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Resumen  

Este estudio examina diversas metodologías de detección de errores 

fundamentadas en datos, que se utilizan para controlar la calidad en ámbitos 

industriales. Estos métodos son eficaces para extraer información relevante y 

mejorar la calidad de los procesos, debido a la enorme cantidad de datos 

producidos en la industria moderna.  

 

El estudio se inicia con el análisis de los componentes principales, un método 

lineal para disminuir características que posibilita la creación de nuevas 

variables que pueden agrupar la mayor parte de la información del sistema y 

disminuir el número de dimensiones. Se pueden detectar fallos potenciales al 

comparar la conducta normal del proceso con datos atípicos, utilizando 

estadísticos multivariantes y la distribución de estos datos reducidos. 

 

Además, se llevaron a cabo métodos de aprendizaje profundo y automático 

dirigidos a disminuir la dimensionalidad. En esta línea, los autoencoders 

posibilitan un aprendizaje sin supervisión de la información de la planta al 

captar relaciones no lineales entre las variables y dar paso a la identificación 

de anomalías. Los autoencoders recurrentes son una mejora de los 

autoencoders convencionales, ya que tienen información de los estados 

pasados del sistema y por lo tanto permiten una detección de errores más 

exacta y fiable. 

 

Por último, dada la gran dimensionalidad de los datos que se recogen en las 

industrias actuales se creó una estrategia de detección de fallos distribuida 

para mejorar los modelos de detección de anomalías. Esta metodología divide 

las variables de la planta en diferentes bloques de manera automática, 

identifica anomalías en cada uno de ellos por separado y, a través de inferencia 

bayesiana, sintetiza la información adquirida. 

  

Finalmente comentar, que los datos del proceso que se han usado para probar 

todas las técnicas desarrolladas has sido los datos del proceso Tennessee-

Eastman, que se usa mucho en la literatura científica sobre detección de fallos. 
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Abstract 

 

This study examines various data-driven error detection methodologies used for 

quality control in industrial settings. These methods are effective for extracting 

relevant information and improving process quality, owing to the enormous 

amount of data produced in modern industry. The data from the Tennessee-

Eastman process, which is widely used in the scientific literature on fault 

detection, were employed for training and evaluating the models. 

 

The study begins with principal component analysis, a linear method for 

reducing features that enables the creation of new variables capable of 

capturing most of the system’s information and reducing the number of 

dimensions. Potential faults can be detected by comparing the normal behavior 

of the process with atypical data, using multivariate statistics and the 

distribution of these reduced data. 

 

Additionally, deep and machine learning methods aimed at reducing 

dimensionality were employed. In this vein, autoencoders enable unsupervised 

learning of plant information by capturing nonlinear relationships between 

variables and paving the way for anomaly detection. Recurrent autoencoders 

are an improvement over conventional autoencoders, as they have information 

about the past states of the system so therefore, they enable more robust 

training and more accurate and reliable error detection. 

 

At last, given the large dimensionality of the collected data, a distributed fault 

detection strategy was developed. This methodology automatically divides the 

plant’s variables into different blocks, identifies anomalies in each block 

separately and through Bayesian inference synthesizes the acquired 

information. 

 

Finally, it should be noted that the process data used to test all the developed 

techniques were from the Tennessee-Eastman process, which is widely used in 

the scientific literature on fault detection. 
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Capítulo 1. Introducción y objetivos 
 

1.1. Introducción 

 

La evolución de la industria, desde los talleres artesanales hasta las modernas 

plantas altamente automatizadas, ha estado siempre ligada a la necesidad de 

garantizar la calidad de los productos. A medida que aumentaron tanto el 

volumen como la complejidad de la producción, la inspección manual perdió 

eficacia, lo que llevó al desarrollo del control de calidad como disciplina propia. 

Su propósito es reducir la variabilidad de los procesos y prevenir desviaciones 

antes de que se traduzcan en fallos en el producto final. 

 

En la actualidad, la disponibilidad masiva de datos industriales gracias a 

sensores y sistemas de monitorización en tiempo real, junto con la capacidad 

de cálculo existente, ha impulsado la aplicación de técnicas de inteligencia 

artificial. Estas permiten analizar simultáneamente cientos de variables, 

identificar patrones imposibles de detectar a simple vista y automatizar la 

detección de anomalías. De este modo, los sistemas no solo sustituyen la 

observación humana, sino que además aportan rapidez, objetividad y 

escalabilidad. 

 

Por lo tanto, asegurar la calidad y la seguridad en la producción son dos 

objetivos de cualquier industria, que se consiguen mediante la implementación 

de métodos de detección y diagnóstico de fallos que detecten cualquier 

anomalía que aparezca en el funcionamiento de la planta. En este trabajo, se 

intenta usar tecnologías basadas en datos, y en concreto en la Inteligencia 

Artificial para aumentar el rendimiento de la planta, buscando aplicar estas 

herramientas al control de calidad de plantas industriales, y en concreto a la 

monitorización de dichos procesos. 

 

1.2. Objetivos 
 

El propósito central de este trabajo es desarrollar y comparar metodologías de 

detecciones de fallos basadas en datos, aplicables al control de calidad en 

plantas industriales. Para ello se contemplan dos líneas principales: 

 

• El uso de técnicas clásicas de control estadístico de procesos, en 

particular el Análisis de Componentes Principales (PCA), que permite 

reducir la dimensionalidad de manera lineal y generar estadísticos de 

control multivariantes. 
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• La aplicación de enfoques de aprendizaje profundo, donde se exploran 

autoencoders recurrentes (RAE) como alternativa a los autoencoders 

convencionales. Estos modelos son capaces de aprender dependencias 

temporales y no lineales entre variables, lo que constituye una ventaja 

en entornos donde las dinámicas del proceso son relevantes. 

 

Adicionalmente, se plantea una metodología distribuida que divide las 

variables en bloques, analiza cada uno por separado y posteriormente integra 

los resultados mediante inferencia bayesiana. En este trabajo, esta estrategia 

también se aplicará a los RAE, dando lugar a un apartado específico de RAE 

distribuido. 

 

El estudio se valida utilizando el proceso Tennessee–Eastman, ampliamente 

reconocido en la literatura como banco de pruebas de algoritmos de detección 

de fallos. Esto permitirá evaluar el rendimiento comparativo de los métodos 

bajo condiciones equivalentes, considerando su precisión, fiabilidad y 

capacidad de generalización. 

 

1.3. Organización de la memoria 
 

La memoria está estructurada en cinco capítulos: 

• En este Capítulo 1 se exponen la motivación, los objetivos y la 

organización del trabajo. 

• El Capítulo 2 presenta los fundamentos teóricos necesarios, incluyendo 

control estadístico de procesos, detección de anomalías, estadísticos 

multivariantes, reducción dimensional y una introducción a redes 

neuronales y autoencoders. 

• El Capítulo 3 describe el proceso Tennessee–Eastman y los conjuntos 

de datos empleados. 

• En el Capítulo 4 se detallan las aplicaciones y la evaluación de las 

metodologías propuestas: PCA, Autoencoders, RAE y RAE distribuido. 

• Finalmente, el Capítulo 5 recoge las principales conclusiones 

alcanzadas y plantea líneas de trabajo futuro. 
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Capítulo 2. Estudio teórico 
 

2.1 Control de Calidad 
 

Orígenes y primeras manifestaciones 

 

La inquietud por la calidad de los productos y servicios tiene orígenes remotos: 

desde el control en las profesiones medievales hasta los códigos de leyes que 

requerían estándares mínimos. Estas primeras formas tenían como objetivo 

proteger la reputación del creador y al consumidor a través de marcas de 

conformidad e inspecciones [1], [2]. 

 

Con la Revolución Industrial, se incrementó la producción y surgieron nuevos 

desafíos: la variabilidad, las grandes series y el requerimiento de prevenir 

fallos. La inspección final fue la solución inicial, pero no bastó ante el tamaño 

y los costos de producción [2]. 

 

Invención del Control Estadístico 

 

Walter A. Shewhart, un ingeniero de los laboratorios Bell en los años 20, es 

reconocido como el fundador del control estadístico de procesos (SPC), el cual 

se menciona más adelante, dado que un apartado de este trabajo se centra en 

este método para la detección de fallos. 

 

Su propuesta consistió en emplear datos de producción para distinguir entre 

causas especiales (variaciones atribuibles a fallos específicos, como 

problemas técnicos o errores de los humanos) y causas comunes (la 

variabilidad natural que forma parte del proceso). Con este fin, incorporó las 

gráficas de control, que hacían posible observar de forma fácil si un proceso se 

mantenía estable o necesitaba intervención [3]. 

 

El concepto de mejora continua fue un componente fundamental en su 

planteamiento, que luego se concretó en el ciclo PDCA (Planificar-Hacer-

Verificar-Actuar). Como se muestra en la Figura 1. Este ciclo sugiere planificar 

una acción, ponerla en práctica, comprobar sus resultados y proceder 

corrigiendo desviaciones. Deming, a pesar de que fue Shewhart quien introdujo 

la idea, es el responsable de popularizarla como herramienta de gestión 

universal [3], [4]. 
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Figura 1. Ciclo PDCA de Shewhart [5] 

 

Difusión global 
 

En la administración de calidad, las contribuciones de Joseph M. Juran y W. 

Edwards Deming, después de la Segunda Guerra Mundial, fueron un hito 

importante. 

 

• Deming destacó que la variabilidad era el mayor adversario de la 

calidad, y que no solo debía ser administrada a nivel operativo, sino 

también desde la dirección. Su célebre conjunto de "14 principios de 

gestión" abogaba por el liderazgo, la formación de los empleados y la 

visión a largo plazo. Asimismo, subrayaba que la calidad no tenía que 

estar supeditada a la revisión final, sino al sólido diseño del 

procedimiento desde el comienzo [4]. 

 

• Juran, por su parte, fue pionero en entender la calidad como un 

problema de gestión y no solo técnico. Introdujo la llamada “trilogía de 

Juran”: planificación, control y mejora de la calidad. También fue uno de 

los primeros en destacar los costes de la no calidad, es decir, las 

pérdidas derivadas de errores, reprocesos y desperdicios [6]. 

 

La implementación de estos principios en Japón desde la década de 1950 

revolucionó la industria nipona y le permitió convertirse en un referente en 

términos de calidad y competitividad. El "Premio Deming", establecido en 1951, 

se transformó en un emblema del compromiso de Japón con la excelencia [4]. 
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De aseguramiento de la calidad a sistemas integrados (TQM, ISO) 

 

Desde la década de 1960 y 1970, la calidad dejó de ser vista como una 

actividad aislada y pasó a ser considerada como un enfoque integral. El Total 

Quality Management (TQM) es una filosofía de gestión que surgió a partir de 

esta evolución (Figura 2). Su objetivo no era únicamente prevenir fallos, sino 

también promover la mejora continua como cultura corporativa, el enfoque en 

el cliente y la implicación de todos los estratos organizativos. La noción de que 

la calidad no se restringe a la producción, sino que abarca todas las funciones 

de la compañía, desde el diseño hasta el servicio al cliente [7], fue igualmente 

introducida por TQM. 

 

 
Figura 2.  Áreas de enfoque en TQM [8]  

 

Simultáneamente, las prácticas de gestión de la calidad empezaron a 

normalizarse por parte de organismos internacionales. La publicación de la 

familia de normas ISO 9000 en 1987 es el caso más significativo. Estas reglas 

posibilitaron la unificación de criterios, simplificaron la certificación y 

aseguraron la confianza en las cadenas de suministro a nivel global. Sus 

revisiones subsecuentes (ISO 9001:1994, 2000, 2008 y 2015) han 

progresado desde una perspectiva documental hacia enfoques centrados en el 

contexto organizacional, los riesgos y la mejora continua [7], [9]. 
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2.2 Control estadístico de procesos (SPC) 
 

Walter A. Shewhart formalizó el control estadístico de procesos en los Bell 

Telephone Laboratories a inicios de la década del 20. Como método esencial 

para distinguir entre la variabilidad natural del proceso y las desviaciones 

generadas por causas especiales.  

 

Shewhart creó la gráfica de control (control chart). 

Esta disciplina se fundamentó teórica y prácticamente en su obra principal, 

Economic Control of Quality of Manufactured Product [3]. Las primeras 

utilizaciones tuvieron lugar en Bell Labs, donde se fabricaban componentes 

para teléfonos con el objetivo de regular la uniformidad de los procesos 

eléctricos y de transmisión. Más tarde, el SPC se amplió a las industrias 

pesadas y a la producción en gran escala, lo cual fue fundamental para la 

elaboración de equipos militares estandarizados durante la Segunda Guerra 

Mundial [10]. 

 

El Control Estadístico de Procesos (SPC, por sus siglas en inglés) es un grupo 

de métodos estadísticos que se utilizan para supervisar un proceso productivo 

(o de servicio) con el fin de detectar variaciones, distinguiendo entre las que 

son ordinarias (o causas comunes) y las que son provocadas por causas 

especiales. Estas últimas pueden señalar que el procedimiento está "fuera de 

control" o requiere intervención. El objetivo de emplear el SPC es garantizar que 

el proceso sea estable, predecible y capaz de satisfacer los estándares de 

calidad requeridos [10][11][12]. 

 

2.2.1 Variabilidad en el proceso de producción 

 

No existen dos productos o servicios que sean exactamente iguales, ya que los 

procesos de producción implican numerosas fuentes de variación, incluso si 

estos procesos se llevan a cabo como se esperaba. Por ejemplo: dos coches de 

la misma marca y del mismo modelo pueden no ser igual de duraderos aun 

teniendo las mismas características ya que puede haber variaciones en el 

proceso de producción, tales como desgaste de herramientas empleadas, 

habilidad de los operarios, parámetros físicos como temperatura, humedad, 

etc. 

 

En SPC se toman muestras pequeñas para evaluar la variabilidad del proceso 

a lo largo del tiempo y se muestran en un gráfico en el que el eje horizontal  

presenta el orden de las muestras, y el eje vertical señala la frecuencia de  

cada muestra. Se le llama después de un número significativo de muestras  

distribución, si el patrón es estable, como se puede ver en la Figura 3 (b). Las  
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distribuciones pueden variar según lo que las muestras muestran, como  

se puede ver en la Figura 3(c). 

 

Si el patrón obtenido en la toma de muestras resulta estable y predecible, se 

dice que el proceso está bajo control. La Figura 3 [d] evidencia que el proceso 

está bajo control estadístico.  No obstante, si surgen razones particulares de 

variación, la salida del proceso se vuelve impredecible y no sigue un patrón 

constante a través del tiempo (como ilustra la Figura 3 [e]).  

 

 

 

                 
Figura 3. Variabilidad del proceso. (a) Toma de muestras. (b) Distribuciones. (c) 

Variación de distribuciones. (d) Distribución con causas comunes de variación. (e) 

Distribución con causas especiales de variación [13] 

 

Este entendimiento es esencial para establecer la previsibilidad y estabilidad 

del proceso, lo que a su vez orienta la toma de decisiones para optimizar la 

eficacia y la calidad del proceso de fabricación. 
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2.2.2 Gráficas de Control 

 

Fueron creadas en los años 20 por Shewhart mientras trabajaba en los 

laboratorios Bell, estableciendo como condiciones que los datos solo tienen 

significado dentro de su contexto, es decir en el entorno o aplicación en el cual 

los estemos midiendo y que para poder extraer información debemos 

separarlos. 

 

Los gráficos de control de medias (µ̅), desviaciones estándar (σ) o rangos (R) 

son las principales herramientas del SPC. La definición de subgrupos 

racionales (n observaciones obtenidas en periodos de tiempo constantes) es el 

fundamento del método, que posibilita la captura de la variabilidad a corto 

plazo. 

 

• Media general de subgrupos: media global del proceso a partir de las 

medias de los subgrupos. 

µ̅̅ = 1/𝑛 ∑ 𝑥𝑡̅

𝑛

𝑡=1

 (2.1) 

 

• Desviación Estándar:  

 

𝜎 =
1

𝑛 − 1
∑(𝑥𝑡 − µ)

𝑛

𝑡=1

 (2.2) 

 

 

• Rango del subgrupo: variabilidad dentro de cada subgrupo medida 

como la diferencia entre el valor mayor y el menor. 

 

𝑅𝑖 = 𝑚𝑎𝑥(𝑥𝑡) − 𝑚𝑖𝑛(𝑥𝑡) 

 

(2.3) 

 

• Media de rangos: variabilidad promedio del proceso a partir de los 

rangos de todos los subgrupos. 

 

𝑅̅ =
1

𝑚
∑ 𝑅𝑖

𝑚

𝑖=1

 (2.4) 

 

 

• Límites de control para gráficas de medias: umbrales superior e inferior 

que determinan si la media del proceso está bajo control. 
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𝑈𝐶𝐿 = 𝑋 + 𝐴2𝑅̅,  𝐿𝐶𝐿 = 𝑋 − 𝐴2𝑅̅ 

 
(2.5) 

Donde 𝐴2 es un factor que depende del tamaño de muestra 𝑛.  

 

 

Es fundamental saber elegir los límites de control. Si los límites son muy 

estrechos, se detectarán las variaciones propias del proceso como fallos, lo que 

provocará alarmas falsas cuando el proceso funcione normalmente; si los 

límites son demasiado amplios, en cambio, podrían no detectar desviaciones 

importantes de la operación normal (Figura 4). 

 

 

 
Figura 4. Gráficas de control en diversos tipos de estados, desde situaciones bajo 

control a comportamiento errático [13] 

 

 

2.3 Control Estadístico de Procesos Multivariable (MSPC) 
 

El Control Estadístico de Procesos Multivariado (MSPC, por sus siglas en inglés) 

es la ampliación del SPC tradicional a situaciones en las que es necesario 

supervisar al mismo tiempo múltiples variables de calidad que tienen 

correlación entre ellas.  
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El MSPC toma en cuenta el vector de variables en conjunto, lo que hace posible 

identificar patrones anómalos que no se encontrarían si las variables se 

examinaran por separado [14], [15]. En cambio, el SPC univariante estudia una 

sola característica a la vez. El MSPC fue creado en el periodo de 1940 cuando 

Harold Hotelling presentó la estadística 𝑇 2 que es una generalización 

multivariante de la t de Student [16].  

