n2a2 = ℓ
(2)
0 a0 + ℓ

(2)
1 a1

n3a3 = ℓ
(3)
0 a0 + ℓ

(3)
1 a1 + ℓ

(3)
2 a2

n4a4 = ℓ
(4)
0 a0 + ℓ

(4)
1 a1 + ℓ

(4)
2 a2 + ℓ

(4)
3 a3

...

ngag = ℓ
(g)

0 a0 + ℓ
(g)

1 a1 + ℓ
(g)

2 a2 + · · · + ℓ
(g)

g−2ag−2 + ℓ
(g)

g−1ag−1.

To ℓ
(1)
0 we assign the set

E
ℓ
(1)
0 ,n1

=
{

(k0, k1) ∈ N
2 : 0 ≤ k0 ≤ ℓ

(1)
0 − 2 ∧ k1 ∈ [0, n1 − 2]

}

,

which depends on ℓ
(1)
0 and n1; this corresponds to the simply plain box in the diagram

above.
In a next step, we need an iteration process to introduce a second auxiliary family

of sets as follows: for s ∈ [2, g] we consider

I (1)

ℓ
(s)
0

=
{

(k0, k1) ∈ N
2 : k0 ∈

[

0, ℓ
(s)
0 − 1

]

∧ k1 ∈ [0, n1 − 1]
}

I (1)

ℓ
(s)
1

=
{

(k0, k1) ∈ N
2 : k0 − ℓ

(s)
0 ∈

[

0, ℓ
(1)
0 − 1

]

∧ k1 ∈
[

0, ℓ
(s)
1 − 1

] }

(These sets depend on the coefficients enclosed in a grey-shaded square and the
one with a yellow background corresponding to ℓ

(2)
1 in the preceding diagram). Now

we define the sets D′

ℓ
(s)
1

depending on the annihilation of ℓ
(s)
0 , namely

• If ℓ
(s)
1 = 0, then D′

ℓ
(s)
1

= I (1)

ℓ
(i)
0

for i ∈ [2, g].

• If ℓ
(i)
1 6= 0, then D′

ℓ
(i)
1

= I (1)

ℓ
(i)
0

⋃

I (1)

ℓ
(i)
1

, for i ∈ [2, g].

These base cases allow us to define iteratively the sets D′

ℓ
(s)
s−1

for s ∈ [3, g] from

the construction of sets D′

ℓ
( j)
i

for i ∈ [1, g − 1], j ∈ [i + 2, g] with j − i > 1.

To do so, we set for t ∈ [3, g − 1], s ∈ [t + 1, g]

I (t−1)

ℓ
(s)
t−2

=

{

(k0, . . . , kt−1) ∈ N
t : kt−1 ∈ [0, nt−1 − 1] ∧ (k0, . . . , kt−2) ∈ D′

ℓ
(s)
t−2

}

I (t−1)

ℓ
(s)
t−1

=

{

(k0, . . . , kt−1) ∈ N
t : kt−1 ∈

[

0, ℓ
(s)
t−1 − 1

]

∧

(

k0 − ℓ
(s)
0 , . . . , kt−2 − ℓ

(s)
t−2

)

∈ D′

ℓ
(t−1)
t−2

}
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For t ∈ [3, g − 1] and s ∈ [t + 1, g] we finally define

D′

ℓ
(s)
t−1

=















I (t−1)

ℓ
(s)
t−2

if ℓ
(s)
t−1 = 0,

I (t−1)

ℓ
(s)
t−2

∪ I (t−1)

l(s)t−1

if ℓ
(s)
t−1 6= 0.

We focus on the sets D′

ℓ
(s)
s−1

(those corresponding to coefficients highlighted in

yellow in the diagram above); they have the following interpretation:

Lemma 2.6 For every s ∈ [2, g], the set

{

ūk0
0 ūk1

1 ūk2
2 · · · ūks−1

s−1 : (k0, k1, . . . , ks−1) ∈ D′

ℓ
(s)
s−1

}

is a system of generators of C[u0, . . . , us ]/( f1, . . . , fs); the writing ū0, ū1, . . . , ūs

points out the classes by the canonical projection.

Proof The statement can be proved in much the same way as [5, Lemme 4]. ⊓⊔

Finally, depending on the vanishing of ℓ
(s)
s−1, we define for s ∈ [2, g]

D
ℓ
(s)
s−1

:=



















D′

ℓ
(s)
s−1

\ max

{

(k0, k1, . . . , ks−1) ∈ I (s−1)

ℓ
(s)
s−2

}

if ℓ
(s)
s−1 = 0,

D′

ℓ
(s)
s−1

\ max

{

(k0, k1, . . . , ks−1) ∈ I (s−1)

ℓ
(s)
s−1

}

if ℓ
(s)
s−1 6= 0,

where the maximal point is considered with regard to the lexicographical order in N
s .

The sets D
ℓ
(s)
s−1

allow us to describe a basis of the quotient C-vector space C[Ŵ]g/NŴ :

Theorem 2.7 Let Ŵ = 〈a0, a1, . . . , ag〉 be a free numerical semigroup. Consider
the standard basis given by the (column) unit vectors e1, . . . , eg . A basis of the
C-vector space T 1 = C[Ŵ]g/NŴ consists of the images by the C-linear map
C[u0, . . . , ug]

g/NŴg → C[Ŵg+1]
g+1/NŴg+1 where NŴg is defined in eqn. (2.5) (and

similarly for NŴg ) of the following column vectors of monomials:

⋄
(

ūk0
0 ūk1

1 ūk2
2 · · · ū

kg
g

)

e1, where (k0, k1) ∈ E
ℓ
(1)
0 ,n1

, and km ∈ [0, nm − 1], m =

2, . . . , g.

⋄
(

uk0
0 uk1

1 uk2
2 · · · u

kg
g

)

e2, where (k0, k1) ∈ D
ℓ
(2)
1

, and k2 = 0, . . . , n2 − 2, km =

0, . . . , nm − 1 for m = 3, . . . , g.

⋄
(

ūk0
0 ūk1

1 ūk2
2 · · · ū

kg
g

)

em , where (k0, k1, . . . , km−1) ∈ D
ℓ
(m)
m−1

; here km ∈ [0, nm −2]

for m = 3, . . . , g − 1 and km′ ∈ [0, nm′ − 1] for m′ ∈ [m + 1, g].

⋄
(

ūk0
0 ūk1

1 ūk2
2 · · · ū

kg
g

)

eg , where (k0, k1, . . . , kg−1) ∈ D
ℓ
(g)
g−1

and kg ∈ [0, ng − 2].
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Proof We will proceed by induction on the number of generators of the numerical
semigroup Ŵ. Write Ŵh = 〈a0, a1, . . . , ah〉 for h = 1, . . . , g.

