

 M

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Electrónica Industrial y Automática

Monitorización distribuida de un proceso

para mejora de su calidad mediante

técnicas de inteligencia

computacional/Deep learning: RAE

Autor:

Fernández Fernández, Pablo

 Tutor:

De la Fuente, Aparicio, María Jesús

Departamento de Ingeniería de Sistemas y

Automática

Valladolid, Diciembre 2025.

2

Contenido
 ... 1

Capítulo 1. Introducción y objetivos... 7

1.1. Introducción .. 7

1.2. Objetivos ... 7

1.3. Organización de la memoria ... 8

Capítulo 2. Estudio teórico .. 9

2.1 Control de Calidad... 9

2.2 Control estadístico de procesos (SPC) ... 12

2.2.1 Variabilidad en el proceso de producción ... 12

2.2.2 Gráficas de Control ... 14

2.3 Control Estadístico de Procesos Multivariable (MSPC) 15

2.3.1 𝑻𝟐 de Hotelling... 16

2.3.2 Error Q (Squared Prediction Error) ... 17

2.3.3 Uso combinado de 𝑻𝟐 y Q ... 17

2.4 Análisis de componentes principales (PCA) ... 19

2.5 Redes Neuronales Artificiales (ANN) ... 23

2.5.1 Neurona artificial .. 24

2.5.2 Red de neuronas... 25

2.5.3 Funciones de activación .. 25

2.5.4 Redes Neuronales Recurrentes (RNN) .. 28

2.6 Aprendizaje automático .. 30

2.6.1 Propagación hacia adelante (Forward propagation) 30

2.6.2 Cálculo del error ... 30

2.6.3 Retropropagación del error ... 31

2.6.4 Actualización de parámetros (Gradient Descent) .. 31

2.7 Autoencoders ... 33

2.7.1 Autoencoder Denso (Fully Connected Autoencoder) 36

2.7.2 Autoencoder Recurrente (RAE) variante LSTM (Long Short-Term Memory

Autoencoder).. 38

2.8 Monitorización distribuida ... 42

2.8.1 Subdivisión de variables en bloques mediante el método mínima redundancia

máxima relevancia .. 43

3

2.8.2 Inferencia Bayesiana.. 45

Capítulo 3. Proceso Tennessee-Eastman... 47

3.1. Origen y contexto histórico ... 47

3.2. Descripción general del proceso .. 47

3.3. Formulación matemática del modelo ... 49

3.4. Condiciones de operación y control ... 50

3.5. Aplicaciones y relevancia... 52

3.6. Limitaciones del modelo ... 52

Capítulo 4. Aplicaciones y evaluación de métodos .. 53

4.1 Introducción.. 53

4.2 PCA... 54

4.2.1 Entrenamiento .. 55

4.2.2 Detección de Fallos.. 56

4.2.3 Resultados PCA ... 58

4.3 Autoencoder ... 59

4.3.1 Entrenamiento .. 59

4.3.2 Detección de fallos .. 62

4.3.3 Resultados .. 64

4.4 Autoencoder Recurrente (RAE)... 66

4.4.1 Entrenamiento .. 66

4.4.2 Detección de Fallos ... 69

4.4.3 Resultados ... 71

4.5 RAE distribuido .. 73

4.5.1 Entrenamiento .. 73

4.5.2 detección de Fallos .. 75

4.5.3 Resultados .. 87

Capítulo 5. Conclusiones y trabajo futuro ... 91

5.1 Conclusiones ... 91

5.2 Trabajo futuro ... 92

Bibliografía ... 94

4

Resumen

Este estudio examina diversas metodologías de detección de errores

fundamentadas en datos, que se utilizan para controlar la calidad en ámbitos

industriales. Estos métodos son eficaces para extraer información relevante y

mejorar la calidad de los procesos, debido a la enorme cantidad de datos

producidos en la industria moderna.

El estudio se inicia con el análisis de los componentes principales, un método

lineal para disminuir características que posibilita la creación de nuevas

variables que pueden agrupar la mayor parte de la información del sistema y

disminuir el número de dimensiones. Se pueden detectar fallos potenciales al

comparar la conducta normal del proceso con datos atípicos, utilizando

estadísticos multivariantes y la distribución de estos datos reducidos.

Además, se llevaron a cabo métodos de aprendizaje profundo y automático

dirigidos a disminuir la dimensionalidad. En esta línea, los autoencoders

posibilitan un aprendizaje sin supervisión de la información de la planta al

captar relaciones no lineales entre las variables y dar paso a la identificación

de anomalías. Los autoencoders recurrentes son una mejora de los

autoencoders convencionales, ya que tienen información de los estados

pasados del sistema y por lo tanto permiten una detección de errores más

exacta y fiable.

Por último, dada la gran dimensionalidad de los datos que se recogen en las

industrias actuales se creó una estrategia de detección de fallos distribuida

para mejorar los modelos de detección de anomalías. Esta metodología divide

las variables de la planta en diferentes bloques de manera automática,

identifica anomalías en cada uno de ellos por separado y, a través de inferencia

bayesiana, sintetiza la información adquirida.

Finalmente comentar, que los datos del proceso que se han usado para probar

todas las técnicas desarrolladas has sido los datos del proceso Tennessee-

Eastman, que se usa mucho en la literatura científica sobre detección de fallos.

5

Abstract

This study examines various data-driven error detection methodologies used for

quality control in industrial settings. These methods are effective for extracting

relevant information and improving process quality, owing to the enormous

amount of data produced in modern industry. The data from the Tennessee-

Eastman process, which is widely used in the scientific literature on fault

detection, were employed for training and evaluating the models.

The study begins with principal component analysis, a linear method for

reducing features that enables the creation of new variables capable of

capturing most of the system’s information and reducing the number of

dimensions. Potential faults can be detected by comparing the normal behavior

of the process with atypical data, using multivariate statistics and the

distribution of these reduced data.

Additionally, deep and machine learning methods aimed at reducing

dimensionality were employed. In this vein, autoencoders enable unsupervised

learning of plant information by capturing nonlinear relationships between

variables and paving the way for anomaly detection. Recurrent autoencoders

are an improvement over conventional autoencoders, as they have information

about the past states of the system so therefore, they enable more robust

training and more accurate and reliable error detection.

At last, given the large dimensionality of the collected data, a distributed fault

detection strategy was developed. This methodology automatically divides the

plant’s variables into different blocks, identifies anomalies in each block

separately and through Bayesian inference synthesizes the acquired

information.

Finally, it should be noted that the process data used to test all the developed

techniques were from the Tennessee-Eastman process, which is widely used in

the scientific literature on fault detection.

6

7

Capítulo 1. Introducción y objetivos

1.1. Introducción

La evolución de la industria, desde los talleres artesanales hasta las modernas

plantas altamente automatizadas, ha estado siempre ligada a la necesidad de

garantizar la calidad de los productos. A medida que aumentaron tanto el

volumen como la complejidad de la producción, la inspección manual perdió

eficacia, lo que llevó al desarrollo del control de calidad como disciplina propia.

Su propósito es reducir la variabilidad de los procesos y prevenir desviaciones

antes de que se traduzcan en fallos en el producto final.

En la actualidad, la disponibilidad masiva de datos industriales gracias a

sensores y sistemas de monitorización en tiempo real, junto con la capacidad

de cálculo existente, ha impulsado la aplicación de técnicas de inteligencia

artificial. Estas permiten analizar simultáneamente cientos de variables,

identificar patrones imposibles de detectar a simple vista y automatizar la

detección de anomalías. De este modo, los sistemas no solo sustituyen la

observación humana, sino que además aportan rapidez, objetividad y

escalabilidad.

Por lo tanto, asegurar la calidad y la seguridad en la producción son dos

objetivos de cualquier industria, que se consiguen mediante la implementación

de métodos de detección y diagnóstico de fallos que detecten cualquier

anomalía que aparezca en el funcionamiento de la planta. En este trabajo, se

intenta usar tecnologías basadas en datos, y en concreto en la Inteligencia

Artificial para aumentar el rendimiento de la planta, buscando aplicar estas

herramientas al control de calidad de plantas industriales, y en concreto a la

monitorización de dichos procesos.

1.2. Objetivos

El propósito central de este trabajo es desarrollar y comparar metodologías de

detecciones de fallos basadas en datos, aplicables al control de calidad en

plantas industriales. Para ello se contemplan dos líneas principales:

• El uso de técnicas clásicas de control estadístico de procesos, en

particular el Análisis de Componentes Principales (PCA), que permite

reducir la dimensionalidad de manera lineal y generar estadísticos de

control multivariantes.

8

• La aplicación de enfoques de aprendizaje profundo, donde se exploran

autoencoders recurrentes (RAE) como alternativa a los autoencoders

convencionales. Estos modelos son capaces de aprender dependencias

temporales y no lineales entre variables, lo que constituye una ventaja

en entornos donde las dinámicas del proceso son relevantes.

Adicionalmente, se plantea una metodología distribuida que divide las

variables en bloques, analiza cada uno por separado y posteriormente integra

los resultados mediante inferencia bayesiana. En este trabajo, esta estrategia

también se aplicará a los RAE, dando lugar a un apartado específico de RAE

distribuido.

El estudio se valida utilizando el proceso Tennessee–Eastman, ampliamente

reconocido en la literatura como banco de pruebas de algoritmos de detección

de fallos. Esto permitirá evaluar el rendimiento comparativo de los métodos

bajo condiciones equivalentes, considerando su precisión, fiabilidad y

capacidad de generalización.

1.3. Organización de la memoria

La memoria está estructurada en cinco capítulos:

• En este Capítulo 1 se exponen la motivación, los objetivos y la

organización del trabajo.

• El Capítulo 2 presenta los fundamentos teóricos necesarios, incluyendo

control estadístico de procesos, detección de anomalías, estadísticos

multivariantes, reducción dimensional y una introducción a redes

neuronales y autoencoders.

• El Capítulo 3 describe el proceso Tennessee–Eastman y los conjuntos

de datos empleados.

• En el Capítulo 4 se detallan las aplicaciones y la evaluación de las

metodologías propuestas: PCA, Autoencoders, RAE y RAE distribuido.

• Finalmente, el Capítulo 5 recoge las principales conclusiones

alcanzadas y plantea líneas de trabajo futuro.

9

Capítulo 2. Estudio teórico

2.1 Control de Calidad

Orígenes y primeras manifestaciones

La inquietud por la calidad de los productos y servicios tiene orígenes remotos:

desde el control en las profesiones medievales hasta los códigos de leyes que

requerían estándares mínimos. Estas primeras formas tenían como objetivo

proteger la reputación del creador y al consumidor a través de marcas de

conformidad e inspecciones [1], [2].

Con la Revolución Industrial, se incrementó la producción y surgieron nuevos

desafíos: la variabilidad, las grandes series y el requerimiento de prevenir

fallos. La inspección final fue la solución inicial, pero no bastó ante el tamaño

y los costos de producción [2].

Invención del Control Estadístico

Walter A. Shewhart, un ingeniero de los laboratorios Bell en los años 20, es

reconocido como el fundador del control estadístico de procesos (SPC), el cual

se menciona más adelante, dado que un apartado de este trabajo se centra en

este método para la detección de fallos.

Su propuesta consistió en emplear datos de producción para distinguir entre

causas especiales (variaciones atribuibles a fallos específicos, como

problemas técnicos o errores de los humanos) y causas comunes (la

variabilidad natural que forma parte del proceso). Con este fin, incorporó las

gráficas de control, que hacían posible observar de forma fácil si un proceso se

mantenía estable o necesitaba intervención [3].

El concepto de mejora continua fue un componente fundamental en su

planteamiento, que luego se concretó en el ciclo PDCA (Planificar-Hacer-

Verificar-Actuar). Como se muestra en la Figura 1. Este ciclo sugiere planificar

una acción, ponerla en práctica, comprobar sus resultados y proceder

corrigiendo desviaciones. Deming, a pesar de que fue Shewhart quien introdujo

la idea, es el responsable de popularizarla como herramienta de gestión

universal [3], [4].

10

Figura 1. Ciclo PDCA de Shewhart [5]

Difusión global

En la administración de calidad, las contribuciones de Joseph M. Juran y W.

Edwards Deming, después de la Segunda Guerra Mundial, fueron un hito

importante.

• Deming destacó que la variabilidad era el mayor adversario de la

calidad, y que no solo debía ser administrada a nivel operativo, sino

también desde la dirección. Su célebre conjunto de "14 principios de

gestión" abogaba por el liderazgo, la formación de los empleados y la

visión a largo plazo. Asimismo, subrayaba que la calidad no tenía que

estar supeditada a la revisión final, sino al sólido diseño del

procedimiento desde el comienzo [4].

• Juran, por su parte, fue pionero en entender la calidad como un

problema de gestión y no solo técnico. Introdujo la llamada “trilogía de

Juran”: planificación, control y mejora de la calidad. También fue uno de

los primeros en destacar los costes de la no calidad, es decir, las

pérdidas derivadas de errores, reprocesos y desperdicios [6].

La implementación de estos principios en Japón desde la década de 1950

revolucionó la industria nipona y le permitió convertirse en un referente en

términos de calidad y competitividad. El "Premio Deming", establecido en 1951,

se transformó en un emblema del compromiso de Japón con la excelencia [4].

11

De aseguramiento de la calidad a sistemas integrados (TQM, ISO)

Desde la década de 1960 y 1970, la calidad dejó de ser vista como una

actividad aislada y pasó a ser considerada como un enfoque integral. El Total

Quality Management (TQM) es una filosofía de gestión que surgió a partir de

esta evolución (Figura 2). Su objetivo no era únicamente prevenir fallos, sino

también promover la mejora continua como cultura corporativa, el enfoque en

el cliente y la implicación de todos los estratos organizativos. La noción de que

la calidad no se restringe a la producción, sino que abarca todas las funciones

de la compañía, desde el diseño hasta el servicio al cliente [7], fue igualmente

introducida por TQM.

Figura 2. Áreas de enfoque en TQM [8]

Simultáneamente, las prácticas de gestión de la calidad empezaron a

normalizarse por parte de organismos internacionales. La publicación de la

familia de normas ISO 9000 en 1987 es el caso más significativo. Estas reglas

posibilitaron la unificación de criterios, simplificaron la certificación y

aseguraron la confianza en las cadenas de suministro a nivel global. Sus

revisiones subsecuentes (ISO 9001:1994, 2000, 2008 y 2015) han

progresado desde una perspectiva documental hacia enfoques centrados en el

contexto organizacional, los riesgos y la mejora continua [7], [9].

12

2.2 Control estadístico de procesos (SPC)

Walter A. Shewhart formalizó el control estadístico de procesos en los Bell

Telephone Laboratories a inicios de la década del 20. Como método esencial

para distinguir entre la variabilidad natural del proceso y las desviaciones

generadas por causas especiales.

Shewhart creó la gráfica de control (control chart).

Esta disciplina se fundamentó teórica y prácticamente en su obra principal,

Economic Control of Quality of Manufactured Product [3]. Las primeras

utilizaciones tuvieron lugar en Bell Labs, donde se fabricaban componentes

para teléfonos con el objetivo de regular la uniformidad de los procesos

eléctricos y de transmisión. Más tarde, el SPC se amplió a las industrias

pesadas y a la producción en gran escala, lo cual fue fundamental para la

elaboración de equipos militares estandarizados durante la Segunda Guerra

Mundial [10].

El Control Estadístico de Procesos (SPC, por sus siglas en inglés) es un grupo

de métodos estadísticos que se utilizan para supervisar un proceso productivo

(o de servicio) con el fin de detectar variaciones, distinguiendo entre las que

son ordinarias (o causas comunes) y las que son provocadas por causas

especiales. Estas últimas pueden señalar que el procedimiento está "fuera de

control" o requiere intervención. El objetivo de emplear el SPC es garantizar que

el proceso sea estable, predecible y capaz de satisfacer los estándares de

calidad requeridos [10][11][12].

2.2.1 Variabilidad en el proceso de producción

No existen dos productos o servicios que sean exactamente iguales, ya que los

procesos de producción implican numerosas fuentes de variación, incluso si

estos procesos se llevan a cabo como se esperaba. Por ejemplo: dos coches de

la misma marca y del mismo modelo pueden no ser igual de duraderos aun

teniendo las mismas características ya que puede haber variaciones en el

proceso de producción, tales como desgaste de herramientas empleadas,

habilidad de los operarios, parámetros físicos como temperatura, humedad,

etc.

En SPC se toman muestras pequeñas para evaluar la variabilidad del proceso

a lo largo del tiempo y se muestran en un gráfico en el que el eje horizontal

presenta el orden de las muestras, y el eje vertical señala la frecuencia de

cada muestra. Se le llama después de un número significativo de muestras

distribución, si el patrón es estable, como se puede ver en la Figura 3 (b). Las

13

distribuciones pueden variar según lo que las muestras muestran, como

se puede ver en la Figura 3(c).

Si el patrón obtenido en la toma de muestras resulta estable y predecible, se

dice que el proceso está bajo control. La Figura 3 [d] evidencia que el proceso

está bajo control estadístico. No obstante, si surgen razones particulares de

variación, la salida del proceso se vuelve impredecible y no sigue un patrón

constante a través del tiempo (como ilustra la Figura 3 [e]).

Figura 3. Variabilidad del proceso. (a) Toma de muestras. (b) Distribuciones. (c)

Variación de distribuciones. (d) Distribución con causas comunes de variación. (e)

Distribución con causas especiales de variación [13]

Este entendimiento es esencial para establecer la previsibilidad y estabilidad

del proceso, lo que a su vez orienta la toma de decisiones para optimizar la

eficacia y la calidad del proceso de fabricación.

14

2.2.2 Gráficas de Control

Fueron creadas en los años 20 por Shewhart mientras trabajaba en los

laboratorios Bell, estableciendo como condiciones que los datos solo tienen

significado dentro de su contexto, es decir en el entorno o aplicación en el cual

los estemos midiendo y que para poder extraer información debemos

separarlos.

Los gráficos de control de medias (µ̅), desviaciones estándar (σ) o rangos (R)

son las principales herramientas del SPC. La definición de subgrupos

racionales (n observaciones obtenidas en periodos de tiempo constantes) es el

fundamento del método, que posibilita la captura de la variabilidad a corto

plazo.

• Media general de subgrupos: media global del proceso a partir de las

medias de los subgrupos.

µ̅̅ = 1/𝑛 ∑ 𝑥𝑡̅

𝑛

𝑡=1

 (2.1)

• Desviación Estándar:

𝜎 =
1

𝑛 − 1
∑(𝑥𝑡 − µ)

𝑛

𝑡=1

 (2.2)

• Rango del subgrupo: variabilidad dentro de cada subgrupo medida

como la diferencia entre el valor mayor y el menor.