 

Durante la década de 1980 y 1990, se expandió el empleo de los estadísticos 

𝑇 2 y Q (SPE) en la supervisión de procesos químicos, farmacéuticos y 

manufacturados a gran escala debido a la popularización de métodos para 

reducir dimensionalidad como PLS y PCA [17] [18]. El MSPC utiliza modelos 

multivariantes que capturan la correlación entre variables. Entre las 

herramientas más relevantes se encuentran: 

 

2.3.1 𝑻𝟐  de Hotelling  

 

La variabilidad de una observación se mide a través del 𝑇2 de Hotelling, ya sea 

dentro del modelo multivariante o del espacio de componentes principales. Se 

entiende como una medida de distancia estadística en relación con el centro 

del modelo.  

 

Si las variables de los conjuntos fuesen independientes, 𝑇 2 sería la distancia 

euclídea cuadrática, pero en la práctica, dado que las variables guardan 

correlación esta distancia, es la distancia de Mahalanobis, la cual se ajusta 

según la covarianza entre variables. 

 

La Figura 5 representa como la distancia de Mahalanobis produce un menor 

número de valores atípicos, este resultado es debido a que esta emplea un 

elipsoide asimétrico, que depende de la covarianza de las variables.  

 

𝑇 2 = 𝑥 𝑃 𝑆k
−1 𝑃⊤𝑥⊤      (2.6) 

 

donde: 

x = vector de datos medidos 

P = matriz de vectores propios reducida 

𝑆𝑘  = matriz diagonal con los valores propios reducida. 

 

Tanto 𝑃 como 𝑆𝑘  son de dimensiones 𝑘 x 𝑘 siendo este el número de 

dimensiones del espacio reducido. 
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Figura 5.  Distancia euclídea frente distancia de Mahalanobis [19] 

 

2.3.2 Error Q (Squared Prediction Error) 

 

La estadística Q, también conocida como SPE (Squared Prediction Error), 

cuantifica la variabilidad residual de una observación en relación con el modelo 

(por lo general, un modelo PCA). En otras palabras: qué parte queda fuera del 

subespacio que explican las componentes principales. 

 

Sea 𝑥 una observación y 𝑥̂ su proyección reconstituida: 

𝑄 = ||𝑥 − 𝑥̂||
2

= ∑(𝑥𝑗 − 𝑥𝑗̂)
2

𝑝

𝑗=1

 (2.7) 

 

 

2.3.3 Uso combinado de 𝑻𝟐 y Q 

 

Un modelo habitual de MSPC emplea los dos gráficos de control al mismo 

tiempo:  

 

 𝑇2 regula la variabilidad dentro del modelo (en condiciones normales, pero 

extremas en el ámbito histórico) (Figura 6).  

 

𝑄 regula la variabilidad que no está incluida en el modelo (una nueva variación 

que no se había previsto en los datos del pasado) (Figura 7). 
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Figura 6. Gráfica de 𝑇2 en una muestra de datos del proceso Tenesee-Eastman con 

funcionamiento anormal. 

 

MSPC con 𝑇 2 y 𝑄 se usa en procesos donde se monitorizan múltiples variables 

correlacionadas, se desea distinguir entre desviaciones extremas pero 

esperadas (𝑇 2) y nuevos patrones desconocidos (Q) y en los escenarios donde 

es crucial anticipar fallos, como en procesos químicos, farmacéuticos y de 

manufactura avanzada [15], [17]. 

 

 

 
Figura 7. Gráfica de Q, en una muestra de datos del proceso Tenesee-Eastman con 

funcionamiento anormal 

 

 



19 
 

2.4 Análisis de componentes principales (PCA) 
 

El análisis de componentes principales (PCA) fue introducido por Karl Pearson 

en 1901 como un método geométrico para representar datos en espacios de 

menor dimensión [20]. Posteriormente, Harold Hotelling (1933) formalizó su 

marco matemático en términos de álgebra matricial y estadística. 

 

Las primeras aplicaciones tuvieron lugar en el campo de la economía, la 

biología y la psicología.  En los años finales del siglo XX, el PCA se estableció en 

la supervisión de calidad multivariada, especialmente en MSPC, en la que se 

emplea para crear modelos de referencia del proceso utilizando información 

histórica de operación normal [14], [17]. 

 

Este tipo de análisis se emplea con los siguientes objetivos: 

 

a. Disminuir la dimensionalidad para poder observar de manera sencilla 

datos de procesos complejos y detectar vínculos entre variables 

b. Desarrollar modelos de referencia para la detección de anomalías y 

MSPC.  

c. Depurar el ruido y optimizar la capacidad predictiva en sistemas 

multivariantes [15], [17], [18]. 

 

Es un modelo frecuentemente empleado en supervisión de procesos 

industriales químicos (como es el caso de este trabajo), farmacéuticos y 

petroquímicos, reconocimiento de patrones en visión artificial y en estudios 

biomédicos y genómica. 

 

El análisis de componentes principales (PCA, por sus siglas en inglés) es un 

método estadístico multivariante que se emplea para disminuir la 

dimensionalidad de un conjunto de datos que contiene varias variables 

correlacionadas. 

 

La idea fundamental es que la varianza de una serie de datos mide la cantidad 

de información que contiene, matemáticamente, se realiza mediante la 

descomposición espectral de la matriz de covarianzas o, de forma equivalente, 

en la descomposición en valores singulares (SVD). 

 

Esta técnica convierte dichas variables en un nuevo conjunto de variables no 

correlacionadas, conocidas como componentes principales (PCs). Cada 

componente principal es una combinación lineal de las variables originales y 

se organiza así:   
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1. El componente inicial recoge la varianza más alta que los datos pueden 

ofrecer. 

2. El segundo componente, bajo la condición de ser ortogonal al primero, 

recoge el mayor porcentaje de la varianza restante. 

3. Y así consecutivamente [17], [18]. 

 

Idealmente, los primeros componentes capturan la mayor cantidad de 

información y el resto el ruido (Figura 8). 

 

Su formulación matemática empieza tomando una matriz de datos de 

comportamiento normal del proceso: 𝑋  Rn*m con n muestras, y m variables: 

    

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝑚

𝑥21 𝑥22 … 𝑥2𝑚

𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

] (2.8) 

 

Normalizamos con media 0 y varianza 1, para obtener la variabilidad de los 

datos, es decir, a cada valor de la matriz de datos original (𝑋) se le resta la 

media 𝜇𝑚  y se divide por su desviación estándar 𝜎𝑚 , de su variable, para 

obtener la matriz de datos normalizados 𝑋𝑛: 

 

𝑋𝑛[𝑚,𝑚] =
𝑋[𝑛, 𝑚] − 𝜇𝑚

𝜎𝑚

  (2.9) 

 

Calculamos la matriz de covarianzas 𝑅: 

 

𝑅 =
1

𝑛 − 1
 𝑋𝑛

𝑇  𝑋𝑛 (2.10) 

 

Siendo 𝑅: 

𝑅 = (

1 𝑟12 . . 𝑟1𝑛

𝑟21 1 . . 𝑟2𝑛

: : . :
𝑟𝑚1 𝑟𝑚2 . . 1

) (2.11) 

 

A partir de 𝑅 realizamos la descomposición en valores singulares (SVD).  

 

𝑠𝑣𝑑(𝑅) = 𝑉𝑆𝑉𝑇  (2.12) 

 

De la ecuación (2.12) obtenemos los valores propios 𝑆 (Figura 8) y los vectores 

propios (𝑉). La proyección del vector de observaciones 𝑋𝑛 ∈  𝑅𝑚 desacopla el 

espacio de observaciones en un conjunto 𝑇, la columna i-ésima de 𝑉 es el 

vector de carga 𝑣𝑖 (loadings) que transforma 𝑥𝑛 en el score 𝑡𝑖 = 𝑥𝑖𝑉.  
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𝑇 = 𝑋𝑛 𝑉 (2.13) 

 

Los loadings (𝑉) son los coeficientes de las combinaciones lineales que 

determinan cada uno de los componentes principales, estos, señalan el grado 

de contribución de cada variable original a cada uno de los componentes. 

Por ejemplo, si la primera componente de la variable "temperatura" tiene un 

loading alto, significa que las fluctuaciones del proceso en dicha componente 

están fuertemente afectadas por las variaciones de temperatura. 

 

Por otra parte, los scores (𝑇) son la representación de cada observación en los 

ejes determinados por los componentes principales, en otras palabras, los 

scores representan las coordenadas renovadas de los datos en el espacio 

reducido. Posibilitan la detección de agrupaciones, anomalías o tendencias y el 

análisis de la estructura del proceso. 

 

Una vez obtenida la representación de la matriz de scores (𝑇) reducimos la 

dimensionalidad del conjunto en base a la variabilidad que deseemos capturar, 

frecuentemente se emplea como criterio el 90%, dado que capturamos la 

mayor parte de la información, reducimos significativamente la dimensión del 

espacio, ya que como hemos comentado anteriormente, dicha variabilidad, se 

encuentra en los primeros componentes principales.  

 

 

 
Figura 8. Variabilidad capturada por componente principal en el proceso Tennessee-

Eastman 
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Como  

𝑆 = (

𝜆1 0 … 0
0 𝜆2 … 0
: : . :
0 0 … 𝜆𝑚

)  (2.14) 

 

Calculamos el número de componentes que satisfacen la condición: 

 

𝑣𝑎𝑟(%) = ∑
𝜆𝑖

𝑡𝑟(𝑆)

𝑖

1

⋅ 100 
(2.15) 

 

Siendo var(%) la variabilidad a capturar expresada en porcentaje. 

 

Reteniendo los 𝑎 primeros vectores de carga más grandes obtenidos en la 

ecuación (2.12) tenemos la matriz de autovectores reducida 𝑃(𝑚 𝑥 𝑎)  siendo 

𝑎 el número de dimensiones resultantes. 

 

Ahora podemos representar los scores de dimensionalidad reducida 𝑇𝑎, 

(𝑛 × 𝑎),  

 

𝑇𝑎 = 𝑋𝑛 𝑃  (2.16) 

 

Al igual que en (2.13) se cumple que  𝑡𝑖 = 𝑥𝑖  𝑃. 

 

Entonces ahora podemos aplicar MSPC, y calcular las estadísticas T2 y Q. T2 se 

calcula como se mostró en la ecuación (2.6) y Q lo calcularemos como el 

producto de la matriz de residuos por su transpuesta, lo cual es equivalente a 

la diferencia cuadrada de los datos originales y su reconstrucción: 

 

𝑄𝑖 = 𝑟𝑖  𝑟𝑖
𝑇  

 
(2.17) 

Siendo  

𝑟𝑖 = (𝐼 − 𝑃𝑃𝑇) (2.18) 

  

donde 𝑟𝑖 es la fila i-ésima de la matriz de residuo e 𝐼 es la matriz identidad 

𝑚 × 𝑚.  

 

Q, por tanto, mide la diferencia entre una muestra y su proyección al espacio 

reducido (si fueran iguales el vector de residuos r sería cero). El error de 

predicción cuadrático Q se genera porque, al realizar la reducción dimensional, 

hemos descartado parte de la información.  
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La identificación de una anomalía tipo Q en un sistema de control significa que 

la correlación entre las variables ha sufrido un cambio importante, lo cual 

quiere decir que ya no se comportan las variables entre sí como lo hacían 

durante los datos de funcionamiento habitual [21]. 

 

 

2.5 Redes Neuronales Artificiales (ANN) 
 

Las redes neuronales artificiales (ANN, por sus siglas en inglés) son sistemas 

computacionales que se basan en el funcionamiento y la estructura del cerebro 

humano. Se diseñan para identificar patrones y comprender relaciones 

complejas entre variables (Figura 9). 

 

 

 
Figura 9. Similitud entre una neurona humana y una neurona artificial  

 

El primer modelo matemático de una neurona artificial fue creado por Walter 

Pitts y Warren McCulloch (1943) en la mitad del siglo XX, cuando probaron que 

era capaz de realizar operaciones lógicas sencillas [22]. Más tarde, en 1958, 

Frank Rosenblatt implementó el Perceptrón, que es visto como la primera red 

neuronal que puede ser entrenada a través del aprendizaje supervisado [23]. 

 

Las redes neuronales despertaron menos interés en las décadas de 1960 y 

1970 debido a restricciones teóricas y computacionales, pero volvieron a ser 

relevantes en la década de 1980 con el desarrollo del algoritmo de 

retropropagación del error (backpropagation), hito que permitió sentar las 

bases del aprendizaje automático sin un coste computacional excesivo [24]. 

 

Hoy en día, las redes neuronales han progresado hasta arquitecturas 

profundas (deep learning) gracias al aumento de la capacidad computacional, 

a la posibilidad de acceder a enormes cantidades de datos (big data) y al 

empleo de unidades de procesamiento gráfico (GPU). Estas arquitecturas son 
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capaces de llevar a cabo trabajos complejos como el control de procesos 

industriales, la predicción y el diagnóstico de errores, el procesamiento del 

lenguaje natural y la visión artificial. 

 

2.5.1 Neurona artificial 

 

La Neurona Artificial (Figura 10) es la unidad elemental de procesamiento en 

una red neuronal. Su tarea es recibir un grupo de entradas (inputs), ponderarlas 

a través de pesos (weights), sumar los resultados y, para conseguir una salida 

(output), usar una función de activación. 

 

 

 
Figura 10. Esquema de la unidad neuronal (Perceptrón) 

 

 

El modelo matemático general de una neurona se expresa como: 

 

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (2.19) 

 

donde: 

• 𝑥𝑖: son las entradas o variables de entrada, 

• 𝑤𝑖: son los pesos sinápticos que representan la fuerza de conexión entre 

neuronas, 

• 𝑏: es el término de sesgo (bias), que permite desplazar la función de 

activación, 

• 𝑓(⋅): es la función de activación 

• 𝑦: es la salida de la neurona. 

 

Este modelo permite representar relaciones lineales y no lineales dependiendo 

de la forma de 𝑓(⋅). 

 

b 

𝑦 
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2.5.2 Red de neuronas 

 

Un grupo de neuronas dispuestas en capas es lo que se denomina red neuronal 

(Figura 11): 

 

1. Capa de entrada: recibe los parámetros de entrada o las características 

del problema. 

2. Capas ocultas: Analizan la información utilizando combinaciones 

lineales y funciones de activación que no son lineales. 

3. Capa de salida: Produce las clasificaciones o predicciones finales. 

 

La configuración fundamental de una red multicapa (Multi-Layer Perceptron, 

MLP) puede representarse en forma matricial como: 

 

𝑦 = 𝑓(𝐿)  (𝑊(𝐿)𝑓(𝐿−1)(𝑊(𝐿−1) … 𝑓(1)(𝑊(1)𝑥 + 𝑏) … + 𝑏(𝐿−1)) + 𝑏(𝐿)) (2.20) 

 

donde 𝐿 es el número de capas, 𝑊(𝑙)  las matrices de pesos en la capa 𝑙, 𝑏(𝑙)  

los bias en la capa 𝑙 y 𝑓(𝑙) las funciones de activación correspondientes. 

 

Es fundamental incorporar funciones de activación no lineales entre las capas, 

porque esto le da a la red la posibilidad de aproximar funciones que no son 

lineales y aprender relaciones complejas entre las variables de entrada y salida. 

 

 
Figura 11. Red Neuronal MLP de 5 capas 

 

2.5.3 Funciones de activación 

 

La salida de cada neurona está determinada por las funciones de activación en 

relación a la suma ponderada de sus entradas. Incorporan no linealidad al 
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modelo, lo que posibilita que las redes adquieran patrones complejos. De lo 

contrario, la red completa se podría colapsar en una sola recta, plano o 

hiperplano, dependiendo de las dimensiones, debido a su linealidad.  

 

Estudiar qué tipo de función emplear para cada aplicación es fundamental, a 

continuación, algunas de las más destacadas y empleadas en este trabajo: 

 

1. Función sigmoide: hace que los valores grandes saturen en 1 y 

pequeños en 0 (Figura 12), pero en este caso las derivadas no son nulas 

 

𝑓(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

(2.21) 

 

Esta función en valores cercanos a 0 tiene muy buena inclinación, sin 

embargo, con valores muy grandes o muy pequeños es casi horizontal, 

es decir, la derivada se hace muy pequeña. 

 

En backpropagation (algoritmo de entrenamiento, mencionado más 

adelante) con derivadas tan pequeñas, los ajustes a pesos y sesgos 

serán muy pequeños entonces, por lo tanto, la red aprenderá despacio 

o dejará de aprender, esto es lo que se conoce como desvanecimiento 

del gradiente. 

 

 

 
                      Figura 12. Función sigmoiode 

 

2. Tangente hiperbólica (tanh) (Figura 13): Genera valores entre -1 y 1. 

Tiende a converger más rápido que la sigmoide al tener salidas 

centradas en cero. 

 

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(2.22) 
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En la mayoría de casos es mejor que la sigmoide, dado que, está 

centrada en el 0, puede tomar valores positivos y negativos, 

solucionando el problema de la sigmoide y su derivada es mayor por lo 

tanto el aprendizaje será más rápido. 

 

 

 
                             Figura 13. Función tangente hiperbólica 

 

Aun así, presenta el problema de desvanecimiento de gradiente y tiene 

un alto coste computacional. 

 

3. Unidad Rectificada Lineal (ReLU) (Figura 14): Es una función 

extremadamente simple, no consta de exponentes ni, cálculos, 

simplemente devuelve lo que sea mayor: 

 

𝑅𝑒𝐿𝑈(𝑥) = ma x(0,𝑥) (2.23) 

En un estudio de 2011 se reveló que es mejor en la mayoría de casos 

que la tanh, observándose velocidades de backpropagation y de 

propagación hacia adelante 6 veces mayor [25]. 

 

 

 
Figura 14. Función ReLU 
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Esta función, en la mayoría de aplicaciones es superior a las dos 

anteriores, tiene un coste computacional muy bajo, su derivada es muy 

simple y no está acotada para números positivos (al contrario que 𝜎(𝑥) 

y tanh (𝑥)) lo que genera un gradiente constante y un aprendizaje más 

rápido en la mayoría de casos. 