As base case, assume h = 1; here the claim is easy since the monomial curve is
the plane curve with equation f1(u0, u1) = ua0

1 − ua1
0 . Therefore, as f1 is quasihomo-

geneous it belongs to the Jacobian ideal (∂ f1/∂u0, ∂ f1/∂u1) = (ua1−1
0 , ua0−1

1 ) and
then

T 1 (

CŴ1
)

=
C[u0, u1]

(

ua1−1
0 , ua0−1

1

) .

In this case we denote ℓ
(1)
0 = a1 and a C–basis of T 1(CŴ1) is the set

{

ūk0
0 ūk1

1 : (k0, k1)

∈ E
ℓ
(1)
0 ,n1

}

.

Now suppose by induction that the result is true for h < g and let us assume we
are in the case h + 1. Recall that, since Ŵh+1 is a free semigroup, we may write
Ŵh+1 = nh+1Ŵh + ah+1N. Also, by Delorme [9, Proposition 10] we have c(Ŵh+1) =
nh+1c(Ŵh)+(nh+1−1)(ah+1−1), which according to Pinkham [16, Sect. 10] coincides
with the dimension of T 1(CŴh+1); observe that nh+1 6= 1 since Ŵh+1 is free.

From now on, we will denote Nh := NŴh . Let us denote by Bh the basis of the
C-vector space C[Ŵh]h/Nh provided by induction hypothesis. Theorem 2.3 yields the
injective C-linear map

C[Ŵh]h/Nh
8
−→ C[Ŵh+1]

h+1/Nh+1

z̄ 7→ (z̄, 0)

Then,
{

ūk
h+18(z̄) : z̄ ∈ Bh , ◦ k ∈ [0, nh+1 − 1]

}

is a set of C–linearly independent non-zero elements of C[Ŵh+1]
h+1/Nh+1 whose

cardinality is nh+1c(Ŵh). Moreover, by induction hypothesis those are precisely the
set of vectors defined by parts (1), (2) and (3). Therefore, it remains to show that

(

ūk0
0 ūk1

1 ūk2
2 · · · ūkh+1

h

)

Eeh+1

for (k0, k1, . . . , kh) ∈ D
ℓ
(h+1)
h

with kh ∈ [0, nh − 2] are (nh+1 − 1)(ah+1 − 1) non-

zero elements which together with the previous vectors build a system of generators
of C[Ŵh+1]

h+1/Nh+1 .
By Lemma 2.6 we have that ūk0

0 · · · ūkh
h ūkh+1

h+1 with (k0, . . . , kh) ∈ D′

ℓ
(h+1)
h

is a system

of generators of C[u0, . . . , uh+1]/( f1, . . . , fh+1). Observe that, as each fi is homo-
geneous of degree ni ai , our definition of D

ℓ
(h+1)
h

from D′

ℓ
(h+1)
h

eliminates the unique

element of D′

ℓ
(h+1)
h

that goes to 0 after taking quotient with Nh+1. Therefore, to con-

clude the proof we only need to show that the number of elements of D′

ℓ
(h+1)
h

is ah+1.
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To prove that, we recall the definition of the sets D′

ℓ
(s)
t−1

, namely

D′

ℓ
(s)
t−1

=











I (t−1)

ℓ
(s)
t−2

if ℓ
(s)
t−1 = 0.

I (t−1)

ℓ
(s)
t−2

∪ I (t−1)

l(s)t−1

if ℓ
(s)
t−1 6= 0.

for s ≥ 2 and t = 3, . . . , s. From this definition it is easily seen that

∣

∣

∣
D′

ℓ
(s)
t−1

∣

∣

∣
= nt−1

∣

∣

∣
D′

ℓ
(s)
t−2

∣

∣

∣
+ ℓ

(s)
t−1

∣

∣

∣
D′

ℓ
(t−1)
t−2

∣

∣

∣
. (2.10)

Recall also that ℓ
(1)
0 = a1/e1 = a1/(n2 · · · nh+1) and then

∣

∣

∣

∣

D′

ℓ
(h+1)
1

∣

∣

∣

∣

= ℓ
(h+1)
0 n1 + ℓ

(h+1)
1 ℓ

(1)
0 =

ℓ
(h+1)
0 a0 + ℓ

(h+1)
1 a1

n2 · · · nh+1
and

∣

∣

∣

∣

D′

ℓ
(2)
1

∣

∣

∣

∣

=
a2

e2
=

a2

n3 · · · nh+1
.

Recursively, we can use eqn. (2.10) to show

∣

∣

∣
D′

ℓ
(s)
t−2

∣

∣

∣
=

ℓ
(s)
0 a0 + · · · + ℓ

(s)
t−2at−2

nt−1 · · · nh+1
and

∣

∣

∣
D′

ℓ
(t−1)
t−2

∣

∣

∣
=

at−1

et−1
=

at−1

nt−2 · · · nh+1
(2.11)

Finally, applying the previous computations to the case s = h + 1 and t = h + 1 and
the identity

nh+1ah+1 = ℓ
(h+1)
0 a0 + · · · + ℓ

(h+1)
h−1 ah−1 + ℓ

(h+1)
h ah

we obtain
∣

∣

∣
D′

ℓ
(h+1)
h

∣

∣

∣
= ah+1. In this way, the number of vectors of the form (4) is

exactly the product (nh+1 − 1)(ah+1 − 1), which is the desired conclusion. ⊓⊔

Remark 2.8 (1) Theorem 2.7 is a generalization of [5, Théorème 3] in the sense that,
if Ŵ is the value semigroup associated to a plane branch (hence irreducible), then our
Theorem 2.7 recovers [5, Théorème 3].
(2) If we allow ni = 1 for some i ∈ [1, g + 1], then observe that there is no loss
of generality in the proof of Theorem 2.7. In that case the conductor in the iteration
remains constant and the induction is trivial by Theorem 2.3.

We illustrate Theorem 2.7 by showing an explicit construction of a basis of the
C-vector space C[Ŵg]

g/NŴg .

Example 2.9 Set the sequence of positive integers A = (18, 27, 21, 32). It is easily
seen that the sequence of (n1, n2, n3) associated to A is (2, 3, 3) and that the numerical

123



P. Almirón, J. J. Moyano-Fernández

semigroup ŴA = 〈A〉 generated by A is free, since

n1 a1 = 2 · 27 = 3 · 18 = ℓ
(1)
0 a0,

n2 a2 = 3 · 21 = 2 · 18 + 1 · 27 = ℓ
(2)
0 a0 + ℓ

(2)
1 a1

n3 a3 = 3 · 32 = 3 · 18 + 0 · 27 + 2 · 21 = ℓ
(3)
0 a0 + ℓ

(3)
1 a1 + ℓ

(3)
2 a2.