𝑅𝑖 = 𝑚𝑎𝑥(𝑥𝑡) − 𝑚𝑖𝑛(𝑥𝑡)

(2.3)

• Media de rangos: variabilidad promedio del proceso a partir de los

rangos de todos los subgrupos.

𝑅̅ =
1

𝑚
∑ 𝑅𝑖

𝑚

𝑖=1

 (2.4)

• Límites de control para gráficas de medias: umbrales superior e inferior

que determinan si la media del proceso está bajo control.

15

𝑈𝐶𝐿 = 𝑋 + 𝐴2𝑅̅, 𝐿𝐶𝐿 = 𝑋 − 𝐴2𝑅̅

(2.5)

Donde 𝐴2 es un factor que depende del tamaño de muestra 𝑛.

Es fundamental saber elegir los límites de control. Si los límites son muy

estrechos, se detectarán las variaciones propias del proceso como fallos, lo que

provocará alarmas falsas cuando el proceso funcione normalmente; si los

límites son demasiado amplios, en cambio, podrían no detectar desviaciones

importantes de la operación normal (Figura 4).

Figura 4. Gráficas de control en diversos tipos de estados, desde situaciones bajo

control a comportamiento errático [13]

2.3 Control Estadístico de Procesos Multivariable (MSPC)

El Control Estadístico de Procesos Multivariado (MSPC, por sus siglas en inglés)

es la ampliación del SPC tradicional a situaciones en las que es necesario

supervisar al mismo tiempo múltiples variables de calidad que tienen

correlación entre ellas.

16

El MSPC toma en cuenta el vector de variables en conjunto, lo que hace posible

identificar patrones anómalos que no se encontrarían si las variables se

examinaran por separado [14], [15]. En cambio, el SPC univariante estudia una

sola característica a la vez. El MSPC fue creado en el periodo de 1940 cuando

Harold Hotelling presentó la estadística 𝑇 2 que es una generalización

multivariante de la t de Student [16].

Durante la década de 1980 y 1990, se expandió el empleo de los estadísticos

𝑇 2 y Q (SPE) en la supervisión de procesos químicos, farmacéuticos y

manufacturados a gran escala debido a la popularización de métodos para

reducir dimensionalidad como PLS y PCA [17] [18]. El MSPC utiliza modelos

multivariantes que capturan la correlación entre variables. Entre las

herramientas más relevantes se encuentran:

2.3.1 𝑻𝟐 de Hotelling

La variabilidad de una observación se mide a través del 𝑇2 de Hotelling, ya sea

dentro del modelo multivariante o del espacio de componentes principales. Se

entiende como una medida de distancia estadística en relación con el centro

del modelo.

Si las variables de los conjuntos fuesen independientes, 𝑇 2 sería la distancia

euclídea cuadrática, pero en la práctica, dado que las variables guardan

correlación esta distancia, es la distancia de Mahalanobis, la cual se ajusta

según la covarianza entre variables.

La Figura 5 representa como la distancia de Mahalanobis produce un menor

número de valores atípicos, este resultado es debido a que esta emplea un

elipsoide asimétrico, que depende de la covarianza de las variables.

𝑇 2 = 𝑥 𝑃 𝑆k
−1 𝑃⊤𝑥⊤ (2.6)

donde:

x = vector de datos medidos

P = matriz de vectores propios reducida

𝑆𝑘 = matriz diagonal con los valores propios reducida.

Tanto 𝑃 como 𝑆𝑘 son de dimensiones 𝑘 x 𝑘 siendo este el número de

dimensiones del espacio reducido.

17

Figura 5. Distancia euclídea frente distancia de Mahalanobis [19]

2.3.2 Error Q (Squared Prediction Error)

La estadística Q, también conocida como SPE (Squared Prediction Error),

cuantifica la variabilidad residual de una observación en relación con el modelo

(por lo general, un modelo PCA). En otras palabras: qué parte queda fuera del

subespacio que explican las componentes principales.

Sea 𝑥 una observación y 𝑥̂ su proyección reconstituida:

𝑄 = ||𝑥 − 𝑥̂||
2

= ∑(𝑥𝑗 − 𝑥𝑗̂)
2

𝑝

𝑗=1

 (2.7)

2.3.3 Uso combinado de 𝑻𝟐 y Q

Un modelo habitual de MSPC emplea los dos gráficos de control al mismo

tiempo:

 𝑇2 regula la variabilidad dentro del modelo (en condiciones normales, pero

extremas en el ámbito histórico) (Figura 6).

𝑄 regula la variabilidad que no está incluida en el modelo (una nueva variación

que no se había previsto en los datos del pasado) (Figura 7).

18

Figura 6. Gráfica de 𝑇2 en una muestra de datos del proceso Tenesee-Eastman con

funcionamiento anormal.

MSPC con 𝑇 2 y 𝑄 se usa en procesos donde se monitorizan múltiples variables

correlacionadas, se desea distinguir entre desviaciones extremas pero

esperadas (𝑇 2) y nuevos patrones desconocidos (Q) y en los escenarios donde

es crucial anticipar fallos, como en procesos químicos, farmacéuticos y de

manufactura avanzada [15], [17].

Figura 7. Gráfica de Q, en una muestra de datos del proceso Tenesee-Eastman con

funcionamiento anormal

19

2.4 Análisis de componentes principales (PCA)

El análisis de componentes principales (PCA) fue introducido por Karl Pearson

en 1901 como un método geométrico para representar datos en espacios de

menor dimensión [20]. Posteriormente, Harold Hotelling (1933) formalizó su

marco matemático en términos de álgebra matricial y estadística.

Las primeras aplicaciones tuvieron lugar en el campo de la economía, la

biología y la psicología. En los años finales del siglo XX, el PCA se estableció en

la supervisión de calidad multivariada, especialmente en MSPC, en la que se

emplea para crear modelos de referencia del proceso utilizando información

histórica de operación normal [14], [17].

Este tipo de análisis se emplea con los siguientes objetivos:

a. Disminuir la dimensionalidad para poder observar de manera sencilla

datos de procesos complejos y detectar vínculos entre variables

b. Desarrollar modelos de referencia para la detección de anomalías y

MSPC.

c. Depurar el ruido y optimizar la capacidad predictiva en sistemas

multivariantes [15], [17], [18].

Es un modelo frecuentemente empleado en supervisión de procesos

industriales químicos (como es el caso de este trabajo), farmacéuticos y

petroquímicos, reconocimiento de patrones en visión artificial y en estudios

biomédicos y genómica.

El análisis de componentes principales (PCA, por sus siglas en inglés) es un

método estadístico multivariante que se emplea para disminuir la

dimensionalidad de un conjunto de datos que contiene varias variables

correlacionadas.

La idea fundamental es que la varianza de una serie de datos mide la cantidad

de información que contiene, matemáticamente, se realiza mediante la

descomposición espectral de la matriz de covarianzas o, de forma equivalente,

en la descomposición en valores singulares (SVD).

Esta técnica convierte dichas variables en un nuevo conjunto de variables no

correlacionadas, conocidas como componentes principales (PCs). Cada

componente principal es una combinación lineal de las variables originales y

se organiza así:

20

1. El componente inicial recoge la varianza más alta que los datos pueden

ofrecer.

2. El segundo componente, bajo la condición de ser ortogonal al primero,

recoge el mayor porcentaje de la varianza restante.

3. Y así consecutivamente [17], [18].

Idealmente, los primeros componentes capturan la mayor cantidad de

información y el resto el ruido (Figura 8).

Su formulación matemática empieza tomando una matriz de datos de

comportamiento normal del proceso: 𝑋 Rn*m con n muestras, y m variables:

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝑚

𝑥21 𝑥22 … 𝑥2𝑚

𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

] (2.8)

Normalizamos con media 0 y varianza 1, para obtener la variabilidad de los

datos, es decir, a cada valor de la matriz de datos original (𝑋) se le resta la

media 𝜇𝑚 y se divide por su desviación estándar 𝜎𝑚 , de su variable, para

obtener la matriz de datos normalizados 𝑋𝑛:

𝑋𝑛[𝑚,𝑚] =
𝑋[𝑛, 𝑚] − 𝜇𝑚

𝜎𝑚

 (2.9)

Calculamos la matriz de covarianzas 𝑅:

𝑅 =
1

𝑛 − 1
 𝑋𝑛

𝑇 𝑋𝑛 (2.10)

Siendo 𝑅:

𝑅 = (

1 𝑟12 . . 𝑟1𝑛

𝑟21 1 . . 𝑟2𝑛

: : . :
𝑟𝑚1 𝑟𝑚2 . . 1

) (2.11)

A partir de 𝑅 realizamos la descomposición en valores singulares (SVD).

𝑠𝑣𝑑(𝑅) = 𝑉𝑆𝑉𝑇 (2.12)

De la ecuación (2.12) obtenemos los valores propios 𝑆 (Figura 8) y los vectores

propios (𝑉). La proyección del vector de observaciones 𝑋𝑛 ∈ 𝑅𝑚 desacopla el

espacio de observaciones en un conjunto 𝑇, la columna i-ésima de 𝑉 es el

vector de carga 𝑣𝑖 (loadings) que transforma 𝑥𝑛 en el score 𝑡𝑖 = 𝑥𝑖𝑉.

21

𝑇 = 𝑋𝑛 𝑉 (2.13)

Los loadings (𝑉) son los coeficientes de las combinaciones lineales que

determinan cada uno de los componentes principales, estos, señalan el grado

de contribución de cada variable original a cada uno de los componentes.

Por ejemplo, si la primera componente de la variable "temperatura" tiene un

loading alto, significa que las fluctuaciones del proceso en dicha componente

están fuertemente afectadas por las variaciones de temperatura.

Por otra parte, los scores (𝑇) son la representación de cada observación en los

ejes determinados por los componentes principales, en otras palabras, los

scores representan las coordenadas renovadas de los datos en el espacio

reducido. Posibilitan la detección de agrupaciones, anomalías o tendencias y el

análisis de la estructura del proceso.

Una vez obtenida la representación de la matriz de scores (𝑇) reducimos la

dimensionalidad del conjunto en base a la variabilidad que deseemos capturar,

frecuentemente se emplea como criterio el 90%, dado que capturamos la

mayor parte de la información, reducimos significativamente la dimensión del

espacio, ya que como hemos comentado anteriormente, dicha variabilidad, se

encuentra en los primeros componentes principales.

Figura 8. Variabilidad capturada por componente principal en el proceso Tennessee-

Eastman

22

Como

𝑆 = (

𝜆1 0 … 0
0 𝜆2 … 0
: : . :
0 0 … 𝜆𝑚

) (2.14)

Calculamos el número de componentes que satisfacen la condición:

𝑣𝑎𝑟(%) = ∑
𝜆𝑖

𝑡𝑟(𝑆)

𝑖

1

⋅ 100
(2.15)

Siendo var(%) la variabilidad a capturar expresada en porcentaje.

Reteniendo los 𝑎 primeros vectores de carga más grandes obtenidos en la

ecuación (2.12) tenemos la matriz de autovectores reducida 𝑃(𝑚 𝑥 𝑎) siendo

𝑎 el número de dimensiones resultantes.

Ahora podemos representar los scores de dimensionalidad reducida 𝑇𝑎,

(𝑛 × 𝑎),

𝑇𝑎 = 𝑋𝑛 𝑃 (2.16)

Al igual que en (2.13) se cumple que 𝑡𝑖 = 𝑥𝑖 𝑃.

Entonces ahora podemos aplicar MSPC, y calcular las estadísticas T2 y Q. T2 se

calcula como se mostró en la ecuación (2.6) y Q lo calcularemos como el

producto de la matriz de residuos por su transpuesta, lo cual es equivalente a

la diferencia cuadrada de los datos originales y su reconstrucción:

𝑄𝑖 = 𝑟𝑖 𝑟𝑖
𝑇

(2.17)

Siendo

𝑟𝑖 = (𝐼 − 𝑃𝑃𝑇) (2.18)

donde 𝑟𝑖 es la fila i-ésima de la matriz de residuo e 𝐼 es la matriz identidad

𝑚 × 𝑚.

Q, por tanto, mide la diferencia entre una muestra y su proyección al espacio

reducido (si fueran iguales el vector de residuos r sería cero). El error de

predicción cuadrático Q se genera porque, al realizar la reducción dimensional,

hemos descartado parte de la información.

23

La identificación de una anomalía tipo Q en un sistema de control significa que

la correlación entre las variables ha sufrido un cambio importante, lo cual

quiere decir que ya no se comportan las variables entre sí como lo hacían

durante los datos de funcionamiento habitual [21].

2.5 Redes Neuronales Artificiales (ANN)

Las redes neuronales artificiales (ANN, por sus siglas en inglés) son sistemas

computacionales que se basan en el funcionamiento y la estructura del cerebro

humano. Se diseñan para identificar patrones y comprender relaciones

complejas entre variables (Figura 9).

Figura 9. Similitud entre una neurona humana y una neurona artificial

El primer modelo matemático de una neurona artificial fue creado por Walter

Pitts y Warren McCulloch (1943) en la mitad del siglo XX, cuando probaron que

era capaz de realizar operaciones lógicas sencillas [22]. Más tarde, en 1958,

Frank Rosenblatt implementó el Perceptrón, que es visto como la primera red

neuronal que puede ser entrenada a través del aprendizaje supervisado [23].

Las redes neuronales despertaron menos interés en las décadas de 1960 y

1970 debido a restricciones teóricas y computacionales, pero volvieron a ser

relevantes en la década de 1980 con el desarrollo del algoritmo de

retropropagación del error (backpropagation), hito que permitió sentar las

bases del aprendizaje automático sin un coste computacional excesivo [24].

Hoy en día, las redes neuronales han progresado hasta arquitecturas

profundas (deep learning) gracias al aumento de la capacidad computacional,

a la posibilidad de acceder a enormes cantidades de datos (big data) y al

empleo de unidades de procesamiento gráfico (GPU). Estas arquitecturas son

24

capaces de llevar a cabo trabajos complejos como el control de procesos

industriales, la predicción y el diagnóstico de errores, el procesamiento del

lenguaje natural y la visión artificial.

2.5.1 Neurona artificial

La Neurona Artificial (Figura 10) es la unidad elemental de procesamiento en

una red neuronal. Su tarea es recibir un grupo de entradas (inputs), ponderarlas

a través de pesos (weights), sumar los resultados y, para conseguir una salida

(output), usar una función de activación.

Figura 10. Esquema de la unidad neuronal (Perceptrón)

El modelo matemático general de una neurona se expresa como:

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (2.19)

donde:

• 𝑥𝑖: son las entradas o variables de entrada,

• 𝑤𝑖: son los pesos sinápticos que representan la fuerza de conexión entre

neuronas,

• 𝑏: es el término de sesgo (bias), que permite desplazar la función de

activación,

• 𝑓(⋅): es la función de activación

• 𝑦: es la salida de la neurona.

Este modelo permite representar relaciones lineales y no lineales dependiendo

de la forma de 𝑓(⋅).

b

𝑦

25

2.5.2 Red de neuronas

Un grupo de neuronas dispuestas en capas es lo que se denomina red neuronal

(Figura 11):

1. Capa de entrada: recibe los parámetros de entrada o las características

del problema.

2. Capas ocultas: Analizan la información utilizando combinaciones

lineales y funciones de activación que no son lineales.

3. Capa de salida: Produce las clasificaciones o predicciones finales.

La configuración fundamental de una red multicapa (Multi-Layer Perceptron,

MLP) puede representarse en forma matricial como:

𝑦 = 𝑓(𝐿) (𝑊(𝐿)𝑓(𝐿−1)(𝑊(𝐿−1) … 𝑓(1)(𝑊(1)𝑥 + 𝑏) … + 𝑏(𝐿−1)) + 𝑏(𝐿)) (2.20)

donde 𝐿 es el número de capas, 𝑊(𝑙) las matrices de pesos en la capa 𝑙, 𝑏(𝑙)

los bias en la capa 𝑙 y 𝑓(𝑙) las funciones de activación correspondientes.

Es fundamental incorporar funciones de activación no lineales entre las capas,

porque esto le da a la red la posibilidad de aproximar funciones que no son

lineales y aprender relaciones complejas entre las variables de entrada y salida.

Figura 11. Red Neuronal MLP de 5 capas

2.5.3 Funciones de activación

La salida de cada neurona está determinada por las funciones de activación en

relación a la suma ponderada de sus entradas. Incorporan no linealidad al

26

modelo, lo que posibilita que las redes adquieran patrones complejos. De lo

contrario, la red completa se podría colapsar en una sola recta, plano o

hiperplano, dependiendo de las dimensiones, debido a su linealidad.

Estudiar qué tipo de función emplear para cada aplicación es fundamental, a

continuación, algunas de las más destacadas y empleadas en este trabajo:

1. Función sigmoide: hace que los valores grandes saturen en 1 y

pequeños en 0 (Figura 12), pero en este caso las derivadas no son nulas

𝑓(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑥

(2.21)

Esta función en valores cercanos a 0 tiene muy buena inclinación, sin

embargo, con valores muy grandes o muy pequeños es casi horizontal,

es decir, la derivada se hace muy pequeña.

En backpropagation (algoritmo de entrenamiento, mencionado más

adelante) con derivadas tan pequeñas, los ajustes a pesos y sesgos

serán muy pequeños entonces, por lo tanto, la red aprenderá despacio

o dejará de aprender, esto es lo que se conoce como desvanecimiento

del gradiente.

 Figura 12. Función sigmoiode

2. Tangente hiperbólica (tanh) (Figura 13): Genera valores entre -1 y 1.

Tiende a converger más rápido que la sigmoide al tener salidas

centradas en cero.

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

(2.22)

27

En la mayoría de casos es mejor que la sigmoide, dado que, está

centrada en el 0, puede tomar valores positivos y negativos,

solucionando el problema de la sigmoide y su derivada es mayor por lo

tanto el aprendizaje será más rápido.

 Figura 13. Función tangente hiperbólica

Aun así, presenta el problema de desvanecimiento de gradiente y tiene

un alto coste computacional.

3. Unidad Rectificada Lineal (ReLU) (Figura 14): Es una función

extremadamente simple, no consta de exponentes ni, cálculos,

simplemente devuelve lo que sea mayor:

𝑅𝑒𝐿𝑈(𝑥) = ma x(0,𝑥) (2.23)

En un estudio de 2011 se reveló que es mejor en la mayoría de casos

que la tanh, observándose velocidades de backpropagation y de

propagación hacia adelante 6 veces mayor [25].