 

Los inconvenientes que tiene, residen en la primera parte de la función, 

la cual devuelve 0 para todo valor menor que 0, lo cual puede incurrir 

en que algunas neuronas durante las primeras fases de entrenamiento 

almacenen un 0 entorpeciendo asi el entrenamiento de la red, la 

siguiente función suple dichas carencias. 

 

4. Función Leaky Relu: Similar a ReLu pero en vez de devolver 0 para 

números negativos, devuelve un valor muy pequeño, si lo 

parametrizamos correctamente, por lo general  𝛼 <  0,1 (Figura 15) 

 

𝑓(𝑥) =  {
𝑥      𝑠𝑖    𝑥 > 0
𝛼𝑥    𝑠𝑖    𝑥 ≤ 0

 (2.24) 

 

De esta manera tenemos una función no acotada, simple de calcular y 

solventamos el problema de las neuronas muertas. 

 

Cada función presenta beneficios y restricciones dependiendo de la 

arquitectura utilizada y el tipo de problema [26], [27]. 

 

 

 
Figura 15. Función Leaky Relu 

 

2.5.4 Redes Neuronales Recurrentes (RNN) 

 

Las redes neuronales recurrentes (RNN, por su nombre en inglés) (Figura 16) 

son una ampliación de las redes neuronales artificiales convencionales, 
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creadas con el propósito de manejar datos que dependen del tiempo o son 

secuenciales, en los que el orden de las observaciones tiene importancia. 

 

A diferencia de las redes multicapa (MLP), en las cuales las entradas y salidas 

se procesan de manera independiente, las RNN incluyen conexiones de 

retroalimentación que posibilitan conservar información de pasos anteriores, 

lo que les proporciona una memoria dinámica del sistema [27], [28]. 

 

 

 

 
Figura 16. Red neuronal recurrente [29] 

 

 

El principio básico de una RNN consiste en mantener un estado oculto ℎ𝑡 que 

resume la información relevante de todas las entradas anteriores. 

En cada instante temporal 𝑡, el estado oculto se actualiza en función de la 

entrada actual 𝑥𝑡 y del estado anterior ℎ𝑡−1 , de acuerdo con las siguientes 

ecuaciones: 

 

ℎ𝑡 = 𝑓ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (2.25) 

𝑦̂𝑡 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦)    (2.26) 

 

Donde 𝑥𝑡 representa la entrada en el instante 𝑡, ℎ𝑡 es el estado oculto, que 

almacena la información de contexto, 𝑦̂𝑡 es la salida estimada, 𝑊𝑥ℎ , 𝑊ℎℎ , 𝑊ℎ𝑦 

son las matrices de pesos correspondientes a las conexiones de entada 

recurrente y salida, 𝑏ℎ , 𝑏𝑦 son los sesgos y 𝑓ℎ ,𝑓𝑦 son las funciones de activación, 

comúnmente tanh o ReLU. 

 

Se puede observar esta formulación como una red "extendida en el tiempo" 

(unrolled network), donde cada intervalo de tiempo es igual a una capa que 
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tiene los mismos parámetros. Este despliegue, en el transcurso del 

entrenamiento, posibilita que se use el algoritmo de retropropagación a través 

del tiempo (BPTT) para modificar los sesgos y pesos [27]. 

 

 

2.6 Aprendizaje automático 
 

Con el propósito de reducir la función de coste que evalúa la discrepancia entre 

la salida estimada y la esperada (ecu. 2.28), el procedimiento para entrenar 

una red neuronal artificial se fundamenta en optimizar de manera iterativa sus 

parámetros internos, es decir, sus sesgos (𝑏) y pesos (𝑤). Este proceso se 

compone de dos etapas fundamentales: la retropropagación del error 

(backpropagation) y la actualización de parámetros a través de un algoritmo de 

descenso por gradiente [28]. 

 

2.6.1 Propagación hacia adelante (Forward propagation) 

 

En cada época de entrenamiento, la red lleva a cabo inicialmente una 

propagación hacia adelante (forward propagation), en la que los datos de 

entrada se convierten capa a capa mediante la aplicación de una función de 

activación no lineal seguida de una combinación lineal de pesos y sesgos [27].  

En términos matemáticos, para la capa 𝑙: 

 

𝑧(𝑙) = 𝑊 (𝑙)𝑎(𝑙−1) + 𝑏(𝑙) ,        𝑎(𝑙) = 𝑓(𝑙)(𝑧(𝑙))   (2.27) 

 

donde 𝑎(𝑙−1)   representa la salida de la capa anterior, 𝑓(𝑙) es la función de 

activación y 𝑧(𝑙) la suma ponderada. El resultado final 𝑎(𝐿) se compara con la 

etiqueta real 𝑦, mediante una función de coste: 𝐶(𝑎(𝐿) , 𝑦), la cual cuantifica el 

error de predicción [26]. 

 

2.6.2 Cálculo del error 

 

Para un conjunto de datos con salidas esperadas 𝑦, se define una función de 

coste C, por ejemplo, el error cuadrático medio (MSE): 

 

𝐶 =
1

𝑚
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑚

𝑖=1

  (2.28) 
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Donde 𝑚 es el número de muestras, 𝑦𝑖 es el valor real e 𝑦̂𝑖 es la predicción del 

modelo. En forma matricial, considerando la salida de la red 𝐴(𝐿) : 

 

𝐶 =
1

2𝑁
  ‖𝑌 − 𝐴(𝐿)‖𝐹

2     
(2.29) 

 

2.6.3 Retropropagación del error 

 

Tras calcular el coste, evaluamos como varía respecto a cada parámetro del 

modelo (pesos y sesgos). Para ello se aplica la regla de la cadena, definiendo 

el termino de error local 𝛿 (𝐿): 

 

𝛿 (𝐿) =
𝜕𝐶

𝜕𝑎(𝐿) ⊙ 𝑓 ′(𝐿)  (𝑧(𝐿))  (2.30) 

 

donde ⊙ representa el producto elemento por elemento. 

 

El error atribuido a cada neurona en la capa de salida está representado por 

este valor. Para las capas ocultas, el error se transmite de manera inversa: 

 

𝛿 (𝑙) = (𝑊(𝑙+1) )
𝑇

𝛿 (𝑙+1) ⊙ 𝑓 ′(𝑙)  (𝑧(𝐿)) 

 

(2.31) 

 

Una vez obtenido el error de cada capa, los gradientes de la función de coste 

con respecto a los pesos y sesgos se calculan como: 

 

 

𝜕𝐶

𝜕𝑊(𝑙) = 𝛿 (𝑙)(𝑎(𝑙−1))
𝑇

     ;     
∂𝐶

∂𝑏(𝑙) = 𝛿 (𝑙) 

 

(2.32) 

 

Este procedimiento propaga el error desde la capa de salida hasta las capas 

previas, lo que hace posible modificar los parámetros de manera proporcional 

a su aporte al error total. 

 

2.6.4 Actualización de parámetros (Gradient Descent) 

 

Estos se actualizan en la dirección opuesta a la que apunta el gradiente, dado 

que este apunta en la dirección en donde aumenta el error: 

 

𝑊(𝑙)(𝑡 + 1) = 𝑊(𝑙)(𝑡) − 𝜂
𝜕𝐶

𝜕𝑊(𝑙)  ;   (2.33) 
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𝑏(𝑙)(𝑡 + 1) = 𝑏(𝑙)(𝑡) − 𝜂
𝜕𝐶

𝜕𝑏(𝑙)  ;   (2.34) 

 

donde 𝜂 es la tasa de aprendizaje (learning rate), que controla la magnitud de 

los ajustes en cada iteración. 

 

De esta forma, la red ajusta sus parámetros en cada iteración buscando 

minimizar la función de coste de forma incremental. Este proceso se repite para 

múltiples iteraciones en todo el conjunto de la red, estas iteraciones se 

denominan épocas (epochs), hasta que el error (los del modelo) converge a un 

valor aceptable o no mejora. 

 

Existen mejoras en el algoritmo de descenso del gradiente, como el descenso 

estocástico del gradiente (SGD), Momentum, RMSProp o Adam. Estos son 

algoritmos avanzados que pueden optimizar este proceso, ya que modifican de 

manera dinámica la dirección y el tamaño de los pasos de actualización con el 

fin de prevenir mínimos locales y acelerar la convergencia [27], [28]. 

 

2.6.4.1 Adam (Adaptive Moment Estimation) 

 

El algoritmo Adam, empleado en este trabajo, combina las ventajas de 

Momentum y RMSProp, manteniendo promedios móviles de los gradientes y 

sus cuadrados para cada parámetro 𝜃 (ya sean 𝑤 o 𝑏): 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡     ;  𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (2.35) 

 

𝑚̂ 𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

       ;      𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡
 (2.36) 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
  (2.37) 

 

Donde 𝑔𝑡 =
𝜕𝐶

𝜕𝜃𝑡
 es el gradiente en el momento 𝑡, 𝛽1 y 𝛽2 son factores de 

decaimiento, normalmente 0.9 y 0.999, respectivamente; y 𝜖 es un término 

para la estabilidad numérica. 

 

Así, Adam ajusta la tasa de aprendizaje individual de cada parámetro y 

consigue una convergencia más rápida y estable, lo que lo hace 

particularmente efectivo para arquitecturas profundas o autoencoders. Adam 

se ha posicionado como uno de los algoritmos de optimización más utilizados 
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en el aprendizaje profundo debido a estas características, particularmente en 

modelos autoencoder y redes convolucionales [25], [27], [28]. 

 

2.7 Autoencoders 
 

Las arquitecturas neuronales que pueden aprender representaciones de datos 

cada vez más compactas y significativas han sido creadas gracias al avance 

del aprendizaje profundo. Los autoencoders, entre ellos, se caracterizan por su 

habilidad para codificar información de manera no supervisada, disminuyendo 

la dimensionalidad del conjunto de datos a la vez que mantienen sus rasgos 

fundamentales [27]. 

 

En la década de 1980, los autoencoders aparecieron como una extensión de 

las redes neuronales feedforward, con la finalidad de adquirir una 

representación interna (latente) de los datos sin requerir etiquetas. El objetivo 

inicial era replicar métodos de reducción de dimensionalidad lineales, como el 

Análisis de Componentes Principales (PCA), aunque a través de una 

formulación que no fuera lineal y adaptable [28]. 

 

A través de la demostración de su efectividad en la preinicialización de redes 

profundas, Geoffrey Hinton y sus colegas reanimaron el uso de autoencoders 

en los años 2000, lo que posibilitó entrenar modelos que previamente eran 

inestables debido al elevado número de parámetros [27]. 

 

Los autoencoders (Figura 17) se convirtieron en una herramienta fundamental 

para la detección de anomalías, el aprendizaje de características, la 

reconstrucción de datos y la compresión gracias al avance del deep learning. 

Su uso abarca diversos campos, desde series temporales industriales hasta 

visión artificial. 

 

 
Figura 17. Esquema de un autoencoder 
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En términos generales, un autoencoder es una red neuronal que ha sido 

entrenada para replicar su entrada en la salida; sin embargo, tiene como 

limitación estructural la necesidad de aprender una representación 

comprimida y significativa del conjunto de datos.  Su arquitectura está 

constituida por dos componentes fundamentales: 

 

• Codificador (Encoder): transforma la entrada 𝑋 ∈  ℝ𝑛 en una 

representación latente ℎ ∈  ℝ𝑘, donde 𝑘 < 𝑛. 

 

• Decodificador (Decoder): intenta reconstruir la entrada original a partir 

de la representación latente, produciendo una salida  𝑋. 

 

Matemáticamente, este proceso se expresa como: 

 

ℎ = 𝑓𝑒𝑛𝑐 (𝑊𝑒𝑋 + 𝑏𝑒 ) (2.38) 

𝑋 = 𝑓𝑑𝑒𝑐(𝑊𝑑ℎ + 𝑏𝑑 )    (2.39) 

 

donde 𝑓𝑒𝑛𝑐  y 𝑓𝑑𝑒𝑐 son funciones de activación no lineales, 𝑊𝑒, 𝑊𝑑 son las 

matrices de pesos del codificador y decodificador y 𝑏𝑒, 𝑏𝑑 sus correspondientes 

sesgos. 

 

El entrenamiento se realiza minimizando una función de coste que mide la 

diferencia entre la entrada y su reconstrucción. Comúnmente se utiliza el Error 

Cuadrático Medio (MSE): 

 

𝐶 =
1

𝑁
 ∑(𝑋𝑖 − 𝑋𝑖̂)

2
𝑁

𝑖=1

  (2.40) 

 

Los métodos mencionados en la sección 2.6 Aprendizaje automático, es decir, 

la retropropagación del error, la propagación hacia adelante y la actualización 

de los parámetros a través de algoritmos de descenso del gradiente 

(normalmente optimizados con Adam [27], [28]), se utilizan para minimizar 

esta función. 

 

La capa intermedia (h), que también se llama capa latente o cuello de botella, 

es el núcleo del modelo porque allí reside la representación comprimida de los 

datos originales. La habilidad de un autoencoder para sobreajustar o 

generalizar la información depende del tamaño y la estructura de este. 
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Durante años, se han creado numerosas versiones de autoencoders que están 

diseñadas para una variedad de tipos de datos y metas de aprendizaje.  Se 

incluyen entre las más significativas: 

 

• Autoencoder totalmente conectado (MLP): está formado solamente por 

capas densas. Este es el modelo base y se utiliza sobre todo para tablas 

de datos o vectores de características. 

 

• Autoencoder convolucional (CAE): Se emplean capas convolucionales 

para capturar estructuras espaciales, y su uso es bastante común en 

imágenes y visión por computador. 

 

• Autoencoder recurrente (RAE / LSTM): creado para trabajar con 

secuencias temporales, que introduce dependencias a lo largo del 

tiempo utilizando unidades GRU o LSTM. 

 

• Autoencoder variacional (VAE): en vez de aprender una codificación 

determinista, emplea una formulación probabilística y se enfoca en el 

aprendizaje de una distribución latente. 

 

• Autoencoder con ruido (Denoising AE): adiestrado para reconstruir la 

entrada original a partir de versiones dañadas o con mucho ruido, lo que 

aumenta su resistencia ante alteraciones. 

 

• Autoencoder disperso (Sparse AE): establece limitaciones de activación 

para fomentar representaciones latentes más comprensibles y 

específicas. 

 

• Autoencoder contractivo (Contractive AE): favorece una codificación 

más estable al sancionar la sensibilidad del espacio latente a mínimas 

variaciones en la entrada. 

 

En este trabajo se han implementado dos tipos de autoencoders con 

finalidades distintas: 

 

1. Autoencoders densos (Fully Connected Autoencoders), que son 

apropiados para la reconstrucción de variables instantáneas o 

estáticas. 

 

2. Autoencoders LSTM, que poseen memoria y tienen la habilidad de 

modelar las dependencias temporales en los datos procesados. 
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Las dos arquitecturas se analizan detalladamente en los siguientes 

subapartados. 

 

2.7.1 Autoencoder Denso (Fully Connected Autoencoder)  

 

Los autoencoders densos (Figura 18), que también son conocidos como fully 

connected o vanilla autoencoders, representan el tipo más básico y común de 

autoencoder. Su estructura se fundamenta en una red neuronal de tipo 

feedforward que cuenta con capas totalmente interconectadas (Dense layers); 

en estas, cada neurona de una capa se enlaza con todas las neuronas de la 

capa que le sigue [27], [28]. 

 

Cuando no hay dependencias temporales o espaciales, por ejemplo, en datos 

tabulares o en vectores de características estáticas, este tipo de arquitectura 

es particularmente adecuada. Al estar diseñado para reconocer relaciones no 

lineales entre las variables, es una herramienta útil para la detección de 

anomalías, la reconstrucción de procesos industriales y la reducción de 

dimensionalidad. Conceptualmente es similar al PCA, aunque con una 

formulación no lineal. 

 
Figura 18. Representación interna de un autoencoder de 5 capas y n neuronas  

 x̂1 

 x̂2 

 x̂3 

 x̂4 

 x̂5 

 x̂n 
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En este trabajo, se utilizan los autoencoders densos como fundamento para la 

reconstrucción de datos estáticos normalizados, sirviendo como modelo de 

referencia en comparación con arquitecturas más sofisticadas, por ejemplo, las 

LSTM. 

 

El modelo se compone de tres bloques principales:  

 

1. Codificador: transforma la entrada 𝑋 ∈ ℝ𝑛 en una representación 

latente ℎ ∈ ℝ𝑛 a través de sucesivas combinaciones lineales y 

funciones de activación no lineales: 

 

ℎ = 𝑓𝑒𝑛𝑐 (𝑊𝑒𝑋 + 𝑏𝑒 ) (2.41) 

 

donde 𝑊𝑒 ∈ ℝ𝑛×𝑘  son los pesos del codificador y 𝑓𝑒𝑛𝑐 (⋅) suele ser una 

función ReLU o LeakyReLU que introduce no linealidad al proceso [25]. 

 

2. Capa latente: actúa como cuello de botella, limitando la cantidad de 

información que puede fluir a través del modelo. Esta restricción obliga 

a la red a extraer las características más relevantes de los datos de 

entrada, eliminando redundancias. 

 

3. Decodificador: reconstruye la entrada original a partir del vector latente: 

 

𝑋 = 𝑓𝑑𝑒𝑐 (𝑊𝑑ℎ + 𝑏𝑑 ) (2.42) 

 

donde 𝑊𝑑 ∈ ℝ𝑛×𝑘  son los pesos del codificador y 𝑓𝑒𝑛𝑐 (⋅) puede ser una 

función ReLU o sigmoide dependiendo de la naturaleza de los datos de 

salida. 

 

El propósito del entrenamiento es reducir la brecha entre la entrada (𝑋) y su 

reconstrucción 𝑋, sin sobreajuste, a través de una función de coste (𝐶).  