(2.12)

Now, let us describe a basis of the quotient C-vector space C[ŴA]3/NŴA taking into
account both Theorem 2.7 and eqns. (2.12). First we calculate the elements belonging
to the set E

ℓ
(1)
0 ,n1

; this is

E
ℓ
(1)
0 ,n1

=
{

(k0, k1) ∈ N
2 : k0 = 0, 1 and k1 = 0

}

= {(0, 0), (1, 0)}.

After this base case, the following two steps are the computation of the elements in the
sets D

ℓ
(2)
1

and D
ℓ
(3)
2

. But before that, we need to calculate the corresponding sets I (1)

ℓ
(2)
0

,

I (1)

ℓ
(2)
1

, I (2)

ℓ
(3)
1

, I (2)

ℓ
(3)
2

(along with the set I (1)

ℓ
(3)
0

, which is necessary for defining the set D′

ℓ
(3)
1

,

itself required in the definition of I (2)

ℓ
(3)
1

) giving rise to them. We start computing the

elements in the set D
ℓ
(2)
1

. In this particular case, as ℓ
(2)
1 = 1 6= 0, we have to calculate

I (1)

ℓ
(2)
0

, I (1)

ℓ
(2)
1

, D′

ℓ
(2)
1

and h
(

I (1)

ℓ
(2)
1

)

:= max
{

(k0, k1) ∈ I (1)

ℓ
(2)
1

)

}

:

I (1)

ℓ
(2)
0

=
{

(k0, k1) ∈ N2 : 0 ≤ k0 ≤ ℓ
(2)
0 − 1 = 1 and 0 ≤ k1 ≤ n1 − 1 = 1

}

= {(0, 0), (0, 1), (1, 0), (1, 1)}.

I (1)

ℓ
(2)
1

=
{

(k0, k1) ∈ N2 : 0 ≤ k0 − ℓ
(2)
0 ≤ ℓ

(1)
0 − 1 and 0 ≤ k1 ≤ ℓ

(2)
1 − 1

}

= {(2, 0), (3, 0), (4, 0)}.

D′

ℓ
(2)
1

= I (1)

ℓ
(2)
0

∪ I (1)

ℓ
(2)
1

and h
(

I (1)

ℓ
(2)
1

)

= (4, 0).

This yields the set D
ℓ
(2)
1

, namely

D
ℓ
(2)
1

= {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (3, 0)}.

To conclude, we obtain the set D
ℓ
(3)
2

. In this case, first we have to compute I (1)

ℓ
(3)
0

and

D′

ℓ
(3)
1

since ℓ
(3)
1 = 0 and after the sets I (2)

ℓ
(3)
1

, I (2)

ℓ
(3)
2

, and D′

ℓ
(3)
2

, because ℓ
(3)
2 6= 0, and the
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vector h
(

I (2)

ℓ
(3)
2

)

:= max
{(

k0, k1, k2) ∈ I (2)

ℓ
(3)
2

)}

:

I (1)

ℓ
(3)
0

=
{

(k0, k1) ∈ N2 : 0 ≤ k0 ≤ ℓ
(3)
0 − 1 = 2 and 0 ≤ k1 ≤ n1 − 1 = 1

}

= {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.

D′

ℓ
(3)
1

= I (1)

ℓ
(3)
0

.

I (2)

ℓ
(3)
1

=

{

(k0, k1, k2) ∈ N3 : 0 ≤ k2 ≤ n2 − 1 = 2 and (k0, k1) ∈ D′

ℓ
(3)
1

}

= {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0),

(2, 1, 1), (2, 1, 2)}.

I (2)

ℓ
(3)
2

=

{

(k0, k1, k2) ∈ N3 :0≤k2 ≤ℓ
(3)
2 −1=1 and

(

k0 − ℓ
(3)
0 , k1 − ℓ

(3)
1

)

∈ D′

ℓ
(2)
1

}

= {(3, 0, 0), (3, 0, 1), (3, 1, 0), (3, 1, 1), (4, 0, 0), (4, 0, 1), (4, 1, 0),

(4, 1, 1), (5, 0, 0), (5, 0, 1), (6, 0, 0), (6, 0, 1), (7, 0, 0), (7, 0, 1)}.

D′

ℓ
(3)
2

= I (2)

ℓ
(3)
1

∪ I (2)

ℓ
(3)
2

and h
(

I (2)

ℓ
(3)
2

)

= (7, 0, 1).

As a result, we get

D
ℓ
(3)
2

= {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0),

(2, 1, 1), (2, 1, 2), (3, 0, 0), (3, 0, 1), (3, 1, 0), (3, 1, 1), (4, 0, 0), (4, 0, 1),

(4, 1, 0), (4, 1, 1), (5, 0, 0), (5, 0, 1), (6, 0, 0), (6, 0, 1), (7, 0, 0)}.

A straightforward application of Theorem 2.7 shows that the image in C[ŴA]3/NŴA

of the following monomials provides a C–basis:

(1, 0, 0), (u0, 0, 0), (u2, 0, 0),
(

u2
2, 0, 0

)

, (u3, 0, 0),
(

u2
3, 0, 0

)

,

(u2u3, 0, 0),
(

u2u2
3, 0, 0

)

,
(

u2
3u2

2, 0, 0
)

, (0, 1, 0), (0, u1, 0), (0, u0, 0),

(0, u0u1, 0), (0, u2
0, 0),

(

0, u3
0, 0

)

, (0, u2, 0), (0, u1u2, 0), (0, u0u2, 0),

(0, u0u1u2, 0),
(

0, u2
0u2, 0

)

,
(

0, u3
0u2, 0

)

, (0, u3, 0), (0, u1u3, 0), (0, u0u3, 0),

(0, u0u1u3, 0),
(

0, u2
0u3, 0

)

,
(

0, u3
0u3, 0

)

,
(

0, u2
3, 0

)

,
(

0, u1u2
3, 0

)

,
(

0, u0u2
3, 0

)

,

(

0, u0u1u2
3, 0

)

,

(

0, u2
0u2

3, 0
)

,

(

0, u3
0u2

3, 0
)

, (0, u2u3, 0), (0, u1u2u3, 0), (0, u0u2u3, 0),

(0, u0u1u2u3, 0),

(

0, u2
0u2u3, 0

)

,

(

0, u3
0u2u3, 0

)

,

(

0, u2u2
3, 0

)

,

(

0, u1u2u2
3, 0

)

,
(

0, u0u2u2
3, 0

)

,
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(

0, u0u1u2u2
3, 0

)

,
(

0, u2
0u2u2

3, 0
)