Figura 14. Función ReLU

28

Esta función, en la mayoría de aplicaciones es superior a las dos

anteriores, tiene un coste computacional muy bajo, su derivada es muy

simple y no está acotada para números positivos (al contrario que 𝜎(𝑥)

y tanh (𝑥)) lo que genera un gradiente constante y un aprendizaje más

rápido en la mayoría de casos.

Los inconvenientes que tiene, residen en la primera parte de la función,

la cual devuelve 0 para todo valor menor que 0, lo cual puede incurrir

en que algunas neuronas durante las primeras fases de entrenamiento

almacenen un 0 entorpeciendo asi el entrenamiento de la red, la

siguiente función suple dichas carencias.

4. Función Leaky Relu: Similar a ReLu pero en vez de devolver 0 para

números negativos, devuelve un valor muy pequeño, si lo

parametrizamos correctamente, por lo general 𝛼 < 0,1 (Figura 15)

𝑓(𝑥) = {
𝑥 𝑠𝑖 𝑥 > 0
𝛼𝑥 𝑠𝑖 𝑥 ≤ 0

 (2.24)

De esta manera tenemos una función no acotada, simple de calcular y

solventamos el problema de las neuronas muertas.

Cada función presenta beneficios y restricciones dependiendo de la

arquitectura utilizada y el tipo de problema [26], [27].

Figura 15. Función Leaky Relu

2.5.4 Redes Neuronales Recurrentes (RNN)

Las redes neuronales recurrentes (RNN, por su nombre en inglés) (Figura 16)

son una ampliación de las redes neuronales artificiales convencionales,

29

creadas con el propósito de manejar datos que dependen del tiempo o son

secuenciales, en los que el orden de las observaciones tiene importancia.

A diferencia de las redes multicapa (MLP), en las cuales las entradas y salidas

se procesan de manera independiente, las RNN incluyen conexiones de

retroalimentación que posibilitan conservar información de pasos anteriores,

lo que les proporciona una memoria dinámica del sistema [27], [28].

Figura 16. Red neuronal recurrente [29]

El principio básico de una RNN consiste en mantener un estado oculto ℎ𝑡 que

resume la información relevante de todas las entradas anteriores.

En cada instante temporal 𝑡, el estado oculto se actualiza en función de la

entrada actual 𝑥𝑡 y del estado anterior ℎ𝑡−1 , de acuerdo con las siguientes

ecuaciones:

ℎ𝑡 = 𝑓ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (2.25)

𝑦̂𝑡 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦) (2.26)

Donde 𝑥𝑡 representa la entrada en el instante 𝑡, ℎ𝑡 es el estado oculto, que

almacena la información de contexto, 𝑦̂𝑡 es la salida estimada, 𝑊𝑥ℎ , 𝑊ℎℎ , 𝑊ℎ𝑦

son las matrices de pesos correspondientes a las conexiones de entada

recurrente y salida, 𝑏ℎ , 𝑏𝑦 son los sesgos y 𝑓ℎ ,𝑓𝑦 son las funciones de activación,

comúnmente tanh o ReLU.

Se puede observar esta formulación como una red "extendida en el tiempo"

(unrolled network), donde cada intervalo de tiempo es igual a una capa que

30

tiene los mismos parámetros. Este despliegue, en el transcurso del

entrenamiento, posibilita que se use el algoritmo de retropropagación a través

del tiempo (BPTT) para modificar los sesgos y pesos [27].

2.6 Aprendizaje automático

Con el propósito de reducir la función de coste que evalúa la discrepancia entre

la salida estimada y la esperada (ecu. 2.28), el procedimiento para entrenar

una red neuronal artificial se fundamenta en optimizar de manera iterativa sus

parámetros internos, es decir, sus sesgos (𝑏) y pesos (𝑤). Este proceso se

compone de dos etapas fundamentales: la retropropagación del error

(backpropagation) y la actualización de parámetros a través de un algoritmo de

descenso por gradiente [28].

2.6.1 Propagación hacia adelante (Forward propagation)

En cada época de entrenamiento, la red lleva a cabo inicialmente una

propagación hacia adelante (forward propagation), en la que los datos de

entrada se convierten capa a capa mediante la aplicación de una función de

activación no lineal seguida de una combinación lineal de pesos y sesgos [27].

En términos matemáticos, para la capa 𝑙:

𝑧(𝑙) = 𝑊 (𝑙)𝑎(𝑙−1) + 𝑏(𝑙) , 𝑎(𝑙) = 𝑓(𝑙)(𝑧(𝑙)) (2.27)

donde 𝑎(𝑙−1) representa la salida de la capa anterior, 𝑓(𝑙) es la función de

activación y 𝑧(𝑙) la suma ponderada. El resultado final 𝑎(𝐿) se compara con la

etiqueta real 𝑦, mediante una función de coste: 𝐶(𝑎(𝐿) , 𝑦), la cual cuantifica el

error de predicción [26].

2.6.2 Cálculo del error

Para un conjunto de datos con salidas esperadas 𝑦, se define una función de

coste C, por ejemplo, el error cuadrático medio (MSE):

𝐶 =
1

𝑚
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑚

𝑖=1

 (2.28)

31

Donde 𝑚 es el número de muestras, 𝑦𝑖 es el valor real e 𝑦̂𝑖 es la predicción del

modelo. En forma matricial, considerando la salida de la red 𝐴(𝐿) :

𝐶 =
1

2𝑁
 ‖𝑌 − 𝐴(𝐿)‖𝐹

2
(2.29)

2.6.3 Retropropagación del error

Tras calcular el coste, evaluamos como varía respecto a cada parámetro del

modelo (pesos y sesgos). Para ello se aplica la regla de la cadena, definiendo

el termino de error local 𝛿 (𝐿):

𝛿 (𝐿) =
𝜕𝐶

𝜕𝑎(𝐿) ⊙ 𝑓 ′(𝐿) (𝑧(𝐿)) (2.30)

donde ⊙ representa el producto elemento por elemento.

El error atribuido a cada neurona en la capa de salida está representado por

este valor. Para las capas ocultas, el error se transmite de manera inversa:

𝛿 (𝑙) = (𝑊(𝑙+1))
𝑇

𝛿 (𝑙+1) ⊙ 𝑓 ′(𝑙) (𝑧(𝐿))

(2.31)

Una vez obtenido el error de cada capa, los gradientes de la función de coste

con respecto a los pesos y sesgos se calculan como:

𝜕𝐶

𝜕𝑊(𝑙) = 𝛿 (𝑙)(𝑎(𝑙−1))
𝑇

 ;
∂𝐶

∂𝑏(𝑙) = 𝛿 (𝑙)

(2.32)

Este procedimiento propaga el error desde la capa de salida hasta las capas

previas, lo que hace posible modificar los parámetros de manera proporcional

a su aporte al error total.

2.6.4 Actualización de parámetros (Gradient Descent)

Estos se actualizan en la dirección opuesta a la que apunta el gradiente, dado

que este apunta en la dirección en donde aumenta el error:

𝑊(𝑙)(𝑡 + 1) = 𝑊(𝑙)(𝑡) − 𝜂
𝜕𝐶

𝜕𝑊(𝑙) ; (2.33)

32

𝑏(𝑙)(𝑡 + 1) = 𝑏(𝑙)(𝑡) − 𝜂
𝜕𝐶

𝜕𝑏(𝑙) ; (2.34)

donde 𝜂 es la tasa de aprendizaje (learning rate), que controla la magnitud de

los ajustes en cada iteración.

De esta forma, la red ajusta sus parámetros en cada iteración buscando

minimizar la función de coste de forma incremental. Este proceso se repite para

múltiples iteraciones en todo el conjunto de la red, estas iteraciones se

denominan épocas (epochs), hasta que el error (los del modelo) converge a un

valor aceptable o no mejora.

Existen mejoras en el algoritmo de descenso del gradiente, como el descenso

estocástico del gradiente (SGD), Momentum, RMSProp o Adam. Estos son

algoritmos avanzados que pueden optimizar este proceso, ya que modifican de

manera dinámica la dirección y el tamaño de los pasos de actualización con el

fin de prevenir mínimos locales y acelerar la convergencia [27], [28].

2.6.4.1 Adam (Adaptive Moment Estimation)

El algoritmo Adam, empleado en este trabajo, combina las ventajas de

Momentum y RMSProp, manteniendo promedios móviles de los gradientes y

sus cuadrados para cada parámetro 𝜃 (ya sean 𝑤 o 𝑏):

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 ; 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (2.35)

𝑚̂ 𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

 ; 𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡
 (2.36)

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 (2.37)

Donde 𝑔𝑡 =
𝜕𝐶

𝜕𝜃𝑡
 es el gradiente en el momento 𝑡, 𝛽1 y 𝛽2 son factores de

decaimiento, normalmente 0.9 y 0.999, respectivamente; y 𝜖 es un término

para la estabilidad numérica.

Así, Adam ajusta la tasa de aprendizaje individual de cada parámetro y

consigue una convergencia más rápida y estable, lo que lo hace

particularmente efectivo para arquitecturas profundas o autoencoders. Adam

se ha posicionado como uno de los algoritmos de optimización más utilizados

33

en el aprendizaje profundo debido a estas características, particularmente en

modelos autoencoder y redes convolucionales [25], [27], [28].

2.7 Autoencoders

Las arquitecturas neuronales que pueden aprender representaciones de datos

cada vez más compactas y significativas han sido creadas gracias al avance

del aprendizaje profundo. Los autoencoders, entre ellos, se caracterizan por su

habilidad para codificar información de manera no supervisada, disminuyendo

la dimensionalidad del conjunto de datos a la vez que mantienen sus rasgos

fundamentales [27].

En la década de 1980, los autoencoders aparecieron como una extensión de

las redes neuronales feedforward, con la finalidad de adquirir una

representación interna (latente) de los datos sin requerir etiquetas. El objetivo

inicial era replicar métodos de reducción de dimensionalidad lineales, como el

Análisis de Componentes Principales (PCA), aunque a través de una

formulación que no fuera lineal y adaptable [28].

A través de la demostración de su efectividad en la preinicialización de redes

profundas, Geoffrey Hinton y sus colegas reanimaron el uso de autoencoders

en los años 2000, lo que posibilitó entrenar modelos que previamente eran

inestables debido al elevado número de parámetros [27].

Los autoencoders (Figura 17) se convirtieron en una herramienta fundamental

para la detección de anomalías, el aprendizaje de características, la

reconstrucción de datos y la compresión gracias al avance del deep learning.

Su uso abarca diversos campos, desde series temporales industriales hasta

visión artificial.

Figura 17. Esquema de un autoencoder

34

En términos generales, un autoencoder es una red neuronal que ha sido

entrenada para replicar su entrada en la salida; sin embargo, tiene como

limitación estructural la necesidad de aprender una representación

comprimida y significativa del conjunto de datos. Su arquitectura está

constituida por dos componentes fundamentales:

• Codificador (Encoder): transforma la entrada 𝑋 ∈ ℝ𝑛 en una

representación latente ℎ ∈ ℝ𝑘, donde 𝑘 < 𝑛.

• Decodificador (Decoder): intenta reconstruir la entrada original a partir

de la representación latente, produciendo una salida 𝑋.

Matemáticamente, este proceso se expresa como:

ℎ = 𝑓𝑒𝑛𝑐 (𝑊𝑒𝑋 + 𝑏𝑒) (2.38)

𝑋 = 𝑓𝑑𝑒𝑐(𝑊𝑑ℎ + 𝑏𝑑) (2.39)

donde 𝑓𝑒𝑛𝑐 y 𝑓𝑑𝑒𝑐 son funciones de activación no lineales, 𝑊𝑒, 𝑊𝑑 son las

matrices de pesos del codificador y decodificador y 𝑏𝑒, 𝑏𝑑 sus correspondientes

sesgos.

El entrenamiento se realiza minimizando una función de coste que mide la

diferencia entre la entrada y su reconstrucción. Comúnmente se utiliza el Error

Cuadrático Medio (MSE):

𝐶 =
1

𝑁
 ∑(𝑋𝑖 − 𝑋𝑖̂)

2
𝑁

𝑖=1

 (2.40)

Los métodos mencionados en la sección 2.6 Aprendizaje automático, es decir,

la retropropagación del error, la propagación hacia adelante y la actualización

de los parámetros a través de algoritmos de descenso del gradiente

(normalmente optimizados con Adam [27], [28]), se utilizan para minimizar

esta función.

La capa intermedia (h), que también se llama capa latente o cuello de botella,

es el núcleo del modelo porque allí reside la representación comprimida de los

datos originales. La habilidad de un autoencoder para sobreajustar o

generalizar la información depende del tamaño y la estructura de este.

35

Durante años, se han creado numerosas versiones de autoencoders que están

diseñadas para una variedad de tipos de datos y metas de aprendizaje. Se

incluyen entre las más significativas:

• Autoencoder totalmente conectado (MLP): está formado solamente por

capas densas. Este es el modelo base y se utiliza sobre todo para tablas

de datos o vectores de características.

• Autoencoder convolucional (CAE): Se emplean capas convolucionales

para capturar estructuras espaciales, y su uso es bastante común en

imágenes y visión por computador.

• Autoencoder recurrente (RAE / LSTM): creado para trabajar con

secuencias temporales, que introduce dependencias a lo largo del

tiempo utilizando unidades GRU o LSTM.

• Autoencoder variacional (VAE): en vez de aprender una codificación

determinista, emplea una formulación probabilística y se enfoca en el

aprendizaje de una distribución latente.

• Autoencoder con ruido (Denoising AE): adiestrado para reconstruir la

entrada original a partir de versiones dañadas o con mucho ruido, lo que

aumenta su resistencia ante alteraciones.

• Autoencoder disperso (Sparse AE): establece limitaciones de activación

para fomentar representaciones latentes más comprensibles y

específicas.

• Autoencoder contractivo (Contractive AE): favorece una codificación

más estable al sancionar la sensibilidad del espacio latente a mínimas

variaciones en la entrada.

En este trabajo se han implementado dos tipos de autoencoders con

finalidades distintas:

1. Autoencoders densos (Fully Connected Autoencoders), que son

apropiados para la reconstrucción de variables instantáneas o

estáticas.

2. Autoencoders LSTM, que poseen memoria y tienen la habilidad de

modelar las dependencias temporales en los datos procesados.

36

Las dos arquitecturas se analizan detalladamente en los siguientes

subapartados.

2.7.1 Autoencoder Denso (Fully Connected Autoencoder)

Los autoencoders densos (Figura 18), que también son conocidos como fully

connected o vanilla autoencoders, representan el tipo más básico y común de

autoencoder. Su estructura se fundamenta en una red neuronal de tipo

feedforward que cuenta con capas totalmente interconectadas (Dense layers);

en estas, cada neurona de una capa se enlaza con todas las neuronas de la

capa que le sigue [27], [28].

Cuando no hay dependencias temporales o espaciales, por ejemplo, en datos

tabulares o en vectores de características estáticas, este tipo de arquitectura

es particularmente adecuada. Al estar diseñado para reconocer relaciones no

lineales entre las variables, es una herramienta útil para la detección de

anomalías, la reconstrucción de procesos industriales y la reducción de

dimensionalidad. Conceptualmente es similar al PCA, aunque con una

formulación no lineal.

Figura 18. Representación interna de un autoencoder de 5 capas y n neuronas

 x̂1

 x̂2

 x̂3

 x̂4

 x̂5

 x̂n

37

En este trabajo, se utilizan los autoencoders densos como fundamento para la

reconstrucción de datos estáticos normalizados, sirviendo como modelo de

referencia en comparación con arquitecturas más sofisticadas, por ejemplo, las

LSTM.

El modelo se compone de tres bloques principales:

1. Codificador: transforma la entrada 𝑋 ∈ ℝ𝑛 en una representación

latente ℎ ∈ ℝ𝑛 a través de sucesivas combinaciones lineales y

funciones de activación no lineales:

ℎ = 𝑓𝑒𝑛𝑐 (𝑊𝑒𝑋 + 𝑏𝑒) (2.41)

donde 𝑊𝑒 ∈ ℝ𝑛×𝑘 son los pesos del codificador y 𝑓𝑒𝑛𝑐 (⋅) suele ser una

función ReLU o LeakyReLU que introduce no linealidad al proceso [25].

2. Capa latente: actúa como cuello de botella, limitando la cantidad de

información que puede fluir a través del modelo. Esta restricción obliga

a la red a extraer las características más relevantes de los datos de

entrada, eliminando redundancias.

3. Decodificador: reconstruye la entrada original a partir del vector latente:

𝑋 = 𝑓𝑑𝑒𝑐 (𝑊𝑑ℎ + 𝑏𝑑) (2.42)

donde 𝑊𝑑 ∈ ℝ𝑛×𝑘 son los pesos del codificador y 𝑓𝑒𝑛𝑐 (⋅) puede ser una

función ReLU o sigmoide dependiendo de la naturaleza de los datos de

salida.

El propósito del entrenamiento es reducir la brecha entre la entrada (𝑋) y su

reconstrucción 𝑋, sin sobreajuste, a través de una función de coste (𝐶).

En el caso de este trabajo se ha usado el error cuadrático medio MSE, el cual

se expresa de manera matricial de la siguiente manera:

𝐶 =
1

2𝑁
 ‖𝑋 − 𝑋̂‖𝐹

2 (2.43)

El entrenamiento sigue el mismo procedimiento descrito en el apartado 2.6

Aprendizaje automático.

38

2.7.2 Autoencoder Recurrente (RAE) variante LSTM (Long Short-Term

Memory Autoencoder)

Redes LSTM

Las redes neuronales LSTM son una evolución de las Redes neuronales

Recurrentes (RNN), estas surgieron como extensión de las redes feedforward

para modelar datos secuenciales, permitiendo que la salida de una unidad en

un paso temporal influya como entrada en el paso siguiente. Las RNN

convencionales pueden propagar información temporalmente, pero sufren el

problema del desvanecimiento del gradiente o explosivo al tratar secuencias

largas [29].

Sepp Hochreiter y Jürgen Schmidhuber, en su trabajo "Long Short-Term

Memory", presentaron la arquitectura Long Short-Term Memory (LSTM) en

1997. En esta, sugieren una célula con mecanismos de puerta (Figura 19) que

controlan el flujo de información y posibilitan que las dependencias a largo

plazo se mantengan sin que los gradientes se "apaguen" o "exploten" [30].

Figura 19. Estructura de una célula LSTM [29]

Una célula LSTM está configurada para administrar y regular el estado interno

a lo largo del tiempo, utilizando puertas que determinan qué información se

descarta, cuál se incorpora de nuevo y cuál se emite como salida, para ello se

define una arquitectura de célula con 3 partes fundamentales, tal y como se ve

en la Figura 19.