 

En el caso de este trabajo se ha usado el error cuadrático medio MSE, el cual 

se expresa de manera matricial de la siguiente manera: 

 

𝐶 =
1

2𝑁
  ‖𝑋 − 𝑋̂‖𝐹

2     (2.43) 

 

El entrenamiento sigue el mismo procedimiento descrito en el apartado 2.6 

Aprendizaje automático. 
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2.7.2 Autoencoder Recurrente (RAE) variante LSTM (Long Short-Term 

Memory Autoencoder)  

 

Redes LSTM 

 

Las redes neuronales LSTM son una evolución de las Redes neuronales 

Recurrentes (RNN), estas surgieron como extensión de las redes feedforward 

para modelar datos secuenciales, permitiendo que la salida de una unidad en 

un paso temporal influya como entrada en el paso siguiente. Las RNN 

convencionales pueden propagar información temporalmente, pero sufren el 

problema del desvanecimiento del gradiente o explosivo al tratar secuencias 

largas [29]. 

 

Sepp Hochreiter y Jürgen Schmidhuber, en su trabajo "Long Short-Term 

Memory", presentaron la arquitectura Long Short-Term Memory (LSTM) en 

1997. En esta, sugieren una célula con mecanismos de puerta (Figura 19) que 

controlan el flujo de información y posibilitan que las dependencias a largo 

plazo se mantengan sin que los gradientes se "apaguen" o "exploten" [30]. 

 

 

 
Figura 19. Estructura de una célula LSTM [29] 

 

Una célula LSTM está configurada para administrar y regular el estado interno 

a lo largo del tiempo, utilizando puertas que determinan qué información se 

descarta, cuál se incorpora de nuevo y cuál se emite como salida, para ello se 

define una arquitectura de célula con 3 partes fundamentales, tal y como se ve 

en la Figura 19. 

 

La primera es la puerta de olvido 𝑓𝑡 (forget gate), la cual decide qué proporción 

del estado anterior  𝑐𝑡−1  conservar. 
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La segunda es la puerta de entrada 𝑖𝑡(input gate) quien regula cuánta parte del 

candidato  𝑐̃𝑡 se incorpora al nuevo estado de celda, este candidato representa 

la información propuesta para la memoria, transformado mediante tanh, para 

mantener valores centrados en [−1,1] , de este modo la actualización del 

estado de celda 𝑐𝑡 combina lo retenido y lo nuevo. 

 

En último lugar encontramos la puerta de salida 𝑜𝑡 (output gate) quien controla 

qué parte del estado de la celda pasa a la salida ℎ𝑡 filtrándolo de nuevo con la 

función de activación tanh. Finalmente, ℎ𝑡 constituye la salida oculta de la 

celda para el paso 𝑡. 

 

 
Figura 20. Estructura interna de una unidad LSTM [29] 

 

Las ecuaciones estándar de una célula LSTM (Figura 20), para cada instante t, 

son: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.44) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (2.45) 

𝑐𝑡̃ = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.46) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 (2.47) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.48) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)    (2.49) 

Siendo:  

𝑥𝑡: Vector de entrada en el instante 𝑡. 

𝑐̃𝑡  
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ℎ𝑡−1 : estado oculto del paso anterior. 

𝑐𝑡−1: estado de la celda en el paso anterior. 

𝑓𝑡 : forget gate (puerta de olvido). 

 𝑖𝑡 : input gate (puerta de entrada).  

𝑐̃𝑡: candidato a nuevo estado de la celda. 

𝑐𝑡: estado de la celda actualizado. 

ot : output gate (puerta de salida). 

ℎ𝑡: estado oculto de la salida en el paso t. 

 

Como resultado de estas operaciones, una red LSTM permite que una célula 

LSTM decida cuándo y cuanto recordar, emitiendo la información necesaria y 

evitando pérdidas, lo cual le dota de una flexibilidad excelente frente a 

secuencias largas o patrones complejos 

 

Integración de las células LSTM en un Autoencoder 

 

Los autoencoders LSTM (Figura 21) surgen de la combinación entre la 

arquitectura de los autoencoders clásicos y las redes LSTM, con el propósito de 

capturar dependencias temporales o secuenciales en los datos. Mientras que 

un autoencoder convencional se compone de capas densas (fully connected 

layers) que comprimen y reconstruyen representaciones estáticas, los 

autoencoders LSTM operan sobre secuencias de datos 𝑥1,𝑥2,… , 𝑥 𝑇 lo que los 

hace adecuados para aplicaciones donde el orden temporal es esencial, como 

series de tiempo, señales de sensores o texto [29]. 

 

El principio de funcionamiento se mantiene: 

 

• Un encoder LSTM procesa la secuencia de entrada y resume su 

información en una representación latente (estado oculto final ℎ𝑇 o 

estado de celda 𝑐𝑇). 

• Un decoder LSTM toma esta representación comprimida y genera una 

reconstrucción de la secuencia original, tratando de minimizar la 

diferencia con la entrada. 

 

La estructura general de un Autoencoder puede representarse como: 

 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟: (ℎ𝑡 , 𝑐𝑡) = 𝐿𝑆𝑇𝑀𝑒𝑛𝑐 (𝑥𝑡 ,ℎ𝑡−1 , 𝑐𝑡−1) (2.50) 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟: (ℎ̂𝑡 , 𝑐̂𝑡) = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐(𝑦𝑡 , ℎ̂𝑡−1, 𝑐̂𝑡−1) (2.51) 

𝑆𝑎𝑙𝑖𝑑𝑎: 𝑦̂𝑡 = 𝑊𝑜  ℎ̂𝑡 + 𝑏𝑜      (2.52) 

 



41 
 

 
Figura 21. Esquema de un autoencoder recurrente con capas LSTM 

 

El modelo, en el periodo de codificación, pasa por la secuencia de entrada y 

guarda los datos más importantes en los estados internos del LSTM. 

Durante la etapa de decodificación, esta representación comprimida funciona 

como el contexto inicial para volver a armar la secuencia de salida.  

𝑌̂.  Así, el autoencoder LSTM es capaz de aprender a codificar series temporales 

en un espacio con menos dimensiones, manteniendo tanto las relaciones 

instantáneas como las dependencias a largo plazo [28], [29]. 

 

Los beneficios más destacados de los autoencoders LSTM, en comparación 

con los autoencoders tradicionales son la habilidad para modelar 

dependencias temporales complejas, la robustez frente a datos secuenciales 

que no son estacionarios y la disminución de la información contextual que se 

pierde durante el proceso de compresión. 

 

No obstante, necesitan más potencia computacional y un ajuste meticuloso de 

hiperparámetros, incluyendo la tasa de aprendizaje, el tamaño de la ventana 

temporal y la cantidad de unidades LSTM. 

 

𝒉𝒕−𝟏 
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𝒉𝒕 
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Entrenamiento 

 

La formación de un autoencoder LSTM tiene lugar a través de la propagación 

hacia adelante, la retropropagación del error y la actualización de parámetros, 

siguiendo así los mismos principios generales del aprendizaje supervisado o no 

supervisado que se explicaron en el apartado 2.6. 

 

En este caso el error se mide entre la secuencia de entrada original 𝑋 =

{𝑥1,… , 𝑥 𝑇} y su reconstrucción 𝑋 = {𝑥̂1, … , 𝑥̂ 𝑇}, usando una función de coste 

del tipo error cuadrático medio (MSE) adaptada a secuencias:  

 

𝐶 =
1

𝑇
∑‖𝑥𝑡 − 𝑥̂𝑡‖2

𝑇

𝑡=1

  (2.53) 

 

Este coste se propaga hacia atrás en el tiempo mediante el algoritmo de 

Backpropagation Through Time (BPTT), una extensión del backpropagation 

tradicional que tiene en cuenta la dependencia de los parámetros a lo largo de 

varios pasos temporales [27], [28]. 

 

De forma análoga al proceso explicado en el apartado 2.6, los gradientes de la 

función de coste respecto a los pesos y sesgos de cada celda LSTM se calculan 

por medio de la regla de la cadena, pero en este caso se acumulan en el tiempo. 

Los parámetros 𝜃 = {𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 ,𝑊𝑜 , 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐𝑏𝑜} se actualizan según: 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝜕𝐶

𝜕𝜃𝑡

  (2.54) 

 

donde 𝜂 representa la tasa de aprendizaje. 

 

2.8 Monitorización distribuida 
 

El número de variables monitorizadas ha crecido exponencialmente en los 

sistemas industriales actuales a causa de la digitalización, la sensorización y el 

empleo de sistemas ciberfísicos.  Si bien esta abundancia de datos posibilita 

una observación más exacta del proceso, también presenta significativos retos 

en cuanto a la administración, el tratamiento y el análisis de la información. 

 

En una perspectiva clásica de supervisión centralizada, todos los datos se 

reúnen en un solo modelo global que tiene la responsabilidad de identificar 

errores o desviaciones. Sin embargo, cuando hay muchas variables, este 

método se torna ineficaz o incluso imposible de implementar, debido a que los 
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modelos tienden a ser más complejos, difíciles de entrenar y propensos a 

sobreajustarse. Asimismo, es común que los sistemas industriales se 

estructuren en subsistemas o subprocesos que son parcialmente autónomos; 

en estos, la relación entre las variables puede ser local y no necesariamente 

global [31]. 

 

La monitorización distribuida surge para enfrentar estas limitaciones; su 

principio básico es dividir el conjunto total de variables en subconjuntos o 

bloques que representen de manera coherente diferentes secciones del 

proceso. Cada bloque es monitorizado de forma individual a través de modelos 

locales (como los PCA o autoencoders locales), y después sus resultados se 

combinan utilizando un procedimiento de fusión estadística o probabilística 

que posibilita la obtención de una perspectiva global del sistema [32]. 

 

Esta perspectiva disminuye la carga computacional, facilita una detección de 

fallos más localizada y mejora la interpretación de los resultados al identificar 

cuál componente o bloque del sistema es responsable de una potencial 

anomalía. 

 

La metodología utilizada para llevar a cabo esta división y la estrategia que se 

empleó para fusionar los resultados de cada bloque de manera coherente, 

utilizando inferencia bayesiana, se exponen en las siguientes secciones. 

 

2.8.1 Subdivisión de variables en bloques mediante el método mínima 

redundancia máxima relevancia 

 

Para diseñar sistemas de monitorización distribuida, es crucial la selección de 

características, pues hace posible disminuir la dimensionalidad del conjunto de 

datos mientras se mantienen las variables más informativas. El mRMR 

(Minimum Redundancy - Maximum Relevance), el cual fue propuesto por Peng 

et al. en 2005 [31], es uno de los métodos más empleados. Este escoge un 

subconjunto de características que tienen una alta relevancia en relación a la 

variable objetivo y una baja redundancia entre ellas. 

 

La base del método mRMR es la información mutua (MI, por sus siglas en 

inglés), que calcula el grado de dependencia entre dos variables. Dada una 

variable de entrada 𝑥𝑖 , una variable de salida 𝑦, la información mutua es 

definida como: 

 

𝐼(𝑥𝑖; 𝑦) = ∫ ∫ 𝑝(𝑥𝑖 ,𝑦) log
𝑝(𝑥𝑖 ,𝑦)

𝑝(𝑥𝑖)𝑝(𝑦)
 𝑑𝑥𝑖  𝑑𝑦 (2.55) 
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donde 𝑝(𝑥𝑖 ,𝑦) es la distribución conjunta de ambas variables y 𝑝(𝑥𝑖),𝑝(𝑦) son 

las distribuciones marginales. El valor de 𝐼(𝑥𝑖; 𝑦) es directamente proporcional 

a la implicación que tiene la variable 𝑥𝑖 sobre la salida 𝑦. 

 

El criterio de máxima relevancia busca seleccionar las variables más 

relacionadas con la salida del sistema: 

 

𝑚𝑎𝑥𝐷,     𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖; 𝑦)

𝑥𝑖 ∈𝑆 

 (2.56) 

 

donde 𝑆 es el conjunto de variables seleccionadas. 

 

Sin embargo, seleccionar únicamente las variables más relevantes puede 

generar redundancia si varias de ellas aportan información similar. Por ello, el 

método introduce el segundo criterio de mínima redundancia , definido como: 

 

𝑚𝑖𝑛𝑅,     𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖; 𝑥𝑗)

𝑥𝑖 ,𝑥𝑗 ∈𝑆 

 (2.57) 

 

El objetivo final de mRMR es maximizar la relevancia y minimizar la 

redundancia simultáneamente, lo que se formula como: 

 

𝑚𝑎𝑥Φ,    Φ = 𝐷 − 𝑅  (2.58) 

Este balance garantiza que el grupo de variables escogidas recoja la mayor 

cantidad posible de información pertinente acerca del proceso, evitando incluir 

variables que estén correlacionadas entre sí. 

 

Después de que se ha calculado la matriz de información mutua entre todas 

las variables del proceso, es factible clasificarlas en bloques según su 

dependencia funcional o estadística. Se considera que las variables que tienen 

la mayor información mutua entre ellas pertenecen al mismo subsistema físico 

o funcional del proceso; por lo tanto, se agrupan en el mismo bloque. 

 

Así, el método mRMR no solo hace posible la selección de las características 

más relevantes, sino también la creación de una estructura distribuida natural 

del sistema. Esta puede utilizarse para construir modelos de vigilancia local 

autónomos que luego se combinan a través de métodos de inferencia 

bayesiana, que se explican en la siguiente sección. 
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2.8.2 Inferencia Bayesiana 

 
Después de hacer la división de las variables en B bloques a través del método 

mRMR, cada bloque produce sus propios estadísticos de control 𝑇𝑏
2 y 𝑄𝑏 , los 

cuales posibilitan la monitorización del comportamiento local de cada bloque. 

No obstante, para calcular una medida del rendimiento total del sistema, se 

debe integrar la información de todos los bloques de manera coherente.  

Se utiliza la inferencia bayesiana, un instrumento estadístico que posibilita la 

actualización de la probabilidad de un evento (como puede ser la ocurrencia de 

un error) conforme se va adquiriendo nueva evidencia en cada bloque [27], 

[28], [33]. 

 

Esta investigación se basa en la combinación bayesiana de estadísticos 

locales, lo que da origen a los BIC (Bayesian Inference Combination), que 

funcionan como indicadores generales de desviación del proceso.  

Esta estrategia posibilita la integración de los datos de los bloques, teniendo 

en cuenta su fiabilidad y su aporte a la identificación de fallos, lo que a su vez 

brinda una reconstrucción más sólida de las estadísticas globales 𝑇 2 y 𝑄. 

 

Fundamento teórico 
 

De acuerdo con la regla de probabilidad condicional de Bayes, la probabilidad 

de fallo del estadístico 𝑇 2 en una muestra 𝑥𝑏 perteneciente al bloque 𝑏 se 

expresa como: 

 

𝑃𝑇2 (𝐹|𝑥𝑏) =
𝑃𝑇2 (𝑥𝑏|𝐹)𝑃𝑇2 (𝐹)

𝑃𝑇2 (𝑥𝑏)
 (2.59) 

 

Donde 𝑃𝑇2 (𝐹|𝑥𝑏) es la probabilidad condicional de observar los datos 𝑥𝑏 bajo 

la hipótesis de fallo (𝐹) y 𝑃𝑇2 (𝐹) es la probabilidad a priori de fallo. El 

denominador puede expresarse como la suma de las probabilidades de 

operación normal o fallo (𝑁),(𝐹): 

 

𝑃𝑇2 (𝑥𝑏) = 𝑃𝑇2 (𝑥𝑏|𝑁) 𝑃𝑇2 (𝑁) +  𝑃𝑇2 (𝑥𝑏|𝐹)𝑃𝑇2 (𝐹)  (2.60) 

 

Las probabilidades condicionales pueden modelarse mediante funciones 

exponenciales que dependen del valor del estadístico 𝑇𝑏
2(𝑥𝑏) y su umbral de 

control 𝑇𝑏,𝑙𝑖𝑚
2 : 

 

𝑃𝑇2 (𝑥𝑏|𝑁) = 𝑒−𝑇𝑏
2(𝑥𝑏 )/𝑇𝑏 ,𝑙𝑖𝑚

2

 (2.61) 
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𝑃𝑇2 (𝑥𝑏|𝐹) = 𝑒𝑇𝑏,𝑙𝑖𝑚
2 /−𝑇𝑏

2(𝑥𝑏 )     (2.62) 

 

Estas formulaciones permiten ponderar la probabilidad de que un bloque esté 

bajo condiciones normales o de fallo, en función del grado de desviación de sus 

valores  𝑇𝑏
2(𝑥𝑏) respecto a su umbral de control 𝑇𝑏,𝑙𝑖𝑚

2 . 

 

Combinación Bayesiana de Bloques 

 

Después de calcular las probabilidades parciales de cada bloque, los BICs se 

encargan de combinarlas en un valor global, ponderando cada bloque con base 

en su probabilidad de fallo: 

 

𝐵𝐼𝐶𝑇2 =  ∑
𝑃𝑇2(𝑥𝑏|𝐹)𝑃𝑇2 (𝐹|𝑥𝑏)

∑ 𝑃𝑇2 (𝑋𝑏|𝐹) 𝐵
𝑏=1

𝐵

𝑏=1

 
(2.63) 

𝐵𝐼𝐶𝑄 =  ∑
𝑃𝑄(𝑥𝑏|𝐹)𝑃𝑄(𝐹|𝑥𝑏)

∑ 𝑃𝑄(𝑋𝑏|𝐹) 𝐵
𝑏 =1

𝐵

𝑏=1

 (2.64) 

 

Los estadísticos combinados del sistema son los valores 𝐵𝐼𝐶𝑇2 y 𝐵𝐼𝐶𝑄 , los 

cuales pueden ser utilizados para detectar anomalías de la misma manera que 

las estadísticas tradicionales 𝑇2 y 𝑄. 

 

Se establece el límite de confianza (α) siguiendo el mismo criterio que en los 

casos individuales, de modo que, si los BICs sobrepasan sus respectivos 

límites, se considera que hay un posible fallo global en la planta. 
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Capítulo 3. Proceso Tennessee-Eastman 
 

3.1. Origen y contexto histórico 
 

Uno de los modelos de referencia más empleados en la ingeniería química y 

control de procesos es el proceso Tennessee-Eastman (TE). En 1993, Downs y 

Vogel plantearon un problema de control a nivel de planta (plant-wide control 

problem) que fue concebido como un banco de pruebas estandarizado para 

cotejar métodos de detección de fallos y estrategias de control industrial [34]. 