,
(

0, u3
0u2u2

3, 0
)

, (0, 0, 1), (0, 0, u2),
(

0, 0, u2
2

)

,

(0, 0, u1), (0, 0, u1u2),

(

0, 0, u1u2
2

)

, (0, 0, u0), (0, 0, u0u2),

(

0, 0, u0u2
2

)

,

(0, 0, u0u1), (0, 0, u0u1u2),
(

0, 0, u0u1u2
2

)

,
(

0, 0, u2
0

)

,
(

0, 0, u2
0u2

)

,
(

0, 0, u2
0u2

2

)

,

(

0, 0, u2
0u1

)

,
(

0, 0, u2
0u1u2

)

,
(

0, 0, u2
0u1u2

2

)

,
(

0, 0, u3
0

)

,
(

0, 0, u3
0u2

)

,
(

0, 0, u3
0u1

)

,

(

0, 0, u3
0u1u2

)

,

(

0, 0, u4
0

)

,

(

0, 0, u4
0u2

)

,

(

0, 0, u4
0u1

)

,

(

0, 0, u4
0u1u2

)

,

(

0, 0, u5
0

)

,

(

0, 0, u5
0u2

)

,

(

0, 0, u6
0

)

,
(

0, 0, u6
0u2

)

,
(

0, 0, u7
0

)

, (0, 0, u3), (0, 0, u2u3),
(

0, 0, u2
2u3

)

,

(0, 0, u1u3), (0, 0, u1u2u3),

(

0, 0, u1u2
2u3

)

, (0, 0, u0u3),

(0, 0, u0u2u3),

(

0, 0, u0u2
2u3

)

,

(0, 0, u0u1u3), (0, 0, u0u1u2u3),

(

0, 0, u0u1u2
2u3

)

,

(

0, 0, u2
0u3

)

,

(

0, 0, u2
0u2u3

)

,
(

0, 0, u2
0u2

2u3

)

,

(

0, 0, u2
0u1u3

)

,
(

0, 0, u2
0u1u2u3

)

,
(

0, 0, u2
0u1u2

2u3

)

,
(

0, 0, u3
0u3

)

,
(

0, 0, u3
0u2u3

)

,

(

0, 0, u3
0u1u3

)

,

(

0, 0, u3
0u1u2u3

)

,

(

0, 0, u4
0u3

)

,

(

0, 0, u4
0u2u3

)

,

(

0, 0, u4
0u1u3

)

,
(

0, 0, u4
0u1u2u3

)

,

(

0, 0, u5
0u3

)

,
(

0, 0, u5
0u2u3

)

,
(

0, 0, u6
0u3

)

,
(

0, 0, u6
0u2u3

)

,
(

0, 0, u7
0u3

)

.

3 On the dimension of themoduli space of a monomial curve
associated to a free semigroup

Let Ŵ be a complete intersection numerical semigroup and CŴ its monomial curve.
Let τ := dimC T 1

CŴ be the dimension of the base space of the miniversal deformation

of CŴ. Following the notation of Subsection 2.2, we write τ− for the dimension of the
negatively graded part of T 1

CŴ (see also eqn. (2.4) and the text following it). At this
juncture, we now continue with the contents of Subsection 2.2. According to Pinkham
[17], we focus on the negative part P− of the deformation in order to study the moduli
space associated to Ŵ.

To this purpose we need first to consider the base change in the deformation induced
by the inclusion map defined as V− := (Cτ− × {0}, 0) →֒ (Cτ , 0), on account of the
diagram

(CŴ, 0) (X , 0) (Cτ , 0)

(XŴ, 0) := (X , 0) ×(Cτ ,0) (V−, 0) (V−, 0).
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Let us denote by GŴ : XŴ → V− the deformation induced by this base change.
Observe that this deformation can be described in terms of the eqns. (2.4) by making
w j = 0 for all j ∈ P+. This is now a negatively graded deformation. Following
Pinkham, we must projectivize the fibers of GŴ without projectivizing the base space

V−. This can be done by replacing s j with s j (u0, . . . , ug)X
− deg s j
g+1 so that we obtain

the projectivizationX Ŵ of XŴ; observe that we have the inclusion X Ŵ ⊂ Pg+2×V−,
where the ring C[u0, . . . , ug, Xg+1] has deg ui = ai and deg Xg+1 = 1. According
to Pinkham [16, Proposition 13.4, Remark 10.6] the morphism

π : X Ŵ −→ V−

is flat and proper, and has fibres which are reduced projective curves, and all the fibres
lying over a given C∗-orbit of V− (i.e. orbits under the action of the multiplicative
group of units C∗) are isomorphic.

This leads Pinkham [16, Theorem 13.9] to prove the following. (Our formulation
sticks to Buchweitz [3, Theorem 3.3.4]).

Theorem 3.1 (Pinkham) Let Mg,1 be the coarse moduli space of smooth projective
curves C of genus g with a section i.e. of pointed compact Riemann surfaces of genus
g. Let Ŵ be a numerical semigroup and set the subscheme of Mg,1 parameterizing
pairs

WŴ=
{

(X0, p) : X0 is a smooth projective curve of genusg, and p ∈ X0withŴp=Ŵ

}

,

where Ŵp is the Weierstraß semigroup at the point p. Moreover, write V −
s for the open

subset of V − given by the points u ∈ V− such that the fibre of X Ŵ → V− above u
is smooth. This is C∗ equivariant, and so there exists a bijection between WŴ and the
orbit space V −

s /C∗.

As complete intersections can be deformed without obstructions, the following
corollary is an easy consequence of Theorem 3.1 and Deligne-Greuel’s formula [7,
12]:

Corollary 3.2 Let Ŵ be a complete intersection numerical semigroup. Then,

dim WŴ = τ− = c(Ŵ) − τ+.

3.1 On the recursive computation of the dimension of themoduli space of a free

semigroup

Starting with the recursive presentation of a free semigroup, our aim is to compute τ+,
and then the dimension of the moduli space, in a recursive way. We will focus on the
particular case of free numerical semigroups Ŵg = 〈a0, a1, . . . , ag〉. Recall that Ŵ is
a free semigroup if it satisfies the condition:

ni ai ∈ 〈a0, a1, . . . , ai−1〉 for all i ∈ [1, g] (3.1)
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where e0 = a0, ei = gcd(a0, . . . , ai ) and ni = ei−1
ei

. A useful observation
about this class is that can be constructed in an iterative way. Let us denote by
Ŵi = 〈a0, a1, . . . , ai 〉/ei the “truncated numerical semigroups". Observe that we have
Ŵ2 = n2Ŵ1 + a2/e2N, Ŵ3 = n3Ŵ2 + a3/e3N and thus we can write

S = eg−1Ŵg−1 + · · · + agN.

