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Resumen

Este estudio examina diversas metodologias de deteccion de errores
fundamentadas en datos, que se utilizan para controlar la calidad en ambitos
industriales. Estos métodos son eficaces para extraer informacion relevante y
mejorar la calidad de los procesos, debido a la enorme cantidad de datos
producidos en la industria moderna.

El estudio se inicia con el analisis de los componentes principales, un método
lineal para disminuir caracteristicas que posibilita la creacidon de nuevas
variables que pueden agruparla mayor parte de la informacion del sistemay
disminuir el nimero de dimensiones. Se pueden detectar fallos potenciales al
comparar la conducta normal del proceso con datos atipicos, utilizando
estadisticos multivariantes y la distribucion de estos datos reducidos.

Ademas, se llevaron a cabo métodos de aprendizaje profundo y automatico
dirigidos a disminuir la dimensionalidad. En esta linea, los autoencoders
posibilitan un aprendizaje sin supervision de la informacion de la planta al
captar relaciones no lineales entre las variablesy dar paso a la identificacion
de anomalias. Los autoencoders recurrentes son una mejora de los
autoencoders convencionales, ya que tienen informacion de los estados
pasados del sistema y por lo tanto permiten una deteccion de errores mas
exacta y fiable.

Por ultimo, dada la gran dimensionalidad de los datos que se recogen en las
industrias actuales se cred una estrategia de deteccion de fallos distribuida
para mejorar los modelos de deteccion de anomalias. Esta metodologia divide
las variables de la planta en diferentes bloques de manera automatica,
identificaanomaliasen cada uno de ellos por separadoy, a través de inferencia
bayesiana, sintetiza la informacion adquirida.

Finalmente comentar, que los datos del proceso que se han usado para probar
todas las técnicas desarrolladas has sido los datos del proceso Tennessee-
Eastman, que se usa mucho en la literatura cientifica sobre deteccion de fallos.



Abstract

This study examines various data-driven error detection methodologies used for
quality control in industrial settings. These methods are effective for extracting
relevant information and improving process quality, owing to the enormous
amount of data produced in modern industry. The data from the Tennessee-
Eastman process, which is widely used in the scientific literature on fault
detection, were employed for training and evaluating the models.

The study begins with principal component analysis, a linear method for
reducing features that enables the creation of new variables capable of
capturing most of the system’s information and reducing the number of
dimensions. Potential faultscan be detected by comparing the normal behavior
of the process with atypical data, using multivariate statistics and the
distribution of these reduced data.

Additionally, deep and machine learning methods aimed at reducing
dimensionality were employed. In this vein, autoencoders enable unsupervised
learning of plant information by capturing nonlinear relationships between
variables and pavingthe way for anomaly detection. Recurrent autoencoders
are an improvement over conventional autoencoders, as they have information
about the past states of the system so therefore, they enable more robust
training and more accurate and reliable error detection.

At last, given the large dimensionality of the collected data, a distributed fault
detection strategy was developed. This methodology automatically divides the
plant’s variables into different blocks, identifies anomalies in each block
separately and through Bayesian inference synthesizes the acquired
information.

Finally, it should be noted that the process data used to test all the developed
techniques were from the Tennessee-Eastman process, which is widely used in
the scientific literature on fault detection.






Capitulo 1. Introduccion y objetivos

1.1. Introduccion

La evolucion de la industria, desde los talleres artesanales hasta las modernas
plantas altamente automatizadas, ha estado siempre ligada a la necesidad de
garantizar la calidad de los productos. A medida que aumentaron tanto el
volumen como la complejidad de la produccion, la inspeccidon manual perdid
eficacia, lo que llevo al desarrollo del control de calidad como disciplina propia.
Su propésito es reducir la variabilidad de los procesos y prevenir desviaciones
antes de que se traduzcan en fallos en el producto final.

En la actualidad, la disponibilidad masiva de datos industriales gracias a
sensores y sistemas de monitorizacion en tiempo real, junto con la capacidad
de calculo existente, ha impulsado la aplicacion de técnicas de inteligencia
artificial. Estas permiten analizar simultdneamente cientos de variables,
identificar patrones imposibles de detectar a simple vista y automatizar la
deteccion de anomalias. De este modo, los sistemas no solo sustituyen la
observacion humana, sino que ademas aportan rapidez, objetividad y
escalabilidad.

Por lo tanto, asegurar la calidad y la seguridad en la produccién son dos
objetivos de cualquierindustria, que se consiguen mediantela implementacion
de métodos de deteccion y diagnodstico de fallos que detecten cualquier
anomalia que aparezca en el funcionamiento de la planta. En este trabajo, se
intenta usar tecnologias basadas en datos, y en concreto en la Inteligencia
Artificial para aumentar el rendimiento de la planta, buscando aplicar estas
herramientas al control de calidad de plantasindustriales, y en concreto a la
monitorizacion de dichos procesos.

1.2. Objetivos

El propésito central de este trabajo es desarrollar y comparar metodologias de
detecciones de fallos basadas en datos, aplicables al control de calidad en
plantas industriales. Para ello se contemplan dos lineas principales:

o El uso de técnicas clasicas de control estadistico de procesos, en
particular el Analisis de Componentes Principales (PCA), que permite
reducir la dimensionalidad de manera lineal y generar estadisticos de
control multivariantes.



o La aplicacion de enfoques de aprendizaje profundo, donde se exploran
autoencoders recurrentes (RAE) como alternativa a los autoencoders
convencionales. Estos modelos son capaces de aprender dependencias
temporales y no lineales entre variables, o que constituye una ventaja
en entornos donde las dinamicas del proceso son relevantes.

Adicionalmente, se plantea una metodologia distribuida que divide las
variables en bloques, analiza cada uno por separado y posteriormente integra
los resultados mediante inferencia bayesiana. En este trabajo, esta estrategia
también se aplicara a los RAE, dando lugar a un apartado especifico de RAE
distribuido.

El estudio se valida utilizando el proceso Tennessee-Eastman, ampliamente
reconocido en la literatura como banco de pruebas de algoritmos de deteccion
de fallos. Esto permitira evaluar el rendimiento comparativo de los métodos
bajo condiciones equivalentes, considerando su precision, fiabilidad y
capacidad de generalizacion.

1.3. Organizacion de la memoria

La memoria esta estructurada en cinco capitulos:

e En este Capitulo 1 se exponen la motivacion, los objetivos y la
organizacion del trabajo.

o ElCapitulo 2 presenta los fundamentos tedricos necesarios, incluyendo
control estadistico de procesos, deteccion de anomalias, estadisticos
multivariantes, reduccion dimensional y una introduccion a redes
neuronales y autoencoders.

o El Capitulo 3 describe el proceso Tennessee-Eastman y los conjuntos
de datos empleados.

e« En el Capitulo 4 se detallan las aplicaciones y la evaluacion de las
metodologias propuestas: PCA, Autoencoders, RAE y RAE distribuido.

o Finalmente, el Capitulo 5 recoge las principales conclusiones
alcanzadasy plantea lineas de trabajo futuro.



Capitulo 2. Estudio teorico

2.1 Control de Calidad

Origenes y primeras manifestaciones

La inquietud por la calidad de los productos y servicios tiene origenes remotos:
desde el control en las profesiones medievales hasta los cédigos de leyes que
requerian estandares minimos. Estas primeras formas tenian como objetivo
proteger la reputacion del creador y al consumidor a través de marcas de
conformidad e inspecciones [1], [2].

Con la Revolucion Industrial, se increment6 la produccion y surgieron nuevos
desafios: la variabilidad, las grandes series y el requerimiento de prevenir
fallos. La inspeccion final fue la solucion inicial, pero no basto ante el tamano
y los costos de produccion [2].

Invencion del Control Estadistico

Walter A. Shewhart, un ingeniero de los laboratorios Bell en los anos 20, es
reconocido como el fundador del control estadistico de procesos (SPC), el cual
se menciona mas adelante, dado que un apartado de este trabajo se centra en
este método para la deteccion de fallos.

Su propuesta consistio en emplear datos de produccion para distinguir entre
causas especiales (variaciones atribuibles a fallos especificos, como
problemas técnicos o errores de los humanos) y causas comunes (la
variabilidad natural que forma parte del proceso). Con este fin, incorporo6 las
graficas de control, que hacian posible observar de forma facil si un proceso se
mantenia estable o necesitaba intervencion [3].

El concepto de mejora continua fue un componente fundamental en su
planteamiento, que luego se concreté en el ciclo PDCA (Planificar-Hacer-
Verificar-Actuar). Como se muestra en la Figura 1. Este ciclo sugiere planificar
una accion, ponerla en practica, comprobar sus resultados y proceder
corrigiendo desviaciones. Deming, a pesar de quefue Shewhartquien introdujo
la idea, es el responsable de popularizarla como herramienta de gestion
universal [3], [4].



CICLO PDCA

PASO 1 PASO2
PLANIFICAR HACER
Identifique ’El.'gls:;i:eo;lbles
el problema
PASO 4 PASO 3
ACTUAR VERIFICAR
Mejore la Analice los
solucién resultados
Figura 1. Ciclo PDCA de Shewhart [5]
Difusion global

En la administracion de calidad, las contribuciones de Joseph M. Jurany W.
Edwards Deming, después de la Segunda Guerra Mundial, fueron un hito
importante.

Deming destaco que la variabilidad era el mayor adversario de la
calidad, y que no solo debia ser administrada a nivel operativo, sino
también desde la direccion. Su célebre conjunto de "14 principios de
gestion" abogaba por el liderazgo, la formacion de los empleados y la
vision a largo plazo. Asimismo, subrayaba que la calidad no tenia que
estar supeditada a la revision final, sino al soélido diseno del
procedimiento desde el comienzo [4].

Juran, por su parte, fue pionero en entender la calidad como un
problema de gestion y no solo técnico. Introdujo la llamada “trilogia de
Juran”: planificacion, control y mejora de la calidad. También fue uno de
los primeros en destacar los costes de la no calidad, es decir, las
pérdidas derivadas de errores, reprocesos y desperdicios [6].

La implementacion de estos principios en Japdn desde la década de 1950
revolucion6 la industria niponay le permitié convertirse en un referente en
términos de calidady competitividad. El "Premio Deming", establecido en 1951,
se transform6 en un emblema del compromiso de Japdn con la excelencia [4].
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De aseguramiento de la calidad a sistemas integrados (TQM, 1SO)

Desde la década de 1960 y 1970, la calidad dej6é de ser vista como una
actividad aisladay paso a ser considerada como un enfoque integral. El Total
Quality Management (TQM) es una filosofia de gestion que surgio a partir de
esta evolucion (Figura 2). Su objetivo no era Unicamente prevenir fallos, sino
también promover la mejora continua como cultura corporativa, el enfoque en
el cliente y la implicacion de todos los estratos organizativos. La nocidon de que
la calidad no se restringe a la produccion, sino que abarca todas las funciones
de la compania, desde el diseno hasta el servicio al cliente [ 7], fue igualmente
introducida por TQM.

@ o

Focus on Employee
Customer Involvement

B

Continuous Process

Improvement TQ M Centered

TOTAL QUALITY
MANAGEMENT

Integrated
system

Decision-making Strategic and
based on facts systematic
approach

Figura 2. Areas de enfoque en TQM [8]

Simultaneamente, las practicas de gestion de la calidad empezaron a
normalizarse por parte de organismos internacionales. La publicacion de la
familia de normas ISO 9000 en 1987 es el caso mas significativo. Estas reglas
posibilitaron la unificacién de criterios, simplificaron la certificacion vy
aseguraron la confianza en las cadenas de suministro a nivel global. Sus
revisiones subsecuentes (ISO 9001:1994, 2000, 2008 y 2015) han
progresado desde una perspectiva documental hacia enfoques centrados en el
contexto organizacional, los riesgos y la mejora continua [7], [9].
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2.2 Control estadistico de procesos (SPC)

Walter A. Shewhart formalizd el control estadistico de procesos en los Bell
Telephone Laboratories a inicios de la década del 20. Como método esencial
para distinguir entre la variabilidad natural del proceso y las desviaciones
generadas por causas especiales.

Shewhart cred la grafica de control (control chart).
Esta disciplina se fundamento teérica y practicamente en su obra principal,
Economic Control of Quality of Manufactured Product [3]. Las primeras
utilizaciones tuvieron lugar en Bell Labs, donde se fabricaban componentes
para teléfonos con el objetivo de regular la uniformidad de los procesos
eléctricos y de transmision. Mas tarde, el SPC se amplié a las industrias
pesadas y a la produccion en gran escala, lo cual fue fundamental para la
elaboracidon de equipos militares estandarizados durante la Segunda Guerra
Mundial [10].