La primera es la puerta de olvido 𝑓𝑡 (forget gate), la cual decide qué proporción

del estado anterior 𝑐𝑡−1 conservar.

39

La segunda es la puerta de entrada 𝑖𝑡(input gate) quien regula cuánta parte del

candidato 𝑐̃𝑡 se incorpora al nuevo estado de celda, este candidato representa

la información propuesta para la memoria, transformado mediante tanh, para

mantener valores centrados en [−1,1] , de este modo la actualización del

estado de celda 𝑐𝑡 combina lo retenido y lo nuevo.

En último lugar encontramos la puerta de salida 𝑜𝑡 (output gate) quien controla

qué parte del estado de la celda pasa a la salida ℎ𝑡 filtrándolo de nuevo con la

función de activación tanh. Finalmente, ℎ𝑡 constituye la salida oculta de la

celda para el paso 𝑡.

Figura 20. Estructura interna de una unidad LSTM [29]

Las ecuaciones estándar de una célula LSTM (Figura 20), para cada instante t,

son:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.44)

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.45)

𝑐𝑡̃ = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.46)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 (2.47)

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.48)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡) (2.49)

Siendo:

𝑥𝑡: Vector de entrada en el instante 𝑡.

𝑐̃𝑡

40

ℎ𝑡−1 : estado oculto del paso anterior.

𝑐𝑡−1: estado de la celda en el paso anterior.

𝑓𝑡 : forget gate (puerta de olvido).

 𝑖𝑡 : input gate (puerta de entrada).

𝑐̃𝑡: candidato a nuevo estado de la celda.

𝑐𝑡: estado de la celda actualizado.

ot : output gate (puerta de salida).

ℎ𝑡: estado oculto de la salida en el paso t.

Como resultado de estas operaciones, una red LSTM permite que una célula

LSTM decida cuándo y cuanto recordar, emitiendo la información necesaria y

evitando pérdidas, lo cual le dota de una flexibilidad excelente frente a

secuencias largas o patrones complejos

Integración de las células LSTM en un Autoencoder

Los autoencoders LSTM (Figura 21) surgen de la combinación entre la

arquitectura de los autoencoders clásicos y las redes LSTM, con el propósito de

capturar dependencias temporales o secuenciales en los datos. Mientras que

un autoencoder convencional se compone de capas densas (fully connected

layers) que comprimen y reconstruyen representaciones estáticas, los

autoencoders LSTM operan sobre secuencias de datos 𝑥1,𝑥2,… , 𝑥 𝑇 lo que los

hace adecuados para aplicaciones donde el orden temporal es esencial, como

series de tiempo, señales de sensores o texto [29].

El principio de funcionamiento se mantiene:

• Un encoder LSTM procesa la secuencia de entrada y resume su

información en una representación latente (estado oculto final ℎ𝑇 o

estado de celda 𝑐𝑇).

• Un decoder LSTM toma esta representación comprimida y genera una

reconstrucción de la secuencia original, tratando de minimizar la

diferencia con la entrada.

La estructura general de un Autoencoder puede representarse como:

𝐸𝑛𝑐𝑜𝑑𝑒𝑟: (ℎ𝑡 , 𝑐𝑡) = 𝐿𝑆𝑇𝑀𝑒𝑛𝑐 (𝑥𝑡 ,ℎ𝑡−1 , 𝑐𝑡−1) (2.50)

𝐷𝑒𝑐𝑜𝑑𝑒𝑟: (ℎ̂𝑡 , 𝑐̂𝑡) = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐(𝑦𝑡 , ℎ̂𝑡−1, 𝑐̂𝑡−1) (2.51)

𝑆𝑎𝑙𝑖𝑑𝑎: 𝑦̂𝑡 = 𝑊𝑜 ℎ̂𝑡 + 𝑏𝑜 (2.52)

41

Figura 21. Esquema de un autoencoder recurrente con capas LSTM

El modelo, en el periodo de codificación, pasa por la secuencia de entrada y

guarda los datos más importantes en los estados internos del LSTM.

Durante la etapa de decodificación, esta representación comprimida funciona

como el contexto inicial para volver a armar la secuencia de salida.

𝑌̂. Así, el autoencoder LSTM es capaz de aprender a codificar series temporales

en un espacio con menos dimensiones, manteniendo tanto las relaciones

instantáneas como las dependencias a largo plazo [28], [29].

Los beneficios más destacados de los autoencoders LSTM, en comparación

con los autoencoders tradicionales son la habilidad para modelar

dependencias temporales complejas, la robustez frente a datos secuenciales

que no son estacionarios y la disminución de la información contextual que se

pierde durante el proceso de compresión.

No obstante, necesitan más potencia computacional y un ajuste meticuloso de

hiperparámetros, incluyendo la tasa de aprendizaje, el tamaño de la ventana

temporal y la cantidad de unidades LSTM.

𝒉𝒕−𝟏

𝒄𝒕−𝟏 𝒄𝒕

𝒉𝒕

𝒄𝒕+𝒏

𝒉𝒕+𝒏

𝒄𝒕

𝒉𝒕

𝒄𝒕+𝒏

𝒉𝒕+𝒏

𝒄𝒕

𝒉𝒕

𝒄𝒕

𝒉𝒕

𝒄𝒕−𝟏

𝒉𝒕−𝟏

𝒙𝒕−𝟏 𝒙𝒕 𝒙𝒕+𝒏 𝒙𝒕+𝒏−𝟏

𝒚𝒕−𝟏 𝒚𝒕 𝒚𝒕+𝒏−𝟏 𝒚𝒕+𝒏

42

Entrenamiento

La formación de un autoencoder LSTM tiene lugar a través de la propagación

hacia adelante, la retropropagación del error y la actualización de parámetros,

siguiendo así los mismos principios generales del aprendizaje supervisado o no

supervisado que se explicaron en el apartado 2.6.

En este caso el error se mide entre la secuencia de entrada original 𝑋 =

{𝑥1,… , 𝑥 𝑇} y su reconstrucción 𝑋 = {𝑥̂1, … , 𝑥̂ 𝑇}, usando una función de coste

del tipo error cuadrático medio (MSE) adaptada a secuencias:

𝐶 =
1

𝑇
∑‖𝑥𝑡 − 𝑥̂𝑡‖2

𝑇

𝑡=1

 (2.53)

Este coste se propaga hacia atrás en el tiempo mediante el algoritmo de

Backpropagation Through Time (BPTT), una extensión del backpropagation

tradicional que tiene en cuenta la dependencia de los parámetros a lo largo de

varios pasos temporales [27], [28].

De forma análoga al proceso explicado en el apartado 2.6, los gradientes de la

función de coste respecto a los pesos y sesgos de cada celda LSTM se calculan

por medio de la regla de la cadena, pero en este caso se acumulan en el tiempo.

Los parámetros 𝜃 = {𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 ,𝑊𝑜 , 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐𝑏𝑜} se actualizan según:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝜕𝐶

𝜕𝜃𝑡

 (2.54)

donde 𝜂 representa la tasa de aprendizaje.

2.8 Monitorización distribuida

El número de variables monitorizadas ha crecido exponencialmente en los

sistemas industriales actuales a causa de la digitalización, la sensorización y el

empleo de sistemas ciberfísicos. Si bien esta abundancia de datos posibilita

una observación más exacta del proceso, también presenta significativos retos

en cuanto a la administración, el tratamiento y el análisis de la información.

En una perspectiva clásica de supervisión centralizada, todos los datos se

reúnen en un solo modelo global que tiene la responsabilidad de identificar

errores o desviaciones. Sin embargo, cuando hay muchas variables, este

método se torna ineficaz o incluso imposible de implementar, debido a que los

43

modelos tienden a ser más complejos, difíciles de entrenar y propensos a

sobreajustarse. Asimismo, es común que los sistemas industriales se

estructuren en subsistemas o subprocesos que son parcialmente autónomos;

en estos, la relación entre las variables puede ser local y no necesariamente

global [31].

La monitorización distribuida surge para enfrentar estas limitaciones; su

principio básico es dividir el conjunto total de variables en subconjuntos o

bloques que representen de manera coherente diferentes secciones del

proceso. Cada bloque es monitorizado de forma individual a través de modelos

locales (como los PCA o autoencoders locales), y después sus resultados se

combinan utilizando un procedimiento de fusión estadística o probabilística

que posibilita la obtención de una perspectiva global del sistema [32].

Esta perspectiva disminuye la carga computacional, facilita una detección de

fallos más localizada y mejora la interpretación de los resultados al identificar

cuál componente o bloque del sistema es responsable de una potencial

anomalía.

La metodología utilizada para llevar a cabo esta división y la estrategia que se

empleó para fusionar los resultados de cada bloque de manera coherente,

utilizando inferencia bayesiana, se exponen en las siguientes secciones.

2.8.1 Subdivisión de variables en bloques mediante el método mínima

redundancia máxima relevancia

Para diseñar sistemas de monitorización distribuida, es crucial la selección de

características, pues hace posible disminuir la dimensionalidad del conjunto de

datos mientras se mantienen las variables más informativas. El mRMR

(Minimum Redundancy - Maximum Relevance), el cual fue propuesto por Peng

et al. en 2005 [31], es uno de los métodos más empleados. Este escoge un

subconjunto de características que tienen una alta relevancia en relación a la

variable objetivo y una baja redundancia entre ellas.

La base del método mRMR es la información mutua (MI, por sus siglas en

inglés), que calcula el grado de dependencia entre dos variables. Dada una

variable de entrada 𝑥𝑖 , una variable de salida 𝑦, la información mutua es

definida como:

𝐼(𝑥𝑖; 𝑦) = ∫ ∫ 𝑝(𝑥𝑖 ,𝑦) log
𝑝(𝑥𝑖 ,𝑦)

𝑝(𝑥𝑖)𝑝(𝑦)
 𝑑𝑥𝑖 𝑑𝑦 (2.55)

44

donde 𝑝(𝑥𝑖 ,𝑦) es la distribución conjunta de ambas variables y 𝑝(𝑥𝑖),𝑝(𝑦) son

las distribuciones marginales. El valor de 𝐼(𝑥𝑖; 𝑦) es directamente proporcional

a la implicación que tiene la variable 𝑥𝑖 sobre la salida 𝑦.

El criterio de máxima relevancia busca seleccionar las variables más

relacionadas con la salida del sistema:

𝑚𝑎𝑥𝐷, 𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖; 𝑦)

𝑥𝑖 ∈𝑆

 (2.56)

donde 𝑆 es el conjunto de variables seleccionadas.

Sin embargo, seleccionar únicamente las variables más relevantes puede

generar redundancia si varias de ellas aportan información similar. Por ello, el

método introduce el segundo criterio de mínima redundancia , definido como:

𝑚𝑖𝑛𝑅, 𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖; 𝑥𝑗)

𝑥𝑖 ,𝑥𝑗 ∈𝑆

 (2.57)

El objetivo final de mRMR es maximizar la relevancia y minimizar la

redundancia simultáneamente, lo que se formula como:

𝑚𝑎𝑥Φ, Φ = 𝐷 − 𝑅 (2.58)

Este balance garantiza que el grupo de variables escogidas recoja la mayor

cantidad posible de información pertinente acerca del proceso, evitando incluir

variables que estén correlacionadas entre sí.

Después de que se ha calculado la matriz de información mutua entre todas

las variables del proceso, es factible clasificarlas en bloques según su

dependencia funcional o estadística. Se considera que las variables que tienen

la mayor información mutua entre ellas pertenecen al mismo subsistema físico

o funcional del proceso; por lo tanto, se agrupan en el mismo bloque.

Así, el método mRMR no solo hace posible la selección de las características

más relevantes, sino también la creación de una estructura distribuida natural

del sistema. Esta puede utilizarse para construir modelos de vigilancia local

autónomos que luego se combinan a través de métodos de inferencia

bayesiana, que se explican en la siguiente sección.

45

2.8.2 Inferencia Bayesiana

Después de hacer la división de las variables en B bloques a través del método

mRMR, cada bloque produce sus propios estadísticos de control 𝑇𝑏
2 y 𝑄𝑏 , los

cuales posibilitan la monitorización del comportamiento local de cada bloque.

No obstante, para calcular una medida del rendimiento total del sistema, se

debe integrar la información de todos los bloques de manera coherente.

Se utiliza la inferencia bayesiana, un instrumento estadístico que posibilita la

actualización de la probabilidad de un evento (como puede ser la ocurrencia de

un error) conforme se va adquiriendo nueva evidencia en cada bloque [27],

[28], [33].

Esta investigación se basa en la combinación bayesiana de estadísticos

locales, lo que da origen a los BIC (Bayesian Inference Combination), que

funcionan como indicadores generales de desviación del proceso.

Esta estrategia posibilita la integración de los datos de los bloques, teniendo

en cuenta su fiabilidad y su aporte a la identificación de fallos, lo que a su vez

brinda una reconstrucción más sólida de las estadísticas globales 𝑇 2 y 𝑄.

Fundamento teórico

De acuerdo con la regla de probabilidad condicional de Bayes, la probabilidad

de fallo del estadístico 𝑇 2 en una muestra 𝑥𝑏 perteneciente al bloque 𝑏 se

expresa como:

𝑃𝑇2 (𝐹|𝑥𝑏) =
𝑃𝑇2 (𝑥𝑏|𝐹)𝑃𝑇2 (𝐹)

𝑃𝑇2 (𝑥𝑏)
 (2.59)

Donde 𝑃𝑇2 (𝐹|𝑥𝑏) es la probabilidad condicional de observar los datos 𝑥𝑏 bajo

la hipótesis de fallo (𝐹) y 𝑃𝑇2 (𝐹) es la probabilidad a priori de fallo. El

denominador puede expresarse como la suma de las probabilidades de

operación normal o fallo (𝑁),(𝐹):

𝑃𝑇2 (𝑥𝑏) = 𝑃𝑇2 (𝑥𝑏|𝑁) 𝑃𝑇2 (𝑁) + 𝑃𝑇2 (𝑥𝑏|𝐹)𝑃𝑇2 (𝐹) (2.60)

Las probabilidades condicionales pueden modelarse mediante funciones

exponenciales que dependen del valor del estadístico 𝑇𝑏
2(𝑥𝑏) y su umbral de

control 𝑇𝑏,𝑙𝑖𝑚
2 :

𝑃𝑇2 (𝑥𝑏|𝑁) = 𝑒−𝑇𝑏
2(𝑥𝑏)/𝑇𝑏 ,𝑙𝑖𝑚

2

 (2.61)

46

𝑃𝑇2 (𝑥𝑏|𝐹) = 𝑒𝑇𝑏,𝑙𝑖𝑚
2 /−𝑇𝑏

2(𝑥𝑏) (2.62)

Estas formulaciones permiten ponderar la probabilidad de que un bloque esté

bajo condiciones normales o de fallo, en función del grado de desviación de sus

valores 𝑇𝑏
2(𝑥𝑏) respecto a su umbral de control 𝑇𝑏,𝑙𝑖𝑚

2 .

Combinación Bayesiana de Bloques

Después de calcular las probabilidades parciales de cada bloque, los BICs se

encargan de combinarlas en un valor global, ponderando cada bloque con base

en su probabilidad de fallo:

𝐵𝐼𝐶𝑇2 = ∑
𝑃𝑇2(𝑥𝑏|𝐹)𝑃𝑇2 (𝐹|𝑥𝑏)

∑ 𝑃𝑇2 (𝑋𝑏|𝐹) 𝐵
𝑏=1

𝐵

𝑏=1

(2.63)

𝐵𝐼𝐶𝑄 = ∑
𝑃𝑄(𝑥𝑏|𝐹)𝑃𝑄(𝐹|𝑥𝑏)

∑ 𝑃𝑄(𝑋𝑏|𝐹) 𝐵
𝑏 =1

𝐵

𝑏=1

 (2.64)

Los estadísticos combinados del sistema son los valores 𝐵𝐼𝐶𝑇2 y 𝐵𝐼𝐶𝑄 , los

cuales pueden ser utilizados para detectar anomalías de la misma manera que

las estadísticas tradicionales 𝑇2 y 𝑄.

Se establece el límite de confianza (α) siguiendo el mismo criterio que en los

casos individuales, de modo que, si los BICs sobrepasan sus respectivos

límites, se considera que hay un posible fallo global en la planta.

47

Capítulo 3. Proceso Tennessee-Eastman

3.1. Origen y contexto histórico

Uno de los modelos de referencia más empleados en la ingeniería química y

control de procesos es el proceso Tennessee-Eastman (TE). En 1993, Downs y

Vogel plantearon un problema de control a nivel de planta (plant-wide control

problem) que fue concebido como un banco de pruebas estandarizado para

cotejar métodos de detección de fallos y estrategias de control industrial [34].

El modelo fue creado a partir de un proceso químico industrial auténtico de la

Tennessee Eastman Company, aunque se hicieron cambios intencionados para

salvaguardar la propiedad intelectual del procedimiento original. Se llevó a

cabo su implementación en FORTRAN, añadiendo las reacciones químicas, los

balances de energía y masa, las ecuaciones dinámicas de flujo y los lazos de

control descentralizados [35].

La motivación principal para su desarrollo fue disponer de un caso de estudio

abierto, reproducible y representativo de una planta industrial compleja, que

incluyera múltiples unidades interconectadas, reciclajes y comportamientos no

lineales. Desde su publicación, el proceso TE se ha convertido en un estándar

de referencia internacional en la evaluación de algoritmos de detección de

fallos, control predictivo, aprendizaje automático y monitorización estadística

de procesos [36], [37], [38].

3.2. Descripción general del proceso

El proceso TE consta de cinco unidades principales en serie: reactor bifásico

con reacción exergónica, condensador, separador vapor-líquido (flash),

columna de destilación (stripper) y compresor de reciclaje (Figura 22). Estas

unidades están interconectadas por corrientes de alimentación, purga y

reciclaje, conformando un sistema fuertemente acoplado y con lazos de control

interdependientes [35].

El objetivo del proceso es la producción de dos productos líquidos (G y H) a

partir de cuatro reactantes gaseosos (A, C, D y E), en presencia de un

componente inerte (B) y la generación de un subproducto (F).

48

Figura 22. Diagrama ISA del proceso Tennessee-Eastman [35]

Las reacciones químicas principales del proceso se expresan como:

𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) → 𝐺(𝑙) (3.1)

𝐴(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙) (3.2)

1

3
𝐴(𝑔) +

1

3
𝐷(𝑔) +

1

3
𝐸(𝑔) → 𝐹(𝑙)

(3.3)

El proceso cuenta con 52 variables medidas y manipuladas, incluyendo

presiones, temperaturas, niveles de líquido, fracciones molares, flujos, y

aperturas de válvulas. De ellas, 41 son variables de proceso (XMEAs) y 11

variables manipuladas (XMVs) [35], [38], como se ve en la Tabla 1.