We will provide sharp upper and lower bounds for the dimension of the moduli
space of Ŵg in terms of the dimension of the moduli space of Ŵg−1.

Before continuing with the procedure to compute the dimension of the moduli space
of a free semigroup, we need the following technical result.

Proposition 3.3 Let 〈a0, a1, . . . , ag〉 be a free numerical semigroup and

As,k =
{

(k0, k1) ∈ E
ℓ
(1)
0 ,n1

: k0a0 + k1a1 + kas > n1a1 and as < n1a1

}

,

for 2 ≤ s ≤ g and 1 ≤ k ≤ ns − 1. Set bs,k := |As,k|; then

bs,k = τ+

〈n1,ℓ
(1)
0 〉

+
⌊kas

e1

⌋

− σ1,k(as) − γ1,k(as) + 1,

where

σ1,k(t) =







0, if
⌊

kt
e1

⌋

< ℓ
(1)
0 ,

1, otherwise,

and

γ1,k(t) =



























0, if
⌊

kt
e1

⌋

< n1 −
⌊

n1

ℓ
(1)
0

⌋

ℓ
(1)
0 ,

⌊

n1

ℓ
(1)
0

⌋

+ 1, if
⌊

kt
e1

⌋

≥ n1,

⌊

kt
e1

⌋

− n1 +
⌊

n1

ℓ
(1)
0

⌋

ℓ
(1)
0 , if n1 −

⌊

n1

ℓ
(1)
0

⌋

ℓ
(1)
0 ≤

⌊

kt
e1

⌋

≤ n1.

Proof First of all, observe that we have a partition of E
ℓ
(1)
0 ,n1

as

E
ℓ
(1)
0 ,n1

=
{

(k0, k1) ∈ E
ℓ
(1)
0 ,n1

: k0a0 + k1a1 > n1a1

}

⊔
{

(k0, k1) ∈ E
ℓ
(1)
0 ,n1

: k0a0 + k1a1 < n1a1

}

.

As by definition,
{

(k0, k1) ∈ E
ℓ
(1)
0 ,n1

: k0a0 + k1a1 > n1a1

}

⊂ As,k then at least

there are τ+

〈n1,ℓ
(1)
0 〉

points in As,k .

Set the index s ∈ [2, g] such that as < n1a1 and k ∈ [1, ns − 1]. Now, assume
(k0, k1) ∈ E

ℓ
(1)
0 ,n1

such that k0a0 + k1a1 < n1a1; we want to see how many of those
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points satisfy k0a0 + k1a1 + ka2 > n1a1 for some k > 0. Since k0a0 + k1a1 < n1a1,
we have that k0a0 + k1a1 = n1a1 − εe1 if and only if k0n1 + k1ℓ

(1)
0 = n1ℓ

(1)
0 − ε, for

ε ∈ N. We know that, in

B =
{

(k0, k1) : k0 ∈
[

0, ℓ
(1)
0 − 1

]

, k1 ∈ [0, n1 − 1]
}

⊆ N
2,

the line k0n1 + k1ℓ
(1)
0 = n1ℓ

(1)
0 − ε contains a unique point. Assume for a moment

that (k0, k1) ∈ B , then

k0a0 + k1a1 + ka2 − n1a1 > 0 ⇐⇒ n1a1 − εe1 + ka2 − n1a1 > 0,

which is equivalent to 0 ≤ ε ≤
⌊

ka2
e1

⌋

. This means that there are, at most,

⌊kas

e1

⌋

+ 1

points such that (k0, k1) ∈ E
ℓ
(1)
0 ,n1

with k0a0 + k1a1 < n1a1 and k0a0 + k1a1 + ka2 >

n1a1 for some k > 0. At this stage, two distinct cases may be considered, namely:
Case 1: ε = n1 + k1ℓ

(1)
0 with k1 ∈ [0, n1 − 1] and ℓ

(1)
0 n1 + k1ℓ

(1)
0 = n1ℓ

(1)
0 − ε.

Case 2: ε = ℓ
(1)
0 − k0n1 with k0n1 + n1ℓ

(1)
0 − ℓ

(1)
0 = n1ℓ

(1)
0 − ε.

Without loss of generality we can assume that a0 > a1. Since 〈a0, a1, . . . , ag〉 is

a free semigroup, we have n1 = a0/n1 and ℓ
(1)
0 = a1/e1, which implies n1 > ℓ

(1)
0 .

Thus, in Case 2, as ε ≥ 0, the only possibility is k0 = 0. So, under the hypothesis of
⌊

kas
e1

⌋

< ℓ
(1)
0 , there will be no points satisfying the conditions of Case 2, and under the

hypothesis of
⌊

kδs
e1

⌋

≥ ℓ
(1)
0 , there will be only one point satisfying the conditions of

Case 2. This justifies the definition of σ1,k(as). On the other hand, the points satisfying
the conditions of Case 1 can be studied through the function γ1,k(as), so that we obtain

bs,k = τ+

〈n1,ℓ
(1)
0 〉

+
⌊kas

e1

⌋

+ 1 − σ1,k(as) − γ1,k(as),

as wished. ⊓⊔

Now, we can proceed with the main result of this section which relates τ+
m and

τ+
m−1. If Ŵ = 〈a0, a1, . . . , ag〉 is a free semigroup, then its monomial curve is defined

by the ideal generated by the elements f1, . . . , fg ∈ C[u0, . . . , ug] with degrees
deg( fi ) = ni ai . According to the discussion at the beginning of this section, we
can endow T 1 with a grading in such a way deg(ui ) = ai and the equations of the
deformation

Fi (u,w) = fi (u) +

τ
∑

j=1

w j s
1
j (u)

are homogeneous with deg(Fi ) = deg( fi ), for i ∈ [1, k]. In this way, the monomial
basis of T 1 provided by Theorem 2.7 has the following weights:
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(1) deg

(

(

ūk0
0 , ūk1

1 , ūk2
2 · · · ūkm

m

)

e1

)

=
∑m

i=1 ki ai − n1a1, where (k0, k1) ∈ E
ℓ
(1)
0 ,n1

,

and we have kr ∈ [0, nr − 1] for r ∈ [2, m].

(2) deg

(

(

ūk0
0 , ūk1

1 , ūk2
2 · · · ūkm

m

)

e2

)

=
∑m

i=1 kiai − n2a2, where (k0, k1) ∈ D
ℓ
(2)
1

,

with k2 ∈ [0, n2 − 1], and kr ∈ [0, nr − 1], r ∈ [3, m].