El Control Estadistico de Procesos (SPC, por sus siglas en inglés) es un grupo
de métodos estadisticos que se utilizan para supervisar un proceso productivo
(o de servicio) con el fin de detectar variaciones, distinguiendo entre las que
son ordinarias (0 causas comunes) y las que son provocadas por causas
especiales. Estas Ultimas pueden senalar que el procedimiento esta "fuera de
control" o requiere intervencion. El objetivo de emplear el SPC es garantizarque
el proceso sea estable, predecible y capaz de satisfacer los estandares de
calidad requeridos [10][11][12].

2.2.1 Variabilidad en el proceso de produccion

No existen dos productos o servicios que sean exactamente iguales, ya que los
procesos de produccion implican numerosas fuentes de variacion, incluso si
estos procesos se llevana cabo como se esperaba. Por ejemplo: dos coches de
la misma marca y del mismo modelo pueden no ser igual de duraderos aun
teniendo las mismas caracteristicas ya que puede haber variaciones en el
proceso de produccion, tales como desgaste de herramientas empleadas,
habilidad de los operarios, parametros fisicos como temperatura, humedad,
etc.

En SPC se toman muestras pequenas para evaluar la variabilidad del proceso
a lo largo del tiempo y se muestran en un grafico en el que el eje horizontal
presenta el orden de las muestras, y el eje vertical senala la frecuencia de
cada muestra. Se le llama después de un namero significativo de muestras
distribucion, si el patron es estable, como se puede ver en la Figura 3 (b). Las
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distribuciones pueden variar segin lo que las muestras muestran, como
se puede ver en la Figura 3(c).

Si el patron obtenido en la toma de muestras resulta estable y predecible, se
dice que el proceso esta bajo control. La Figura 3 [d] evidencia que el proceso
esta bajo control estadistico. No obstante, si surgen razones particulares de
variacion, la salida del proceso se vuelve impredecible y no sigue un patron
constante a través del tiempo (como ilustra la Figura 3 [e]).

—
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Frecuencia
\
}

) m im ]
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Figura 3. Variabilidad del proceso. (a) Toma de muestras. (b) Distribuciones. (c)
Variacion de distribuciones. (d) Distribucion con causas comunes de variacion. (e)
Distribucion con causas especiales de variacion [13]

Este entendimiento es esencial para establecer la previsibilidad y estabilidad
del proceso, 10 que a su vez orienta la toma de decisiones para optimizar la
eficacia y la calidad del proceso de fabricacion.
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2.2.2 Graficas de Control

Fueron creadas en los anos 20 por Shewhart mientras trabajaba en los
laboratorios Bell, estableciendo como condiciones que los datos solo tienen
significado dentro de su contexto, es decir en el entorno o aplicacion en el cual
los estemos midiendo y que para poder extraer informacion debemos
separarlos.

Los graficos de control de medias (i), desviaciones estandar (o) o rangos (R)
son las principales herramientas del SPC. La definicion de subgrupos
racionales (n observaciones obtenidas en periodos de tiempo constantes) es el
fundamento del método, que posibilita la captura de la variabilidad a corto
plazo.

e Media general de subgrupos: media global del proceso a partir de las
medias de los subgrupos.

n
i=1/n) (2.1)
t=1
o Desviacion Estandar:
1N (2.2)
7=
t=1

o Rango del subgrupo: variabilidad dentro de cada subgrupo medida
como la diferencia entre el valor mayory el menor.

R; = max(x,) — min(x,) (2.3)

e Media de rangos: variabilidad promedio del proceso a partir de los
rangos de todos los subgrupos.

1 m
mi=1

o Limites de control para graficas de medias: umbrales superior e inferior
qgue determinan si la media del proceso esta bajo control.
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UCL=X+A,R, LCL=X-A,R (2.5)

Donde A4, es un factor que depende del tamano de muestra n.

Es fundamental saber elegir los limites de control. Si los limites son muy
estrechos, se detectaran lasvariaciones propias del proceso como fallos, lo que
provocara alarmas falsas cuando el proceso funcione normalmente; si los
limites son demasiado amplios, en cambio, podrian no detectar desviaciones
importantes de la operacion normal (Figura 4).

Un punto afuera y arriba Un punto afuera v abajo
(imvestigar la cawsa) (mvestigar o cansa)

Comportamiento Normal

Dos puntos cerca Dos puntos cerca Serie de 5 puntos arriba
del control superior del control inferior de la linea central
(iwvestigar la cansa) (imvestigar da cansa) {mvestigar la cassa)
UCL UCL
MNominal Mominal [
LCL LCL
Serie de 5 puntos abajo Serie de 5 puntos con tendencia . .
de la linea central en cualquier direccidn Camp_nﬂa;mezm crratico
(investigar la cansa) finvestigar da cansa) (G,

UCL

Nominal

Figura 4. Graficas de control en diversos tipos de estados, desde situaciones bajo
control a comportamiento erratico [13]

2.3 Control Estadistico de Procesos Multivariable (MSPC)

El Control Estadistico de Procesos Multivariado (MSPC, por sus siglas en inglés)
es la ampliacion del SPC tradicional a situaciones en las que es necesario
supervisar al mismo tiempo multiples variables de calidad que tienen
correlacion entre ellas.
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El MSPC toma en cuenta el vector de variablesen conjunto, lo que hace posible
identificar patrones anémalos que no se encontrarian si las variables se
examinaran porseparado [14], [15]. En cambio, el SPC univariante estudia una
sola caracteristica a la vez. El MSPC fue creado en el periodo de 1940 cuando
Harold Hotelling presentd la estadistica T?que es una generalizacion
multivariante de la t de Student [16].

Durante la década de 1980 y 1990, se expandid el empleo de los estadisticos
T2y Q (SPE) en la supervision de procesos quimicos, farmacéuticos y
manufacturados a gran escala debido a la popularizacion de métodos para
reducir dimensionalidad como PLS y PCA [17] [18]. EIl MSPC utiliza modelos
multivariantes que capturan la correlacion entre variables. Entre las
herramientas mas relevantes se encuentran:

2.3.1 T? de Hotelling

La variabilidad de una observacion se mide a través del T? de Hotelling, ya sea
dentro del modelo multivariante o del espacio de componentes principales. Se
entiende como una medida de distancia estadistica en relacién con el centro
del modelo.

Si las variables de los conjuntos fuesen independientes, T2 seria la distancia
euclidea cuadratica, pero en la practica, dado que las variables guardan
correlacion esta distancia, es la distancia de Mahalanobis, la cual se ajusta
segln la covarianza entre variables.

La Figura 5 representa como la distancia de Mahalanobis produce un menor
numero de valores atipicos, este resultado es debido a que esta emplea un
elipsoide asimétrico, que depende de la covarianza de las variables.

T>?=xPS*PTx" (2.6)

donde:
x = vector de datos medidos
P = matriz de vectores propios reducida
S, = matriz diagonal con los valores propios reducida.

Tanto P como S, son de dimensiones k x k siendo este el numero de
dimensiones del espacio reducido.
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Figura 5. Distancia euclidea frente distancia de Mahalanobis [19]

2.3.2 Error Q (Squared Prediction Error)

La estadistica Q, también conocida como SPE (Squared Prediction Error),
cuantifica lavariabilidad residual de una observacion en relacién con el modelo
(por lo general, un modelo PCA). En otras palabras: qué parte queda fuera del
subespacio que explican las componentes principales.

Sea x una observacion y X su proyeccion reconstituida:

14
0 =lx=2I" = > (x,- %)’ (2.7)
i=1

2.3.3 Uso combinado de T? y Q

Un modelo habitual de MSPC emplea los dos graficos de control al mismo
tiempo:

T2 regula la variabilidad dentro del modelo (en condiciones normales, pero
extremas en el ambito histérico) (Figura 6).

Q regula la variabilidad que no esta incluida en el modelo (una nueva variacién
gue no se habia previsto en los datos del pasado) (Figura 7).
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Figura 6. Grafica de T? en una muestra de datos del proceso Tenesee-Eastman con
funcionamiento anormal.

MSPC con T2y Q se usa en procesos donde se monitorizan multiples variables
correlacionadas, se desea distinguir entre desviaciones extremas pero
esperadas (T2)y nuevos patrones desconocidos (Q)y en los escenarios donde

es crucial anticipar fallos, como en procesos quimicos, farmacéuticos y de
manufactura avanzada [15], [17].

Vector Q y Umbral
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Figura 7. Grafica de Q, en una muestra de datos del proceso Tenesee-Eastman con
funcionamiento anormal
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2.4 Analisis de componentes principales (PCA)

El analisis de componentes principales (PCA) fue introducido por Karl Pearson
en 1901 como un método geométrico para representar datos en espacios de
menor dimension [20]. Posteriormente, Harold Hotelling (1933) formaliz6 su
marco matematico en términos de algebra matricial y estadistica.

Las primeras aplicaciones tuvieron lugar en el campo de la economia, la
biologia y la psicologia. En los anos finales del siglo XX, el PCA se establecid en
la supervision de calidad multivariada, especialmente en MSPC, en la que se
emplea para crear modelos de referencia del proceso utilizando informacion
histérica de operacion normal [14], [17].

Este tipo de analisis se emplea con los siguientes objetivos:

a. Disminuir la dimensionalidad para poder observar de manera sencilla
datos de procesos complejos y detectar vinculos entre variables

b. Desarrollar modelos de referencia para la deteccion de anomalias 'y
MSPC.

c. Depurar el ruido y optimizar la capacidad predictiva en sistemas
multivariantes [15], [17], [18].

Es un modelo frecuentemente empleado en supervision de procesos
industriales quimicos (como es el caso de este trabajo), farmacéuticos y
petroquimicos, reconocimiento de patrones en vision artificial y en estudios
biomédicos y genémica.

El analisis de componentes principales (PCA, por sus siglas en inglés) es un
método estadistico multivariante que se emplea para disminuir la
dimensionalidad de un conjunto de datos que contiene varias variables
correlacionadas.

La idea fundamental es que la varianza de una serie de datos mide la cantidad
de informacion que contiene, matematicamente, se realiza mediante la
descomposicion espectral de la matriz de covarianzas o, de forma equivalente,
en la descomposicion en valores singulares (SVD).

Esta técnica convierte dichas variables en un nuevo conjunto de variables no
correlacionadas, conocidas como componentes principales (PCs). Cada
componente principal es una combinacion lineal de las variables originales y
se organiza asi:
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1. Elcomponente inicial recoge la varianza mas alta que los datos pueden
ofrecer.

2. El segundo componente, bajo la condicidon de ser ortogonal al primero,
recoge el mayor porcentaje de la varianza restante.

3. Y asi consecutivamente [17], [18].

Idealmente, los primeros componentes capturan la mayor cantidad de
informacion y el resto el ruido (Figura 8).

Su formulacidon matematica empieza tomando una matriz de datos de
comportamiento normal del proceso: X €R"™m con n muestras, y m variables:

X114 Xqz e Xypm
X=X Xgp o Xop (2.8)
Xn1 Xpo o Xpm

Normalizamos con media O y varianza 1, para obtener la variabilidad de los
datos, es decir, a cada valor de la matriz de datos original (X) se le resta la
media u,, y se divide por su desviacion estandar o,,, de su variable, para
obtener la matriz de datos normalizados X ,:

X[nm] — (2.9)

X,[mm] = -

Calculamos la matriz de covarianzas R:

1 2.10
R=—X3 X, (2.10)
Siendo R:
1 T2 Tin
R=|™ 1 . ory (2.11)
rm1 rm? 1

A partir de R realizamos la descomposicion en valores singulares (SVD).

svd(R) =VSVT (2.12)

De la ecuacion (2.12) obtenemos los valores propios S (Figura 8) y los vectores
propios (V). La proyeccion del vector de observaciones X,, € R™ desacopla el
espacio de observaciones en un conjunto T, la columna i-ésima de V es el
vector de carga v; (loadings) que transforma x,, en el score t; = x;V.
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v (2.13)

Los loadings (V) son los coeficientes de las combinaciones lineales que
determinan cada uno de los componentes principales, estos, senalan el grado
de contribucion de cada variable original a cada uno de los componentes.
Por ejemplo, si la primera componente de la variable "temperatura" tiene un
loading alto, significa que las fluctuaciones del proceso en dicha componente
estan fuertemente afectadas por las variaciones de temperatura.

Por otra parte, los scores (T) son la representacion de cada observacion en los
ejes determinados por los componentes principales, en otras palabras, los
scores representan las coordenadas renovadas de los datos en el espacio
reducido. Posibilitan la deteccion de agrupaciones, anomaliasotendenciasy el
analisis de la estructura del proceso.

Una vez obtenida la representacion de la matriz de scores (T) reducimos la
dimensionalidad del conjuntoen base ala variabilidad que deseemos capturar,
frecuentemente se emplea como criterio el 90%, dado que capturamos la
mayor parte de la informacion, reducimos significativamente la dimension del
espacio, ya que como hemos comentado anteriormente, dicha variabilidad, se
encuentra en los primeros componentes principales.

Histograma de Variabilidad Explicada por Componente Principal

Variabilidad Explicada (%)

T ..