 

El modelo fue creado a partir de un proceso químico industrial auténtico de la 

Tennessee Eastman Company, aunque se hicieron cambios intencionados para 

salvaguardar la propiedad intelectual del procedimiento original. Se llevó a 

cabo su implementación en FORTRAN, añadiendo las reacciones químicas, los 

balances de energía y masa, las ecuaciones dinámicas de flujo y los lazos de 

control descentralizados [35]. 

 

La motivación principal para su desarrollo fue disponer de un caso de estudio 

abierto, reproducible y representativo de una planta industrial compleja, que 

incluyera múltiples unidades interconectadas, reciclajes y comportamientos no 

lineales. Desde su publicación, el proceso TE se ha convertido en un estándar 

de referencia internacional en la evaluación de algoritmos de detección de 

fallos, control predictivo, aprendizaje automático y monitorización estadística 

de procesos [36], [37], [38]. 

 

 

3.2. Descripción general del proceso 
 

El proceso TE consta de cinco unidades principales en serie: reactor bifásico 

con reacción exergónica, condensador, separador vapor-líquido (flash), 

columna de destilación (stripper) y compresor de reciclaje (Figura 22). Estas 

unidades están interconectadas por corrientes de alimentación, purga y 

reciclaje, conformando un sistema fuertemente acoplado y con lazos de control 

interdependientes [35]. 

 

El objetivo del proceso es la producción de dos productos líquidos (G y H) a 

partir de cuatro reactantes gaseosos (A, C, D y E), en presencia de un 

componente inerte (B) y la generación de un subproducto (F). 
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Figura 22. Diagrama ISA del proceso Tennessee-Eastman [35] 

 

Las reacciones químicas principales del proceso se expresan como: 

 

𝐴(𝑔) +  𝐶(𝑔)  +  𝐷(𝑔)  →  𝐺(𝑙) (3.1) 

𝐴(𝑔)  +  𝐶(𝑔)  +  𝐸(𝑔)  →  𝐻(𝑙) (3.2) 

1

3
𝐴(𝑔) +

1

3
𝐷(𝑔) +

1

3
𝐸(𝑔)  →  𝐹(𝑙) 

(3.3) 

 

 

El proceso cuenta con 52 variables medidas y manipuladas, incluyendo 

presiones, temperaturas, niveles de líquido, fracciones molares, flujos, y 

aperturas de válvulas. De ellas, 41 son variables de proceso (XMEAs) y 11 

variables manipuladas (XMVs) [35], [38], como se ve en la Tabla 1. 
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Variables de proceso Variables de control Variables manipuladas 
1 Alimentación A  23 Comp. A de alimentación  42 Flujo de alimentación D 
2 Alimentación D  24 Comp. B de alimentación 43 Flujo de alimentación E 
3 Alimentación E  25 Comp. C de alimentación 44 Flujo de alimentación A   
4 Alimentación Total  26 Comp. D de alimentación  45 Flujo total de alimentación 
5 Flujo de Reciclaje  27 Comp. E de alimentación  46 Válvula de reciclaje compresor  
6 Caudal de alimentación  28 Comp. F de alimentación 47 Válvula de purga  
7 Presión del reactor  29 Comp. A de la purga  48 Flujo de producto separador  
8 Nivel del reactor  30 Comp. B de la purga  49 Flujo de producto purgador  
9 Temperatura del reactor  31 Comp. C de la purga  50 Válvula de vapor del purgador  
10 Caudal de purga  32 Comp. D de la purga  51  Flujo  enfriamiento  de reactor  
11 Temperatura separador  33 Comp. E de la purga  52 Flujo enfriamiento condensador  
12 Nivel del separador  34 Comp. F de la purga   
13 Presión del separador  35 Comp. G de la purga   
14 Desbordamiento separador  36 Comp. H de la purga    
15 Nivel del purgador  37 Comp. D del producto   
16 Presión del purgador  38 Comp. E del producto   
17 Desbordamiento  purgador  39 Comp. F del producto    
18 Temperatura del purgador  40 Comp. G del producto    
19 Caudal de vapor purgador  41 Comp. H del producto    
20 Trabajo del compresor      
21 Tª de salida del agua     
22 Tª de salida del agua      

Tabla 1. Descripción de las variables del proceso Tennessee-Eastman [37] 

 

3.3. Formulación matemática del modelo 
 

El modelo Tennessee-Eastman está basado en ecuaciones dinámicas no 

lineales derivadas de los balances de masa y energía de cada componente y 

unidad de proceso. A continuación, se resumen sus ecuaciones 

fundamentales. 

 

a) Balance general de materia  

 

Para cada componente i en una unidad k: 

 

𝑑𝑁𝑖, 𝑘

𝑑𝑡
= ∑ 𝑦𝑖,𝑗𝐹𝑗

𝑖𝑛

𝑗

 − 𝑚 ∑ 𝑦𝑖, 𝑚𝐹𝑚
𝑜𝑢𝑡

𝑚

+ 𝑟 ∑ 𝜈𝑖,𝑟  𝑅𝑟

𝑟

 
(3.4) 

 

donde: 
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• 𝑁𝑖, 𝑘: cantidad de moles del componente i en la unidad k 

• 𝑦𝑖,𝑗 : fracción molar del componente i en la corriente j 

• 𝐹𝑗
𝑖𝑛 y 𝐹𝑚

𝑜𝑢𝑡 : caudales molares de entrada y salida 

• 𝜈𝑖,𝑟: coeficiente estequiométrico de la reacción r 

• 𝑅𝑟: velocidad de reacción del proceso 

 

b) Cinética de reacción  

 

Las velocidades de reacción se describen mediante cinética de Arrhenius de la 

forma general: 

 

𝑅𝑟 = ∏ 𝐶
𝑖

𝛼𝑖,𝑟 exp (−
𝐸𝑎,𝑟

𝑅𝑇
)

𝑖

 
(3.5) 

 

donde 𝑘𝑟es la constante pre-exponencial, 𝐶𝑖 la concentración del componente 

𝑖, 𝐸𝑎,𝑟 la energía de activación y 𝑇 la temperatura del reactor. 

 

c) Relaciones de equil ibrio termodinámico  

 

En el separador y el condensador se asume equilibrio vapor-líquido: 

 

𝑦𝑖𝑃 = 𝑥𝑖𝑃𝑖
𝑠𝑎𝑡(𝑇) (3.6) 

  

∑ 𝑦𝑖

𝑖

= 1        ;        ∑ 𝑥𝑖

𝑖

= 1  (3.7) 

 

donde yi y xi son las fracciones molares en las fases vapor y líquida 

respectivamente, P la presión total y Pi
sat(T) la presión de saturación del 

componente i a la temperatura T. 

 

 

3.4. Condiciones de operación y control 
 

El proceso opera bajo condiciones nominales definidas para cada corriente y 

unidad de proceso. Los lazos de control regulan variables críticas como la 

temperatura y presión del reactor, el nivel del separador o la fracción molar de 

productos mediante las 11 variables manipuladas (XMVs). 
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ID de Fallo  Descripción  Tipo  Magnitud 
IDV1  Relación de alimentación A/C comp. B constante  Escalón 203% 
IDV2  Composición B relación A/C constante  Escalón 105% 
IDV3  Temperatura de alimentación D  Escalón 5% 
IDV4  Temperatura de entrada del agua al reactor  Escalón 9% 
IDV5  Temperatura de entrada del agua al condensador   Escalón 15% 
IDV6  Pérdida de alimentación A  Escalón 342% 
IDV7  Pérdida de presión del cabezal C  Escalón 25% 
IDV8  Composición de alimentación A B C  Aleatorio 736% 
IDV9  Temperatura de alimentación D  Aleatorio 8% 
IDV10  Temperatura de alimentación C  Aleatorio 112% 
IDV11  Temperatura de entrada del agua al reactor  Aleatorio 567% 
IDV12  Temperatura de entrada del agua al condensador   Aleatorio 8% 
IDV13  Cinética de reacción  Desviación 16% 
IDV14  Válvula de agua al reactor  Bloqueo 1285% 
IDV15  Válvula de agua al condensador  Bloqueo 5% 
IDV16  Desconocido   Aleatorio 78% 
IDV17  Desconocido  Aleatorio 557% 
IDV18  Desconocido  Escalón 57% 
IDV19  Desconocido  Aleatorio 73% 
IDV20  Desconocido  Aleatorio 310% 
IDV21  Desconocido  Desconocido  ? % 

Tabla 2. Fallos definidos en el proceso T-E [40] 

 

El conjunto de 21 fallos o perturbaciones (IDVs) definidos en el modelo (Tabla 

2) permiten estudiar condiciones anómalas como: 

 

• Cambios en la temperatura o composición de alimentación. 

• Fallos en válvulas o restricciones de flujo. 

• Alteraciones en la cinética de reacción. 

• Perturbaciones aleatorias o desviaciones lentas. 

 

Estos modos de fallo son ampliamente utilizados como casos de prueba en el 

desarrollo y validación de métodos de detección y diagnóstico de fallos [32], 

[36]. 
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3.5. Aplicaciones y relevancia 
 

El proceso Tennessee-Eastman es un estándar de referencia internacional en 

la investigación y desarrollo de metodologías de control y diagnóstico de 

procesos. Sus principales aplicaciones incluyen [37], [38]: 

 

• Evaluación de métodos de detección e identificación de fallos (PCA, 

PLS, ICA, redes neuronales, autoencoders, etc.). 

• Análisis de la estabilidad y robustez de sistemas de control planta-

amplia. 

• Desarrollo de técnicas de monitoreo estadístico y control predictivo. 

• Entrenamiento y validación de modelos de inteligencia artificial para 

diagnóstico industrial. 

 

Las versiones modernas del simulador y los conjuntos de datos asociados 

están disponibles públicamente a través de los repositorios del MIT Braatz 

Group [39] y del Harvard Dataverse [40], los cuales incluyen tanto datos de 

funcionamiento normal como series con fallos simulados. 

 

3.6. Limitaciones del modelo 
 

Pese a su gran utilidad, el modelo Tennessee-Eastman presenta ciertas 

limitaciones [35], [36]: 

 

• No incorpora todas las no linealidades y retardos temporales presentes 

en plantas reales. 

• Algunos parámetros cinéticos y termodinámicos fueron modificados 

para proteger la propiedad industrial. 

• Las condiciones de operación son idealizadas y pueden diferir de las 

industriales. 

• No contempla estrategias de control centralizado u optimización 

económica. 

Aun así, su adopción generalizada lo consolida como un caso de referencia 

esencial en ingeniería química, control de procesos e inteligencia artificial 

aplicada. 
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Capítulo 4. Aplicaciones y evaluación de 

métodos 
 

4.1 Introducción 

Los datos del procedimiento Tennessee-Eastman (TE) se utilizan en este 

capítulo para poner en práctica los conceptos teóricos que se han desarrollado 

anteriormente.  El propósito es analizar la habilidad de diversas metodologías 

de monitorización para identificar fallos en condiciones similares.  

Las técnicas consideradas incluyen: 

1. PCA (Análisis de Componentes Principales): referencia clásica en la 

reducción de dimensionalidad y control estadístico multivariante. 

2. Autoencoder: red neuronal entrenada de manera no supervisada para 

aprender correlaciones no lineales. 

3. Autoencoder Recurrente (RAE): adaptación que incorpora dinámica 

temporal en el aprendizaje mediante células LSTM. 

4. RAE distribuido: extensión que divide las variables en bloques y fusiona 

la información mediante inferencia bayesiana. 

 

Todas las metodologías se entrenan solamente con datos de operación normal 

(Tabla 3) y se contrastan con los casos de fallo establecidos en el proceso 

Tennessee-Eastman (Tabla 1). La capacidad de cada método para detectar 

anomalías de manera fiable y rápida se mide con los estadísticos T² y Q, lo que 

permite calcular el rendimiento. 

Antes de abordar la implementación, haremos una breve mención de las 

librerías más importantes que hemos empleado en los programas, todos ellos 

desarrollados con Python 3.11: 

➢ Numpy para el cálculo vectorial, matricial y tensorial a lo largo de todo 

el trabajo. 

o Versión: 1.26.4. 
 

➢ Pandas  para cargar los datos de la planta y para la división en bloques 

de la 4.5. 

o Versión: 2.1.4. 

➢ Matplotlib para el dibujo de todos los gráficos de control y la 

visualización de los resultados. 

o Versión: 3.8.0. 

➢ Tensorflow encargado de la computación numérica optimizada para el 

aprendizaje profundo, es el encargado de administrar los recursos del 

https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://www.tensorflow.org/?hl=es-419
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equipo empleado y de ejecutar los modelos de los apartados 4.3, 4.4 y 

4.5. 

o Versión: 2.16. 

➢ Keras, incluido dentro de Tensorflow, se emplea como interfaz de alto 

nivel para definir las arquitecturas de las redes neuronales en las 

secciones mencionadas anteriormente. 

o Versión: 3.3.3. 

 

➢ Pickle para guardar y serializar objetos de Python en un archivo binario 

y luego poder desempaquetarlos más adelante, empleado en el 

apartado 4.5 a la hora de empaquetar los datos del autoencoder 

distribuido en un único archivo 

o Versión: 3.8 

 

 

 VARIABLE 

MUESTRA 1 2 … 14 15 … 51 52 

0 0.24889 3702.3 … 25.184 50.201 … 41.384 18.905 

1 0.24904 3666.2 … 26.589 49.824 … 41.658 18.976 

2 0.25034 3673.3 … 24.494 48.957 … 41.721 16.562 

3 0.25109 3657.8 … 27.367 49.708 … 40.836 20.094 

4 0.24563 3698 … 22.341 49.662 … 41.727 18.33 

5 0.24759 3687.4 … 24.433 51.704 … 40.922 19.532 

6 0.24689 3619.7 … 25.761 48.912 … 40.562 21.019 

… … … … … … … … … 

956 0.23352 3625.4 … 24.549 50.322 … 40.971 15.621 

957 0.2344 3660.3 … 24.501 48.908 … 41.891 21.744 

958 0.23611 3645 … 25.059 47.456 … 39.813 18.826 

959 0.23729 3666.8 … 23.602 47.656 … 40.5 18.353 

       Tabla 3. Datos del funcionamiento normal de la planta 

 

 

4.2 PCA 
 

Se ha puesto en práctica el método de Análisis de Componentes Principales 

(PCA) como una herramienta para la detección de errores y la reducción de 

dimensiones. Su operación se basa en determinar las direcciones de mayor 

variabilidad de los datos del funcionamiento normal del proceso y 

representarlas en un espacio más pequeño, manteniendo la información más 

importante. 

 

Es factible, a partir de este modelo reducido, cotejar datos nuevos con el 

comportamiento normal aprendido y así identificar potenciales anomalías o 

desvíos que revelen un fallo en el sistema. 

https://keras.io/
https://docs.python.org/3/library/pickle.html
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4.2.1 Entrenamiento 

 

En la fase de entrenamiento, se ha utilizado el conjunto de datos 

correspondiente al funcionamiento normal del proceso, como se observa en la 

Tabla 3. Primero, las variables se normalizan restando la media y dividiendo 

por la desviación típica, (2.9), de modo que todas contribuyan de forma 

equilibrada al modelo. 

 

A continuación, se calcula la matriz de covarianza (2.11) y se obtiene su 

descomposición en valores singulares (SVD), a partir de la cual se seleccionan 

los autovectores asociados a los mayores autovalores, que representan las 

direcciones de máxima varianza del sistema (2.12) . 

 

El número de componentes principales se establece automáticamente en base 

al porcentaje acumulado de variabilidad, en este caso el 90%. Así, se mantiene 

la mayoría de los datos útiles y se disminuye la complejidad del problema. 

 

Con los componentes seleccionados se obtiene, la matriz de loadings 𝑃, la 

matriz diagonal 𝑆 de varianzas principales (Figura 8) y los estadísticos de 

control 𝑇 2 𝑦  𝑄 (o SPE, Squared Prediction Error), que cuantifican 

respectivamente la variabilidad dentro y fuera del subespacio principal como 

se observa en la Figura 23. 

 

 

    
Figura 23. Estadísticos 𝑇2y Q en PCA. Funcionamiento normal 

 

Finalmente, se calculan los umbrales de control a partir del percentil 99 % de 

cada estadístico, almacenándose junto con los parámetros del modelo para su 

posterior uso en la fase de detección. 
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4.2.2 Detección de Fallos  

Después de que el modelo PCA ha sido entrenado, se pasa a la etapa de 

detección, en la cual los parámetros adquiridos se aplican a un nuevo conjunto 

de datos que representa una circunstancia del proceso que puede ser 

anómala. 

Primero, se cargan los datos de normalización del entrenamiento y, además, 

las medias, desviaciones típicas, vectores de carga y límites de control que se 

han guardado con anterioridad. Los registros del sistema se escalan con las 

estadísticas del modelo, asegurando que sean coherentes con las condiciones 

de entrenamiento. 

Los estadísticos de control 𝑇2 y 𝑄 se determinan para cada observación, del 

mismo modo que en el entrenamiento, con los mismos datos de normalización. 

Ambos indicadores se comparan con sus respectivos umbrales de referencia, 

los cuales son el percentil 99 % de los datos normales. Cuando el valor de 

alguno de estos estadísticos supera el umbral ya mencionado, se entiende que 

la muestra está fuera de control. 

El estadístico 𝑇 2 evalúa la variabilidad de las observaciones dentro del 

subespacio principal, permitiendo identificar desviaciones respecto al 

comportamiento normal de las combinaciones lineales más significativas. 

Por su parte, el estadístico 𝑄  mide el residuo o error de reconstrucción fuera 

del subespacio principal, reflejando anomalías que no pueden explicarse 

mediante las componentes seleccionadas.  

A partir de ahora, vamos a representar gráficamente los resultados obtenidos 

para los datos de fallo 6, 12 y 15, el resto lo representaremos mediante tablas. 