(3) deg

(

(

ūk0
0 , ūk1

1 , ūk2
2 · · · ūkm

m

)

er

)

=
∑m

i=1 ki ai−nr ar , where (k0, k1, . . . , kr−1) ∈

D
ℓ
(r)
r−1

with kr ∈ [0, nr − 1] for r ∈ [3, m − 1], and kr ′ ∈ [0, nr ′ − 1] for

r ′ ∈ [r + 1, m].

(4) deg

(

(

ūk0
0 , ūk1

1 , ūk2
2 · · · ūkm

m

)

em

)

=
∑m

i=1 ki ai−nmam , where (k0, k1, . . . , km−1) ∈

D
ℓ
(m)
m−1

with km ∈ [0, nm − 2].

Set dm,k =

∣

∣

∣

∣

D+

ℓ
(m)
m−1,k

∣

∣

∣

∣

where D+

ℓ
(m)
m−1,k

=

{

(k0, . . . , km−1) ∈ D
ℓ
(m)
m−1

:

m−1
∑

i=1

ki ai >

(nm − k)am

}

for k ∈ [0, nm − 2]. We have therefore the following.

Theorem 3.4 Let Ŵm = 〈a0, a1, . . . , am〉 be a free numerical semigroup with m gen-
erators. Then,

τ+
m−1+(nm −1)(µm−1+dm,0)+

nm−2
∑

k=1

⌊

kam

nm

⌋

≥ τ+
m ≥ τ+

m−1+(nm −1)(τ+
m−1+dm,0),

where µm−1 is the conductor of the semigroup Ŵm−1 = (〈a0, . . . , am〉)/(gcd(a0,

. . . , am−1).

Moreover,

τ+
m ≥ τ+

〈n1,ℓ
(1)
0 〉

+
∑

j /∈L1
j /∈Jm

(n j−1)τ+

〈n1,ℓ
(1)
0 〉

+
∑

j∈L1

( n j −1
∑

k=1

b j ,k

)

+(nm−1)

(

∑

j∈Jm

a j

e j
+dm,0

)

,

where Jm :=
{

j ∈ [1, m − 1] : am ≥ n j a j
}

, L1 :=
{

i ∈ [2, m] : ai < n1a1
}

and
b j ,k is defined as in Proposition 3.3.

Proof As in the proof of Theorem 2.7, let us denote by Bm−1 the C–basis of
C[Ŵm−1]

m−1/Nm−1. By Theorem 2.3 we have the injective map

C[Ŵm−1]
m−1/Nm−1

8
−→ C[Ŵm]m/Nm

z 7→ (z, 0)
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Then, Theorem 2.7 shows that the basis Bm decomposes as

Bm =

{

uk
m8(z) : z ∈ Bm−1, k ∈ [0, nm − 1]

}

⊔
{ (

ūk0
0 ūk1

1 ūk2
2 · · · ūkm

m

)

em : (k0, k1, . . . , km−1) ∈ D
ℓ
(m)
m−1

}

.

Let us first assume that am ≥ a j n j for all j ∈ [1, m − 1], then for all k ≥ 1 and
denote by ω̄ = 8(z) for z ∈ Bm−1. We have

deg
(

ūk
m ω̄

)

= deg(ω̄) + kam =

m−1
∑

i=0

αi ai − n j a j + kam ≥ 0.

Therefore, if am ≥ a j n j for all j ∈ [1, m − 1], then the decomposition of the basis
implies that

τ+
m = τ+

m−1 + (nm − 1)µm−1 +

nm−2
∑

k=0

dm,k . (3.2)

Now, let us assume the existence of an index j0 ∈ [1, m −1] such that am < a j0n j0 .

Thus, there exists z̄ ∈ Bm−1 such that deg(ūm z̄) < 0. Hence, in this case we obtain
the strict inequality

τ+
m < τ+

m−1 + (nm − 1)µm−1 +

nm−2
∑

k=0

dm,k . (3.3)

Let us now move to provide a lower bound. Set Jm =
{

j ∈ [1, m−1] : am ≥ n j a j
}

and assume [1, m −1] \ Jm 6= ∅ as otherwise we are in the previous situation. Observe
that, by the decomposition of the basis Bm , any element z̄ ∈ Bm−1 with deg(z̄) ≥ 0
also satisfies deg(ak

m z̄) ≥ 0 for k ∈ [0, nm − 1]. This implies the inequality τ+
m ≥

nmτ+
m−1. Analogously, for any j ∈ Jm and any z ∈ D

ℓ
( j)
j−1

such that deg(z) ≤ 0 (here we

identify monomial residue class and its exponent for brevity), we have deg(ak
mz) ≥ 0

for k ∈ [1, nm − 1]. Thus, if for j ∈ Jm we set

d−
j =

∣

∣

∣

{

z ∈ D
ℓ
( j)
j−1

| deg(z) < 0
}
∣

∣

∣
,

then

τ+
m ≥ nmτ+

m−1 + (nm − 1)





∑

j∈Jm

d−
j



 +

nm−2
∑

k=0

dm,k . (3.4)

Independently of the assumptions on am ≥ n j a j or am < n j0a j0 , let us now estimate

the sum
nm−2
∑

k=0

dm,k . Recall that dm,0 =
∣

∣

∣
D+

ℓ
(m)
m−1,0

∣

∣

∣
and d

′

m,0 =
∣

∣

∣
D

′+

ℓ
(m)
m−1

∣

∣

∣
= dm,0 + 1,

where
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D
′+

ℓ
(m)
m−1,0

=

{

(k0, . . . , km−1) ∈ D
′

ℓ
(m)
m−1

:

m−1
∑

i=1

ki ai > nmam

}

D
′+

ℓ
(m)
m−1,k

=

{

(k0, . . . , km−1) ∈ D
′

ℓ
(m)
m−1

:

m−1
∑

i=1

ki ai > (nm − k)am

}

This implies that

0 ≤
∣

∣

∣
D

′+

ℓ
(m)
m−1,k

\ D
′+

ℓ
(m)
m−1,0

∣

∣

∣
≤

⌊kam

nm

⌋

,

therefore d
′

m,0 ≤ d
′

m,k = dm,k + 1 ≤ d
′

m,0 + ⌊kam/nm⌋. We deduce then that

(nm − 1)(d
′

m,0 − 1) =

nm−2
∑

k=0

(d
′

m,0 − 1) ≤

nm−2
∑

k=0

dm,k ≤ (nm − 1)(d
′

m,0 − 1) +

⌊

kam

nm

⌋

.

(3.5)
As d−

j ≥ 0 for all j ∈ Jm , then a combination of (3.2), (3.3), (3.4) and (3.5)
provides the desired inequalities

τ+
m−1+(nm −1)(µm−1+dm,0)+

nm−2
∑

k=1

⌊

kam

nm

⌋

≥ τ+
m ≥ τ+

m−1+(nm −1)(τ+
m−1+dm,0).