49

Variables de proceso Variables de control Variables manipuladas
1 Alimentación A 23 Comp. A de alimentación 42 Flujo de alimentación D
2 Alimentación D 24 Comp. B de alimentación 43 Flujo de alimentación E
3 Alimentación E 25 Comp. C de alimentación 44 Flujo de alimentación A
4 Alimentación Total 26 Comp. D de alimentación 45 Flujo total de alimentación
5 Flujo de Reciclaje 27 Comp. E de alimentación 46 Válvula de reciclaje compresor
6 Caudal de alimentación 28 Comp. F de alimentación 47 Válvula de purga
7 Presión del reactor 29 Comp. A de la purga 48 Flujo de producto separador
8 Nivel del reactor 30 Comp. B de la purga 49 Flujo de producto purgador
9 Temperatura del reactor 31 Comp. C de la purga 50 Válvula de vapor del purgador
10 Caudal de purga 32 Comp. D de la purga 51 Flujo enfriamiento de reactor
11 Temperatura separador 33 Comp. E de la purga 52 Flujo enfriamiento condensador
12 Nivel del separador 34 Comp. F de la purga
13 Presión del separador 35 Comp. G de la purga
14 Desbordamiento separador 36 Comp. H de la purga
15 Nivel del purgador 37 Comp. D del producto
16 Presión del purgador 38 Comp. E del producto
17 Desbordamiento purgador 39 Comp. F del producto
18 Temperatura del purgador 40 Comp. G del producto
19 Caudal de vapor purgador 41 Comp. H del producto
20 Trabajo del compresor
21 Tª de salida del agua
22 Tª de salida del agua

Tabla 1. Descripción de las variables del proceso Tennessee-Eastman [37]

3.3. Formulación matemática del modelo

El modelo Tennessee-Eastman está basado en ecuaciones dinámicas no

lineales derivadas de los balances de masa y energía de cada componente y

unidad de proceso. A continuación, se resumen sus ecuaciones

fundamentales.

a) Balance general de materia

Para cada componente i en una unidad k:

𝑑𝑁𝑖, 𝑘

𝑑𝑡
= ∑ 𝑦𝑖,𝑗𝐹𝑗

𝑖𝑛

𝑗

 − 𝑚 ∑ 𝑦𝑖, 𝑚𝐹𝑚
𝑜𝑢𝑡

𝑚

+ 𝑟 ∑ 𝜈𝑖,𝑟 𝑅𝑟

𝑟

(3.4)

donde:

50

• 𝑁𝑖, 𝑘: cantidad de moles del componente i en la unidad k

• 𝑦𝑖,𝑗 : fracción molar del componente i en la corriente j

• 𝐹𝑗
𝑖𝑛 y 𝐹𝑚

𝑜𝑢𝑡 : caudales molares de entrada y salida

• 𝜈𝑖,𝑟: coeficiente estequiométrico de la reacción r

• 𝑅𝑟: velocidad de reacción del proceso

b) Cinética de reacción

Las velocidades de reacción se describen mediante cinética de Arrhenius de la

forma general:

𝑅𝑟 = ∏ 𝐶
𝑖

𝛼𝑖,𝑟 exp (−
𝐸𝑎,𝑟

𝑅𝑇
)

𝑖

(3.5)

donde 𝑘𝑟es la constante pre-exponencial, 𝐶𝑖 la concentración del componente

𝑖, 𝐸𝑎,𝑟 la energía de activación y 𝑇 la temperatura del reactor.

c) Relaciones de equil ibrio termodinámico

En el separador y el condensador se asume equilibrio vapor-líquido:

𝑦𝑖𝑃 = 𝑥𝑖𝑃𝑖
𝑠𝑎𝑡(𝑇) (3.6)

∑ 𝑦𝑖

𝑖

= 1 ; ∑ 𝑥𝑖

𝑖

= 1 (3.7)

donde yi y xi son las fracciones molares en las fases vapor y líquida

respectivamente, P la presión total y Pi
sat(T) la presión de saturación del

componente i a la temperatura T.

3.4. Condiciones de operación y control

El proceso opera bajo condiciones nominales definidas para cada corriente y

unidad de proceso. Los lazos de control regulan variables críticas como la

temperatura y presión del reactor, el nivel del separador o la fracción molar de

productos mediante las 11 variables manipuladas (XMVs).

51

ID de Fallo Descripción Tipo Magnitud
IDV1 Relación de alimentación A/C comp. B constante Escalón 203%
IDV2 Composición B relación A/C constante Escalón 105%
IDV3 Temperatura de alimentación D Escalón 5%
IDV4 Temperatura de entrada del agua al reactor Escalón 9%
IDV5 Temperatura de entrada del agua al condensador Escalón 15%
IDV6 Pérdida de alimentación A Escalón 342%
IDV7 Pérdida de presión del cabezal C Escalón 25%
IDV8 Composición de alimentación A B C Aleatorio 736%
IDV9 Temperatura de alimentación D Aleatorio 8%
IDV10 Temperatura de alimentación C Aleatorio 112%
IDV11 Temperatura de entrada del agua al reactor Aleatorio 567%
IDV12 Temperatura de entrada del agua al condensador Aleatorio 8%
IDV13 Cinética de reacción Desviación 16%
IDV14 Válvula de agua al reactor Bloqueo 1285%
IDV15 Válvula de agua al condensador Bloqueo 5%
IDV16 Desconocido Aleatorio 78%
IDV17 Desconocido Aleatorio 557%
IDV18 Desconocido Escalón 57%
IDV19 Desconocido Aleatorio 73%
IDV20 Desconocido Aleatorio 310%
IDV21 Desconocido Desconocido ? %

Tabla 2. Fallos definidos en el proceso T-E [40]

El conjunto de 21 fallos o perturbaciones (IDVs) definidos en el modelo (Tabla

2) permiten estudiar condiciones anómalas como:

• Cambios en la temperatura o composición de alimentación.

• Fallos en válvulas o restricciones de flujo.

• Alteraciones en la cinética de reacción.

• Perturbaciones aleatorias o desviaciones lentas.

Estos modos de fallo son ampliamente utilizados como casos de prueba en el

desarrollo y validación de métodos de detección y diagnóstico de fallos [32],

[36].

52

3.5. Aplicaciones y relevancia

El proceso Tennessee-Eastman es un estándar de referencia internacional en

la investigación y desarrollo de metodologías de control y diagnóstico de

procesos. Sus principales aplicaciones incluyen [37], [38]:

• Evaluación de métodos de detección e identificación de fallos (PCA,

PLS, ICA, redes neuronales, autoencoders, etc.).

• Análisis de la estabilidad y robustez de sistemas de control planta-

amplia.

• Desarrollo de técnicas de monitoreo estadístico y control predictivo.

• Entrenamiento y validación de modelos de inteligencia artificial para

diagnóstico industrial.

Las versiones modernas del simulador y los conjuntos de datos asociados

están disponibles públicamente a través de los repositorios del MIT Braatz

Group [39] y del Harvard Dataverse [40], los cuales incluyen tanto datos de

funcionamiento normal como series con fallos simulados.

3.6. Limitaciones del modelo

Pese a su gran utilidad, el modelo Tennessee-Eastman presenta ciertas

limitaciones [35], [36]:

• No incorpora todas las no linealidades y retardos temporales presentes

en plantas reales.

• Algunos parámetros cinéticos y termodinámicos fueron modificados

para proteger la propiedad industrial.

• Las condiciones de operación son idealizadas y pueden diferir de las

industriales.

• No contempla estrategias de control centralizado u optimización

económica.

Aun así, su adopción generalizada lo consolida como un caso de referencia

esencial en ingeniería química, control de procesos e inteligencia artificial

aplicada.

53

Capítulo 4. Aplicaciones y evaluación de

métodos

4.1 Introducción

Los datos del procedimiento Tennessee-Eastman (TE) se utilizan en este

capítulo para poner en práctica los conceptos teóricos que se han desarrollado

anteriormente. El propósito es analizar la habilidad de diversas metodologías

de monitorización para identificar fallos en condiciones similares.

Las técnicas consideradas incluyen:

1. PCA (Análisis de Componentes Principales): referencia clásica en la

reducción de dimensionalidad y control estadístico multivariante.

2. Autoencoder: red neuronal entrenada de manera no supervisada para

aprender correlaciones no lineales.

3. Autoencoder Recurrente (RAE): adaptación que incorpora dinámica

temporal en el aprendizaje mediante células LSTM.

4. RAE distribuido: extensión que divide las variables en bloques y fusiona

la información mediante inferencia bayesiana.

Todas las metodologías se entrenan solamente con datos de operación normal

(Tabla 3) y se contrastan con los casos de fallo establecidos en el proceso

Tennessee-Eastman (Tabla 1). La capacidad de cada método para detectar

anomalías de manera fiable y rápida se mide con los estadísticos T² y Q, lo que

permite calcular el rendimiento.

Antes de abordar la implementación, haremos una breve mención de las

librerías más importantes que hemos empleado en los programas, todos ellos

desarrollados con Python 3.11:

➢ Numpy para el cálculo vectorial, matricial y tensorial a lo largo de todo

el trabajo.

o Versión: 1.26.4.

➢ Pandas para cargar los datos de la planta y para la división en bloques

de la 4.5.

o Versión: 2.1.4.

➢ Matplotlib para el dibujo de todos los gráficos de control y la

visualización de los resultados.

o Versión: 3.8.0.

➢ Tensorflow encargado de la computación numérica optimizada para el

aprendizaje profundo, es el encargado de administrar los recursos del

https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://www.tensorflow.org/?hl=es-419

54

equipo empleado y de ejecutar los modelos de los apartados 4.3, 4.4 y

4.5.

o Versión: 2.16.

➢ Keras, incluido dentro de Tensorflow, se emplea como interfaz de alto

nivel para definir las arquitecturas de las redes neuronales en las

secciones mencionadas anteriormente.

o Versión: 3.3.3.

➢ Pickle para guardar y serializar objetos de Python en un archivo binario

y luego poder desempaquetarlos más adelante, empleado en el

apartado 4.5 a la hora de empaquetar los datos del autoencoder

distribuido en un único archivo

o Versión: 3.8

 VARIABLE

MUESTRA 1 2 … 14 15 … 51 52

0 0.24889 3702.3 … 25.184 50.201 … 41.384 18.905

1 0.24904 3666.2 … 26.589 49.824 … 41.658 18.976

2 0.25034 3673.3 … 24.494 48.957 … 41.721 16.562

3 0.25109 3657.8 … 27.367 49.708 … 40.836 20.094

4 0.24563 3698 … 22.341 49.662 … 41.727 18.33

5 0.24759 3687.4 … 24.433 51.704 … 40.922 19.532

6 0.24689 3619.7 … 25.761 48.912 … 40.562 21.019

… … … … … … … … …

956 0.23352 3625.4 … 24.549 50.322 … 40.971 15.621

957 0.2344 3660.3 … 24.501 48.908 … 41.891 21.744

958 0.23611 3645 … 25.059 47.456 … 39.813 18.826

959 0.23729 3666.8 … 23.602 47.656 … 40.5 18.353

 Tabla 3. Datos del funcionamiento normal de la planta

4.2 PCA

Se ha puesto en práctica el método de Análisis de Componentes Principales

(PCA) como una herramienta para la detección de errores y la reducción de

dimensiones. Su operación se basa en determinar las direcciones de mayor

variabilidad de los datos del funcionamiento normal del proceso y

representarlas en un espacio más pequeño, manteniendo la información más

importante.

Es factible, a partir de este modelo reducido, cotejar datos nuevos con el

comportamiento normal aprendido y así identificar potenciales anomalías o

desvíos que revelen un fallo en el sistema.

https://keras.io/
https://docs.python.org/3/library/pickle.html

55

4.2.1 Entrenamiento

En la fase de entrenamiento, se ha utilizado el conjunto de datos

correspondiente al funcionamiento normal del proceso, como se observa en la

Tabla 3. Primero, las variables se normalizan restando la media y dividiendo

por la desviación típica, (2.9), de modo que todas contribuyan de forma

equilibrada al modelo.

A continuación, se calcula la matriz de covarianza (2.11) y se obtiene su

descomposición en valores singulares (SVD), a partir de la cual se seleccionan

los autovectores asociados a los mayores autovalores, que representan las

direcciones de máxima varianza del sistema (2.12) .

El número de componentes principales se establece automáticamente en base

al porcentaje acumulado de variabilidad, en este caso el 90%. Así, se mantiene

la mayoría de los datos útiles y se disminuye la complejidad del problema.

Con los componentes seleccionados se obtiene, la matriz de loadings 𝑃, la

matriz diagonal 𝑆 de varianzas principales (Figura 8) y los estadísticos de

control 𝑇 2 𝑦 𝑄 (o SPE, Squared Prediction Error), que cuantifican

respectivamente la variabilidad dentro y fuera del subespacio principal como

se observa en la Figura 23.

Figura 23. Estadísticos 𝑇2y Q en PCA. Funcionamiento normal

Finalmente, se calculan los umbrales de control a partir del percentil 99 % de

cada estadístico, almacenándose junto con los parámetros del modelo para su

posterior uso en la fase de detección.

56

4.2.2 Detección de Fallos

Después de que el modelo PCA ha sido entrenado, se pasa a la etapa de

detección, en la cual los parámetros adquiridos se aplican a un nuevo conjunto

de datos que representa una circunstancia del proceso que puede ser

anómala.

Primero, se cargan los datos de normalización del entrenamiento y, además,

las medias, desviaciones típicas, vectores de carga y límites de control que se

han guardado con anterioridad. Los registros del sistema se escalan con las

estadísticas del modelo, asegurando que sean coherentes con las condiciones

de entrenamiento.

Los estadísticos de control 𝑇2 y 𝑄 se determinan para cada observación, del

mismo modo que en el entrenamiento, con los mismos datos de normalización.

Ambos indicadores se comparan con sus respectivos umbrales de referencia,

los cuales son el percentil 99 % de los datos normales. Cuando el valor de

alguno de estos estadísticos supera el umbral ya mencionado, se entiende que

la muestra está fuera de control.

El estadístico 𝑇 2 evalúa la variabilidad de las observaciones dentro del

subespacio principal, permitiendo identificar desviaciones respecto al

comportamiento normal de las combinaciones lineales más significativas.

Por su parte, el estadístico 𝑄 mide el residuo o error de reconstrucción fuera

del subespacio principal, reflejando anomalías que no pueden explicarse

mediante las componentes seleccionadas.

A partir de ahora, vamos a representar gráficamente los resultados obtenidos

para los datos de fallo 6, 12 y 15, el resto lo representaremos mediante tablas.

En concreto para estos fallos los estadísticos T2 y Q se representan en las

Figuras 24, 25 y 26 respectivamente:

Figura 24. Detección del fallo IDV6 mediante PCA. Estadísticos 𝑇2 y Q

57

Figura 25. Detección del fallo IDV12 mediante PCA. Estadísticos 𝑇2 y Q

Figura 26. Detección del fallo IDV15 mediante PCA. Estadísticos 𝑇2 y Q

Luego, se lleva a cabo un análisis de la cantidad de alarmas falsas y verdaderas

para ambos estadísticos, diferenciando el área de funcionamiento normal del

área donde se introduce un error. Además, se define un criterio de fallo

sostenido: si una serie ininterrumpida de observaciones (como diez) excede el

umbral definido para un comportamiento normal, se establece el instante

exacto en que el sistema deja de operar con normalidad, como se observa en

la Tabla 4.

Finalmente, se realiza un diagnóstico del motivo del fallo a través del análisis

de los residuos sólo en el instante en que se detecta el fallo. Estos se

determinan proyectando las observaciones en el espacio ortogonal al

subespacio principal y calculando la contribución de cada variable al error total

como se ve en la Figura 27.

Lo que permite determinar las variables con mayor impacto en la desviación

detectada y, por lo tanto, los posibles motivos del error en el procedimiento.

Cabe destacar que esta contribución solamente es calculable si el modelo es

capaz de detectar los fallos.

58

Figura 27. Contribuciones de cada variable. Fallos IDV6 y 12 respectivamente

4.2.3 Resultados PCA

En base a los resultados, observamos que el PCA es capaz de identificar errores

en la mayoría de los IDs de fallo (Tabla 4), aunque presenta una media de

alarmas detectadas que es relativamente baja (Tabla 5).

 Detectado por 𝑻𝟐 Detectado por Q
Fallo FalsasA (%) Alarmas (%) t_Fallo(obs) FalsasA (%) Alarmas (%) t_Fallo (obs)

1 1,25 99,25 166 3,75 99,75 162

2 1,875 98,63 171 4,375 98,63 174

3 1,25 1,88 No Detect. 2,5 7,50 No Detect.

4 0,625 41,88 664 2,5 100,00 160

5 0,625 25,75 170 2,5 33,88 160

6 0,625 98,88 169 2,5 100,00 160

7 0 100,00 160 2,5 100,00 160

8 0 97,25 182 4,375 96,88 177

9 3,125 3,38 No Detect. 5 4,50 No Detect.

10 1,875 30,75 263 0 46,00 207

11 0 51,25 210 5 69,38 166

12 1,875 98,63 181 6,25 95,13 182

13 1,875 94,63 205 1,25 95,13 200

14 0,625 99,50 160 5 99,88 161

15 1,25 2,50 No Detect. 3,125 6,13 No Detect.

16 3,75 15,13 470 3,125 43,50 353

17 0,625 78,63 188 3,125 95,63 181

18 1,25 89,38 252 5,625 90,13 243

19 0,625 12,25 No Detect. 4,375 21,88 No Detect.

20 2,5 31,25 246 3,75 55,88 244

21 1,25 41,38 664 3,75 50,13 409

Tabla 4. Detección de fallos mediante PCA

59

Promedios PCA
 Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones)

𝑻𝟐 1,28 57,72 265,94

Q 3,54 67,14 205,82

Tabla 5. Resumen estadístico PCA

Total Fallos PCA

𝑻𝟐 17

Q 17

Tabla 6. Fallos detectados con PCA

Por otro lado, se ve que el método no es capaz de detectar 4 fallos (los fallos

3, 9, 15 y 19) ni con la estadística T2 ni con la Q (Tablas 5 y 6).

En las secciones que siguen, utilizaremos técnicas de aprendizaje profundo con

el objetivo de lograr una detección más precisa, dado que pueden aprender

patrones de mayor complejidad que los que pertenecen al PCA.