En concreto para estos fallos los estadísticos T2  y Q se representan en las 

Figuras 24, 25 y 26 respectivamente: 

  

 

Figura 24. Detección del fallo IDV6 mediante PCA. Estadísticos 𝑇2 y Q 
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Figura 25. Detección del fallo IDV12 mediante PCA. Estadísticos 𝑇2 y Q 

    

    

Figura 26. Detección del fallo IDV15 mediante PCA. Estadísticos 𝑇2 y Q 

 

Luego, se lleva a cabo un análisis de la cantidad de alarmas falsas y verdaderas 

para ambos estadísticos, diferenciando el área de funcionamiento normal del 

área donde se introduce un error. Además, se define un criterio de fallo 

sostenido: si una serie ininterrumpida de observaciones (como diez) excede el 

umbral definido para un comportamiento normal, se establece el instante 

exacto en que el sistema deja de operar con normalidad, como se observa en 

la Tabla 4. 

Finalmente, se realiza un diagnóstico del motivo del fallo a través del análisis 

de los residuos sólo en el instante en que se detecta el fallo. Estos se 

determinan proyectando las observaciones en el espacio ortogonal al 

subespacio principal y calculando la contribución de cada variable al error total  

como se ve en la Figura 27.  

Lo que permite determinar las variables con mayor impacto en la desviación 

detectada y, por lo tanto, los posibles motivos del error en el procedimiento. 

Cabe destacar que esta contribución solamente es calculable si el modelo es 

capaz de detectar los fallos. 
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Figura 27.  Contribuciones de cada variable. Fallos IDV6 y 12 respectivamente 

 

4.2.3 Resultados PCA 

 

En base a los resultados, observamos que el PCA es capaz de identificar errores 

en la mayoría de los IDs de fallo (Tabla 4), aunque presenta una media de 

alarmas detectadas que es relativamente baja (Tabla 5).  

 

 

  Detectado por 𝑻𝟐 Detectado por Q 
Fallo FalsasA (%) Alarmas (%) t_Fallo(obs) FalsasA (%) Alarmas (%) t_Fallo (obs) 

1 1,25 99,25 166 3,75 99,75 162 

2 1,875 98,63 171 4,375 98,63 174 

3 1,25 1,88 No Detect. 2,5 7,50 No Detect. 

4 0,625 41,88 664 2,5 100,00 160 

5 0,625 25,75 170 2,5 33,88 160 

6 0,625 98,88 169 2,5 100,00 160 

7 0 100,00 160 2,5 100,00 160 

8 0 97,25 182 4,375 96,88 177 

9 3,125 3,38 No Detect. 5 4,50 No Detect. 

10 1,875 30,75 263 0 46,00 207 

11 0 51,25 210 5 69,38 166 

12 1,875 98,63 181 6,25 95,13 182 

13 1,875 94,63 205 1,25 95,13 200 

14 0,625 99,50 160 5 99,88 161 

15 1,25 2,50 No Detect. 3,125 6,13 No Detect. 

16 3,75 15,13 470 3,125 43,50 353 

17 0,625 78,63 188 3,125 95,63 181 

18 1,25 89,38 252 5,625 90,13 243 

19 0,625 12,25 No Detect. 4,375 21,88 No Detect. 

20 2,5 31,25 246 3,75 55,88 244 

21 1,25 41,38 664 3,75 50,13 409 

Tabla 4. Detección de fallos mediante PCA 
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Promedios PCA 
 Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones) 

𝑻𝟐 1,28 57,72 265,94 

Q  3,54 67,14 205,82 

Tabla 5. Resumen estadístico PCA 

 

Total Fallos PCA 

𝑻𝟐 17 

Q 17 

Tabla 6. Fallos detectados con PCA 

 

Por otro lado, se ve que el método no es capaz de detectar 4 fallos (los fallos 

3, 9, 15 y 19) ni con la estadística T2 ni con la Q (Tablas 5 y 6). 

 

En las secciones que siguen, utilizaremos técnicas de aprendizaje profundo con 

el objetivo de lograr una detección más precisa, dado que pueden aprender 

patrones de mayor complejidad que los que pertenecen al PCA. 

 

4.3 Autoencoder  
 

La reducción de la dimensionalidad y la identificación de anomalías se llevan a 

cabo utilizando el método del autoencoder denso, que es un enfoque no lineal. 

El autoencoder, en contraste con el PCA, que se fundamenta en combinaciones 

lineales de las variables, emplea una red neuronal con múltiples capas densas 

conectadas simétricamente para adquirir una representación comprimida de 

los datos de operación normal. 

 

Durante el proceso de entrenamiento, la red se ajusta para reconstruir la 

entrada a partir de su versión reducida, de modo que la información esencial 

del sistema se concentre en las capas internas. 

 

Esta habilidad de reconstrucción posibilita, más adelante, determinar 

desviaciones importantes entre la señal original y la que ha sido reconstruida; 

esto se convierte en el fundamento para detectar fallos. 

 

4.3.1 Entrenamiento 
 

El pretratamiento de los datos se realiza de manera idéntica en todos los 

métodos, pero esta vez partimos de una matriz de datos mucho más grande, 

de 250.000 observaciones exactamente, tanto para este autoencoder, como 
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para el resto, esto es asi porque para obtener un buen entrenamiento de la red 

se necesita una gran cantidad de datos. 

 

La arquitectura del autoencoder implementado está compuesta por una red 

simétrica que tiene tres capas ocultas en el codificador y tres en el 

decodificador siendo la representación latente (h) compartida en encoder y 

decoder como vimos en la Figura 18, las cuales están organizadas con las 

dimensiones mostradas en la Tabla 7. 

 

 

Capa Nombre de capa 
Tipo de 

capa 
Dimensión Función de activación Tipo 

0 Input Entrada 52 ReLU Entrada 

1 encoded1 Dense 48 ReLU Encoder 

2 encoded2 Dense 35 LeakyReLU (α=0.1) Encoder 

3 hidden (Dense) Dense 24 ReLU 
Encoder 
(hidden) 

5 decoded2 Dense 35 ReLU Decoder 

6 decoded1 Dense 48 Sigmoid Decoder 

7 output Salida 52 - Salida 

Tabla 7. Configuración Autoencoder 

 

Las capas utilizan funciones de activación ReLU para las capas de codificación 

lo que permite modelar relaciones no lineales complejas entre las variables y 

LeakyReLU para la capa oculta con el objetivo de mitigar el problema del 

desvanecimiento del gradiente mencionado anteriormente y finalmente 

sigmoide en la salida. 

 

La finalidad del modelo es la de reducir el error cuadrático medio (MSE) (2.40) 

entre la entrada y la salida reconstruida, para ello, se entrena el modelo 

utilizando Adam como optimizador, ya mencionado en el apartado 2.6.4.1 Adam 

(Adaptive Moment Estimation). 

 

En el entrenamiento, se deja un 20 % de los datos para validación. Con un 

tamaño de lote de 64 muestras, el aprendizaje tiene lugar en un total de 30 

épocas. El resultado de entrenamiento, se observa en la Figura 28, y se ve como 

con la arquitectura de red seleccionada se consigue una convergencia rápida y 

sin sobreajuste. 
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Figura 28. Curvas de pérdida en entrenamiento y validación del autoencoder 

 

Después de que el entrenamiento ha concluido, se obtiene el codificador, que 

convierte las observaciones iniciales en un espacio de dimensiones reducidas 

ℎ. Entonces, se calcula la matriz de covarianza de las representaciones 

comprimidas en este nuevo espacio. 

 

 

    
Figura 29. Estadísticos 𝑇2y Q en Autoencoder. Funcionamiento normal 

 

En función de ella, se establece el estadístico 𝑇2, que analiza la variabilidad en 

el subespacio codificado, y el estadístico 𝑄, que calcula el residuo de 

reconstrucción (diferencia entre entrada y salida) como se ve en la Figura 29, 

pero esta vez ambos estadísticos han sido calculados como: 

 

𝑇𝑖
2 = (ℎ𝑖 − 𝜇ℎ) ⋅  𝑐𝑜𝑣(ℎ) ⋅ (ℎ𝑖 − 𝜇ℎ)𝑡  (4.1) 

𝑄𝑖 = (𝑟𝑖 − 𝜇𝑟 ) ⋅ (𝑟 − 𝜇𝑟 )𝑡  (4.2) 

 

Siendo ℎ𝑖 la representación latente de la red, equivalente a los autovectores 

obtenidos en PCA, 𝑟𝑖 el residuo calculado como 𝑋𝑛 − 𝑋 siendo 𝑋𝑛 la matriz de 
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datos normalizada correspondiente a la entrada de la red y 𝑋 la reconstrucción 

del autoencoder. 𝜇ℎ y  𝜇𝑟 sus medias, respectivamente y 𝑐𝑜𝑣() la covarianza. 

 

Los límites que determinan el funcionamiento normal del sistema se 

establecen utilizando los percentiles 99 % del conjunto de entrenamiento, con 

lo cual se obtienen los umbrales de control para ambos estadísticos. 

 

Por último, se almacenan en archivos los modelos entrenados (autoencoder y 

encoder) junto con los parámetros estadísticos y umbrales, que se utilizarán en 

la fase de detección. 

 

4.3.2 Detección de fallos 

 

En la etapa de detección, se emplean los modelos que han sido entrenados 

antes con un nuevo conjunto de datos con fallos. 

 

Se normalizan las observaciones empleando los parámetros del conjunto de 

entrenamiento y se proyectan en el espacio latente a través del codificador, lo 

que produce sus reconstrucciones pertinentes con el autoencoder. 

 

Con estos resultados, se vuelven a calcular los estadísticos de control 𝑇 2 y Q 

para cada observación, y fallo utilizando las mismas pautas que durante el 

entrenamiento. Ambos se comparan con sus límites respectivos para 

establecer si el proceso está en un estado normal o descontrolado. Mostramos 

los resultados de estas estadísticas junto con sus umbrales para los fallos 6, 

12 y 15 en las figuras 30, 31, y 32 respectivamente. Destacando los instantes 

en los que las observaciones superan los límites establecidos. 

 

 

    
Figura 30. Detección del fallo IDV6 con Autoencoder. Estadísticos 𝑇2 y Q    
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Figura 31. Detección del fallo IDV12 con Autoencoder. Estadísticos 𝑇2 y Q    

 

     

    
Figura 32. Detección del fallo IDV15 con Autoencoder. Estadísticos 𝑇2 y Q    

 

Con base en estos gráficos, se cuentan las alarmas falsas (que corresponden 

a superaciones del umbral en la zona de funcionamiento normal) y las alarmas 

verdaderas (que son las que ocurren al sobrepasar el umbral en la zona de 

fallo). 

Asimismo, se aplica un criterio de error sostenido, para que, si una serie 

continua de muestras (diez, por ejemplo) excede el umbral, se determine el 

momento exacto en que el sistema falla, obteniendo para los 21 fallos los 

estadísticos de la Tabla 8 y los estadísticos promedio de la Tabla 9 y la Tabla 10. 

Por último, para determinar la causa del fallo, se examina el vector de residuos 

que corresponde con el momento en que fue detectado.  

Se representa en un gráfico de barras la contribución individual de cada 

variable como se observa en la Figura 33, que se obtiene del cuadrado de los 

residuos. Esto posibilita observar qué variables tienen mayor impacto en la 

anomalía detectada, lo cual ayuda a identificar la causa del error. En este caso, 

la Figura 33 nos indica que las variables 1 y 44 son las variables que provocan 

el fallo 6, así como la variable 22 es la que provocó el fallo 12. El fallo 15 parece 

ser provocado por demasiadas variables, por lo que no nos da mucha 

información. 
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Figura 33. Contribuciones al fallo IDV6, IDV12 e IDV15 en Autoencoder 

 

4.3.3 Resultados 

 

Como hicimos antes, comentaremos algunos gráficos de control significativos  

y pasaremos a ver los estadísticos de cada fallo y los generales. 

 

El fallo 6 (Figura 30) se detecta de forma similar al método anterior, los tiempos 

de observación son similares, sin embargo, las alarmas que detecta el 

autoencoder son mucho mayores. 

 

El fallo 12 (Figura 31) En este caso el estadístico 𝑇2 de PCA detecta un poco 

mas rápido el fallo, sin embargo, es el estadístico Q del Autoencoder quien ha 

sido capaz de detectar antes de forma general el fallo. 

 

Por último, el fallo 15 (Figura 32) ahora pasa a ser detectado por el estadístico 

Q lo que, junto al resultado del fallo 12, denota como el autoencoder es capaz 

de almacenar más información que el método estadístico de PCA 

De forma general observamos que el comportamiento del autoencoder es 

superior al de PCA, si bien es cierto que este mantiene una mayor 

homogeneidad en la detección de fallos con relación a sus estadísticos, el 

autoencoder ha demostrado que el estadístico Q es superior a la hora de 

detectar fallos, incurriendo en una mayor detección total de fallos. Por otro 

lado, destacar que se han reducido drásticamente el índice de falsas alarmas, 

especialmente en el estadístico T2. 
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 Detectado por 𝑻𝟐 Detectado por Q 

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs) 

1 0 99,25 166 1,25 99,50 164 

2 0 98,25 174 1,25 98,50 172 

3 0 1,00 No Detect. 5,625 6,13 No Detect. 

4 0,625 1,88 No Detect. 2,5 70,50 165 

5 0,625 22,63 172 2,5 100,00 160 

6 0 99,63 168 0,625 100,00 160 

7 0 84,00 160 0,625 99,88 160 

8 0,625 97,00 181 0,625 98,00 179 

9 1,25 1,38 No Detect. 11,875 6,88 120 

10 1,25 18,38 261 1,25 77,00 184 

11 0 11,75 No Detect. 0,625 55,25 255 

12 0 95,13 191 4,375 99,00 162 

13 0 93,63 206 0 95,13 203 

14 0 99,75 161 0,625 99,88 161 

15 0 0,25 No Detect. 0,625 10,13 802 

16 2,5 3,63 No Detect. 25 79,13 170 

17 0,625 72,25 186 0,625 91,25 183 

18 0 89,13 250 1,875 89,75 244 

19 0 2,00 No Detect. 0 56,38 170 

20 0 25,00 252 0 71,25 231 

21 0 20,38 848 7,5 38,38 674 

Tabla 8. Detección de fallos mediante autoencoder 

 

 

Promedios Autoencoder 
 Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones) 

𝑻𝟐 0,36 49,35 241,14 

Q 3,30 73,42 235,95 

Tabla 9. Resumen estadístico Autoencoder 

 

Total Fallos Autoencoder 

𝑻𝟐 14 

Q  20 

Tabla 10. Fallos detectados con Autoencoder 

 

Las alarmas siguen la misma dinámica que los estadísticos, el autoencoder 

detecta mayor porcentaje de forma absoluta con su estadístico Q, pero el 𝑇2de 

PCA es superior detectando fallos. 
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4.4 Autoencoder Recurrente (RAE) 
 

El modelo que se ha creado está fundamentado en una arquitectura de 

autoencoder secuencial que se pone en práctica a través de redes LSTM (Long 

Short-Term Memory). Estas redes son particularmente apropiadas para el 

tratamiento de series temporales y señales que dependen del tiempo, porque 

posibilitan la captura de relaciones dinámicas a través de diversas escalas 

temporales. 

 

El sistema está compuesto por dos segmentos fundamentales: el codificador 

(encoder) y el decodificador (decoder), que están conectados mediante un 

cuello de botella o capa latente, la cual funciona como una representación 

comprimida de la serie de entrada. El propósito del modelo, en resumen, es 

adquirir una representación eficaz de los datos temporales y usarla para 

reconstruir la secuencia original. 

 

 

4.4.1 Entrenamiento 

 

Se emplean otra vez los datos del proceso en condiciones normales para 

entrenar el modelo RAE. Se quitan las columnas iniciales que no aportan 

información y se normalizan todas las variables entre 0 y 1 utilizando sus 

valores máximos y mínimos. 

 

Después, las observaciones se reestructuran en ventanas temporales 

deslizantes de cinco muestras, permitiendo que el modelo capte dependencias 

entre los valores presentes y los pasados de las variables a corto y medio plazo. 

 

El codificador se compone de dos capas LSTM apiladas secuencialmente. 

La capa inicial toma como entrada una secuencia de múltiples dimensiones y 

produce una nueva secuencia de salida donde cada paso temporal se convierte 

en un vector de activación con una dimensión constante.  Esta capa utiliza una 

función de activación no lineal conocida como Scaled Exponential Linear Unit 

(SELU), que permite la auto-normalización de las activaciones y optimiza la 

estabilidad en el proceso de entrenamiento. 

 

La segunda capa LSTM recibe la secuencia generada por la primera y la 

sintetiza en un solo vector de menor tamaño, extrayendo los datos más 

significativos de toda la serie temporal. En esta etapa, el modelo deja de 

devolver una secuencia y brinda en su lugar una representación latente fija, 

que se considera el vector codificado del autoencoder o capa oculta. 
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El vector creado por el codificador simboliza el estado comprimido de la 

secuencia original. Este vector incluye la información crucial para reconstruir la 

señal de entrada con el mínimo de pérdida posible, funcionando como un 

espacio latente de características del modelo. 

 

Para el decodificador, primeramente, se emplea una capa de repetición 

(Repeat Vector) que reproduce el vector latente el número de veces que la 

secuencia de entrada tiene pasos temporales. Este proceso produce una 

secuencia inicial artificial que será la entrada del decodificador en sí. 

 

Se añaden dos capas LSTM más a continuación. La primera conserva la misma 

dimensión que el vector latente, pero la segunda aumenta el número de 

unidades de salida para acercarse gradualmente a la complejidad de la 

secuencia inicial. Las dos capas utilizan, además, la activación SELU y 

devuelven secuencias completas, lo que asegura que cada momento temporal 

se reconstituyera de forma coherente a través del tiempo. 

 

Por último, se añade una capa densa distribuida en el tiempo (TimeDistributed 

Dense Layer), la cual se aplica de manera independiente a cada paso de la 

secuencia que ha sido reconstruida. Esta capa envía los vectores de activación 

del decodificador hacia el espacio de salida, creando una secuencia con la 

misma dimensionalidad que la entrada inicial. Su activación es lineal porque el 

propósito es reducir al mínimo el error de reconstrucción sin imponer 

restricciones extra a los valores de salida. El resumen de la red con todas sus 

capas y dimensiones se encuentra en la Tabla 11. 