Componente Principal

o 10 50

Figura 8. Variabilidad capturada por componente principal en el proceso Tennessee-
Eastman
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Como

A, 0 .. 0
g = 0 4, .. 0 (2.14)
o 0 .. 4,

Calculamos el niumero de componentes que satisfacen la condicion:

i

1.
var(%) = Z_tr (iS') -100 (2.15)

1

Siendo var(%) la variabilidad a capturar expresada en porcentaje.

Reteniendo los a primeros vectores de carga mas grandes obtenidos en la
ecuacion (2.12) tenemos la matriz de autovectores reducida P(m x a) siendo
a el nimero de dimensiones resultantes.

Ahora podemos representar los scores de dimensionalidad reducida T,,
(n X a),

P (2.16)

Al igual que en (2.13) se cumple que t; = x; P.

Entonces ahora podemos aplicar MSPC, y calcular las estadisticas T2y Q. T2se
calcula como se mostré en la ecuacion (2.6) y Q lo calcularemos como el
producto de la matriz de residuos por su transpuesta, lo cual es equivalente a
la diferencia cuadrada de los datos originales y su reconstruccion:

Q =r1{ (2.17)

Siendo
T = (1 -PpPT) (2.18)

donde 7; es la fila i-ésima de la matriz de residuo e I es la matriz identidad
mXm.

Q, por tanto, mide la diferencia entre una muestra y su proyeccion al espacio
reducido (si fueran iguales el vector de residuos r seria cero). El error de
prediccion cuadratico Q se genera porque, al realizar la reduccion dimensional,
hemos descartado parte de la informacion.
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La identificacion de una anomalia tipo Q en un sistema de control significa que
la correlacion entre las variables ha sufrido un cambio importante, lo cual
quiere decir que ya no se comportan las variables entre si como lo hacian
durante los datos de funcionamiento habitual [21].

2.5 Redes Neuronales Artificiales (ANN)

Las redes neuronales artificiales (ANN, por sus siglas en inglés) son sistemas
computacionales que se basan en el funcionamientoy la estructura del cerebro
humano. Se disenan para identificar patrones y comprender relaciones
complejas entre variables (Figura 9).

Dendritas Soma Axon Entradas Funcién de Salida
activacién

\:\\i @_._. % (wixi) _'®

Figura 9. Similitud entre una neurona humana y una neurona atrtificial

El primer modelo matematico de una neurona artificial fue creado por Walter
Pitts y Warren McCulloch (1943) en la mitad del siglo XX, cuando probaron que
era capaz de realizar operaciones logicas sencillas [22]. Mas tarde, en 1958,
Frank Rosenblatt implementé el Perceptron, que es visto como la primera red
neuronal que puede ser entrenada a través del aprendizaje supervisado [23].

Las redes neuronales despertaron menos interés en las décadas de 1960 y
1970 debido a restricciones teoricas y computacionales, pero volvieron a ser
relevantes en la década de 1980 con el desarrollo del algoritmo de
retropropagacion del error (backpropagation), hito que permitié sentar las
bases del aprendizaje automatico sin un coste computacional excesivo [24].

Hoy en dia, las redes neuronales han progresado hasta arquitecturas
profundas (deep learning) gracias al aumento de la capacidad computacional,
a la posibilidad de acceder a enormes cantidades de datos (big data) y al
empleo de unidades de procesamiento grafico (GPU). Estas arquitecturas son
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capaces de llevar a cabo trabajos complejos como el control de procesos
industriales, la prediccion y el diagnéstico de errores, el procesamiento del
lenguaje natural y la vision artificial.

2.5.1 Neurona artificial

La Neurona Artificial (Figura 10) es la unidad elemental de procesamiento en
una red neuronal. Su tarea es recibir un grupo de entradas(inputs), ponderarlas
a través de pesos (weights), sumar los resultados y, para conseguir una salida
(output), usar una funcion de activacion.

in(t) <

\ b

Figura 10. Esquema de la unidad neuronal (Perceptron)

El modelo matematico general de una neurona se expresa como:

y=f (Z wiX; + b) (2.19)

donde:

e x;: son las entradas o variables de entrada,

e w;:son los pesos sinapticos querepresentan lafuerza de conexion entre
neuronas,

e b: es el término de sesgo (bias), que permite desplazar la funcion de
activacion,

e f(-):eslafuncién de activacion

e Yy:eslasalida de la neurona.

Este modelo permite representar relaciones linealesy no lineales dependiendo
de la forma de f(-).
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2.5.2 Red de neuronas

Un grupode neuronas dispuestasen capas es lo que se denomina red neuronal
(Figura 11):

1. Capa deentrada: recibe los parametros de entrada o las caracteristicas
del problema.

2. Capas ocultas: Analizan la informacion utilizando combinaciones
lineales y funciones de activacion que no son lineales.

3. Capa de salida: Produce las clasificaciones o predicciones finales.

La configuracion fundamental de una red multicapa (Multi-Layer Perceptron,
MLP) puede representarse en forma matricial como:

y = f(L) (W(L)f(L—l) (W(L—l) ___f(1) (W(l)x + b) ot b(L—l)) + b(L)) (2.20)

donde L es el nimero de capas, WO las matrices de pesos en la capa [, p®
los biasenlacapaly f(D las funciones de activacion correspondientes.

Es fundamental incorporar funciones de activacion no lineales entre las capas,

porque esto le da a la red la posibilidad de aproximar funciones que no son
linealesy aprender relaciones complejas entre lasvariables de entrada y salida.

input layer hidden layer 1 hidden layer 2 hidden layer 3

2.5.3 Funciones de activacion

La salida de cada neurona esta determinada por las funciones de activacion en
relacion a la suma ponderada de sus entradas. Incorporan no linealidad al
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modelo, lo que posibilita que las redes adquieran patrones complejos. De lo
contrario, la red completa se podria colapsar en una sola recta, plano o
hiperplano, dependiendo de las dimensiones, debido a su linealidad.

Estudiar qué tipo de funcién emplear para cada aplicacion es fundamental, a
continuacion, algunas de las mas destacadas y empleadas en este trabajo:

1. Funcién sigmoide: hace que los valores grandes saturen en 1y
pequenos en O (Figura 12), pero en este caso lasderivadas noson nulas

flx) =0(x) = ﬁ (2.21)

Esta funcion en valores cercanos a O tiene muy buena inclinacion, sin
embargo, con valores muy grandes o0 muy pequenos es casi horizontal,
es decir, la derivada se hace muy pequena.

En backpropagation (algoritmo de entrenamiento, mencionado mas
adelante) con derivadas tan pequenas, los ajustes a pesos y sesgos
seran muy pequenos entonces, por lo tanto, la red aprendera despacio
o dejara de aprender, esto es lo que se conoce como desvanecimiento
del gradiente.

10— Sigmoide

0.8

0.6

0.4

0z

0.0

-100 -75 -50 -25 00 25 5.0 75 10.0

Figura 12. Funcién sigmoiode

2. Tangente hiperbdlica (tanh) (Figura 13): Genera valores entre -1y 1.
Tiende a converger mas rapido que la sigmoide al tener salidas
centradas en cero.

X

_ _ef-e” (2.22)
f(x) = tanh(x) = e
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En la mayoria de casos es mejor que la sigmoide, dado que, esta
centrada en el 0, puede tomar valores positivos y negativos,
solucionando el problema de la sigmoide y su derivada es mayor por lo
tanto el aprendizaje sera mas rapido.

100 1 — w@nh

-0.25
-0.50

-0.75

-1.00

-0 -75 -50 25 0.0 25 5.0 75 10.0
X

Figura 13. Funcion tangente hiperbolica

Aun asi, presenta el problema de desvanecimiento de gradiente y tiene
un alto coste computacional.

Unidad Rectificada Lineal (ReLU) (Figura 14): Es una funcion
extremadamente simple, no consta de exponentes ni, calculos,
simplemente devuelve lo que sea mayor:

ReLU(x) = max(0,x) (2.23)

En un estudio de 2011 se reveld que es mejor en la mayoria de casos
gue la tanh, observandose velocidades de backpropagation y de
propagacion hacia adelante 6 veces mayor [25].

10 {1 — Relu

-100 -T5 -50 25 00 25 50 75 10.0
x

Figura 14. Funcion ReLU
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Esta funcion, en la mayoria de aplicaciones es superior a las dos
anteriores, tiene un coste computacional muy bajo, su derivada es muy
simple y no esta acotada para nimeros positivos (al contrario que o (x)
y tanh (x)) lo que genera un gradiente constante y un aprendizaje mas
rapido en la mayoria de casos.

Los inconvenientes que tiene, residen en la primera parte de la funcion,
la cual devuelve O para todo valor menor que O, lo cual puede incurrir
en que algunas neuronas durante las primeras fases de entrenamiento
almacenen un O entorpeciendo asi el entrenamiento de la red, la
siguiente funcion suple dichas carencias.

4. Funcién Leaky Relu: Similar a ReLu pero en vez de devolver O para
ndmeros negativos, devuelve un valor muy pequeno, si lo
parametrizamos correctamente, por lo general a < 0,1 (Figura 15)

_(x si x>0 2.24
f(x)_{ax si x<0 (229

De esta manera tenemos una funcion no acotada, simple de calculary
solventamos el problema de las neuronas muertas.

Cada funcion presenta beneficios y restricciones dependiendo de la
arquitectura utilizada y el tipo de problema [26], [27].

10 { — Leaky RelU

-0 -75 50 25 0.0 25 30 15 10,0
X

Figura 15. Funcion Leaky Relu

2.5.4 Redes Neuronales Recurrentes (RNN)

Las redes neuronales recurrentes (RNN, por su nombre en inglés) (Figura 16)
son una ampliacion de las redes neuronales artificiales convencionales,
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creadas con el proposito de manejar datos que dependen del tiempo o son
secuenciales, en los que el orden de las observaciones tiene importancia.

A diferencia de las redes multicapa (MLP), en las cuales las entradas y salidas
se procesan de manera independiente, las RNN incluyen conexiones de
retroalimentacion que posibilitan conservar informacion de pasos anteriores,
lo que les proporciona una memoria dinamica del sistema [27], [28].

Output layer ,___| ,_| ,___|

Y )
™

I Ml Vel

Input X X X,

t—1 t

. ] Hr—l
Hidden state ) L J

FC layer with 1 7—>
activation function Copy Concatenate

Figura 16. Red neuronal recurrente [29]

El principio basico de una RNN consiste en mantener un estado oculto h, que
resume la informacion relevante de todas las entradas anteriores.
En cada instante temporal t, el estado oculto se actualiza en funcion de la
entrada actual x, y del estado anterior h,_,, de acuerdo con las siguientes
ecuaciones:

he = fro(Wenxe + Wyphe_y +by) (2.25)
yt = fy(Whyht + by) (226)

Donde x, representa la entrada en el instante t, h, es el estado oculto, que
almacena la informacion de contexto, , es la salida estimada, Wy, , Wy,,, Wy,

son las matrices de pesos correspondientes a las conexiones de entada
recurrente ysalida, b, b, son los sesgosy f},, f, son lasfunciones de activacion,

comunmente tanh o ReLU.

Se puede observar esta formulacidon como una red "extendida en el tiempo"
(unrolled network), donde cada intervalo de tiempo es igual a una capa que
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tiene los mismos parametros. Este despliegue, en el transcurso del
entrenamiento, posibilita que se use el algoritmo de retropropagacion a través
del tiempo (BPTT) para modificar los sesgos y pesos [27].

2.6 Aprendizaje automatico

Con el propésito de reducir lafuncion de coste que evalla la discrepancia entre
la salida estimada y la esperada (ecu. 2.28), el procedimiento para entrenar
una red neuronal artificial se fundamenta en optimizar de manera iterativa sus
parametros internos, es decir, sus sesgos (b) y pesos (w). Este proceso se
compone de dos etapas fundamentales: la retropropagacion del error
(backpropagation)y la actualizacion de parametros a través de un algoritmo de
descenso por gradiente [28].

2.6.1 Propagacion hacia adelante (Forward propagation)

En cada época de entrenamiento, la red lleva a cabo inicialmente una
propagacion hacia adelante (forward propagation), en la que los datos de
entrada se convierten capa a capa mediante la aplicacion de una funcion de
activacion no lineal seguida de una combinacion lineal de pesos y sesgos [27].
En términos matematicos, para la capa :

20 =wWa-D 4 pO O = O (z(”) (2.27)

donde -V representa la salida de la capa anterior, f(l) es la funcion de
activacion y z®D la suma ponderada. El resultado final a® se compara con la
etiqueta real y, mediante una funcion de coste: C(a(”,y), la cual cuantifica el
error de prediccion [26].