4.3 Autoencoder

La reducción de la dimensionalidad y la identificación de anomalías se llevan a

cabo utilizando el método del autoencoder denso, que es un enfoque no lineal.

El autoencoder, en contraste con el PCA, que se fundamenta en combinaciones

lineales de las variables, emplea una red neuronal con múltiples capas densas

conectadas simétricamente para adquirir una representación comprimida de

los datos de operación normal.

Durante el proceso de entrenamiento, la red se ajusta para reconstruir la

entrada a partir de su versión reducida, de modo que la información esencial

del sistema se concentre en las capas internas.

Esta habilidad de reconstrucción posibilita, más adelante, determinar

desviaciones importantes entre la señal original y la que ha sido reconstruida;

esto se convierte en el fundamento para detectar fallos.

4.3.1 Entrenamiento

El pretratamiento de los datos se realiza de manera idéntica en todos los

métodos, pero esta vez partimos de una matriz de datos mucho más grande,

de 250.000 observaciones exactamente, tanto para este autoencoder, como

60

para el resto, esto es asi porque para obtener un buen entrenamiento de la red

se necesita una gran cantidad de datos.

La arquitectura del autoencoder implementado está compuesta por una red

simétrica que tiene tres capas ocultas en el codificador y tres en el

decodificador siendo la representación latente (h) compartida en encoder y

decoder como vimos en la Figura 18, las cuales están organizadas con las

dimensiones mostradas en la Tabla 7.

Capa Nombre de capa
Tipo de

capa
Dimensión Función de activación Tipo

0 Input Entrada 52 ReLU Entrada

1 encoded1 Dense 48 ReLU Encoder

2 encoded2 Dense 35 LeakyReLU (α=0.1) Encoder

3 hidden (Dense) Dense 24 ReLU
Encoder
(hidden)

5 decoded2 Dense 35 ReLU Decoder

6 decoded1 Dense 48 Sigmoid Decoder

7 output Salida 52 - Salida

Tabla 7. Configuración Autoencoder

Las capas utilizan funciones de activación ReLU para las capas de codificación

lo que permite modelar relaciones no lineales complejas entre las variables y

LeakyReLU para la capa oculta con el objetivo de mitigar el problema del

desvanecimiento del gradiente mencionado anteriormente y finalmente

sigmoide en la salida.

La finalidad del modelo es la de reducir el error cuadrático medio (MSE) (2.40)

entre la entrada y la salida reconstruida, para ello, se entrena el modelo

utilizando Adam como optimizador, ya mencionado en el apartado 2.6.4.1 Adam

(Adaptive Moment Estimation).

En el entrenamiento, se deja un 20 % de los datos para validación. Con un

tamaño de lote de 64 muestras, el aprendizaje tiene lugar en un total de 30

épocas. El resultado de entrenamiento, se observa en la Figura 28, y se ve como

con la arquitectura de red seleccionada se consigue una convergencia rápida y

sin sobreajuste.

61

Figura 28. Curvas de pérdida en entrenamiento y validación del autoencoder

Después de que el entrenamiento ha concluido, se obtiene el codificador, que

convierte las observaciones iniciales en un espacio de dimensiones reducidas

ℎ. Entonces, se calcula la matriz de covarianza de las representaciones

comprimidas en este nuevo espacio.

Figura 29. Estadísticos 𝑇2y Q en Autoencoder. Funcionamiento normal

En función de ella, se establece el estadístico 𝑇2, que analiza la variabilidad en

el subespacio codificado, y el estadístico 𝑄, que calcula el residuo de

reconstrucción (diferencia entre entrada y salida) como se ve en la Figura 29,

pero esta vez ambos estadísticos han sido calculados como:

𝑇𝑖
2 = (ℎ𝑖 − 𝜇ℎ) ⋅ 𝑐𝑜𝑣(ℎ) ⋅ (ℎ𝑖 − 𝜇ℎ)𝑡 (4.1)

𝑄𝑖 = (𝑟𝑖 − 𝜇𝑟) ⋅ (𝑟 − 𝜇𝑟)𝑡 (4.2)

Siendo ℎ𝑖 la representación latente de la red, equivalente a los autovectores

obtenidos en PCA, 𝑟𝑖 el residuo calculado como 𝑋𝑛 − 𝑋 siendo 𝑋𝑛 la matriz de

62

datos normalizada correspondiente a la entrada de la red y 𝑋 la reconstrucción

del autoencoder. 𝜇ℎ y 𝜇𝑟 sus medias, respectivamente y 𝑐𝑜𝑣() la covarianza.

Los límites que determinan el funcionamiento normal del sistema se

establecen utilizando los percentiles 99 % del conjunto de entrenamiento, con

lo cual se obtienen los umbrales de control para ambos estadísticos.

Por último, se almacenan en archivos los modelos entrenados (autoencoder y

encoder) junto con los parámetros estadísticos y umbrales, que se utilizarán en

la fase de detección.

4.3.2 Detección de fallos

En la etapa de detección, se emplean los modelos que han sido entrenados

antes con un nuevo conjunto de datos con fallos.

Se normalizan las observaciones empleando los parámetros del conjunto de

entrenamiento y se proyectan en el espacio latente a través del codificador, lo

que produce sus reconstrucciones pertinentes con el autoencoder.

Con estos resultados, se vuelven a calcular los estadísticos de control 𝑇 2 y Q

para cada observación, y fallo utilizando las mismas pautas que durante el

entrenamiento. Ambos se comparan con sus límites respectivos para

establecer si el proceso está en un estado normal o descontrolado. Mostramos

los resultados de estas estadísticas junto con sus umbrales para los fallos 6,

12 y 15 en las figuras 30, 31, y 32 respectivamente. Destacando los instantes

en los que las observaciones superan los límites establecidos.

Figura 30. Detección del fallo IDV6 con Autoencoder. Estadísticos 𝑇2 y Q

63

Figura 31. Detección del fallo IDV12 con Autoencoder. Estadísticos 𝑇2 y Q

Figura 32. Detección del fallo IDV15 con Autoencoder. Estadísticos 𝑇2 y Q

Con base en estos gráficos, se cuentan las alarmas falsas (que corresponden

a superaciones del umbral en la zona de funcionamiento normal) y las alarmas

verdaderas (que son las que ocurren al sobrepasar el umbral en la zona de

fallo).

Asimismo, se aplica un criterio de error sostenido, para que, si una serie

continua de muestras (diez, por ejemplo) excede el umbral, se determine el

momento exacto en que el sistema falla, obteniendo para los 21 fallos los

estadísticos de la Tabla 8 y los estadísticos promedio de la Tabla 9 y la Tabla 10.

Por último, para determinar la causa del fallo, se examina el vector de residuos

que corresponde con el momento en que fue detectado.

Se representa en un gráfico de barras la contribución individual de cada

variable como se observa en la Figura 33, que se obtiene del cuadrado de los

residuos. Esto posibilita observar qué variables tienen mayor impacto en la

anomalía detectada, lo cual ayuda a identificar la causa del error. En este caso,

la Figura 33 nos indica que las variables 1 y 44 son las variables que provocan

el fallo 6, así como la variable 22 es la que provocó el fallo 12. El fallo 15 parece

ser provocado por demasiadas variables, por lo que no nos da mucha

información.

64

Figura 33. Contribuciones al fallo IDV6, IDV12 e IDV15 en Autoencoder

4.3.3 Resultados

Como hicimos antes, comentaremos algunos gráficos de control significativos

y pasaremos a ver los estadísticos de cada fallo y los generales.

El fallo 6 (Figura 30) se detecta de forma similar al método anterior, los tiempos

de observación son similares, sin embargo, las alarmas que detecta el

autoencoder son mucho mayores.

El fallo 12 (Figura 31) En este caso el estadístico 𝑇2 de PCA detecta un poco

mas rápido el fallo, sin embargo, es el estadístico Q del Autoencoder quien ha

sido capaz de detectar antes de forma general el fallo.

Por último, el fallo 15 (Figura 32) ahora pasa a ser detectado por el estadístico

Q lo que, junto al resultado del fallo 12, denota como el autoencoder es capaz

de almacenar más información que el método estadístico de PCA

De forma general observamos que el comportamiento del autoencoder es

superior al de PCA, si bien es cierto que este mantiene una mayor

homogeneidad en la detección de fallos con relación a sus estadísticos, el

autoencoder ha demostrado que el estadístico Q es superior a la hora de

detectar fallos, incurriendo en una mayor detección total de fallos. Por otro

lado, destacar que se han reducido drásticamente el índice de falsas alarmas,

especialmente en el estadístico T2.

65

 Detectado por 𝑻𝟐 Detectado por Q

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs)

1 0 99,25 166 1,25 99,50 164

2 0 98,25 174 1,25 98,50 172

3 0 1,00 No Detect. 5,625 6,13 No Detect.

4 0,625 1,88 No Detect. 2,5 70,50 165

5 0,625 22,63 172 2,5 100,00 160

6 0 99,63 168 0,625 100,00 160

7 0 84,00 160 0,625 99,88 160

8 0,625 97,00 181 0,625 98,00 179

9 1,25 1,38 No Detect. 11,875 6,88 120

10 1,25 18,38 261 1,25 77,00 184

11 0 11,75 No Detect. 0,625 55,25 255

12 0 95,13 191 4,375 99,00 162

13 0 93,63 206 0 95,13 203

14 0 99,75 161 0,625 99,88 161

15 0 0,25 No Detect. 0,625 10,13 802

16 2,5 3,63 No Detect. 25 79,13 170

17 0,625 72,25 186 0,625 91,25 183

18 0 89,13 250 1,875 89,75 244

19 0 2,00 No Detect. 0 56,38 170

20 0 25,00 252 0 71,25 231

21 0 20,38 848 7,5 38,38 674

Tabla 8. Detección de fallos mediante autoencoder

Promedios Autoencoder
 Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones)

𝑻𝟐 0,36 49,35 241,14

Q 3,30 73,42 235,95

Tabla 9. Resumen estadístico Autoencoder

Total Fallos Autoencoder

𝑻𝟐 14

Q 20

Tabla 10. Fallos detectados con Autoencoder

Las alarmas siguen la misma dinámica que los estadísticos, el autoencoder

detecta mayor porcentaje de forma absoluta con su estadístico Q, pero el 𝑇2de

PCA es superior detectando fallos.

66

4.4 Autoencoder Recurrente (RAE)

El modelo que se ha creado está fundamentado en una arquitectura de

autoencoder secuencial que se pone en práctica a través de redes LSTM (Long

Short-Term Memory). Estas redes son particularmente apropiadas para el

tratamiento de series temporales y señales que dependen del tiempo, porque

posibilitan la captura de relaciones dinámicas a través de diversas escalas

temporales.

El sistema está compuesto por dos segmentos fundamentales: el codificador

(encoder) y el decodificador (decoder), que están conectados mediante un

cuello de botella o capa latente, la cual funciona como una representación

comprimida de la serie de entrada. El propósito del modelo, en resumen, es

adquirir una representación eficaz de los datos temporales y usarla para

reconstruir la secuencia original.

4.4.1 Entrenamiento

Se emplean otra vez los datos del proceso en condiciones normales para

entrenar el modelo RAE. Se quitan las columnas iniciales que no aportan

información y se normalizan todas las variables entre 0 y 1 utilizando sus

valores máximos y mínimos.

Después, las observaciones se reestructuran en ventanas temporales

deslizantes de cinco muestras, permitiendo que el modelo capte dependencias

entre los valores presentes y los pasados de las variables a corto y medio plazo.

El codificador se compone de dos capas LSTM apiladas secuencialmente.

La capa inicial toma como entrada una secuencia de múltiples dimensiones y

produce una nueva secuencia de salida donde cada paso temporal se convierte

en un vector de activación con una dimensión constante. Esta capa utiliza una

función de activación no lineal conocida como Scaled Exponential Linear Unit

(SELU), que permite la auto-normalización de las activaciones y optimiza la

estabilidad en el proceso de entrenamiento.

La segunda capa LSTM recibe la secuencia generada por la primera y la

sintetiza en un solo vector de menor tamaño, extrayendo los datos más

significativos de toda la serie temporal. En esta etapa, el modelo deja de

devolver una secuencia y brinda en su lugar una representación latente fija,

que se considera el vector codificado del autoencoder o capa oculta.

67

El vector creado por el codificador simboliza el estado comprimido de la

secuencia original. Este vector incluye la información crucial para reconstruir la

señal de entrada con el mínimo de pérdida posible, funcionando como un

espacio latente de características del modelo.

Para el decodificador, primeramente, se emplea una capa de repetición

(Repeat Vector) que reproduce el vector latente el número de veces que la

secuencia de entrada tiene pasos temporales. Este proceso produce una

secuencia inicial artificial que será la entrada del decodificador en sí.

Se añaden dos capas LSTM más a continuación. La primera conserva la misma

dimensión que el vector latente, pero la segunda aumenta el número de

unidades de salida para acercarse gradualmente a la complejidad de la

secuencia inicial. Las dos capas utilizan, además, la activación SELU y

devuelven secuencias completas, lo que asegura que cada momento temporal

se reconstituyera de forma coherente a través del tiempo.

Por último, se añade una capa densa distribuida en el tiempo (TimeDistributed

Dense Layer), la cual se aplica de manera independiente a cada paso de la

secuencia que ha sido reconstruida. Esta capa envía los vectores de activación

del decodificador hacia el espacio de salida, creando una secuencia con la

misma dimensionalidad que la entrada inicial. Su activación es lineal porque el

propósito es reducir al mínimo el error de reconstrucción sin imponer

restricciones extra a los valores de salida. El resumen de la red con todas sus

capas y dimensiones se encuentra en la Tabla 11.

Capa Nombre de capa Tipo de capa Dimensión Función de activación Topi

0 Input Entrada (5, 52) — Entrada

1 encoded1 LSTM (5, 48) SELU Encoder

2 encoded2 LSTM 24 SELU
Encoder
(hidden)

3 repeat_vector RepeatVector (5, 24) — Decoder

4 decoded1 LSTM (5, 24) SELU Decoder

5 decoded2 LSTM (5, 48) SELU Decoder

6 output Dense 52 Lineal Salida

Tabla 11. Configuración del Autoencoder LSTM

La red se configura de manera que la salida del decodificador tenga la misma

forma que la secuencia de entrada.

68

Durante el entrenamiento, el modelo se optimiza mediante una función de

pérdida de tipo error cuadrático medio (Mean Squared Error, MSE), que

cuantifica la diferencia entre la secuencia original y su reconstrucción,

utilizando el optimizador Adam con una tasa de aprendizaje de 0.001.

Se emplea un 20 % de los datos como conjunto de validación para controlar el

sobreajuste, y el proceso se ejecuta durante 4 épocas con un tamaño de lote

de 32 muestras.

De esta forma, el autoencoder aprende a representar y reproducir las

dinámicas temporales de los datos, capturando las dependencias secuenciales

más relevantes dentro de un espacio de representación comprimido.

Al finalizar el entrenamiento, se evalúa la convergencia del modelo mediante

las curvas de pérdida de entrenamiento y validación, tal y como se ve en la

Figura 34.

Figura 34. Curva de pérdidas del modelo durante el entrenamiento.

A continuación, se genera el modelo encoder, que transforma cada secuencia

de entrada en un vector reducido que representa el estado dinámico del

sistema.

Sobre este espacio latente se calculan las estadísticas de control Hotelling’s

𝑇 2 y Q, que permiten cuantificar, respectivamente, la variabilidad explicada y

el error de reconstrucción de cada secuencia. Estas estadísticas calculadas

para el comportamiento normal de la planta se pueden ver en la Figura 35.

69

Figura 35. Estadísticos 𝑇2y Q en LSTM. Funcionamiento normal

Los umbrales de control se establecen en los percentiles 99 % para ambos

estadísticos, delimitando así el rango de funcionamiento normal.

Por último, los parámetros adquiridos (umbrales, medias, matrices de

covarianza y límites de normalización) y los modelos entrenados se guardan en

archivos para asegurar que estén disponibles para la etapa siguiente, que es

la detección de fallos.

4.4.2 Detección de Fallos

En primer lugar, se cargan los parámetros característicos obtenidos a lo largo

del entrenamiento (como las medias y covarianzas del espacio latente, los

límites superior e inferior de normalización y los umbrales de control para las

estadísticas Q y T), así como también los modelos que fueron almacenados

antes del autoencoder y su codificador correspondiente.

Se aplican los mismos límites utilizados en la fase de entrenamiento para

normalizar los datos nuevos, lo que asegura la coherencia entre los dos

conjuntos.

Las observaciones se reordenan después en secuencias temporales que tienen

la misma longitud que la ventana empleada por la LSTM, para que así el modelo

sea capaz de analizar cómo se comportan las variables de manera dinámica

dentro de cada intervalo.

El autoencoder recrea cada una de las secuencias de entrada y, con base en

estas reconstrucciones, se vuelven a calcular las estadísticas de control, de los

fallos 6, 12 y 15 tal y como se comenta en el apartado anterior (Figura 36, Figura

37 y Figura 38).

70

Figura 36. Detección del fallo IDV6 con LSTM. Estadísticos 𝑇2 y Q

Figura 37. Detección del fallo ID12 con LSTM. Estadísticos 𝑇2 y Q

Figura 38. Detección del fallo IDV15 con LSTM. Estadísticos 𝑇2 y Q

Para confirmar la presencia de un fallo se emplean los mismos criterios que en

los apartados anteriores y se obtienen las Tabla 12, 13 y 14.

El RAE no solo detecta desviaciones instantáneas, sino también patrones

anómalos en el tiempo. Una secuencia se considera anómala si su error de

reconstrucción acumulado excede los límites derivados de los datos de

entrenamiento, es por esto que Q suele ser más eficiente a la hora de detectar

fallos en este tipo de autoencoder.

71

En última instancia, realizamos la identificación de fallos sobre el conjunto

estudiado y en los dos que han sido detectados, representados en dos gráficos

de barras en la Figura 39.

Figura 39. Contribuciones al fallo en LSTM IDV6 e IDV12

En este caso, esta representación evidencia las variables que han sido más

contribuyentes en el fallo, en el caso del IDV6, las variables 36 y 42 han sido

quienes más han influido, mientras que en el caso del IDV12, la variable que

más ha contribuido ha sido la 40 seguida de la 37.

4.4.3 Resultados

El fallo 6 (Figura 36) se detecta de forma similar los métodos anteriores, los

tiempos de observación son similares, sin embargo, las alarmas que detecta el

autoencoder LSTM son similares al autoencoder.