 

 

Capa Nombre de capa Tipo de capa Dimensión Función de activación Topi 

0 Input Entrada (5, 52) — Entrada 

1 encoded1 LSTM (5, 48) SELU Encoder 

2 encoded2 LSTM 24 SELU 
Encoder 
(hidden) 

3 repeat_vector RepeatVector (5, 24) — Decoder 

4 decoded1 LSTM (5, 24) SELU Decoder 

5 decoded2 LSTM (5, 48) SELU Decoder 

6 output Dense 52 Lineal Salida 

Tabla 11. Configuración del Autoencoder LSTM 

 

La red se configura de manera que la salida del decodificador tenga la misma 

forma que la secuencia de entrada.  
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Durante el entrenamiento, el modelo se optimiza mediante una función de 

pérdida de tipo error cuadrático medio (Mean Squared Error, MSE), que 

cuantifica la diferencia entre la secuencia original y su reconstrucción, 

utilizando el optimizador Adam con una tasa de aprendizaje de 0.001.  

 

Se emplea un 20 % de los datos como conjunto de validación para controlar el 

sobreajuste, y el proceso se ejecuta durante 4 épocas con un tamaño de lote 

de 32 muestras. 

 

De esta forma, el autoencoder aprende a representar y reproducir las 

dinámicas temporales de los datos, capturando las dependencias secuenciales 

más relevantes dentro de un espacio de representación comprimido. 

 

Al finalizar el entrenamiento, se evalúa la convergencia del modelo mediante 

las curvas de pérdida de entrenamiento y validación, tal y como se ve en la 

Figura 34. 

 

 
Figura 34. Curva de pérdidas del modelo durante el entrenamiento. 

 

A continuación, se genera el modelo encoder, que transforma cada secuencia 

de entrada en un vector reducido que representa el estado dinámico del 

sistema. 

 

Sobre este espacio latente se calculan las estadísticas de control Hotelling’s 

𝑇 2  y Q, que permiten cuantificar, respectivamente, la variabilidad explicada y 

el error de reconstrucción de cada secuencia. Estas estadísticas calculadas 

para el comportamiento normal de la planta se pueden ver en la Figura 35. 
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Figura 35. Estadísticos 𝑇2y Q en LSTM. Funcionamiento normal 

  

Los umbrales de control se establecen en los percentiles 99 % para ambos 

estadísticos, delimitando así el rango de funcionamiento normal. 

 

Por último, los parámetros adquiridos (umbrales, medias, matrices de 

covarianza y límites de normalización) y los modelos entrenados se guardan en 

archivos para asegurar que estén disponibles para la etapa siguiente, que es 

la detección de fallos. 

 

4.4.2 Detección de Fallos 
 

En primer lugar, se cargan los parámetros característicos obtenidos a lo largo 

del entrenamiento (como las medias y covarianzas del espacio latente, los 

límites superior e inferior de normalización y los umbrales de control para las 

estadísticas Q y T), así como también los modelos que fueron almacenados 

antes del autoencoder y su codificador correspondiente. 

 

Se aplican los mismos límites utilizados en la fase de entrenamiento para 

normalizar los datos nuevos, lo que asegura la coherencia entre los dos 

conjuntos. 

 

Las observaciones se reordenan después en secuencias temporales que tienen 

la misma longitud que la ventana empleada por la LSTM, para que así el modelo 

sea capaz de analizar cómo se comportan las variables de manera dinámica 

dentro de cada intervalo. 

 

El autoencoder recrea cada una de las secuencias de entrada y, con base en 

estas reconstrucciones, se vuelven a calcular las estadísticas de control, de los 

fallos 6, 12 y 15 tal y como se comenta en el apartado anterior (Figura 36, Figura 

37 y Figura 38). 
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Figura 36. Detección del fallo IDV6 con LSTM. Estadísticos 𝑇2 y Q 

     

 

 
Figura 37. Detección del fallo ID12 con LSTM. Estadísticos 𝑇2 y Q 

    

 

 
Figura 38. Detección del fallo IDV15 con LSTM. Estadísticos 𝑇2 y Q 

      

Para confirmar la presencia de un fallo se emplean los mismos criterios que en 

los apartados anteriores y se obtienen las Tabla 12, 13 y 14. 

 

El RAE no solo detecta desviaciones instantáneas, sino también patrones 

anómalos en el tiempo. Una secuencia se considera anómala si su error de 

reconstrucción acumulado excede los límites derivados de los datos de 

entrenamiento, es por esto que Q suele ser más eficiente a la hora de detectar 

fallos en este tipo de autoencoder. 
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En última instancia, realizamos la identificación de fallos sobre el conjunto 

estudiado y en los dos que han sido detectados, representados en dos gráficos 

de barras en la Figura 39. 

 

 

Figura 39. Contribuciones al fallo en LSTM IDV6 e IDV12 

 

En este caso, esta representación evidencia las variables que han sido más 

contribuyentes en el fallo, en el caso del IDV6, las variables 36 y 42 han sido 

quienes más han influido, mientras que en el caso del IDV12, la variable que 

más ha contribuido ha sido la 40 seguida de la 37. 

 

4.4.3 Resultados 

 

El fallo 6 (Figura 36) se detecta de forma similar los métodos anteriores, los 

tiempos de observación son similares, sin embargo, las alarmas que detecta el 

autoencoder LSTM son similares al autoencoder. 

 

En el fallo 12 (Figura 37) los dos estadísticos del autoencoder LSTM han 

detectado más rápido los fallos que los dos modelos anteriores y además con 

un porcentaje de alarmas superior 

 

Por último, el fallo 15 (Figura 38) ahora vuelve a no ser detectado por el 

estadístico Q, al igual que en PCA vemos que el autoencoder es superior a estos 

dos en este caso. 
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 Detectado por 𝑇2 Detectado por Q 

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs) 

1 1,25 99,87 161 0 99,75 162 

2 2,5 98,99 168 1,25 98,74 170 

3 1,25 1,26 No Detect. 1,875 0,75 No Detect. 

4 0 7,67 No Detect. 6,875 100,00 156 

5 1,25 25,66 168 6,25 23,40 157 

6 0 99,75 162 2,5 100,00 156 

7 2,5 51,95 157 2,5 100,00 156 

8 0 97,74 178 0 97,99 176 

9 1,25 1,13 No Detect. 0 0,50 No Detect. 

10 0 37,23 262 0,625 21,38 257 

11 0,625 18,11 444 0 87,30 162 

12 0,625 99,37 160 3,125 99,50 158 

13 0 94,21 206 0 95,47 196 

14 1,875 13,96 No Detect. 3,125 100,00 157 

15 0,625 1,64 No Detect. 2,5 2,01 No Detect. 

16 2,5 18,24 353 1,875 13,96 396 

17 1,25 80,13 184 0 95,72 178 

18 0 88,55 252 5 90,06 239 

19 0 1,13 No Detect. 0 49,81 340 

20 0 36,86 245 0 50,44 242 

21 0 37,74 668 0,625 40,75 640 

Tabla 12. detección de fallos mediante LSTM 

 

Promedios LSTM 

  Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones) 

𝑇2 0,83 48,15 251,20 

Q 1,82 65,12 227,67 

Tabla 13. Resumen Estadístico LSTM 

 

 

Total Fallos LSTM 

𝑇2 15 

Q 18 

Tabla 14. Fallos detectados con LSTM 

En vista a los resultados obtenidos, observamos que la red LSTM detecta 

menor número de fallos que el autoencoder pero mayor numero que PCA de 

forma global, vemos que los estadísticos siguen la misma dinámica que el 

método anterior, Q es superior en los dos tipos de autoecoders, pero 𝑇 2 es 

superior en PCA. 
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Por otra parte, si bien de forma general, el autoencoder ha detectado más fallos 

y más alarmas también ha detectado más falsas alarmas, donde destaca el 

LSTM por detectar un número mínimo de las mismas, especialmente en la 

estadística Q. 

 

4.5 RAE distribuido 

4.5.1 Entrenamiento 

 

La manera de entrenar es igual para los tres escenarios de variables 

distribuidas (sesgo 1, sesgo 1.5 y sesgo 0.5), con la única diferencia en la 

conformación de los grupos que se logran a través del método Minimum 

Redundancy Maximum Relevance (mRMR), tal y como vimos en el apartado 

2.8.1. Donde este sesgo, nos indica que umbral ponemos para decidir que 

variables entran en cada bloque. Por ejemplo, si el sesgo es igual a 1, hemos 

puesto como umbral el valor medio del índice mRMR (ImRMR), es decir, si entre 

dos variables xi y xj el índice ImRMR es mayor que el umbral, la variable xj entra 

en el bloque definido por la variable xi, si es menor no entra. Y esto se hace con 

todas las variables.  

 

En todos los casos, las variables elegidas se subdividen en distintos subgrupos 

que posibilitan el desarrollo de un sistema de monitorización distribuida. En 

este sistema, cada submodelo recoge dinámicas particulares de una porción 

específica de la planta, Tablas 15, 16 y 17. 

 

Se lleva a cabo una selección inicial de 240,000 muestras libres de fallos, 

suprimiendo las columnas que no aportan información, al igual que en los 

métodos anteriores, ya que necesitamos eliminar la mayor cantidad de ruido. 

 

Los índices de las variables se agrupan en función de la estructura que 

corresponde a cada sesgo (1, 1.5 o 0.5) y se crean matrices normalizadas 𝑋𝑖𝑛 

para cada grupo i, según el resultado del mRMR, y se va a generar ahora un 

autoencoder recurrente por cada bloque. 

 

La función de entrenamiento de cada autoencoder LSTM es idéntica a la 

empleada en el apartado 3, con la diferencia de que entrenamos un modelo de 

autoencoder con diferente número de variables para cada bloque, por lo tanto, 

hemos de emplear una configuración neuronal diferente para cada caso.  

 

Para unificar el código y emplear unos números máximo y mínimo de neuronas 

se han establecido los criterios para la arquitectura de todos los modelos de 

autoencoder LSTM definidos en la  Tabla 18. 
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Sesgo 1 Variables 

X1 1, 44, 15, 49, 12, 48, 30, 37, 45 

X2 3, 4, 7, 8, 10, 11, 13, 16, 18, 19, 22, 25, 31, 35, 43, 47, 50 

X3  5, 17, 42, 46, 52 

X4  2, 9, 21, 51 

X5 20, 27, 28, 33, 34, 36 

X6 6, 23, 24, 29, 38, 39, 41 

X7 14, 26, 32, 40 

Tabla 15. Agrupación de variables obtenida para Sesgo = 1 en mRMR 

 

Sesgo 1,5 Variables 

X1 1, 44, 14, 40, 15, 45,49 

X2 7, 8, 10, 11, 13, 16, 18, 19, 22, 25, 31, 35, 43, 47, 50 

X3 5, 17, 46, 52 

X4 2, 9 ,21, 42, 51 

X5 20, 27, 26, 33, 36 

X6 4, 6, 23, 24, 38, 39, 41 

X7 3, 29, 30, 34, 37 

X8 12, 26, 42, 38 

Tabla 16. Agrupación de variables obtenida para Sesgo = 1,5 en mRMR 

 

Sesgo 0,5 Variables 

X1 1, 2, 9, 14, 39, 44, 51 

X2 8, 31, 4, 37, 22, 10, 25, 6, 43, 11, 18, 35, 50, 3, 47, 19,  
16, 41, 29,7, 21, 13, 33, 20 

X3 5, 46, 52, 42, 34, 17 

X4 36, 27, 15, 28, 45, 26, 40, 23, 30, 38, 49 

X5 32, 23, 12, 48 
Tabla 17. Agrupación de variables obtenida para Sesgo = 0,5 en mRMR 

 

 

Capa Nombre de capa Tipo de capa Dimensión 
Función de 
activación 

Tipo 

0 Input Entrada (5, input_dim) — Entrada 

1 encoded1 LSTM [5,(max (input_dim / 1.3), 4) ] SELU Encoder 

2 encoded2 LSTM (max (input_dim / 3), 2) SELU 
Encoder 
(hidden) 

3 repeat_vector RepeatVector [5, (max (input_dim / 3), 2)] — Decoder 

4 decoded1 LSTM [5, (max (input_dim / 3), 2)] SELU Decoder 

5 decoded2 LSTM [5,(max (input_dim / 1.3), 4) ] SELU Decoder 

6 output Dense 52 Lineal Salida 

Tabla 18. Arquitectura encoders DLSTM 
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Tras el entrenamiento se generan tantos autoencoders LSTM como grupos de 

variables tengamos por sesgo y se obtienen las series de estadísticos 𝑇2𝑦 𝑄 

para cada grupo y sus umbrales, los cuales emplearemos mas adelante para 

la detección por grupos.  

 

Finalmente se aplica un esquema de inferencia bayesiana, tal y como se 

describe en el apartado 2.8.2, para combinar la información procedente de 

todos los bloques en una única decisión global sobre el estado del proceso. De 

esta manera obtenemos los BICS de T² y Q, los cuales son equivalentes a los 

estadísticos de los apartados anteriores y sus umbrales (que en este caso 

corresponde al valor 1-, donde  es el grado de precisión deseado, en este 

caso 0.5), los cuales emplearemos más adelante en la detección de fallos, del 

mismo modo que en los apartados anteriores. 

 

Entonces se almacenan todos los datos obtenidos en un fichero para la 

posterior detección, el cual incluye: los modelos de encoders y decoders, 

estadísticos y umbrales por grupo y BICs. 

 

4.5.2 detección de Fallos 

Se lleva a cabo la identificación de errores en los tres esquemas distribuidos 

mediante el empleo de los modelos que han sido entrenados previamente en 

cada conjunto de variables. 

El propósito de este método es crear un mecanismo de diagnóstico que pueda 

combinar información proveniente de cada submodelo local y producir un 

índice total más resistente frente a interrupciones o errores de diferentes tipos. 

 

4.5.2.1 Detección de fallos por grupo 

En primer lugar, realizamos la detección con los estadísticos de cada subgrupo 

para todos los fallos, este procedimiento es idéntico al realizado en los 

apartados anteriores, ya que la detección se realiza con los estadísticos 𝑇2𝑦 𝑄 

de cada subgrupo y sus umbrales en cada agrupación obtenida en mRMR por 

sesgo, representando la detección del fallo IDV6 obtenemos las figuras 40, 41 

y 42.   
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Figura 40. Estadísticos 𝑇 2 y Q fallo IDV6 (Sesgo=1) 

 

Como se observa en este caso, la mayoría de los grupos detectan el fallo, pero 

el grupo 7 no, esto es debido a que no todas las variables contribuyen al fallo 

de la misma manera y al distribuir el método, conseguimos aislar que grupos 

presentan mayor susceptibilidad al fallo. 
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Figura 41. Estadísticos 𝑇2 y Q fallo IDV6 (Sesgo=1,5) 
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En este caso vemos que todos los grupos detectan fallo menos el grupo 8, el 

cual, tal y como podemos observar en las Tabla 15 y 16 comparte variables con 

el grupo 7, el cual no detectaba fallo en la agrupación de sesgo 1. 

 

 

Figura 42. Estadísticos 𝑇2 y Q fallo IDV6 (Sesgo=0,5) 

En este caso es el grupo 5 el que no detecta fallo para el mismo ID de fallo, por 

lo tanto, vemos que los datos contenidos en el subgrupo son los únicos que no 

contribuyen al fallo. 
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Del mismo modo que en los apartados anteriores, se ha realizado el cálculo de 

las contribuciones al fallo para cada grupo de variables en cada sesgo y fallo, 

que se obtiene del cuadrado de los residuos.  

Esto posibilita observar qué variables tienen mayor impacto en la anomalía 

detectada, lo cual ayuda a identificar la causa del error, como el grupo de 

variables es menor las gráficas representadas son mas esclarecedoras ya que 

permiten una mejor discriminación entre variables adyacentes.  

Debido al gran número de gráficas obtenidas, se ha tomado como ejemplo el 

fallo IDV6, donde se ha detectado que el bloque 1 ha sido el mayor 

contribuyente a la producción del mismo, por ende, representando la 

contribución al fallo del bloque 1 para cada uno de los sesgos, obtenemos la 

Figura 43: 

 

 

Figura 43. Contribuciones al fallo grupo X1 IDV6 

 

Se observa claramente la importancia de las variables 1 y 2 en la producción 

del fallo, por lo tanto, podríamos concluir que son las causantes directas del 

mismo. 

A continuación, presentamos la lista de los fallos detectados con los distintos 

sesgos (Tabla 19, 20 y 21), pudiendo observar que bloques contribuyen al fallo. 
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         Grupo 
Fallo 

X1 X2 X3 X4 X5 X6 X7 

1 SI SI SI SI SI SI SI 
2 SI SI SI NO SI SI NO 

3 NO NO NO NO NO NO NO 
4 NO NO NO SI NO NO NO 
5 SI SI SI SI SI SI NO 

6 SI SI SI SI SI SI SI 
7 SI SI SI SI SI SI SI 
8 SI SI SI SI SI SI SI 

9 NO NO NO NO NO SI NO 
10 SI SI SI NO SI SI NO 
11 NO NO NO SI NO NO NO 

12 SI SI SI SI SI SI SI 
13 SI SI SI SI SI SI SI 
14 NO NO NO SI NO NO NO 

15 NO SI NO NO SI NO NO 
16 NO SI SI NO SI SI NO 
17 NO SI SI SI NO NO NO 

18 SI SI SI SI SI SI SI 
19 NO NO SI SI NO NO NO 
20 NO SI SI NO SI NO NO 

21 NO SI NO SI SI NO NO 

Tabla 19. Detección por bloque sesgo 1 

 

Observamos que hay fallos que sólo impactan a un grupo de variables y que 

solamente algunos bloques los detectan, como el 4, el 9 o el 11. En cambio, 

otros fallos, como el 6, el 7 y el 12, tienen un impacto más amplio en las 

variables del proceso. 

Se nota, además, que algunos bloques identifican la mayor parte de los errores; 

en este caso, el bloque 2. En cambio, otros tienen una contribución más baja: 

por ejemplo, el bloque 7 solo detecta 7 fallos. 