2.6.2 Calculo del error

Para un conjunto de datos con salidas esperadas y, se define una funcion de
coste C, por ejemplo, el error cuadratico medio (MSE):

1 2.28)
C:—z — )2 (2.
— '_1(% y)
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Donde m es el numero de muestras, y; es el valor real e y; es la prediccion del
modelo. En forma matricial, considerando la salida de la red A®:

1 2.29)
Y —AW2 (2.
C oN I %

2.6.3 Retropropagacion del error

Tras calcular el coste, evaluamos como varia respecto a cada parametro del
modelo (pesos y sesgos). Para ello se aplica la regla de la cadena, definiendo

el termino de error local §:

ac

) —
o= dald)

O F/® (z0) (2.30)

donde  representa el producto elemento por elemento.

El error atribuidoa cada neurona en la capa de salida esta representado por
este valor. Para las capas ocultas, el error se transmite de manera inversa:

5O = (W(z+1))T5(z+1) @fr(z) (Z(L)) (2.31)

Una vez obtenido el error de cada capa, los gradientes de la funcién de coste
con respecto a los pesos y sesgos se calculan como:

oc
ow®

50 (a(z—l))T ; =650 (2.32)

Este procedimiento propaga el error desde la capa de salida hasta las capas
previas, lo que hace posible modificar los parametros de manera proporcional
a su aporte al error total.

2.6.4 Actualizacion de parametros (Gradient Descent)

Estos se actualizan en la direccion opuesta a la que apunta el gradiente, dado
que este apunta en la direccion en donde aumenta el error:

aC (2.33)

) —w® .
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ac (2.34)
ap®

bWt +1)=bP() -7

donde 1 es la tasa de aprendizaje (learning rate), que controla la magnitud de
los ajustes en cada iteracion.

De esta forma, la red ajusta sus parametros en cada iteracion buscando
minimizarla funcion de coste de forma incremental. Este proceso se repite para
multiples iteraciones en todo el conjunto de la red, estas iteraciones se
denominan épocas (epochs), hasta que el error (los del modelo) converge a un
valor aceptable o no mejora.

Existen mejoras en el algoritmo de descenso del gradiente, como el descenso
estocastico del gradiente (SGD), Momentum, RMSProp o Adam. Estos son
algoritmos avanzados que pueden optimizar este proceso, ya que modifican de
manera dinamica la direccion y el tamano de los pasos de actualizacion con el
fin de prevenir minimos locales y acelerar la convergencia [27], [28].

2.6.4.1 Adam (Adaptive Moment Estimation)
El algoritmo Adam, empleado en este trabajo, combina las ventajas de

Momentum y RMSProp, manteniendo promedios moviles de los gradientes y
sus cuadrados para cada parametro 8 (ya sean w 0 b):

m,=pm_y +(1=B)9g, ; v, =B+ (1 —=B)9¢ (2.35)

= __ M N (2.36)
T T
m
Op 41 = 0 _n\/ﬁ_—:-e (2.37)
t

a :
Donde g, =£ es el gradiente en el momento t, f; y [, son factores de
t

decaimiento, normalmente 0.9 y 0.999, respectivamente; y € es un término
para la estabilidad numeérica.

Asi, Adam ajusta la tasa de aprendizaje individual de cada parametro y
consigue una convergencia mas rapida y estable, lo que lo hace
particularmente efectivo para arquitecturas profundas o autoencoders. Adam
se ha posicionado como uno de los algoritmos de optimizacion mas utilizados
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en el aprendizaje profundo debido a estas caracteristicas, particularmente en
modelos autoencodery redes convolucionales [25], [27], [28].

2.7 Autoencoders

Las arquitecturas neuronales que pueden aprender representaciones de datos
cada vez mas compactas y significativas han sido creadas gracias al avance
del aprendizaje profundo. Los autoencoders, entre ellos, se caracterizan por su
habilidad para codificarinformacion de manera no supervisada, disminuyendo
la dimensionalidad del conjunto de datos a la vez que mantienen sus rasgos
fundamentales [27].

En la década de 1980, los autoencoders aparecieron como una extension de
las redes neuronales feedforward, con la finalidad de adquirir una
representacion interna (latente) de los datos sin requerir etiquetas. El objetivo
inicial era replicar métodos de reduccion de dimensionalidad lineales, como el
Analisis de Componentes Principales (PCA), aunque a través de una
formulacion que no fuera lineal y adaptable [28].

A través de la demostracion de su efectividad en la preinicializacion de redes
profundas, Geoffrey Hinton y sus colegas reanimaron el uso de autoencoders
en los anos 2000, lo que posibilitd entrenar modelos que previamente eran
inestables debido al elevado nimero de parametros [27].

Los autoencoders (Figura 17) se convirtieron en una herramienta fundamental
para la deteccion de anomalias, el aprendizaje de caracteristicas, la
reconstruccion de datosy la compresion gracias al avance del deep learning.
Su uso abarca diversos campos, desde series temporales industriales hasta
vision artificial.

Y& Encoder [ Decoder (¥

Original
input

Reconstructed
input

Compressed
representation

Figura 17. Esquema de un autoencoder
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En términos generales, un autoencoder es una red neuronal que ha sido
entrenada para replicar su entrada en la salida; sin embargo, tiene como
limitacion estructural la necesidad de aprender una representacion
comprimida y significativa del conjunto de datos. Su arquitectura esta
constituida por dos componentes fundamentales:

e Codificador (Encoder): transforma la entrada X € R™ en una
representacion latente h € R¥, donde k < n.

o Decodificador (Decoder): intenta reconstruir la entrada original a partir
de la representacion latente, produciendo una salida X.

Matematicamente, este proceso se expresa como:

h=f,.(WX+b,) (2.38)
X=f..(W,h+by) (2.39)

donde f,,. Y fa4ec SON funciones de activacion no lineales, W,, W, son las
matrices de pesos del codificadory decodificadory b,, b, sus correspondientes
sesgos.

El entrenamiento se realiza minimizando una funcion de coste que mide la
diferencia entre la entrada y su reconstruccion. Comunmente se utiliza el Error
Cuadratico Medio (MSE):

N

_ 1 2 (2.40)
=7 D% -%)

i=1

Los métodos mencionados en la seccion 2.6 Aprendizaje automatico, es decir,
la retropropagacion del error, la propagacion hacia adelantey la actualizacion
de los parametros a través de algoritmos de descenso del gradiente
(normalmente optimizados con Adam [27], [28]), se utilizan para minimizar
esta funcion.

La capa intermedia (h), que también se llama capa latente o cuello de botella,
es el nlucleo del modelo porque alli reside la representacion comprimida de los
datos originales. La habilidad de un autoencoder para sobreajustar o
generalizar la informacion depende del tamano y la estructura de este.
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Durante anos, se han creado numerosas versiones de autoencoders que estan
disenadas para una variedad de tipos de datos y metas de aprendizaje. Se
incluyen entre las mas significativas:

Autoencoder totalmente conectado (MLP): esta formado solamente por
capasdensas. Este es el modelo basey se utiliza sobre todo paratablas
de datos o vectores de caracteristicas.

Autoencoder convolucional (CAE): Se emplean capas convolucionales
para capturar estructuras espaciales, y su uso es bastante comun en
imagenes y vision por computador.

Autoencoder recurrente (RAE / LSTM): creado para trabajar con
secuencias temporales, que introduce dependencias a lo largo del
tiempo utilizando unidades GRU o LSTM.

Autoencoder variacional (VAE): en vez de aprender una codificacion
determinista, emplea una formulacion probabilistica y se enfoca en el
aprendizaje de una distribucion latente.

Autoencoder con ruido (Denoising AE): adiestrado para reconstruir la
entrada original a partir de versiones danadas o con mucho ruido, lo que
aumenta su resistencia ante alteraciones.

Autoencoder disperso (Sparse AE): establece limitaciones de activacion

para fomentar representaciones latentes mas comprensibles vy
especificas.

Autoencoder contractivo (Contractive AE): favorece una codificacion
mas estable al sancionar la sensibilidad del espacio latente a minimas
variaciones en la entrada.

En este trabajo se han implementado dos tipos de autoencoders con
finalidades distintas:

1. Autoencoders densos (Fully Connected Autoencoders), que son

2.

apropiados para la reconstruccion de variables instantaneas o
estaticas.

Autoencoders LSTM, que poseen memoria y tienen la habilidad de
modelar las dependencias temporales en los datos procesados.
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Las dos arquitecturas se analizan detalladamente en los siguientes
subapartados.

2.7.1 Autoencoder Denso (Fully Connected Autoencoder)

Los autoencoders densos (Figura 18), que también son conocidos como fully
connected o vanilla autoencoders, representan el tipo mas basicoy comun de
autoencoder. Su estructura se fundamenta en una red neuronal de tipo
feedforward que cuenta con capastotalmente interconectadas (Dense layers);
en estas, cada neurona de una capa se enlaza con todas las neuronas de la
capa que le sigue [27], [28].

Cuando no hay dependencias temporales o espaciales, por ejemplo, en datos
tabulares o en vectores de caracteristicas estaticas, este tipo de arquitectura
es particularmente adecuada. Al estar disenado para reconocer relaciones no
lineales entre las variables, es una herramienta Util para la deteccion de
anomalias, la reconstruccion de procesos industriales y la reduccion de
dimensionalidad. Conceptualmente es similar al PCA, aunque con una

formulacién no lineal.
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Figura 18. Representacion interna de un autoencoder de 5 capas y n neuronas
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En este trabajo, se utilizan los autoencoders densos como fundamento para la
reconstruccion de datos estaticos normalizados, sirviendo como modelo de
referencia en comparacion con arquitecturas mas sofisticadas, por ejemplo, las
LSTM.

El modelo se compone de tres bloques principales:

1. Codificador: transforma la entrada X € R®™ en una representacion
latente h € R" a través de sucesivas combinaciones lineales vy
funciones de activacion no lineales:

h = fonc (WX +b,) (2.41)

donde W, € R™* son los pesos del codificadory f,,.(-) suele ser una
funcion ReLU o LeakyRelLU que introduce no linealidad al proceso [25].

2. Capa latente: actua como cuello de botella, limitando la cantidad de
informacion que puede fluira través del modelo. Esta restriccion obliga
a la red a extraer las caracteristicas mas relevantes de los datos de
entrada, eliminando redundancias.

3. Decodificador: reconstruye la entrada original a partir del vector latente:

X = fi..(W;h+b,) (2.42)

donde W, € R™* son los pesos del codificadory f,,..(-) puede ser una
funcion ReLU o sigmoide dependiendo de la naturaleza de los datos de
salida.

El propésito del entrenamiento es reducir la brecha entre la entrada (X) y su
reconstruccion X, sin sobreajuste, a través de una funcién de coste (C).

En el caso de este trabajo se ha usado el error cuadratico medio MSE, el cual
se expresa de manera matricial de la siguiente manera:

1
_ _ onz (2.43)
€= I1X = R

El entrenamiento sigue el mismo procedimiento descrito en el apartado 2.6
Aprendizaje automatico.
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2.7.2 Autoencoder Recurrente (RAE) variante LSTM (Long Short-Term
Memory Autoencoder)

Redes LSTM

Las redes neuronales LSTM son una evolucion de las Redes neuronales
Recurrentes (RNN), estas surgieron como extension de las redes feedforward
para modelar datos secuenciales, permitiendo que la salida de una unidad en
un paso temporal influya como entrada en el paso siguiente. Las RNN
convencionales pueden propagar informacion temporalmente, pero sufren el
problema del desvanecimiento del gradiente o explosivo al tratar secuencias
largas [29].

Sepp Hochreiter y Jargen Schmidhuber, en su trabajo "Long Short-Term
Memory", presentaron la arquitectura Long Short-Term Memory (LSTM) en
1997. En esta, sugieren una célula con mecanismos de puerta (Figura 19) que
controlan el flujo de informacion y posibilitan que las dependencias a largo
plazo se mantengan sin que los gradientes se "apaguen" o "exploten" [30].

o (o o N e
| e ow?
"] " e [Em] o[l
Hidden state } H
UL o

[
Input X,

Figura 19. Estructura de una célula LSTM [29]

Una célula LSTM esta configurada para administrary regular el estado interno
a lo largo del tiempo, utilizando puertas que determinan qué informacion se
descarta, cual se incorpora de nuevo y cual se emite como salida, para ello se
define una arquitectura de célula con 3 partes fundamentales, tal y como se ve
en la Figura 19.

La primera es la puertadeolvido f; (forget gate), la cual decide qué proporcion
del estado anterior c,_, conservar.
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La segunda es la puerta de entrada i (inputgate) quien regula cuanta parte del
candidato ¢, se incorpora al nuevo estado de celda, este candidato representa

la informacion propuesta para la memoria, transformado mediantetanh, para
mantener valores centrados en [—1,1] , de este modo la actualizacion del

estado de celda ¢, combina lo retenido y o nuevo.