To finish, let us show the inequality

τ+
m ≥ τ+

〈n1,ℓ
(1)
0 〉

+
∑

j /∈L1
j /∈Jm

(n j−1)τ+

〈n1,ℓ
(1)
0 〉

+
∑

j∈L1





n j −1
∑

k=1

b j ,k



+(nm−1)

(

∑

j∈Jm

a j

e j
+dm,0

)

.

Observe that the basis Bm−1 is computed through the sets E
ℓ
(1)
0 ,n1

and D
ℓ
(s)
s−1

.

In this way, it is obvious that in Bm there are at least τ+

〈n1,ℓ
(1)
0 〉

positive weight

elements which are precisely those of the form
(

ūk0
0 ūk1

k1

)

e1 with (k0, k1) ∈ E
ℓ
(1)
0 ,n1

such that k0a0 + k1a1 > n1a1. Now, under the notations of Proposition 3.3, there are

∑

j∈L1

n j −1
∑

k=1

b j ,k positive weight elements which are of the form
(

ūk0
0 ūk1

1 ūk
s

)

e1 such that

k0a0 + k1a1 + kas > n1a1 with (k0, k1) ∈ E
ℓ
(1)
0 ,n1

and as < n1a1.

Additionally, for any r ∈ Jm we have deg

(

(ūk0
0 ūk1

1 ūk2
2 · · · ūkm

m )er

)

> 0 if

(k0, k1, . . . , kr−1) ∈ D
ℓ
(r)
r−1

with kr ∈ [0, nr − 2] and r ′ ∈ [r + 1, m − 1] so that

kr ′ ∈ [0, nr ′ − 1] and km ∈ [1, nm − 1]. Observe that the number of such elements is
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precisely (nm −1)
∣

∣D
ℓ
(r)
r−1

∣

∣. Recall that eqn. (2.11) implies
∣

∣

∣
D

ℓ
(r)
r−1

∣

∣

∣
= ar/er . Therefore,

the previous discussion provides the desired inequality. ⊓⊔

An immediate consequence of Theorem 3.4 is the following:

Corollary 3.5 Let Ŵ = 〈a0, a1, . . . , am〉 be a free numerical semigroup. Then the
dimension τ−

m of the moduli space WŴ satisfies the following inequalities

nmτ−
m−1 − (nm − 1)(dm,0 + am − 1) ≥ τ−

m ≥ τ−
m−1 − (nm − 1)(dm,0 + am − 1)

−

nm−2
∑

k=1

⌊

kam

nm

⌋

.

The sets D
ℓ
( j)
j−1

used to determine the monomial basis of T 1 define recursively a

j -dimensional staircase in Nm . Observe that in order to determine dm,k or d−
j we need

to count how many points of this staircase are below and over the hyperplane defined
by n j a j = ℓ

j
0a0 + · · · + ℓ

j
j−1a j . Without any extra assumptions on the generators of

Ŵm , it is quite a difficult task from a combinatorial point of view to provide an exact
formula for dm,k or d−

j and hence for τ+
m . However, we can be more precise if we

impose some extra conditions over the generators of the semigroup. In fact, we will
show that the bounds of Theorem 3.4 are sharp.

3.2 Some special families of free semigroups

Let us first start with the following new characterization of the semigroup of values
of an irreducible plane curve:

Theorem 3.6 Let Ŵ = 〈a0, a1, . . . , am〉 be a free numerical semigroup. Then the
following statements are equivalent:

(1) ni ai < ai+1 for all i , i.e. Ŵ is the semigroup of values of an irreducible plane
curve singularity.

(2) The dimension of the positive part of T 1 can be computed recursively via the
formula

τ+
m = τ+

m−1 + (nm − 1)µm−1 +

nm−2
∑

k=0

dm,k .

Moreover for a free semigroup satisfying the conditions (1) we have

nm−2
∑

k=0

dm,k =
(nm − 1)µm−1

2
+

(nm − 3)(am/em − 3)

2
+

⌊

am

emnm

⌋

− 2

Proof (1) ⇔ (2) is a consequence of the first part of the proof of Theorem 3.4 as
inductively equations (3.2) and (3.3) shows that the upper bound in Theorem 3.4 is
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attained if and only if ni ai < ai+1 for all i . The formula for
nm−2
∑

k=0

dm,k is obtained by

[5, Théorème 8]. ⊓⊔

Before to show that the lower bound is also sharp, let us first prove the following

Proposition 3.7 Let Ŵm = 〈a0, a1, . . . , am〉 be a free numerical semigroup with m
generators. Under the previous notation, we have

(

ℓ
(1)
0 − 1

)

(n1 − 2)

2
+

⌊

kq2

n2

⌋

− 1 ≥

∣

∣

∣

∣

D+

ℓ
(2)
1 ,k

∣

∣

∣

∣

≥
(ℓ

(1)
0 − 1)(n1 − 2)

2
− |C| − 1,

where C is the triangle defined by the lines i = 0, j = n1 and in1 + jℓ(2)
0 = n1ℓ

(2)
0 .

In particular, if n2a2 > n1a1 then the upper bound is attained. (See Fig. 1)

Proof Let us first denote q2 = a2/e2. We have n2a2 = ℓ
(2)
0 a0 + ℓ

(2)
1 a1.

Assume ℓ
(2)
1 = 0, then D′

ℓ
(2)
1

= I
ℓ
(2)
0

; consider

A =
{

(i , j) ∈ I
ℓ
(2)
0

: in1 + jℓ(1)
0 > q2

}

.

In order to count the points in A, we must distinguish two situations:
Case 1: n2a2 > n1a1.

The inequality n2a2 > n1a1 is equivalent to ℓ
(1)
0 n1 < q2. The lines

r ≡ in1 + jℓ(1)
0 = n1ℓ

(1)
0

s ≡ in1 + jℓ(2)
0 = q2

are parallel. The lines r , i = ℓ
(1)
0 and j = n1 enclose a triangle B , and s, i = ℓ

(2)
0 and

j = n1 the triangle A. We have that

|A| = |B| =

(

ℓ
(1)
0 − 1

)

(n1 − 1)

2
=

c(Ŵ1)

2
.

Case 2: n2a2 < n1a1.
Consider again the parallel lines

r ≡ in1 + jℓ(1)
0 = n1ℓ

(1)
0

s ≡ in1 + jℓ(2)
0 = q2

Now the inequality n2a2 < n1a1 is equivalent to ℓ
(1)
0 n1 > q2 so that a triangle C

delimited by the lines r , s and j = n1 appears. The interesting area here is that of the
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n1

(1)
0

r

(2)
0

s

A
B

r

Fig. 1 Case ℓ
(2)
1 = 0 and n2a2 > n1a1.

n1

(2)
0

s

(1)
0

r

BA

C

Fig. 2 Case ℓ
(2)
1 = 0 and n2a2 < n1a1.

quadrilateral A (see Fig. 2), namely

|A| = |A| − |C| = |B| − |C| =

(

ℓ
(1)
0 − 1

)

(n1 − 2)

2
− |C|.