Es notable que el bloque 4, a pesar de contener solo 5 variables, sea de los 

más propensos a fallos (14, junto con el bloque 3, 4 y 5). Esto nos indica que 

las variables del cuarto bloque son muy relevantes para la detección. 
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         Grupo 
Fallo 

X1 X2 X3 X4 X5 X6 X7 X8 

1 SI SI SI SI SI SI SI NO 
2 SI SI SI SI SI SI SI NO 

3 NO NO NO NO NO NO NO NO 
4 NO NO NO SI NO NO NO NO 
5 SI SI SI SI SI SI SI SI 

6 SI SI SI SI SI SI SI NO 
7 SI SI SI SI SI SI SI SI 
8 SI SI SI SI SI SI SI SI 

9 NO NO NO NO NO NO NO NO 
10 SI SI SI NO SI SI SI NO 
11 NO NO NO SI NO NO NO NO 

12 SI SI SI SI SI SI SI SI 
13 SI SI SI SI SI SI SI SI 
14 NO NO NO SI NO NO NO NO 

15 NO NO NO NO NO NO NO NO 
16 NO SI SI NO SI SI SI NO 
17 NO SI SI SI SI SI NO NO 

18 SI SI SI SI SI SI SI SI 
19 NO NO SI SI NO NO NO NO 
20 NO SI SI NO SI NO NO NO 

21 NO SI SI NO SI NO NO NO 

Tabla 20. Detección por bloque sesgo 1,5 

 

En este caso la detección de fallos por grupos es similar al anterior, la principal 

diferencia reside en que el grupo 8 es quien detecta menos fallos en vez del 7 

en el apartado anterior, sin embargo, ningún grupo ha sido capaz de detectar 

los fallos en los IDs 3, 9 y 15, a diferencia del anterior, donde el grupo 4 si ha 

detectado fallo en los ID 9 y 15. 

 

Por último, con el sesgo 0,5, es decir un umbral por debajo del valor medio, 

vemos que el grupo 1 es quien detecta la mayor cantidad de fallos y el 5 la 

menor, también vemos que con respecto al sesgo 1 se deja de detectar el fallo 

9. 
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         Grupo 
Fallo 

X1n X2n X3n X4n X5n 

1 SI SI SI SI SI 
2 SI SI SI SI SI 

3 NO NO NO NO NO 

4 SI NO NO NO NO 
5 SI SI SI SI SI 

6 SI SI SI SI SI 

7 SI SI SI SI SI 
8 SI SI SI SI SI 

9 NO NO NO NO NO 

10 SI SI SI SI NO 
11 SI NO NO NO NO 

12 SI SI SI SI SI 

13 SI SI SI SI SI 
14 SI SI NO NO NO 

15 SI NO NO NO NO 

16 SI SI SI SI NO 
17 SI SI NO NO NO 

18 SI SI SI SI SI 

19 NO NO SI NO NO 
20 SI SI SI NO NO 

21 NO SI SI NO NO 

Tabla 21.  Detección por bloque sesgo 0,5 

 

4.5.2.2 Detección de fallos global mediante BICs 

Después, mediante la combinación de índices estadísticos individuales por 

medio de los Coeficientes de Influencia Bayesianos (BIC), realizaremos el 

mismo procedimiento que en los apartados anteriores 

Los pasos que se describen a continuación son los que se siguen en el proceso 

integral de detección, aplicado a todos los escenarios de fallo. Primero, para 

cada uno de los 21 errores del Tennessee Eastman Process, se carga el archivo 

de datos correspondiente. Se lleva a cabo la normalización con los valores 

máximo y mínimos conseguidos en el periodo de entrenamiento, asegurando 

así la coherencia en relación al espacio en que fueron entrenados los 

autoencoders. 

Luego, se extraen de cada conjunto solo las variables que forman parte del 

subconjunto definido por mRMR y se crean las secuencias temporales 

requeridas para la evaluación de los modelos LSTM. 
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Se examina cada subgrupo de manera independiente, empleando el 

autoencoder LSTM preparado para ese conjunto, el codificador relacionado y 

los parámetros estadísticos que se obtuvieron durante el entrenamiento.  

A partir de las reconstrucciones, como ya se explicó en el apartado 4.4.2 se 

calculan los estadísticos para cada grupo, debido a que los autoencoders 

tienen la capacidad de generar secuencias de longitudes variadas (a causa del 

windowing), las series T² y Q de cada grupo se reducen a la longitud mínima 

compartida y se almacenan en una matriz. 

Se utilizan los BIC sobre las matrices previamente mencionadas para 

determinar un indicador global de diagnóstico. Esta combinación, mediante la 

ponderación de la aportación de cada grupo según su comportamiento 

estadístico bajo condiciones normales, produce dos señales globales para la 

monitorización: 

• 𝐵𝐼𝐶_𝑇 2: combinación de 𝑇 2 distribuidos a través de un enfoque 

bayesiano. 

• 𝐵𝐼𝐶_𝑄: combinación de Q distribuidos por medio de Bayes. 

Los umbrales globales 𝑢𝐵𝐼𝐶_𝑇2 y 𝑢𝐵𝐼𝐶_𝑄 adquiridos en la fase de 

entrenamiento, se emplean como criterio final de decisión. Graficando el fallo 

IDV6 obtenemos las siguientes representaciones correspondientes a los casos 

de sesgo 1 (Figura 44), sesgo 1,5 (Figura 45) y sesgo 0,5 (Figura 46). 

 

 

Figura 44. Detección del fallo IDV6 con DLSTM1. BIC_T2 y BIC_Q 

 

 

Figura 45. Detección del fallo IDV6 con DLSTM2. BIC_T2 y BIC_Q 
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Figura 46. Detección del fallo IDV6 con DLSTM3. BIC_T2 y BIC_Q 

 

En el caso del fallo IDV12, también representado en los métodos anteriores 

obtenemos la Figura 47, 48 y 49. 

 

 

Figura 47. Detección del fallo IDV12 con DLSTM1. BIC_T2 y BIC_Q 

 

Figura 48. Detección del fallo IDV12 con DLSTM2. BIC_T2 y BIC_Q 

 

Figura 49. Detección del fallo IDV12 con DLSTM3. BIC_T2 y BIC_Q 
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Por último, representamos el fallo IDV15, también representado en todos los 

métodos empleados en el que no se detecta fallo, figuras 50, 51 y 52. 

 

Figura 50. Detección del fallo IDV15 con DLSTM1. BIC_T2 y BIC_Q 

 

Figura 51. Detección del fallo IDV15 con DLSTM2. BIC_T2 y BIC_Q 

 

Figura 52. Detección del fallo IDV15 con DLSTM3. BIC_T2 y BIC_Q 

 

Se han utilizado las tres mismas métricas estándar para cada error: 

1. Falsas alarmas: Se examina el porcentaje de muestras en la ventana 

inicial normal (160 muestras) que sobrepasan el umbral sin error. 

2. Alarmas identificadas: Se estima el porcentaje de muestras posteriores 

a la ventana normal que superan su umbral determinado. 

3. Instante de detección: Se considera como el índice de la secuencia 

inicial de diez muestras sucesivas que sobrepasan el límite del BIC. Esto 

posibilita una detección más sólida y menos susceptible al ruido. 

Estas métricas se han calculado tanto para BIC_T2 como para BIC_Q, 

obteniendo así seis indicadores por cada uno de los 21 fallos analizados como 

se ve en las Tablas 22 a 30.  
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4.5.3 Resultados 

 

El fallo 6 (Figura 44, 45 y 46) se detecta de forma similar para todas las 

agrupaciones de variables y al modelo no distribuido 

 

En el fallo 12 (Figura 47, 48 y 49) es detectado también de forma similar en 

todos los grupos y también de forma similar al modelo no distribuido 

 

Por último, el fallo 15 (Figura 50, 51 y 52) ahora vuelve a no ser detectado por 

el estadístico Q, al igual que en PCA vemos que el autoencoder es superior a 

estos dos en este caso. 

 

 

 Detectado por 𝑇2 Detectado por Q 

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs) 

1 1,875 99,245 166 1,25 99,874 161 
2 3,125 98,994 168 0 98,742 170 
3 1,875 0,377 No Detect. 1,25 1,006 No Detect. 
4 1,875 32,83 496 2,5 100 156 
5 0,625 22,39 171 1,875 30,189 157 
6 1,25 100 158 2,5 100 156 
7 1,875 38,113 157 2,5 100 156 
8 0 97,736 178 0 97,862 177 
9 1,875 0,881 No Detect. 0,625 1,132 No Detect. 

10 0,625 29,308 300 0 24,025 258 
11 2,5 54,591 163 0,625 91,447 162 
12 0 96,981 182 1,25 99,748 158 
13 0,625 94,843 204 0 95,094 199 
14 0,625 41,887 No Detect. 2,5 100 156 
15 1,25 2,013 No Detect. 1,25 1,761 No Detect. 
16 0,625 13,836 465 0 20,881 362 
17 0,625 79,874 179 0,625 96,981 177 
18 0,625 89,811 248 0 90,189 238 
19 0 1,635 No Detect. 0,625 58,239 173 
20 0 33,711 244 0 39,623 245 
21 0 32,075 708 0 41,258 641 

Tabla 22. Detección de Fallos mediante DLSTM1 

 

Total Fallos DLSTM1 

𝑇2 16 

Q 18 
Tabla 23. Fallos detectados por DLSTM1 
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 Promedios DLSTM1 

 Estadístico Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones) 

𝑇2 1,04 50,53 261,69 

Q 0,92 66,10 216,78 

Tabla 24.  Resumen estadístico DLSTM1 

 

Se observa que la detección de fallos en el modelo distribuido, empleando los 

BICs es similar al autoencoder LSTM, los tiempos de detección, numero de 

fallos detectados y porcentaje de alarmas son muy similares. 

 

 

 Detectado por 𝑇2 Detectado por Q 

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs) 

1 0,625 99,497 164 0 99,874 161 
2 1,875 98,868 169 2,5 99,119 167 
3 1,875 1 No Detect. 0 1,258 No Detect. 
4 0,625 18,868 497 2,5 100 156 
5 1,25 24,025 175 1,875 33,836 157 
6 1,25 100 159 2,5 100 156 
7 0,625 38,113 160 2,5 100 156 
8 0 97,358 179 0 97,736 178 
9 0,625 0,252 No Detect. 0,625 0,755 No Detect. 

10 0 25,66 258 0 33,585 206 
11 1,875 30,818 166 0,625 90,566 161 
12 0,625 95,346 186 2,5 99,748 158 
13 0 94,969 204 0 94,969 199 
14 1,875 14,088 No Detect. 3,125 100 156 
15 0 0,629 No Detect. 0,625 1,509 No Detect. 
16 0,625 12,956 468 0,625 25,535 365 
17 1,25 76,478 179 1,25 96,604 177 
18 1,25 88,931 251 0 90,314 237 
19 3,125 5,031 No Detect. 0 60,377 173 
20 1,875 50,566 237 0 40,126 244 
21 0 38,742 673 0 40,503 642 

Tabla 25. Detección de Fallos mediante DLSTM2 

 

Total Fallos DLSTM2 

𝑇2 16 

Q 18 

Tabla 26. Fallos detectados por DLSTM2 
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 Promedios DLSTM2 

Estadístico Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones) 

𝑇2 1,01 48,20 257,81 

Q 1,01 66,97 213,83 

Tabla 27. Resumen estadístico DLSTM2 

 

En el caso del grupo de sesgo 0,5 (DLSTM3) se observa un menor número de 

detecciones que en los dos anteriores, esto puede deberse a que las 

agrupaciones de variables tienen una menor correlación entre ellas dentro del 

proceso, por lo tanto, al separarlas del resto de variables limitan el aprendizaje 

de la red neuronal. 

 

 

 Detectado por 𝑇2 Detectado por Q 

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs) 

1 0,625 99,748 162 5 100 160 
2 3,75 98,868 169 0 98,868 170 
3 0 1,006 No Detect. 0 0,126 No Detect. 
4 1,875 0,377 No Detect. 2,5 100 156 
5 1,875 25,031 168 1,875 27,296 157 
6 0,625 99,497 164 2,5 100 156 
7 2,5 42,013 157 2,5 100 156 
8 0 97,61 179 0 97,987 176 
9 0 0,377 No Detect. 1,25 1,635 No Detect. 

10 0,625 33,459 261 0 18,994 262 
11 0 1,761 No Detect. 1,25 90,314 162 
12 0 95,975 184 1,875 99,623 158 
13 0 94,34 205 0 95,346 201 
14 1,875 1,509 No Detect. 2,5 100 157 
15 0 3,648 No Detect. 0 1,635 No Detect. 
16 3,125 13,962 466 0,625 15,723 365 
17 1,25 57,233 187 0 96,101 179 
18 0 89,182 252 1,25 90,063 239 
19 0 1,635 No Detect. 0 54,717 172 
20 1,25 49,937 236 0 39,623 246 
21 2,5 35,472 676 0,625 41,006 642 

Tabla 28. Detección de Fallos mediante DLSTM3 

 

Total Fallos DLSTM3 

𝑇2 14 

Q 18 

Tabla 29. Fallos detectados DLSTM3 
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 Promedios DLSTM3 

Estadístico Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones) 

𝑇2 1,04 44,89 247,57 

Q 1,13 65,19 217,44 

Tabla 30. Resumen Estadístico DLSTM3 
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Capítulo 5. Conclusiones y trabajo futuro 
 

5.1 Conclusiones 

El presente trabajo ha abordado la monitorización de procesos industriales 

mediante técnicas de detección de fallos basadas en datos, utilizando el 

proceso Tennessee-Eastman (TE) como caso de referencia. A lo largo del 

estudio se han comparado métodos clásicos y modernos con el objetivo de 

evaluar su eficacia en la identificación de anomalías. 

 

Método Falsas Alarmas  𝑻𝟐 (%) Alarmas (%) 𝑻𝟐 

PCA 1,28 57,72 

Autoencoder 0,36 49,35 

LSTM 0,83 48,15 

DLSTM (Sesgo=1) 1,04 50,53 

DLSTM (Sesgo=1,5) 1,01 48,20 
DLSTM (Sesgo=0,5) 1,04 44,89 

Tabla 31.  Sumario de alarmas detectadas por T 

 

Método Falsas Alarmas Q (%) Alarmas (%) Q 

PCA 3,54 67,14 

Autoencoder 3,30 73,42 

LSTM 1,82 65,12 

DLSTM (Sesgo=1) 0,92 66,10 

DLSTM (Sesgo=1,5) 1,01 66,97 
DLSTM (Sesgo=0,5) 1,13 65,19 

Tabla 32. Sumario de alarmas detectadas por Q 

 

Método Fallos detectados 𝑻𝟐 Fallos detectados Q 

PCA 17 17 

Autoencoder 14 20 

LSTM 15 18 

DLSTM (Sesgo=1) 16 18 

DLSTM (Sesgo=1,5) 16 18 
DLSTM (Sesgo=0,5) 14 18 

Tabla 33. Sumario de fallos detectadas por método 

Los resultados obtenidos, reflejados en las Tablas 31, 32 y 33 pueden 

resumirse en los siguientes puntos: 
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1. PCA demostró ser un método eficaz en la reducción de dimensionalidad 

y en la detección de fallos lineales, pero su capacidad se ve limitada en 

presencia de relaciones no lineales o de carácter dinámico. Aun así, su 

bajo coste computacional lo hace un método muy a tener en cuenta a 

la hora de detectar fallos, es por eso por lo que hoy en día se sigue 

empleando en numerosos procesos industriales. 

 

2. El autoencoder clásico superó al PCA en escenarios con dependencias 

complejas, logrando una mejor reconstrucción de los datos y una mayor 

sensibilidad frente a ciertos fallos. Sin embargo, su ausencia de 

memoria temporal restringe su aplicación en procesos con secuencias 

dependientes. 

 

3. Los RAE (Recurrent Autoencoders), introducidos a continuación, 

ofrecieron un rendimiento ligeramente inferior al autoencoder de capas 

densas en la detección de fallos con evolución temporal, si bien este es 

capaz de capturar patrones dinámicos que los enfoques anteriores no 

conseguían modelar con precisión, no ha conseguido los resultados 

esperados aunque podemos destacar que ha sido más preciso a la hora 

de detectarlos, dado que las falsas alarmas producidas por este método 

han sido menores. 

 

4. La extensión mediante RAE distribuidos ha permitido escalar el modelo 

a sistemas de gran dimensionalidad, aportando interpretabilidad y 

facilitando la localización de fallos en bloques específicos de variables. 

Este enfoque distribuye la complejidad computacional y mejora la 

robustez del diagnóstico. Si bien los resultados esperados no han sido 

los obtenidos, ha obtenido resultados globales similares al LSTM no 

distribuido, con la ventaja de acotar los grupos de variables más 

influyentes en el fallo.  

 

En conjunto, se concluye que la incorporación de modelos recurrentes y de 

esquemas distribuidos constituye una mejora sustancial respecto a los 

enfoques tradicionales, contribuyendo a aumentar la fiabilidad, la seguridad y 

la eficiencia en la operación de procesos industriales. 

 

5.2 Trabajo futuro 

A partir de los resultados obtenidos, se plantean diversas líneas de 

investigación orientadas a ampliar y consolidar las aportaciones realizadas: 

1. Mejora de arquitecturas: RAE: Investigar configuraciones más complejas 

o mixtas (fusionando CNN y RNN) o mediante RVAE para optimizar la 

habilidad de representación de secuencias.  
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2. Puesta en práctica en tiempo real: trasladar los modelos a ambientes 

industriales con limitaciones de recursos computacionales y latencia, 

analizando su factibilidad práctica. 

 

3. Integración de modelos: Con el fin de lograr diagnósticos más 

exhaustivos, fusionar los RAE con otras metodologías de detección, 

como los métodos basados en grafos o los modelos probabilísticos. 

 

4. Generalización a otros procesos: verificar la solidez y la capacidad de 

transferir los resultados mediante la validación del método en otras 

plantas piloto y procesos industriales que no sean el Tennessee-

Eastman.  

 

5. Monitoreo explicable: analizar métodos de interpretabilidad que 

posibiliten entender cómo los modelos identifican anomalías, lo que 

favorece la adopción en el sector industrial y mejora la confianza de los 

trabajadores. 
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