En Gltimo lugar encontramos la puerta de salida o, (output gate) quien controla
qué parte del estado de la celda pasa a la salida h, filtrandolo de nuevo con la
funcion de activacion tanh. Finalmente, h, constituye la salida oculta de la
celda para el paso t.
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Figura 20. Estructura interna de una unidad LSTM [29]

Las ecuaciones estandar de una célula LSTM (Figura 20), para cada instantet,
son:

fr =W - [he_y, x,] + by) (2.44)
i,=0W,;-[h._y,x.]+ b)) (2.45)
¢; = tanh (W_[h,_,, x.]+ b,) (2.46)
¢ =f Oc_,+i,OF¢ (2.47)
o, = o(W,[h,_y, x. ]+ b,) (2.48)
h, = o, © tanh (c,) (2.49)

Siendo:
x;. Vector de entrada en el instante t.
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h._,: estado oculto del paso anterior.

¢,_,: estado de la celda en el paso anterior.
f; : forget gate (puerta de olvido).

i, :input gate (puerta de entrada).

¢,: candidato a nuevo estado de la celda.
¢, estado de la celda actualizado.

o.: output gate (puerta de salida).

h.: estado oculto de la salida en el paso t.

Como resultado de estas operaciones, una red LSTM permite que una célula
LSTM decida cuando y cuanto recordar, emitiendo la informacion necesaria y
evitando pérdidas, lo cual le dota de una flexibilidad excelente frente a
secuencias largas o patrones complejos

Integracion de las células LSTM en un Autoencoder

Los autoencoders LSTM (Figura 21) surgen de la combinacion entre la
arquitectura de los autoencoders clasicos y las redes LSTM, con el proposito de
capturar dependencias temporales o secuenciales en los datos. Mientras que
un autoencoder convencional se compone de capas densas (fully connected
layers) que comprimen y reconstruyen representaciones estaticas, los
autoencoders LSTM operan sobre secuencias de datos x,,x,, ..., X 1o que los
hace adecuados para aplicaciones donde el orden temporal es esencial, como
series de tiempo, senales de sensores o texto [29].

El principio de funcionamiento se mantiene:

e Un encoder LSTM procesa la secuencia de entrada y resume su
informacion en una representacion latente (estado oculto final h; 0
estado de celda cy).

e Un decoder LSTM toma esta representacion comprimida y genera una
reconstruccion de la secuencia original, tratando de minimizar la
diferencia con la entrada.

La estructura general de un Autoencoder puede representarse como:

Encoder:(h,,c,) = LSTM,,.(x;, hy_q,Cr_y) (2.50)
Decoder: (h,, &) = LSTMyoc (Ve h_y, € 1) (2.51)
Salida:9, =W, h, + b, (2.52)
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Figura 21. Esquema de un autoencoder recurrente con capas LSTM

El modelo, en el periodo de codificacion, pasa por la secuencia de entrada y
guarda los datos mas importantes en los estados internos del LSTM.
Durante la etapa de decodificacion, esta representacion comprimida funciona
como el contexto inicial para volver a armar la secuencia de salida.
Y. Asi, el autoencoder LSTM es capazde aprendera codificar series temporales
en un espacio con menos dimensiones, manteniendo tanto las relaciones
instantaneas como las dependencias a largo plazo [28], [29].

Los beneficios mas destacados de los autoencoders LSTM, en comparacion
con los autoencoders tradicionales son la habilidad para modelar
dependencias temporales complejas, la robustez frente a datos secuenciales
que no son estacionariosy la disminucion de la informacion contextual que se
pierde durante el proceso de compresion.

No obstante, necesitan mas potencia computacional y un ajuste meticuloso de

hiperparametros, incluyendo la tasa de aprendizaje, el tamano de la ventana
temporal y la cantidad de unidades LSTM.
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Entrenamiento

La formacion de un autoencoder LSTM tiene lugar a través de la propagacion
hacia adelante, la retropropagacion del error y la actualizacion de parametros,
siguiendo asi los mismos principiosgenerales del aprendizajesupervisado o no
supervisado que se explicaron en el apartado 2.6.

En este caso el error se mide entre la secuencia de entrada original X =
{xy,...,x;}y su reconstruccion X = {%,, ...,%,}, usando una funcion de coste
del tipo error cuadratico medio (MSE) adaptada a secuencias:

T
1 . 2.
cz?ant—xtn2 (2.53)
t=1

Este coste se propaga hacia atras en el tiempo mediante el algoritmo de
Backpropagation Through Time (BPTT), una extension del backpropagation
tradicional que tiene en cuenta la dependencia de los parametros a lo largo de
varios pasos temporales [27], [28].

De forma analoga al proceso explicado en el apartado 2.6, los gradientes de la
funcion de coste respecto a los pesos y sesgos de cada celda LSTM se calculan
por medio de laregla de lacadena, pero en este caso se acumulanen el tiempo.
Los parametros 6 = {W,, W;, W, W,, b, b;, b.b,} se actualizan segun:

aC (2.54)
26,

Opp1 =0, —1

donde 1 representa la tasa de aprendizaje.

2.8 Monitorizacion distribuida

El nGmero de variables monitorizadas ha crecido exponencialmente en los
sistemas industriales actuales a causa de la digitalizacion, la sensorizacion y el
empleo de sistemas ciberfisicos. Si bien esta abundancia de datos posibilita
una observacion mas exacta del proceso, también presenta significativos retos
en cuanto a la administracion, el tratamiento y el analisis de la informacion.

En una perspectiva clasica de supervision centralizada, todos los datos se
reinen en un solo modelo global que tiene la responsabilidad de identificar
errores 0 desviaciones. Sin embargo, cuando hay muchas variables, este
método se torna ineficaz o incluso imposible de implementar, debidoa que los
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modelos tienden a ser mas complejos, dificiles de entrenar y propensos a
sobreajustarse. Asimismo, es comun que los sistemas industriales se
estructuren en subsistemas o subprocesos que son parcialmente auténomos;
en estos, la relacion entre las variables puede ser local y no necesariamente
global [31].

La monitorizacion distribuida surge para enfrentar estas limitaciones; su
principio basico es dividir el conjunto total de variables en subconjuntos o
bloques que representen de manera coherente diferentes secciones del
proceso. Cada blogue es monitorizado de forma individual a través de modelos
locales (como los PCA o autoencoders locales), y después sus resultados se
combinan utilizando un procedimiento de fusion estadistica o probabilistica
gue posibilita la obtencion de una perspectiva global del sistema [32].

Esta perspectiva disminuye la carga computacional, facilita una deteccion de
fallos mas localizada y mejora la interpretacion de los resultados al identificar
cual componente o bloque del sistema es responsable de una potencial
anomalia.

La metodologia utilizada para llevar a cabo esta divisiony la estrategia que se
empled para fusionar los resultados de cada bloque de manera coherente,
utilizando inferencia bayesiana, se exponen en las siguientes secciones.

2.8.1 Subdivision de variables en bloques mediante el método minima
redundancia maxima relevancia

Para disenar sistemas de monitorizacion distribuida, es crucial la seleccion de
caracteristicas, pues hace posible disminuirla dimensionalidad del conjuntode
datos mientras se mantienen las variables mas informativas. EI mRMR
(Minimum Redundancy - Maximum Relevance), el cual fue propuesto por Peng
et al. en 2005 [31], es uno de los métodos mas empleados. Este escoge un
subconjunto de caracteristicas que tienen una alta relevancia en relacion a la
variable objetivo y una baja redundancia entre ellas.

La base del método mRMR es la informacion mutua (Ml, por sus siglas en
inglés), que calcula el grado de dependencia entre dos variables. Dada una
variable de entrada x;, una variable de salida y, la informacion mutua es
definida como:

B p(xi,y) (2.55)
I(x;y) = ffp(xuy} %8 ) dx; dy

43



donde p(x;,y) es la distribucion conjunta de ambas variablesy p(x;),p(y) son
las distribuciones marginales. El valor de I (x;; y) es directamente proporcional
a la implicacion que tiene la variable x; sobre la salida y.

El criterio de maxima relevancia busca seleccionar las variables mas
relacionadas con la salida del sistema:

1
maxD, D = 5] Z I(x;y) (2.56)

X;ES

donde S es el conjunto de variables seleccionadas.

Sin embargo, seleccionar Unicamente las variables mas relevantes puede
generar redundancia si varias de ellas aportan informacion similar. Por ello, el
método introduce el segundo criterio de minima redundancia, definido como:

) 1
minR, sz Z I(xi;xj) (2.57)

xi,x,- €S

El objetivo final de mRMR es maximizar la relevancia y minimizar la
redundancia simultdneamente, lo que se formula como:

max®, ®=D —R (2.58)

Este balance garantiza que el grupo de variables escogidas recoja la mayor
cantidad posible de informacioén pertinente acerca del proceso, evitando incluir
variables que estén correlacionadas entre si.

Después de que se ha calculado la matriz de informacién mutua entre todas
las variables del proceso, es factible clasificarlas en bloques segun su
dependencia funcional o estadistica. Se considera que las variables que tienen
la mayor informacion mutua entre ellas pertenecen al mismo subsistema fisico
o funcional del proceso; por lo tanto, se agrupan en el mismo bloque.

Asi, el método mRMR no solo hace posible la seleccion de las caracteristicas
mas relevantes, sino también la creacion de una estructura distribuida natural
del sistema. Esta puede utilizarse para construir modelos de vigilancia local
autonomos que luego se combinan a través de métodos de inferencia
bayesiana, que se explican en la siguiente seccion.
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2.8.2 Inferencia Bayesiana

Después de hacer la division de las variables en B bloques a través del método
MRMR, cada bloque produce sus propios estadisticos de control sz y Qp, los
cuales posibilitan la monitorizacion del comportamiento local de cada bloque.
No obstante, para calcular una medida del rendimiento total del sistema, se
debe integrar la informacion de todos los bloques de manera coherente.
Se utiliza la inferencia bayesiana, un instrumento estadistico que posibilita la
actualizacion de la probabilidad de un evento (como puede ser la ocurrencia de
un error) conforme se va adquiriendo nueva evidencia en cada bloque [27],
[28], [33].

Esta investigacion se basa en la combinacion bayesiana de estadisticos
locales, lo que da origen a los BIC (Bayesian Inference Combination), que
funcionan como indicadores generales de desviacion del proceso.
Esta estrategia posibilita la integracion de los datos de los bloques, teniendo
en cuenta su fiabilidad y su aporte a la identificacion de fallos, lo que a su vez
brinda una reconstruccion mas sélida de las estadisticas globales T2 y Q.

Fundamento teodrico

De acuerdo con la regla de probabilidad condicional de Bayes, la probabilidad
de fallo del estadistico T? en una muestra x, perteneciente al bloque b se
expresa como:

Pr2(x,| F)P 2 (F) (2.59)
Pr2(x,)

Donde P,z (F|x,) es la probabilidad condicional de observar los datos x, bajo
la hipotesis de fallo (F) y Pr2(F) es la probabilidad a priori de fallo. El
denominador puede expresarse como la suma de las probabilidades de
operacion normal o fallo (N), (F):

Pr2(x,) = Pr2(x,|N) Pr2(N)+ Pr2(xp|F)Pr2(F) (2.60)

Las probabilidades condicionales pueden modelarse mediante funciones
exponenciales que dependen del valor del estadistico sz(xb) y su umbral de

control T/,

P2 (xy|N) = T C0)/ Ty tim (2.61)
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P2 (x,|F) = eTotim/~T5 (%) (2.62)

Estas formulaciones permiten ponderar la probabilidad de que un bloque esté
bajocondiciones normales o de fallo,en funcién del grado de desviacion de sus
valores T7(x,) respecto a su umbral de control T;,,,.

Combinacion Bayesiana de Bloques

Después de calcular las probabilidades parciales de cada bloque, los BICs se
encargande combinarlasen un valor global, ponderandocada bloque con base
en su probabilidad de fallo:

B
e N PGP F ) 263
T4 X Pr(X,|F)
B
BIC, = AT LOLAGHEDY, (2.64)

Li 37 Po(X,ylF)
Los estadisticos combinados del sistema son los valores BIC;2 y BIC,, los

cuales pueden ser utilizados para detectar anomalias de la misma manera que
las estadisticas tradicionales T, y Q.

Se establece el limite de confianza () siguiendo el mismo criterio que en los

casos individuales, de modo que, si los BICs sobrepasan sus respectivos
limites, se considera que hay un posible fallo global en la planta.
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Capitulo 3. Proceso Tennessee-Eastman

3.1. Origen y contexto historico

Uno de los modelos de referencia mas empleados en la ingenieria quimica y
control de procesos es el proceso Tennessee-Eastman (TE). En 1993, Downsy
Vogel plantearon un problema de control a nivel de planta (plant-wide control
problem) que fue concebido como un banco de pruebas estandarizado para
cotejar métodos de deteccion de fallos y estrategias de control industrial [34].

El modelo fue creado a partir de un proceso quimico industrial auténtico de la
Tennessee Eastman Company,aunquese hicieron cambiosintencionados para
salvaguardar la propiedad intelectual del procedimiento original. Se llevd a
cabo su implementacion en FORTRAN, anadiendo las reacciones quimicas, los
balances de energia y masa, las ecuaciones dinamicasde flujoy los lazos de
control descentralizados [35].