In this way we can bound the area of the region A both above and below.

Assume now that ℓ(2)
1 6= 0, then D′

ℓ
(2)
1

= I
ℓ
(2)
0

∪ I
ℓ
(2)
1

, and so the set A can be written

as a union A = A1 ∪ A2, where
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n1

(2)
0

(1)
0

r
(2)
0
+

(1)
0

s

A2

A1

A3

A
3

r s

Fig. 3 Case ℓ
(2)
1 6= 0 and n2a2 > n1a1.

A1 =
{

(i , j) ∈ I (2)
ℓ0

: in1 + jℓ(2)
0 > q2

}

A2 =
{

(i , j) ∈ I (2)
ℓ1

: in1 + jℓ(1)
0 > q2

}

.

We must distinguish again two cases:
Case 1: n2a2 > n1a1.

As in the previous case, we have that |B| = c(Ŵ1)
2 = |A|. (See Figures 3, 4)

We have to check that |A3| = |A′
3|, which is true, as the comparison of the following

two easy computations shows:

|A3| =

(

q2

n1
− ℓ

(2)
0

)(

n1 − ℓ
(2)
1

)

= q2 −
ℓ
(2)
1 q2

n1
− ℓ

(2)
0 n1

|A′
3| =ℓ

(2)
1

(

ℓ
(2)
0 + ℓ

(1)
0 −

q2

n1

)

Case 2: n2a2 < n1a1.

As in the previous cases, |A| = |A| − |C| = |B| − |C| = c(Ŵ1)
2 − |C|, where C is

again a triangle. Moreover, as in the case ℓ
(2)
1 = 0, the part |C| which is loosed comes

from I
ℓ
(2)
0

.

Finally, observe that the points in

A =

{

(i , j) ∈ D′

ℓ
(2)
1

: ia0 + ja1 + ka2 > n2a2

}
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n1

B
C

Fig. 4 Case ℓ
(2)
1 6= 0 and n2a2 < n1a1.

are those satisfying in1 + jℓ(1)
0 > q2 − kq2

n2
. From the previous pictures, it is easy to

see that if n2a2 > n1a1 then there are exactly ⌊ kq2
n2

⌋ points (i , j) ∈ D
′

ℓ
(2)
1

satisfying

q2 > in2 + jℓ(1)
0 > q2 −

kq2

n2
. (3.6)

However, if n2a2 < n1a1 it may happen that some of the possible solutions of eqn. (3.6)
may belong to the triangle C and thus not in D

′

ℓ
(2)
1

. From which we obtain the desired

results. ⊓⊔

Proposition 3.7 will help us to show that —under certain assumption— we can give
a precise formula for τ+

m and in particular to show that the lower bound is sharp.

Theorem 3.8 Let Ŵ = 〈a0, a1, a2〉 be a free numerical semigroup such that n1a1 > a2

and a0 > a1 such that n2a2 > n1a1. Then,

τ+
2 = n2τ

+
1 +

(n2 − 1)(c(Ŵ1) − 2)

2
−

(n2 − 1)a2

e1

+

n2−1
∑

k=1

(

2
⌊ka2

e1

⌋

− σ1,k(as) − γ1,k(as) + 1

)

.

In particular, if n2 = 2, then the lower bound in Theorem 3.4 is attained.

Proof As in the proof of Theorem 3.4, we have the basis of the miniversal deformation
described as

B2 =
{

ūk
28(z̄)e1 : z̄ ∈ B1, k ∈ [0, n2 − 1]

}

⊔

{

(

ūk0
0 ūk1

1 ūk2
2

)

e2 : (k0, k1) ∈ D
ℓ
(2)
1

}

.
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Recall that B1 is in one to one to correspondence with E
ℓ
(1)
0 ,n1

. As by hypothesis we

have n1a1 > a2, therefore deg
(

ūk
28

(

ūk0
0 ūk1

1

)

e1

)

> 0 if and only if

(k0, k1) ∈ A2,k =
{

(i , j) ∈ E
ℓ
(1)
0 ,n1

: ia0 + ja1 + ka2 > n1a1 and a2 < n1a1

}

.

Finally, the number of positively weighted elements in D
ℓ
(2)
1

are those corresponding

to the the sets D+

ℓ
(2)
1 ,k

with k ∈ [0, n2 − 2]. Hence, by using Proposition 3.7 and

Proposition 3.3 we obtain

τ+
2 = n2τ

+
1 +

(n2 − 1)(c(Ŵ1) − 2)

2
−

(n2 − 1)a2

e1

+

n2−1
∑

k=1

(

2
⌊ka2

e1

⌋

− σ1,k(as) − γ1,k(as) + 1

)

,

which completes the proof. ⊓⊔

As one may observe in Proposition 3.7 and Proposition 3.3, the computation of dm,k

for a free numerical semigroup without any restriction can be extremely difficult. The
reason is that the numbers dm,k depend on the relations between the different n j a j as
we realize looking at the proof of Proposition 3.7. Similarly to Proposition 3.7 one
should be able to write out an algorithmic formula or estimation for

∑

dm,k . However,
the algorithmic calculation is a hard combinatorial problem. Given the length and
tedious nature of these combinatorics for more than three generators, this is clearly
a suitable problem to assign to a computer program, since Theorem 2.7 provides an
explicit basis for the deformation.

A final remark on the dimension of themoduli space

Throughout the section we have been working without loss of generality with a sys-
tem of generators {a0, a1, . . . , ag} of the numerical semigroup satisfying the condition
ni ai ∈ 〈a0, a1, . . . , ai−1〉 and ni > 1 for all i = 1, . . . , g. However, our statements
encode more general information. More concretely, the monomial basis of T1 is clearly
not unique. Nevertheless, the dimension of the moduli space is intrinsic to the semi-
group itself, so in particular it does not depend on the generating set of the semigroup.
Our results should then be interpreted as follows: given a free numerical semigroup,
there exists a system of generators that allows us to explicitly compute a monomial
basis for T 1. This monomial basis leads us to the estimation of the dimension of the
moduli space in a recursive way. By looking at Corollary 3.2, a part of this estimation
is independent of the system of generators —essentially the one given by Theorem
2.3— and the other part actually depends on {a0, a1, . . . , ag} as it is linked to the
obtained monomial basis.
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