En el fallo 12 (Figura 37) los dos estadísticos del autoencoder LSTM han

detectado más rápido los fallos que los dos modelos anteriores y además con

un porcentaje de alarmas superior

Por último, el fallo 15 (Figura 38) ahora vuelve a no ser detectado por el

estadístico Q, al igual que en PCA vemos que el autoencoder es superior a estos

dos en este caso.

72

 Detectado por 𝑇2 Detectado por Q

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs)

1 1,25 99,87 161 0 99,75 162

2 2,5 98,99 168 1,25 98,74 170

3 1,25 1,26 No Detect. 1,875 0,75 No Detect.

4 0 7,67 No Detect. 6,875 100,00 156

5 1,25 25,66 168 6,25 23,40 157

6 0 99,75 162 2,5 100,00 156

7 2,5 51,95 157 2,5 100,00 156

8 0 97,74 178 0 97,99 176

9 1,25 1,13 No Detect. 0 0,50 No Detect.

10 0 37,23 262 0,625 21,38 257

11 0,625 18,11 444 0 87,30 162

12 0,625 99,37 160 3,125 99,50 158

13 0 94,21 206 0 95,47 196

14 1,875 13,96 No Detect. 3,125 100,00 157

15 0,625 1,64 No Detect. 2,5 2,01 No Detect.

16 2,5 18,24 353 1,875 13,96 396

17 1,25 80,13 184 0 95,72 178

18 0 88,55 252 5 90,06 239

19 0 1,13 No Detect. 0 49,81 340

20 0 36,86 245 0 50,44 242

21 0 37,74 668 0,625 40,75 640

Tabla 12. detección de fallos mediante LSTM

Promedios LSTM

 Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones)

𝑇2 0,83 48,15 251,20

Q 1,82 65,12 227,67

Tabla 13. Resumen Estadístico LSTM

Total Fallos LSTM

𝑇2 15

Q 18

Tabla 14. Fallos detectados con LSTM

En vista a los resultados obtenidos, observamos que la red LSTM detecta

menor número de fallos que el autoencoder pero mayor numero que PCA de

forma global, vemos que los estadísticos siguen la misma dinámica que el

método anterior, Q es superior en los dos tipos de autoecoders, pero 𝑇 2 es

superior en PCA.

73

Por otra parte, si bien de forma general, el autoencoder ha detectado más fallos

y más alarmas también ha detectado más falsas alarmas, donde destaca el

LSTM por detectar un número mínimo de las mismas, especialmente en la

estadística Q.

4.5 RAE distribuido

4.5.1 Entrenamiento

La manera de entrenar es igual para los tres escenarios de variables

distribuidas (sesgo 1, sesgo 1.5 y sesgo 0.5), con la única diferencia en la

conformación de los grupos que se logran a través del método Minimum

Redundancy Maximum Relevance (mRMR), tal y como vimos en el apartado

2.8.1. Donde este sesgo, nos indica que umbral ponemos para decidir que

variables entran en cada bloque. Por ejemplo, si el sesgo es igual a 1, hemos

puesto como umbral el valor medio del índice mRMR (ImRMR), es decir, si entre

dos variables xi y xj el índice ImRMR es mayor que el umbral, la variable xj entra

en el bloque definido por la variable xi, si es menor no entra. Y esto se hace con

todas las variables.

En todos los casos, las variables elegidas se subdividen en distintos subgrupos

que posibilitan el desarrollo de un sistema de monitorización distribuida. En

este sistema, cada submodelo recoge dinámicas particulares de una porción

específica de la planta, Tablas 15, 16 y 17.

Se lleva a cabo una selección inicial de 240,000 muestras libres de fallos,

suprimiendo las columnas que no aportan información, al igual que en los

métodos anteriores, ya que necesitamos eliminar la mayor cantidad de ruido.

Los índices de las variables se agrupan en función de la estructura que

corresponde a cada sesgo (1, 1.5 o 0.5) y se crean matrices normalizadas 𝑋𝑖𝑛

para cada grupo i, según el resultado del mRMR, y se va a generar ahora un

autoencoder recurrente por cada bloque.

La función de entrenamiento de cada autoencoder LSTM es idéntica a la

empleada en el apartado 3, con la diferencia de que entrenamos un modelo de

autoencoder con diferente número de variables para cada bloque, por lo tanto,

hemos de emplear una configuración neuronal diferente para cada caso.

Para unificar el código y emplear unos números máximo y mínimo de neuronas

se han establecido los criterios para la arquitectura de todos los modelos de

autoencoder LSTM definidos en la Tabla 18.

74

Sesgo 1 Variables

X1 1, 44, 15, 49, 12, 48, 30, 37, 45

X2 3, 4, 7, 8, 10, 11, 13, 16, 18, 19, 22, 25, 31, 35, 43, 47, 50

X3 5, 17, 42, 46, 52

X4 2, 9, 21, 51

X5 20, 27, 28, 33, 34, 36

X6 6, 23, 24, 29, 38, 39, 41

X7 14, 26, 32, 40

Tabla 15. Agrupación de variables obtenida para Sesgo = 1 en mRMR

Sesgo 1,5 Variables

X1 1, 44, 14, 40, 15, 45,49

X2 7, 8, 10, 11, 13, 16, 18, 19, 22, 25, 31, 35, 43, 47, 50

X3 5, 17, 46, 52

X4 2, 9 ,21, 42, 51

X5 20, 27, 26, 33, 36

X6 4, 6, 23, 24, 38, 39, 41

X7 3, 29, 30, 34, 37

X8 12, 26, 42, 38

Tabla 16. Agrupación de variables obtenida para Sesgo = 1,5 en mRMR

Sesgo 0,5 Variables

X1 1, 2, 9, 14, 39, 44, 51

X2 8, 31, 4, 37, 22, 10, 25, 6, 43, 11, 18, 35, 50, 3, 47, 19,
16, 41, 29,7, 21, 13, 33, 20

X3 5, 46, 52, 42, 34, 17

X4 36, 27, 15, 28, 45, 26, 40, 23, 30, 38, 49

X5 32, 23, 12, 48
Tabla 17. Agrupación de variables obtenida para Sesgo = 0,5 en mRMR

Capa Nombre de capa Tipo de capa Dimensión
Función de
activación

Tipo

0 Input Entrada (5, input_dim) — Entrada

1 encoded1 LSTM [5,(max (input_dim / 1.3), 4)] SELU Encoder

2 encoded2 LSTM (max (input_dim / 3), 2) SELU
Encoder
(hidden)

3 repeat_vector RepeatVector [5, (max (input_dim / 3), 2)] — Decoder

4 decoded1 LSTM [5, (max (input_dim / 3), 2)] SELU Decoder

5 decoded2 LSTM [5,(max (input_dim / 1.3), 4)] SELU Decoder

6 output Dense 52 Lineal Salida

Tabla 18. Arquitectura encoders DLSTM

75

Tras el entrenamiento se generan tantos autoencoders LSTM como grupos de

variables tengamos por sesgo y se obtienen las series de estadísticos 𝑇2𝑦 𝑄

para cada grupo y sus umbrales, los cuales emplearemos mas adelante para

la detección por grupos.

Finalmente se aplica un esquema de inferencia bayesiana, tal y como se

describe en el apartado 2.8.2, para combinar la información procedente de

todos los bloques en una única decisión global sobre el estado del proceso. De

esta manera obtenemos los BICS de T² y Q, los cuales son equivalentes a los

estadísticos de los apartados anteriores y sus umbrales (que en este caso

corresponde al valor 1-, donde  es el grado de precisión deseado, en este

caso 0.5), los cuales emplearemos más adelante en la detección de fallos, del

mismo modo que en los apartados anteriores.

Entonces se almacenan todos los datos obtenidos en un fichero para la

posterior detección, el cual incluye: los modelos de encoders y decoders,

estadísticos y umbrales por grupo y BICs.

4.5.2 detección de Fallos

Se lleva a cabo la identificación de errores en los tres esquemas distribuidos

mediante el empleo de los modelos que han sido entrenados previamente en

cada conjunto de variables.

El propósito de este método es crear un mecanismo de diagnóstico que pueda

combinar información proveniente de cada submodelo local y producir un

índice total más resistente frente a interrupciones o errores de diferentes tipos.

4.5.2.1 Detección de fallos por grupo

En primer lugar, realizamos la detección con los estadísticos de cada subgrupo

para todos los fallos, este procedimiento es idéntico al realizado en los

apartados anteriores, ya que la detección se realiza con los estadísticos 𝑇2𝑦 𝑄

de cada subgrupo y sus umbrales en cada agrupación obtenida en mRMR por

sesgo, representando la detección del fallo IDV6 obtenemos las figuras 40, 41

y 42.

76

77

Figura 40. Estadísticos 𝑇 2 y Q fallo IDV6 (Sesgo=1)

Como se observa en este caso, la mayoría de los grupos detectan el fallo, pero

el grupo 7 no, esto es debido a que no todas las variables contribuyen al fallo

de la misma manera y al distribuir el método, conseguimos aislar que grupos

presentan mayor susceptibilidad al fallo.

78

Figura 41. Estadísticos 𝑇2 y Q fallo IDV6 (Sesgo=1,5)

79

En este caso vemos que todos los grupos detectan fallo menos el grupo 8, el

cual, tal y como podemos observar en las Tabla 15 y 16 comparte variables con

el grupo 7, el cual no detectaba fallo en la agrupación de sesgo 1.

Figura 42. Estadísticos 𝑇2 y Q fallo IDV6 (Sesgo=0,5)

En este caso es el grupo 5 el que no detecta fallo para el mismo ID de fallo, por

lo tanto, vemos que los datos contenidos en el subgrupo son los únicos que no

contribuyen al fallo.

80

Del mismo modo que en los apartados anteriores, se ha realizado el cálculo de

las contribuciones al fallo para cada grupo de variables en cada sesgo y fallo,

que se obtiene del cuadrado de los residuos.

Esto posibilita observar qué variables tienen mayor impacto en la anomalía

detectada, lo cual ayuda a identificar la causa del error, como el grupo de

variables es menor las gráficas representadas son mas esclarecedoras ya que

permiten una mejor discriminación entre variables adyacentes.

Debido al gran número de gráficas obtenidas, se ha tomado como ejemplo el

fallo IDV6, donde se ha detectado que el bloque 1 ha sido el mayor

contribuyente a la producción del mismo, por ende, representando la

contribución al fallo del bloque 1 para cada uno de los sesgos, obtenemos la

Figura 43:

Figura 43. Contribuciones al fallo grupo X1 IDV6

Se observa claramente la importancia de las variables 1 y 2 en la producción

del fallo, por lo tanto, podríamos concluir que son las causantes directas del

mismo.

A continuación, presentamos la lista de los fallos detectados con los distintos

sesgos (Tabla 19, 20 y 21), pudiendo observar que bloques contribuyen al fallo.

81

 Grupo
Fallo

X1 X2 X3 X4 X5 X6 X7

1 SI SI SI SI SI SI SI
2 SI SI SI NO SI SI NO

3 NO NO NO NO NO NO NO
4 NO NO NO SI NO NO NO
5 SI SI SI SI SI SI NO

6 SI SI SI SI SI SI SI
7 SI SI SI SI SI SI SI
8 SI SI SI SI SI SI SI

9 NO NO NO NO NO SI NO
10 SI SI SI NO SI SI NO
11 NO NO NO SI NO NO NO

12 SI SI SI SI SI SI SI
13 SI SI SI SI SI SI SI
14 NO NO NO SI NO NO NO

15 NO SI NO NO SI NO NO
16 NO SI SI NO SI SI NO
17 NO SI SI SI NO NO NO

18 SI SI SI SI SI SI SI
19 NO NO SI SI NO NO NO
20 NO SI SI NO SI NO NO

21 NO SI NO SI SI NO NO

Tabla 19. Detección por bloque sesgo 1

Observamos que hay fallos que sólo impactan a un grupo de variables y que

solamente algunos bloques los detectan, como el 4, el 9 o el 11. En cambio,

otros fallos, como el 6, el 7 y el 12, tienen un impacto más amplio en las

variables del proceso.

Se nota, además, que algunos bloques identifican la mayor parte de los errores;

en este caso, el bloque 2. En cambio, otros tienen una contribución más baja:

por ejemplo, el bloque 7 solo detecta 7 fallos.

Es notable que el bloque 4, a pesar de contener solo 5 variables, sea de los

más propensos a fallos (14, junto con el bloque 3, 4 y 5). Esto nos indica que

las variables del cuarto bloque son muy relevantes para la detección.

82

 Grupo
Fallo

X1 X2 X3 X4 X5 X6 X7 X8

1 SI SI SI SI SI SI SI NO
2 SI SI SI SI SI SI SI NO

3 NO NO NO NO NO NO NO NO
4 NO NO NO SI NO NO NO NO
5 SI SI SI SI SI SI SI SI

6 SI SI SI SI SI SI SI NO
7 SI SI SI SI SI SI SI SI
8 SI SI SI SI SI SI SI SI

9 NO NO NO NO NO NO NO NO
10 SI SI SI NO SI SI SI NO
11 NO NO NO SI NO NO NO NO

12 SI SI SI SI SI SI SI SI
13 SI SI SI SI SI SI SI SI
14 NO NO NO SI NO NO NO NO

15 NO NO NO NO NO NO NO NO
16 NO SI SI NO SI SI SI NO
17 NO SI SI SI SI SI NO NO

18 SI SI SI SI SI SI SI SI
19 NO NO SI SI NO NO NO NO
20 NO SI SI NO SI NO NO NO

21 NO SI SI NO SI NO NO NO

Tabla 20. Detección por bloque sesgo 1,5

En este caso la detección de fallos por grupos es similar al anterior, la principal

diferencia reside en que el grupo 8 es quien detecta menos fallos en vez del 7

en el apartado anterior, sin embargo, ningún grupo ha sido capaz de detectar

los fallos en los IDs 3, 9 y 15, a diferencia del anterior, donde el grupo 4 si ha

detectado fallo en los ID 9 y 15.

Por último, con el sesgo 0,5, es decir un umbral por debajo del valor medio,

vemos que el grupo 1 es quien detecta la mayor cantidad de fallos y el 5 la

menor, también vemos que con respecto al sesgo 1 se deja de detectar el fallo

9.

83

 Grupo
Fallo

X1n X2n X3n X4n X5n

1 SI SI SI SI SI
2 SI SI SI SI SI

3 NO NO NO NO NO

4 SI NO NO NO NO
5 SI SI SI SI SI

6 SI SI SI SI SI

7 SI SI SI SI SI
8 SI SI SI SI SI

9 NO NO NO NO NO

10 SI SI SI SI NO
11 SI NO NO NO NO

12 SI SI SI SI SI

13 SI SI SI SI SI
14 SI SI NO NO NO

15 SI NO NO NO NO

16 SI SI SI SI NO
17 SI SI NO NO NO

18 SI SI SI SI SI

19 NO NO SI NO NO
20 SI SI SI NO NO

21 NO SI SI NO NO

Tabla 21. Detección por bloque sesgo 0,5

4.5.2.2 Detección de fallos global mediante BICs

Después, mediante la combinación de índices estadísticos individuales por

medio de los Coeficientes de Influencia Bayesianos (BIC), realizaremos el

mismo procedimiento que en los apartados anteriores

Los pasos que se describen a continuación son los que se siguen en el proceso

integral de detección, aplicado a todos los escenarios de fallo. Primero, para

cada uno de los 21 errores del Tennessee Eastman Process, se carga el archivo

de datos correspondiente. Se lleva a cabo la normalización con los valores

máximo y mínimos conseguidos en el periodo de entrenamiento, asegurando

así la coherencia en relación al espacio en que fueron entrenados los

autoencoders.

Luego, se extraen de cada conjunto solo las variables que forman parte del

subconjunto definido por mRMR y se crean las secuencias temporales

requeridas para la evaluación de los modelos LSTM.

84

Se examina cada subgrupo de manera independiente, empleando el

autoencoder LSTM preparado para ese conjunto, el codificador relacionado y

los parámetros estadísticos que se obtuvieron durante el entrenamiento.

A partir de las reconstrucciones, como ya se explicó en el apartado 4.4.2 se

calculan los estadísticos para cada grupo, debido a que los autoencoders

tienen la capacidad de generar secuencias de longitudes variadas (a causa del

windowing), las series T² y Q de cada grupo se reducen a la longitud mínima

compartida y se almacenan en una matriz.

Se utilizan los BIC sobre las matrices previamente mencionadas para

determinar un indicador global de diagnóstico. Esta combinación, mediante la

ponderación de la aportación de cada grupo según su comportamiento

estadístico bajo condiciones normales, produce dos señales globales para la

monitorización:

• 𝐵𝐼𝐶_𝑇 2: combinación de 𝑇 2 distribuidos a través de un enfoque

bayesiano.

• 𝐵𝐼𝐶_𝑄: combinación de Q distribuidos por medio de Bayes.

Los umbrales globales 𝑢𝐵𝐼𝐶_𝑇2 y 𝑢𝐵𝐼𝐶_𝑄 adquiridos en la fase de

entrenamiento, se emplean como criterio final de decisión. Graficando el fallo

IDV6 obtenemos las siguientes representaciones correspondientes a los casos

de sesgo 1 (Figura 44), sesgo 1,5 (Figura 45) y sesgo 0,5 (Figura 46).

Figura 44. Detección del fallo IDV6 con DLSTM1. BIC_T2 y BIC_Q

Figura 45. Detección del fallo IDV6 con DLSTM2. BIC_T2 y BIC_Q

85

Figura 46. Detección del fallo IDV6 con DLSTM3. BIC_T2 y BIC_Q

En el caso del fallo IDV12, también representado en los métodos anteriores

obtenemos la Figura 47, 48 y 49.

Figura 47. Detección del fallo IDV12 con DLSTM1. BIC_T2 y BIC_Q

Figura 48. Detección del fallo IDV12 con DLSTM2. BIC_T2 y BIC_Q

Figura 49. Detección del fallo IDV12 con DLSTM3. BIC_T2 y BIC_Q

86

Por último, representamos el fallo IDV15, también representado en todos los

métodos empleados en el que no se detecta fallo, figuras 50, 51 y 52.

Figura 50. Detección del fallo IDV15 con DLSTM1. BIC_T2 y BIC_Q

Figura 51. Detección del fallo IDV15 con DLSTM2. BIC_T2 y BIC_Q

Figura 52. Detección del fallo IDV15 con DLSTM3. BIC_T2 y BIC_Q

Se han utilizado las tres mismas métricas estándar para cada error:

1. Falsas alarmas: Se examina el porcentaje de muestras en la ventana

inicial normal (160 muestras) que sobrepasan el umbral sin error.

2. Alarmas identificadas: Se estima el porcentaje de muestras posteriores

a la ventana normal que superan su umbral determinado.