La motivacion principal para su desarrollo fue disponer de un caso de estudio
abierto, reproducible y representativo de una planta industrial compleja, que
incluyera multiples unidades interconectadas, reciclajes y comportamientos no
lineales. Desde su publicacion, el proceso TE se ha convertido en un estandar
de referencia internacional en la evaluacion de algoritmos de deteccion de
fallos, control predictivo, aprendizaje automaticoy monitorizacion estadistica
de procesos [36], [37], [38].

3.2. Descripcion general del proceso

El proceso TE consta de cinco unidades principales en serie: reactor bifasico
con reaccion exergonica, condensador, separador vapor-liquido (flash),
columna de destilacion (stripper) y compresor de reciclaje (Figura 22). Estas
unidades estan interconectadas por corrientes de alimentacion, purga y
reciclaje, conformando un sistema fuertemente acopladoy con lazos de control
interdependientes [35].

El objetivo del proceso es la produccion de dos productos liquidos (G y H) a

partir de cuatro reactantes gaseosos (A, C, D y E), en presencia de un
componente inerte (B) y la generacion de un subproducto (F).

47



®. . ey B
Cws d Eg
® OE== "I o
® ! G0 | L&
Fo)—1 2 |conoensaoor] [ 13 Al &
@ o€
®,. 9@ | i€
E— e o @), ol-- cf)
; > R |- @
& (o] U~ @
€ SELAg:
" "@ il @
" | @
- O Ae® . [I[6
HE
@ 2 = @ e i O0UCTO
Figura 22. Diagrama ISA del proceso Tennessee-Eastman [35]
Las reacciones quimicas principales del proceso se expresan como:
A(g) + C(g) + D(g) = GO (3.1)
A(g) + C(9) + E(9) - HO) (3.2)
1 1 1
24(9) +3D(9) +3E(g) > F() (59

El proceso cuenta con 52 variables medidas y manipuladas, incluyendo
presiones, temperaturas, niveles de liquido, fracciones molares, flujos, y
aperturas de valvulas. De ellas, 41 son variables de proceso (XMEAs) y 11
variables manipuladas (XMVs) [35], [38], como se ve en la Tabla 1.
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Variables de proceso

Variables de control

Variables manipuladas

1 Alimentacion A

2 Alimentacion D

3 AlimentacionE

4 Alimentacion Total

5 Flujo de Reciclaje

6 Caudal de alimentacién
7 Presion del reactor

23 Comp.
24 Comp.
25 Comp.
26 Comp.
27 Comp.
28 Comp.

A de alimentacion
B de alimentacidn
C de alimentacién
D de alimentacion
E de alimentacidn
F de alimentacion

29 Comp. A de la purga

42 Flujo de alimentacién D

43 Flujo de alimentacién E

44 Flujo de alimentacion A

45 Flujo total de alimentacion

46 Valvula de reciclaje compresor
47 Valvula de purga

48 Flujo de producto separador

8 Nivel del reactor 30 Comp. B de la purga 49 Flujo de producto purgador

9 Temperatura del reactor 31 Comp. Cdelapurga 50 Valvula de vapor del purgador
10 Caudal de purga 32 Comp. D de la purga 51 Flujo enfriamiento de reactor
11 Temperatura separador 33 Comp. E de la purga 52 Flujo enfriamiento condensador
12 Nivel del separador 34 Comp. F de la purga

13 Presion del separador 35 Comp. G de la purga

14 Desbordamiento separador 36 Comp. H de la purga

15 Nivel del purgador 37 Comp. D del producto

16 Presion del purgador

17 Desbordamiento purgador
18 Temperatura del purgador

19 Caudal de vapor purgador

20 Trabajo del compresor

21 T2 de salida del agua

22 T2 de salida del agua

38 Comp.
39 Comp.
40 Comp.
41 Comp.

E del producto
F del producto
G del producto
H del producto

Tabla 1. Descripcion de las variables del proceso Tennessee-Eastman [37]

3.3. Formulacion matematica del modelo

El modelo Tennessee-Eastman esta basado en ecuaciones dinamicas no
lineales derivadas de los balances de masa y energia de cada componente y
unidad de proceso. A continuacidbn, se resumen Sus ecuaciones
fundamentales.

Para cada componente j en una unidad k:

dNi’k — in . out
T yijFit —m ) yimFE® +r ) v, R,
i m

T

(3.4)

donde:
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e Ni, k: cantidad de moles del componente i en la unidad k
Vit fraccion molar del componente i en la corriente j

« F/™yFE2": caudales molares de entrada y salida

« v;,:coeficiente estequiométrico de la reaccion r

e R.:velocidad de reaccion del proceso

Las velocidades de reaccion se describen mediante cinética de Arrhenius dela
forma general:

. E
R, = 1_[ " exp (— R“;) (3:5)

i

donde k,.es la constante pre-exponencial, C;la concentracion del componente
[, E, . la energia de activacion y T la temperatura del reactor.

En el separadory el condensador se asume equilibrio vapor-liquido:

yiP = x,PF*(T) (3.6)

Zyl:l ; le: (3.2)

i

donde yi y xi son las fracciones molares en las fases vapor y liquida
respectivamente, P la presion total y Pisai(T) la presion de saturacion del
componente i a la temperatura T.

3.4. Condiciones de operacion y control

El proceso opera bajo condiciones nominales definidas para cada corriente y
unidad de proceso. Los lazos de control regulan variables criticas como la
temperaturay presion del reactor, el nivel del separador o la fraccion molar de
productos mediante las 11 variables manipuladas (XMVs).
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ID deFallo| Descripcién Tipo Magnitud
IDV1 Relacion de alimentacién A/Ccomp. B constante | Escaldn 203%
IDV2 Composicién Brelacion A/Cconstante Escalon 105%
IDV3 Temperatura de alimentacion D Escaldn 5%
IDV4 Temperatura de entrada del agua al reactor Escaldn 9%
IDV5 Temperatura de entrada del agua al condensador | Escalén 15%
IDV6 Pérdida de alimentacion A Escaldn 342%
IDV7 Pérdida de presion del cabezal C Escalon 25%
IDV8 Composicidn de alimentacion ABC Aleatorio 736%
IDV9 Temperatura de alimentacién D Aleatorio 8%
IDV10 Temperatura de alimentacion C Aleatorio 112%
IDV11 Temperatura de entrada del agua al reactor Aleatorio 567%
IDV12 Temperatura de entrada del agua al condensador | Aleatorio 8%
IDV13 Cinética de reaccidén Desviacién 16%
IDV14 Valvula de agua al reactor Bloqueo 1285%
IDV15 Valvula de agua al condensador Bloqueo 5%
IDV16 Desconocido Aleatorio 78%
IDV17 Desconocido Aleatorio 557%
IDV18 Desconocido Escaldn 57%
IDV19 Desconocido Aleatorio 73%
IDV20 Desconocido Aleatorio 310%
IDV21 Desconocido Desconocido 7%

Tabla 2. Fallos definidos en el proceso T-E [40]

El conjunto de 21 fallos o perturbaciones (IDVs) definidos en el modelo (Tabla
2) permiten estudiar condiciones anémalas como:

e« Cambios en la temperatura o composicion de alimentacion.

o Fallos en valvulas o restricciones de flujo.

o Alteraciones en la cinética de reaccion.

e Perturbaciones aleatorias o desviaciones lentas.

Estos modos de fallo son ampliamente utilizados como casos de prueba en el
desarrollo y validacion de métodos de deteccion y diagnostico de fallos [32],

[36].
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3.5. Aplicaciones y relevancia

El proceso Tennessee-Eastman es un estandar de referencia internacional en
la investigacion y desarrollo de metodologias de control y diagnéstico de
procesos. Sus principales aplicaciones incluyen [37], [38]:

e Evaluacion de métodos de deteccion e identificacion de fallos (PCA,
PLS, ICA, redes neuronales, autoencoders, etc.).

e Analisis de la estabilidad y robustez de sistemas de control planta-
amplia.

o Desarrollo de técnicas de monitoreo estadistico y control predictivo.

o Entrenamientoy validacion de modelos de inteligencia artificial para
diagnostico industrial.

Las versiones modernas del simulador y los conjuntos de datos asociados
estan disponibles publicamente a través de los repositorios del MIT Braatz
Group [39] y del Harvard Dataverse [40], los cuales incluyen tanto datos de
funcionamiento normal como series con fallos simulados.

3.6. Limitaciones del modelo

Pese a su gran utilidad, el modelo Tennessee-Eastman presenta ciertas
limitaciones [35], [36]:

e Noincorpora todaslas no linealidadesy retardos temporales presentes
en plantas reales.

e Algunos parametros cinéticos y termodinamicos fueron modificados
para proteger la propiedad industrial.

o Las condiciones de operacion son idealizadasy pueden diferir de las
industriales.

e No contempla estrategias de control centralizado u optimizacion
econoémica.

Aun asi, su adopcion generalizada lo consolida como un caso de referencia
esencial en ingenieria quimica, control de procesos e inteligencia artificial
aplicada.
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Capitulo 4. Aplicaciones y evaluacion de
meétodos

4.1 Introduccion

Los datos del procedimiento Tennessee-Eastman (TE) se utilizan en este
capitulo para poner en practica los conceptos teodricos que se han desarrollado
anteriormente. El propoésito es analizarla habilidad de diversas metodologias
de monitorizacion para identificar fallos en condiciones similares.

Las técnicas consideradas incluyen:

1. PCA (Analisis de Componentes Principales): referencia clasica en la
reduccion de dimensionalidad y control estadistico multivariante.

2. Autoencoder: red neuronal entrenada de manera no supervisada para
aprender correlaciones no lineales.

3. Autoencoder Recurrente (RAE): adaptacion que incorpora dinamica
temporal en el aprendizaje mediante células LSTM.

4. RAEdistribuido: extension que divide las variables en bloques y fusiona
la informacion mediante inferencia bayesiana.

Todas las metodologias se entrenan solamente con datos de operacion normal
(Tabla 3) y se contrastan con los casos de fallo establecidos en el proceso
Tennessee-Eastman (Tabla 1). La capacidad de cada método para detectar
anomalias de manera fiable y rapida se mide con los estadisticos T2y Q, lo que
permite calcular el rendimiento.

Antes de abordar la implementacion, haremos una breve mencion de las
librerias mas importantes que hemos empleado en los programas, todos ellos
desarrollados con Python 3.11:

» Numpy para el calculo vectorial, matricial y tensorial a lo largo de todo
el trabajo.
o Version: 1.26.4.

» Pandas para cargarlos datos de la planta y para la division en bloques
dela 4.5.
o Version: 2.1.4.
» Matplotlib para el dibujo de todos los graficos de control y la
visualizacion de los resultados.
o Version: 3.8.0.
» Tensorflow encargado de la computacion numérica optimizada para el
aprendizaje profundo, es el encargado de administrar los recursos del
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equipoempleadoy de ejecutar los modelos de los apartados 4.3, 4.4y
4.5,
o Version: 2.16.

» Keras, incluidodentro de Tensorflow, se emplea como interfaz de alto
nivel para definir las arquitecturas de las redes neuronales en las
secciones mencionadas anteriormente.

o Version: 3.3.3.

» Pickle para guardary serializar objetos de Python en un archivo binario
y luego poder desempaquetarlos mas adelante, empleado en el
apartado 4.5 a la hora de empaquetar los datos del autoencoder
distribuido en un Gnico archivo

o Version: 3.8

VARIABLE
MUESTRA 1 2 14 15 51 52
0 0.24889 3702.3 25.184 50.201 41.384 18.905
1 0.24904 3666.2 ... 26589 49.824 41.658 18.976
2 0.25034 3673.3 24.494 48.957 41.721 16.562
3 0.25109 3657.8 ... 27367 49.708 40.836 20.094
4 0.24563 3698 22.341 49.662 41.727 18.33
5 0.24759 3687.4 ... 24433 51.704 40.922 19.532
6 0.24689 3619.7 25.761 48912 40.562 21.019
956 0.23352 3625.4 ... 24549 50.322 40971 15.621
957 0.2344 3660.3 24.501 48.908 41.891 21.744
958 0.23611 3645 ... 25.059 47.456 39.813 18.826
959 0.23729 3666.8 23.602 47.656 40.5 18.353
Tabla 3. Datos del funcionamiento normal de la planta
4.2 PCA

Se ha puesto en practica el método de Analisis de Componentes Principales
(PCA) como una herramienta para la deteccion de errores y la reduccion de
dimensiones. Su operacion se basa en determinar las direcciones de mayor
variabilidad de los datos del funcionamiento normal del proceso vy
representarlas en un espacio mas pequeno, manteniendo la informacion mas
importante.

Es factible, a partir de este modelo reducido, cotejar datos nuevos con el

comportamiento normal aprendido y asi identificar potenciales anomalias o
desvios que revelen un fallo en el sistema.
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4.2.1 Entrenamiento

En la fase de entrenamiento, se ha utilizado el conjunto de datos
correspondiente al funcionamiento normal del proceso, como se observa en la
Tabla 3. Primero, las variables se normalizan restando la media y dividiendo
por la desviacién tipica, (2.9), de modo que todas contribuyan de forma
equilibrada al modelo.

A continuacion, se calcula la matriz de covarianza (2.11) y se obtiene su
descomposicion en valores singulares (SVD), a partirde la cual se seleccionan
los autovectores asociados a los mayores autovalores, que representan las
direcciones de maxima varianza del sistema (2.12) .

El ndmero de componentes principalesse establece automaticamenteen base
al porcentaje acumulado de variabilidad, en este caso el 90%. Asi, se mantiene
la mayoria de los datos Utiles y se disminuye la complejidad del problema.

Con los componentes seleccionados se obtiene, la matriz de loadings P, la
matriz diagonal S de varianzas principales (Figura 8) y los estadisticos de
control T2y Q (o SPE, Squared Prediction Error), que cuantifican

respectivamente la variabilidad dentroy fuera del subespacio principal como
se observa en la Figura 23.

Vector T~2 y Umbral Vector Q y Umbral

5 [
—
Valor de O
= B

5
N {
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a ( (o A DAL | I |

0 200 400 600 800 1000 o 200 400 600 800 1000
Observaciones Observaciones

Figura 23. Estadisticos T2y Q en PCA. Funcionamiento normal

Finalmente, se calculan los umbrales de control a partir del percentil 99 % de
cada estadistico, almacenandose junto con los parametros del modelo para su
posterior uso en la fase de deteccion.
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4.2.2 Deteccion de Fallos

Después de que el modelo PCA ha sido entrenado, se pasa a la etapa de
deteccion, en la cual los parametros adquiridos se aplican a un nuevo conjunto
de datos que representa una circunstancia del proceso que puede ser
anomala.

Primero, se cargan los datos de normalizacion del entrenamiento y, ademas,
las medias, desviaciones tipicas, vectores de carga y limites de control que se
han guardado con anterioridad. Los registros del sistema se escalan con las
estadisticas del modelo, asegurando que sean coherentes con las condiciones
de entrenamiento.

Los estadisticos de control T2 y Q se determinan para cada observacion, del
mismo modo que en el entrenamiento, con los mismos datos de normalizacion.

Ambos indicadores se comparan con sus respectivos umbrales de referencia,
los cuales son el percentil 99 % de los datos normales. Cuando el valor de
alguno de estos estadisticos supera el umbral ya mencionado, se entiende que
la muestra esta fuera de control.

El estadistico T?evalla la variabilidad de las observaciones dentro del
subespacio principal, permitiendo identificar desviaciones respecto al
comportamiento normal de las combinaciones lineales mas significativas.

Por su parte, el estadistico Q mide el residuo o error de reconstruccion fuera
del subespacio principal, reflejando anomalias que no pueden explicarse
mediante las componentes seleccionadas.

A partir de ahora, vamos a representar graficamente los resultados obtenidos
para los datos defallo 6, 12y 15, el resto lo representaremos mediante tablas.
En concreto para estos fallos los estadisticos T2 y Q se representan en las
Figuras 24, 25 y 26 respectivamente:

Vector T°2 y Umbral Vector Q y Umbral

— SPE
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15000

15000
12500

10000

Valor de T2
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Figura 24. Deteccion del fallo IDV6 mediante PCA. Estadisticos T2y Q
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Figura 25. Deteccion del fallo IDV12 mediante PCA. Estadisticos T2y Q
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Figura 26. Deteccion del fallo IDV15 mediante PCA. Estadisticos T2y Q

Luego, se lleva a cabo un andlisisde la cantidad dealarmasfalsasy verdaderas
para ambos estadisticos, diferenciando el area de funcionamiento normal del
area donde se introduce un error. Ademas, se define un criterio de fallo
sostenido: si una serie ininterrumpida de observaciones (como diez) excede el
umbral definido para un comportamiento normal, se establece el instante
exacto en que el sistema deja de operar con normalidad, como se observa en
la Tabla 4.

Finalmente, se realiza un diagnéstico del motivo del fallo a través del analisis
de los residuos s6lo en el instante en que se detecta el fallo. Estos se
determinan proyectando las observaciones en el espacio ortogonal al
subespacio principal y calculando la contribucion de cada variable al error total
como se ve en la Figura 27.

Lo que permite determinar las variables con mayor impacto en la desviacion
detectada y, por lo tanto, los posibles motivos del error en el procedimiento.
Cabe destacar que esta contribucion solamente es calculablesi el modelo es
capaz de detectar los fallos.
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Figura 27. Contribuciones de cada variable. Fallos IDV6 y 12 respectivamente

4.2.3 Resultados PCA

En base alos resultados, observamos queel PCA es capazde identificarerrores
en la mayoria de los IDs de fallo (Tabla 4), aunque presenta una media de
alarmas detectadas que es relativamente baja (Tabla 5).

Fallo| FalsasA (%) | Alarmas (%) | t_Fallo(obs) | FalsasA (%) | Alarmas (%) | t_Fallo (obs)
1 1,25 99,25 166 3,75 99,75 162
2 1,875 98,63 171 4,375 98,63 174
3 1,25 1,88 No Detect. 2,5 7,50 No Detect.
4 0,625 41,88 664 2,5 100,00 160
5 0,625 25,75 170 2,5 33,88 160
6 0,625 98,88 169 2,5 100,00 160
7 0 100,00 160 2,5 100,00 160
8 0 97,25 182 4,375 96,88 177
9 3,125 3,38 No Detect. 5 4,50 No Detect.
10 1,875 30,75 263 0 46,00 207
11 0 51,25 210 5 69,38 166
12 1,875 98,63 181 6,25 95,13 182
13 1,875 94,63 205 1,25 95,13 200
14 0,625 99,50 160 5 99,88 161
15 1,25 2,50 No Detect. 3,125 6,13 No Detect.
16 3,75 15,13 470 3,125 43,50 353
17 0,625 78,63 188 3,125 95,63 181
18 1,25 89,38 252 5,625 90,13 243
19 0,625 12,25 No Detect. 4,375 21,88 No Detect.
20 2,5 31,25 246 3,75 55,88 244
21 1,25 41,38 664 3,75 50,13 409

Tabla 4. Deteccion de fallos mediante PCA
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Promedios PCA
Falsas Alarmas (%) | Alarmas (%) | Tiempo de deteccion (observaciones)
T? 1,28 57,72 265,94
Q 3,54 67,14 205,82
Tabla 5. Resumen estadistico PCA

Total Fallos PCA
T2 17

Q 17
Tabla 6. Fallos detectados con PCA

Por otro lado, se ve que el método no es capaz de detectar 4 fallos (los fallos
3,9, 15y 19) ni con la estadistica T2 ni con la Q (Tablas 5y 6).

En lassecciones que siguen, utilizaremostécnicas de aprendizaje profundo con
el objetivo de lograr una deteccion mas precisa, dado que pueden aprender
patrones de mayor complejidad que los que pertenecen al PCA.

4.3 Autoencoder

La reduccion de la dimensionalidad y la identificacion de anomalias se llevan a
cabo utilizando el método del autoencoder denso, que es un enfoque no lineal.
El autoencoder, en contraste con el PCA, que se fundamenta en combinaciones
lineales de las variables, emplea una red neuronal con multiples capas densas
conectadas simétricamente para adquiriruna representacion comprimida de
los datos de operacion normal.

Durante el proceso de entrenamiento, la red se ajusta para reconstruir la
entrada a partir de su version reducida, de modo que la informacion esencial
del sistema se concentre en las capas internas.

Esta habilidad de reconstruccidon posibilita, mas adelante, determinar

desviaciones importantes entre la senal original y la que ha sido reconstruida;
esto se convierte en el fundamento para detectar fallos.

4.3.1 Entrenamiento
El pretratamiento de los datos se realiza de manera idéntica en todos los

métodos, pero esta vez partimos de una matriz de datos mucho mas grande,
de 250.000 observaciones exactamente, tanto para este autoencoder, como
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para el resto, esto es asi porque para obtener un buen entrenamiento de la red
se necesita una gran cantidad de datos.

La arquitectura del autoencoder implementado esta compuesta por una red
simétrica que tiene tres capas ocultas en el codificador y tres en el
decodificador siendo la representacion latente (h) compartida en encoder y
decoder como vimos en la Figura 18, las cuales estan organizadas con las
dimensiones mostradas en la Tabla 7.

Capa| Nombre de capa Ig::):e Dimension | Funcionde activacion | Tipo
0 Input Entrada 52 RelLU Entrada
1 encodedl Dense 48 RelLU Encoder
2 encoded? Dense 35 LeakyRelLU (a=0.1) Encoder
. Encoder
3 hidden (Dense) Dense 24 RelLU (hidden)
5 decoded2 Dense 35 RelLU Decoder
6 decodedl Dense 48 Sigmoid Decoder
7 output Salida 52 - Salida

Tabla 7. Configuracion Autoencoder

Las capas utilizan funciones de activacion ReLU para las capas de codificacion
lo que permite modelar relaciones no lineales complejas entre las variables y
LeakyRelLU para la capa oculta con el objetivo de mitigar el problema del
desvanecimiento del gradiente mencionado anteriormente y finalmente
sigmoide en la salida.

La finalidad del modelo es la de reducir el error cuadratico medio (MSE) (2.40)
entre la entrada y la salida reconstruida, para ello, se entrena el modelo
utilizandoAdam como optimizador,ya mencionado en el apartado2.6.4.1 Adam
(Adaptive Moment Estimation).

En el entrenamiento, se deja un 20 % de los datos para validacion. Con un
tamano de lote de 64 muestras, el aprendizajetiene lugar en un total de 30
épocas. El resultado de entrenamiento, se observa en la Figura 28,y se ve como
con la arquitectura de red seleccionada se consigue una convergencia rapida y
sin sobreajuste.
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Figura 28. Curvas de pérdida en entrenamiento y validacion del autoencoder

Después de que el entrenamiento ha concluido, se obtiene el codificador, que
convierte las observaciones iniciales en un espacio de dimensiones reducidas
h. Entonces, se calcula la matriz de covarianza de las representaciones
comprimidas en este nuevo espacio.

Vector T2 y Umbral Vector Q y Umbral
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Figura 29. Estadisticos T2y Q en Autoencoder. Funcionamiento normal

En funcién de ella, se establece el estadistico T2, que analiza la variabilidad en
el subespacio codificado, y el estadistico Q, que calcula el residuo de

reconstruccion (diferencia entre entrada y salida) como se ve en la Figura 29,
pero esta vez ambos estadisticos han sido calculados como:

T? = (h; — uy,) - cov(h) - (h; — wp)* (4.1)
Q=0-u) G—p)t (4.2)

Siendo h; la representacion latente de la red, equivalente a los autovectores
obtenidos en PCA, r; el residuo calculado como X, — X siendo X,, la matriz de
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datos normalizada correspondiente a la entrada de la red y X la reconstruccion
del autoencoder. u, y u, sus medias, respectivamente y cov() la covarianza.

Los limites que determinan el funcionamiento normal del sistema se
establecen utilizando los percentiles 99 % del conjunto de entrenamiento, con
lo cual se obtienen los umbrales de control para ambos estadisticos.

Por Gltimo, se almacenan en archivos los modelos entrenados (autoencodery
encoder) junto con los parametros estadisticos y umbrales, que se utilizaranen
la fase de deteccion.

4.3.2 Deteccion de fallos

En la etapa de deteccion, se emplean los modelos que han sido entrenados
antes con un nuevo conjunto de datos con fallos.

Se normalizan las observaciones empleando los parametros del conjunto de
entrenamiento y se proyectan en el espacio latente a través del codificador, lo
que produce sus reconstrucciones pertinentes con el autoencoder.

Con estos resultados, se vuelven a calcular los estadisticos de control T2 y Q
para cada observacion, y fallo utilizando las mismas pautas que durante el
entrenamiento. Ambos se comparan con sus limites respectivos para
establecer si el proceso esta en un estado normal o descontrolado. Mostramos
los resultados de estas estadisticas junto con sus umbrales para los fallos 6,

12 y 15 en las figuras 30, 31, y 32 respectivamente. Destacando los instantes
en los que las observaciones superan los limites establecidos.
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Figura 30. Deteccion del fallo IDV6 con Autoencoder. Estadisticos T? y Q
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Figura 31. Deteccion del fallo IDV12 con Autoencoder. Estadisticos T? y Q
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Figura 32. Deteccion del fallo IDV15 con Autoencoder. Estadisticos T2y Q

Con base en estos graficos, se cuentan las alarmas falsas (que corresponden
a superaciones del umbral en la zona de funcionamiento normal) y las alarmas
verdaderas (que son las que ocurren al sobrepasar el umbral en la zona de
fallo).