3. Instante de detección: Se considera como el índice de la secuencia

inicial de diez muestras sucesivas que sobrepasan el límite del BIC. Esto

posibilita una detección más sólida y menos susceptible al ruido.

Estas métricas se han calculado tanto para BIC_T2 como para BIC_Q,

obteniendo así seis indicadores por cada uno de los 21 fallos analizados como

se ve en las Tablas 22 a 30.

87

4.5.3 Resultados

El fallo 6 (Figura 44, 45 y 46) se detecta de forma similar para todas las

agrupaciones de variables y al modelo no distribuido

En el fallo 12 (Figura 47, 48 y 49) es detectado también de forma similar en

todos los grupos y también de forma similar al modelo no distribuido

Por último, el fallo 15 (Figura 50, 51 y 52) ahora vuelve a no ser detectado por

el estadístico Q, al igual que en PCA vemos que el autoencoder es superior a

estos dos en este caso.

 Detectado por 𝑇2 Detectado por Q

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs)

1 1,875 99,245 166 1,25 99,874 161
2 3,125 98,994 168 0 98,742 170
3 1,875 0,377 No Detect. 1,25 1,006 No Detect.
4 1,875 32,83 496 2,5 100 156
5 0,625 22,39 171 1,875 30,189 157
6 1,25 100 158 2,5 100 156
7 1,875 38,113 157 2,5 100 156
8 0 97,736 178 0 97,862 177
9 1,875 0,881 No Detect. 0,625 1,132 No Detect.

10 0,625 29,308 300 0 24,025 258
11 2,5 54,591 163 0,625 91,447 162
12 0 96,981 182 1,25 99,748 158
13 0,625 94,843 204 0 95,094 199
14 0,625 41,887 No Detect. 2,5 100 156
15 1,25 2,013 No Detect. 1,25 1,761 No Detect.
16 0,625 13,836 465 0 20,881 362
17 0,625 79,874 179 0,625 96,981 177
18 0,625 89,811 248 0 90,189 238
19 0 1,635 No Detect. 0,625 58,239 173
20 0 33,711 244 0 39,623 245
21 0 32,075 708 0 41,258 641

Tabla 22. Detección de Fallos mediante DLSTM1

Total Fallos DLSTM1

𝑇2 16

Q 18
Tabla 23. Fallos detectados por DLSTM1

88

 Promedios DLSTM1

 Estadístico Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones)

𝑇2 1,04 50,53 261,69

Q 0,92 66,10 216,78

Tabla 24. Resumen estadístico DLSTM1

Se observa que la detección de fallos en el modelo distribuido, empleando los

BICs es similar al autoencoder LSTM, los tiempos de detección, numero de

fallos detectados y porcentaje de alarmas son muy similares.

 Detectado por 𝑇2 Detectado por Q

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs)

1 0,625 99,497 164 0 99,874 161
2 1,875 98,868 169 2,5 99,119 167
3 1,875 1 No Detect. 0 1,258 No Detect.
4 0,625 18,868 497 2,5 100 156
5 1,25 24,025 175 1,875 33,836 157
6 1,25 100 159 2,5 100 156
7 0,625 38,113 160 2,5 100 156
8 0 97,358 179 0 97,736 178
9 0,625 0,252 No Detect. 0,625 0,755 No Detect.

10 0 25,66 258 0 33,585 206
11 1,875 30,818 166 0,625 90,566 161
12 0,625 95,346 186 2,5 99,748 158
13 0 94,969 204 0 94,969 199
14 1,875 14,088 No Detect. 3,125 100 156
15 0 0,629 No Detect. 0,625 1,509 No Detect.
16 0,625 12,956 468 0,625 25,535 365
17 1,25 76,478 179 1,25 96,604 177
18 1,25 88,931 251 0 90,314 237
19 3,125 5,031 No Detect. 0 60,377 173
20 1,875 50,566 237 0 40,126 244
21 0 38,742 673 0 40,503 642

Tabla 25. Detección de Fallos mediante DLSTM2

Total Fallos DLSTM2

𝑇2 16

Q 18

Tabla 26. Fallos detectados por DLSTM2

89

 Promedios DLSTM2

Estadístico Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones)

𝑇2 1,01 48,20 257,81

Q 1,01 66,97 213,83

Tabla 27. Resumen estadístico DLSTM2

En el caso del grupo de sesgo 0,5 (DLSTM3) se observa un menor número de

detecciones que en los dos anteriores, esto puede deberse a que las

agrupaciones de variables tienen una menor correlación entre ellas dentro del

proceso, por lo tanto, al separarlas del resto de variables limitan el aprendizaje

de la red neuronal.

 Detectado por 𝑇2 Detectado por Q

Fallo FalsasA (%) Alarmas(%) t_Fallo(obs) FalsasA(%) Alarmas(%) t_Fallo(obs)

1 0,625 99,748 162 5 100 160
2 3,75 98,868 169 0 98,868 170
3 0 1,006 No Detect. 0 0,126 No Detect.
4 1,875 0,377 No Detect. 2,5 100 156
5 1,875 25,031 168 1,875 27,296 157
6 0,625 99,497 164 2,5 100 156
7 2,5 42,013 157 2,5 100 156
8 0 97,61 179 0 97,987 176
9 0 0,377 No Detect. 1,25 1,635 No Detect.

10 0,625 33,459 261 0 18,994 262
11 0 1,761 No Detect. 1,25 90,314 162
12 0 95,975 184 1,875 99,623 158
13 0 94,34 205 0 95,346 201
14 1,875 1,509 No Detect. 2,5 100 157
15 0 3,648 No Detect. 0 1,635 No Detect.
16 3,125 13,962 466 0,625 15,723 365
17 1,25 57,233 187 0 96,101 179
18 0 89,182 252 1,25 90,063 239
19 0 1,635 No Detect. 0 54,717 172
20 1,25 49,937 236 0 39,623 246
21 2,5 35,472 676 0,625 41,006 642

Tabla 28. Detección de Fallos mediante DLSTM3

Total Fallos DLSTM3

𝑇2 14

Q 18

Tabla 29. Fallos detectados DLSTM3

90

 Promedios DLSTM3

Estadístico Falsas Alarmas (%) Alarmas (%) Tiempo de detección (observaciones)

𝑇2 1,04 44,89 247,57

Q 1,13 65,19 217,44

Tabla 30. Resumen Estadístico DLSTM3

91

Capítulo 5. Conclusiones y trabajo futuro

5.1 Conclusiones

El presente trabajo ha abordado la monitorización de procesos industriales

mediante técnicas de detección de fallos basadas en datos, utilizando el

proceso Tennessee-Eastman (TE) como caso de referencia. A lo largo del

estudio se han comparado métodos clásicos y modernos con el objetivo de

evaluar su eficacia en la identificación de anomalías.

Método Falsas Alarmas 𝑻𝟐 (%) Alarmas (%) 𝑻𝟐

PCA 1,28 57,72

Autoencoder 0,36 49,35

LSTM 0,83 48,15

DLSTM (Sesgo=1) 1,04 50,53

DLSTM (Sesgo=1,5) 1,01 48,20
DLSTM (Sesgo=0,5) 1,04 44,89

Tabla 31. Sumario de alarmas detectadas por T

Método Falsas Alarmas Q (%) Alarmas (%) Q

PCA 3,54 67,14

Autoencoder 3,30 73,42

LSTM 1,82 65,12

DLSTM (Sesgo=1) 0,92 66,10

DLSTM (Sesgo=1,5) 1,01 66,97
DLSTM (Sesgo=0,5) 1,13 65,19

Tabla 32. Sumario de alarmas detectadas por Q

Método Fallos detectados 𝑻𝟐 Fallos detectados Q

PCA 17 17

Autoencoder 14 20

LSTM 15 18

DLSTM (Sesgo=1) 16 18

DLSTM (Sesgo=1,5) 16 18
DLSTM (Sesgo=0,5) 14 18

Tabla 33. Sumario de fallos detectadas por método

Los resultados obtenidos, reflejados en las Tablas 31, 32 y 33 pueden

resumirse en los siguientes puntos:

92

1. PCA demostró ser un método eficaz en la reducción de dimensionalidad

y en la detección de fallos lineales, pero su capacidad se ve limitada en

presencia de relaciones no lineales o de carácter dinámico. Aun así, su

bajo coste computacional lo hace un método muy a tener en cuenta a

la hora de detectar fallos, es por eso por lo que hoy en día se sigue

empleando en numerosos procesos industriales.

2. El autoencoder clásico superó al PCA en escenarios con dependencias

complejas, logrando una mejor reconstrucción de los datos y una mayor

sensibilidad frente a ciertos fallos. Sin embargo, su ausencia de

memoria temporal restringe su aplicación en procesos con secuencias

dependientes.

3. Los RAE (Recurrent Autoencoders), introducidos a continuación,

ofrecieron un rendimiento ligeramente inferior al autoencoder de capas

densas en la detección de fallos con evolución temporal, si bien este es

capaz de capturar patrones dinámicos que los enfoques anteriores no

conseguían modelar con precisión, no ha conseguido los resultados

esperados aunque podemos destacar que ha sido más preciso a la hora

de detectarlos, dado que las falsas alarmas producidas por este método

han sido menores.

4. La extensión mediante RAE distribuidos ha permitido escalar el modelo

a sistemas de gran dimensionalidad, aportando interpretabilidad y

facilitando la localización de fallos en bloques específicos de variables.

Este enfoque distribuye la complejidad computacional y mejora la

robustez del diagnóstico. Si bien los resultados esperados no han sido

los obtenidos, ha obtenido resultados globales similares al LSTM no

distribuido, con la ventaja de acotar los grupos de variables más

influyentes en el fallo.

En conjunto, se concluye que la incorporación de modelos recurrentes y de

esquemas distribuidos constituye una mejora sustancial respecto a los

enfoques tradicionales, contribuyendo a aumentar la fiabilidad, la seguridad y

la eficiencia en la operación de procesos industriales.

5.2 Trabajo futuro

A partir de los resultados obtenidos, se plantean diversas líneas de

investigación orientadas a ampliar y consolidar las aportaciones realizadas:

1. Mejora de arquitecturas: RAE: Investigar configuraciones más complejas

o mixtas (fusionando CNN y RNN) o mediante RVAE para optimizar la

habilidad de representación de secuencias.

93

2. Puesta en práctica en tiempo real: trasladar los modelos a ambientes

industriales con limitaciones de recursos computacionales y latencia,

analizando su factibilidad práctica.

3. Integración de modelos: Con el fin de lograr diagnósticos más

exhaustivos, fusionar los RAE con otras metodologías de detección,

como los métodos basados en grafos o los modelos probabilísticos.

4. Generalización a otros procesos: verificar la solidez y la capacidad de

transferir los resultados mediante la validación del método en otras

plantas piloto y procesos industriales que no sean el Tennessee-

Eastman.

5. Monitoreo explicable: analizar métodos de interpretabilidad que

posibiliten entender cómo los modelos identifican anomalías, lo que

favorece la adopción en el sector industrial y mejora la confianza de los

trabajadores.

94

Bibliografía

[1] American Society for Quality (ASQ), “History of Quality.” [Online]. Available:

https://asq.org/quality-resources/history-of-quality. [Último acceso: 3-Sep-

2025].

[2] M. P. Crosby, The History of Quality Management. Juran Institute, 2019.

[Online]. Available: https://www.juran.com/blog/quality-management-system/

[Último acceso: 3-Sep-2025].

[3] W. A. Shewhart, Economic Control of Quality of Manufactured Product. New

York, NY, USA: D. Van Nostrand Company, 1931. [Online]. Available:

https://archive.org/details/economiccontrolo00shew. [Último acceso: 3-Sep-

2025].

[4] P. D. Houston, “The Quality Revolution in Japan: The Contributions of Deming

and Juran,” Peoria Magazines, 2018. [Online]. Available:

https://www.peoriamagazines.com/article/quality-revolution-japan-

contributions-deming-and-juran. [Último acceso: 6-Sep-2025].

[5] https://blog.softexpert.com/es/que-es-ciclo-pdca/

[6] Juran Institute, “History of Joseph M. Juran.” [Online]. Available:

https://www.juran.com/about-us/dr-jurans-history/. Último acceso: 6-Sep-

2025].

[7] International Organization for Standardization (ISO), “ISO 9000 Quality

management.” [Online]. Available: https://www.iso.org/iso-9001-quality-

management.html. [Último acceso: 7-Sep-2025].

[8]https://corporatefinanceinstitute.com/resources/management/total-

quality management-tqm/

[9] R. Karapetrovic, “ISO 9000: Evolution and Future Directions,” Quality

Management Journal, vol. 22, no. 1, pp. 30–40, 2015.

[10] H. F. Dodge and H. G. Romig, Sampling Inspection Tables: Single and

Double Sampling. New York, NY, USA: Wiley, 1959.

[11] ScienceDirect, “Quality Control – An Overview.” [Online]. Available:

https://www.sciencedirect.com/topics/engineering/quality-control. [Último

acceso: 18-Sep-2025].

https://asq.org/quality-resources/history-of-quality
https://www.juran.com/blog/quality-management-system/
https://archive.org/details/economiccontrolo00shew
https://www.peoriamagazines.com/article/quality-revolution-japan-contributions-deming-and-juran
https://www.peoriamagazines.com/article/quality-revolution-japan-contributions-deming-and-juran
https://blog.softexpert.com/es/que-es-ciclo-pdca/
https://www.juran.com/about-us/dr-jurans-history/
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/iso-9001-quality-management.html
https://corporatefinanceinstitute.com/resources/management/total-quality%20management-tqm/
https://corporatefinanceinstitute.com/resources/management/total-quality%20management-tqm/
https://www.sciencedirect.com/topics/engineering/quality-control?utm_source=chatgpt.com

95

[12] M. S. Phadke, Quality Engineering Using Robust Design. Englewood Cliffs,

NJ, USA: Prentice-Hall, 1989.

[13] Carro Paz, R. & González Gómez, D. “Control Estadístico de Procesos”,

Universidad Nacional de Mar del Plata, recuperado en:

https://nulan.mdp.edu.ar/id/eprint/1617/1/12_control_estadistico.pdf

[14] J. F. MacGregor and T. Kourti, "Statistical process control of multivariate

processes," Control Engineering Practice, vol. 3, no. 3, pp. 403–414, 1995.

[15] S. W. Mason and N. D. Young, Multivariate Statistical Process Control with

Industrial Applications. Philadelphia, PA, USA: ASA-SIAM, 2002.

[16] H. Hotelling, “Multivariate quality control—illustrated by the air testing of

sample bombsights,” in Techniques of Statistical Analysis, C. Eisenhart, M. W.

Hastay, and W. A. Wallis, Eds. New York, NY, USA: McGraw-Hill, 1947, pp. 111–

184.

[17] E. Jackson, A User’s Guide to Principal Components. New York, NY, USA:

Wiley, 1991.

[18] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA:

Springer, 2002.

[19] Charles Gauvin. Distances and outlier detection. 2021. url: https://www.

charlesgauvin.ca/post/distances-and-outlier-detection/ [Ultimo acceso: 10-10-

2025]

[20] K. Pearson, “On lines and planes of closest fit to systems of points in

space,” Philosophical Magazine, vol. 2, no. 11, pp. 559–572, 1901.

[21] Davide Massidda. Multivariate Process Control by Principal Component

Analysis Using T² and Q errors. 2023. url:

https://towardsdatascience.com/multivariate-process-control-by-principal-

component-analysis-using-t%C2%B2-and-q-errors-c94908d14b04 (Ultimo

Acceso: 13-10-2025).

[22] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133,

1943.

96

[23] F. Rosenblatt, “The perceptron: A probabilistic model for information

storage and organization in the brain,” Psychological Review, vol. 65, no. 6, pp.

386–408, 1958.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[25] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural

Networks,” in Proceedings of the 14th International Conference on Artificial

Intelligence and Statistics (AISTATS), vol. 15 of JMLR: W&CP 15, Fort

Lauderdale, FL, USA, 2011, pp. 315–323.

[26] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,

USA: Springer, 2006.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,

USA: MIT Press, 2016.

[28] S. Haykin, Neural Networks and Learning Machines, 3rd ed., Pearson,

2009

[29] A. Zhang, Z. C. Lipton, M. Li y A. J. Smola, «Dive into Deep Learning,» [En

línea]. Available: https://d2l.ai/chapter_recurrent-modern/lstm.html. [Último

acceso: 14 10 2025].

[30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual

information: Criteria of max-dependency, max-relevance, and min-redundancy,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8,

pp. 1226–1238, 2005.

[32] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press,

2012.

[33] J. A. Barreto, E. L. Lima, y F. C. F. Silva, “A Bayesian inference approach for

multivariate process monitoring using decentralized statistics,” Journal of

Process Control, vol. 24, no. 8, pp. 1253–1263, 2014.

97

[34] Z. Ge, Z. Song, y F. Gao, “Review on data-driven modeling and monitoring

for plant-wide industrial processes,” Chemometrics and Intelligent Laboratory

Systems, vol. 171, pp. 16–25, 2017

[35] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control

problem,” Computers & Chemical Engineering, vol. 17, no. 3, pp. 245–255,

1993, doi: 10.1016/0098-1354(93)80018-I.

[36] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study

of basic data-driven fault diagnosis and process monitoring methods on the

benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22,

no. 9, pp. 1567–1581, 2012.

[37] C. Aldrich, Process Fault Diagnosis for Continuous Dynamic Systems

Over Multivariate Time Series, in C.-K. Ngan (ed.), Rijeka, Croatia: IntechOpen,

2019, ch. 1, doi: 10.5772/intechopen.85456.

[38] H. Chen, P. Tiňo, and X. Yao, “Cognitive fault diagnosis in Tennessee

Eastman Process using learning in the model space,” Computers & Chemical

Engineering, vol. 67, pp. 33–42, 2014, doi:

10.1016/j.compchemeng.2014.03.015.

[39] Massachusetts Institute of Technology – Braatz Group, “Braatz Group

Data.” [Online]. Available: http://web.mit.edu/braatzgroup/links.html. [Último

acceso: 30-10-2025].

[40] Harvard University, “Harvard Dataverse Dataset,” doi:

10.7910/DVN/6C3JR1. [Online]. Available:

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN

/6C3JR1. [Último acceso: 30-10-2025].

ChatGPT (OpenAI 2023) se utilizó para generar ideas iniciales y refinar la

redacción de este trabajo. ChatGPT. (GPT-4). OpenAI. 27 de mayo de 2025. [En

línea]. 2023. Disponible en: https://chatgpt.com

http://web.mit.edu/braatzgroup/links.html
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
https://chatgpt.com/