Asimismo, se aplica un criterio de error sostenido, para que, Si una serie
continua de muestras (diez, por ejemplo) excede el umbral, se determine el
momento exacto en que el sistema falla, obteniendo para los 21 fallos los
estadisticos dela Tabla 8y los estadisticos promedio de la Tabla 9y la Tabla 10.

Por Gltimo, para determinar la causa del fallo, se examina el vector de residuos
que corresponde con el momento en que fue detectado.

Se representa en un grafico de barras la contribucion individual de cada
variable como se observa en la Figura 33, que se obtiene del cuadrado de los
residuos. Esto posibilita observar qué variables tienen mayor impacto en la
anomalia detectada, lo cual ayuda a identificar la causa del error. En este caso,
la Figura 33 nos indica que las variables 1y 44 son las variables que provocan
el fallo6, asicomo lavariable22 es la que provoco el fallo12. El fallo 15 parece
ser provocado por demasiadas variables, por lo que no nos da mucha
informacion.
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Contribuciones al fallo Contribuciones al fallo
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Figura 33. Contribuciones al fallo IDV6, IDV12 e IDV15 en Autoencoder

4.3.3 Resultados

Como hicimos antes, comentaremos algunos graficos de control significativos
y pasaremos a ver los estadisticos de cada falloy los generales.

El fallo6 (Figura 30) se detecta de forma similaral método anterior, los tiempos
de observacion son similares, sin embargo, las alarmas que detecta el
autoencoder son mucho mayores.

El fallo 12 (Figura 31) En este caso el estadistico T? de PCA detecta un poco
mas rapido el fallo, sin embargo, es el estadistico Q del Autoencoder quien ha
sido capaz de detectar antes de forma general el fallo.

Por Gltimo, el fallo 15 (Figura 32) ahora pasa a ser detectado por el estadistico
Q lo que, junto al resultado del fallo 12, denota como el autoencoder es capaz
de almacenar mas informacion que el método estadistico de PCA

De forma general observamos que el comportamiento del autoencoder es
superior al de PCA, si bien es cierto que este mantiene una mayor
homogeneidad en la deteccion de fallos con relacion a sus estadisticos, el
autoencoder ha demostrado que el estadistico Q es superior a la hora de
detectar fallos, incurriendo en una mayor deteccion total de fallos. Por otro
lado, destacar que se han reducido drasticamente el indice de falsas alarmas,
especialmente en el estadistico T2
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Detectado por T? Detectado por Q
Fallo | FalsasA (%) | Alarmas(%) |t_Fallo(obs) | FalsasA(%) | Alarmas(%) | t_Fallo(obs)
1 0 99,25 166 1,25 99,50 164
2 0 98,25 174 1,25 98,50 172
3 0 1,00 No Detect. 5,625 6,13 No Detect.
4 0,625 1,88 No Detect. 2,5 70,50 165
5 0,625 22,63 172 2,5 100,00 160
6 0 99,63 168 0,625 100,00 160
7 0 84,00 160 0,625 99,88 160
8 0,625 97,00 181 0,625 98,00 179
9 1,25 1,38 No Detect. 11,875 6,88 120
10 1,25 18,38 261 1,25 77,00 184
11 0 11,75 No Detect. 0,625 55,25 255
12 0 95,13 191 4,375 99,00 162
13 0 93,63 206 0 95,13 203
14 0 99,75 161 0,625 99,88 161
15 0 0,25 No Detect. 0,625 10,13 802
16 2,5 3,63 No Detect. 25 79,13 170
17 0,625 72,25 186 0,625 91,25 183
18 0 89,13 250 1,875 89,75 244
19 0 2,00 No Detect. 0 56,38 170
20 0 25,00 252 0 71,25 231
21 0 20,38 848 7,5 38,38 674
Tabla 8. Deteccion de fallos mediante autoencoder
Promedios Autoencoder
Falsas Alarmas (%) | Alarmas (%) | Tiempo de deteccién (observaciones)
T? 0,36 49,35 241,14
Q 3,30 73,42 235,95

Tabla 9. Resumen estadistico Autoencoder

Total Fallos Autoencoder

TZ

14

Q

20

Tabla 10. Fallos detectados con Autoencoder

Las alarmas siguen la misma dinamica que los estadisticos, el autoencoder
detecta mayor porcentaje de forma absoluta con su estadistico Q, pero el T?de
PCA es superior detectando fallos.
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4.4 Autoencoder Recurrente (RAE)

El modelo que se ha creado esta fundamentado en una arquitectura de
autoencoder secuencial que se pone en practica a través de redes LSTM (Long
Short-Term Memory). Estas redes son particularmente apropiadas para el
tratamiento de series temporales y senales que dependen del tiempo, porque
posibilitan la captura de relaciones dinamicas a través de diversas escalas
temporales.

El sistema esta compuesto por dos segmentos fundamentales: el codificador
(encoder) y el decodificador (decoder), que estan conectados mediante un
cuello de botella o capa latente, la cual funciona como una representacion
comprimida de la serie de entrada. El proposito del modelo, en resumen, es
adquirir una representacion eficaz de los datos temporales y usarla para
reconstruir la secuencia original.

4.4.1 Entrenamiento

Se emplean otra vez los datos del proceso en condiciones normales para
entrenar el modelo RAE. Se quitan las columnas iniciales que no aportan
informacion y se normalizan todas las variables entre O y 1 utilizando sus
valores maximos y minimos.

Después, las observaciones se reestructuran en ventanas temporales
deslizantes de cinco muestras, permitiendo que el modelo capte dependencias
entre los valores presentes y los pasadosde las variablesa corto y medio plazo.

El codificador se compone de dos capas LSTM apiladas secuencialmente.
La capa inicial toma como entrada una secuencia de multiples dimensiones y
produce una nueva secuencia de salida donde cada paso temporal se convierte
en un vector de activacion con una dimension constante. Esta capa utiliza una
funcién de activacion no lineal conocida como Scaled Exponential Linear Unit
(SELVU), que permite la auto-normalizacion de las activaciones y optimiza la
estabilidad en el proceso de entrenamiento.

La segunda capa LSTM recibe la secuencia generada por la primera y la
sintetiza en un solo vector de menor tamano, extrayendo los datos mas
significativos de toda la serie temporal. En esta etapa, el modelo deja de
devolver una secuencia y brinda en su lugar una representacion latente fija,
que se considera el vector codificado del autoencoder o capa oculta.
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El vector creado por el codificador simboliza el estado comprimido de la
secuencia original. Este vector incluye la informacion crucial para reconstruir la
senal de entrada con el minimo de pérdida posible, funcionando como un
espacio latente de caracteristicas del modelo.

Para el decodificador, primeramente, se emplea una capa de repeticion
(Repeat Vector) que reproduce el vector latente el nimero de veces que la
secuencia de entrada tiene pasos temporales. Este proceso produce una
secuencia inicial artificial que sera la entrada del decodificador en si.

Se anaden dos capas LSTM mas a continuacion. La primera conserva la misma
dimension que el vector latente, pero la segunda aumenta el nimero de
unidades de salida para acercarse gradualmente a la complejidad de la
secuencia inicial. Las dos capas utilizan, ademas, la activacion SELU y
devuelven secuencias completas, lo que asegura que cada momento temporal
se reconstituyera de forma coherente a través del tiempo.

Por Ultimo, se anade una capa densa distribuida en el tiempo (TimeDistributed
Dense Layer), la cual se aplica de manera independiente a cada paso de la
secuencia que ha sido reconstruida. Esta capa envia los vectores de activacion
del decodificador hacia el espacio de salida, creando una secuencia con la
misma dimensionalidad que la entrada inicial. Su activacion es lineal porque €l
propodsito es reducir al minimo el error de reconstruccion sin imponer
restricciones extra a los valores de salida. El resumen de la red con todas sus
capasy dimensiones se encuentra en la Tabla 11.

Capa | Nombre de capa | Tipo de capa | Dimensi6n| Funcidnde activacion| Topi

0 Input Entrada (5,52) — Entrada
1 encodedl LSTM (5,48)  SELU Encoder
2 encoded? LSTM 24 SELU (E;ifj%‘lir)
3 repeat_vector RepeatVector (5, 24) — Decoder
4 decodedl LSTM (5,24) SELU Decoder
5 decoded2 LSTM (5, 48) SELU Decoder
6 output Dense 52 Lineal Salida

Tabla 11. Configuracion del Autoencoder LSTM

La red se configura de manera que la salida del decodificador tenga la misma
forma que la secuencia de entrada.
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Durante el entrenamiento, el modelo se optimiza mediante una funcion de
pérdida de tipo error cuadratico medio (Mean Squared Error, MSE), que
cuantifica la diferencia entre la secuencia original y su reconstruccion,
utilizando el optimizador Adam con una tasa de aprendizaje de 0.001.

Se emplea un 20 % de los datos como conjunto de validacion para controlar el
sobreajuste, y el proceso se ejecuta durante 4 épocas con un tamano de lote
de 32 muestras.

De esta forma, el autoencoder aprende a representar y reproducir las
dindmicastemporales de los datos, capturandolasdependencias secuenciales
mas relevantes dentro de un espacio de representacion comprimido.

Al finalizar el entrenamiento, se evalla la convergencia del modelo mediante
las curvas de pérdida de entrenamiento y validacion, tal y como se ve en la

Figura 34.
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Figura 34. Curva de pérdidas del modelo durante el entrenamiento.

A continuacion, se genera el modelo encoder, que transforma cada secuencia
de entrada en un vector reducido que representa el estado dinamico del
sistema.

Sobre este espacio latente se calculan las estadisticas de control Hotelling’s
T? y Q, que permiten cuantificar, respectivamente, la variabilidad explicada y
el error de reconstruccion de cada secuencia. Estas estadisticas calculadas
para el comportamiento normal de la planta se pueden ver en la Figura 35.
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Figura 35. Estadisticos T2y Q en LSTM. Funcionamiento normal

Los umbrales de control se establecen en los percentiles 99 % para ambos
estadisticos, delimitando asi el rango de funcionamiento normal.

Por altimo, los parametros adquiridos (umbrales, medias, matrices de
covarianzay limites de normalizacion) y los modelos entrenados se guardan en
archivos para asegurar que estén disponibles para la etapa siguiente, que es
la deteccion de fallos.

4.4.2 Deteccion de Fallos

En primer lugar, se cargan los parametros caracteristicos obtenidos a lo largo
del entrenamiento (como las medias y covarianzas del espacio latente, los
limites superior e inferior de normalizaciéony los umbrales de control para las
estadisticas Q y T), asi como también los modelos que fueron almacenados
antes del autoencoder y su codificador correspondiente.

Se aplican los mismos limites utilizados en la fase de entrenamiento para
normalizar los datos nuevos, o que asegura la coherencia entre los dos
conjuntos.

Las observaciones se reordenan después en secuencias temporales que tienen
la misma longitud que la ventana empleada por la LSTM, para que asi el modelo
sea capaz de analizarcomo se comportan las variables de manera dinamica
dentro de cada intervalo.

El autoencoder recrea cada una de las secuencias de entrada y, con base en
estas reconstrucciones, se vuelven a calcular las estadisticas de control, de los
fallos 6, 12 y 15 taly como se comenta en el apartadoanterior (Figura 36, Figura
37y Figura 38).
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Figura 36. Deteccion del fallo IDV6 con LSTM. Estadisticos T? y Q
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Figura 37. Deteccion del fallo ID12 con LSTM. Estadisticos T? y Q

Vector T2 y Umbral Vector Q y Umbral

— —a
=== Umbral | L l —=- Umbral
1 I T

Valor de T2
Valorde @

0

0 200 400 600

Observaciones

800 1000 [ 200 600

Observaciones

Figura 38. Deteccion del fallo IDV15 con LSTM. Estadisticos T2y Q
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Para confirmar la presencia de un fallo se emplean los mismos criterios que en
los apartados anteriores y se obtienen las Tabla 12, 13y 14.

El RAE no solo detecta desviaciones instantaneas, sino también patrones
andémalos en el tiempo. Una secuencia se considera anémala si su error de
reconstruccion acumulado excede los limites derivados de los datos de

entrenamiento, es por esto que Q suele ser mas eficiente a la hora de detectar
fallos en este tipo de autoencoder.
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En dltima instancia, realizamos la identificacion de fallos sobre el conjunto
estudiadoy en los dos que han sido detectados, representados en dos graficos
de barras en la Figura 39.

Contribuciones al fallo Contribuciones al fallo
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Figura 39. Contribuciones al fallo en LSTM IDV6 e IDV12

En este caso, esta representacion evidencia las variables que han sido mas
contribuyentes en el fallo, en el caso del IDV6, las variables 36 y 42 han sido
guienes mas han influido, mientras que en el caso del IDV12, la variable que
mas ha contribuido ha sido la 40 seguida de la 37.

4.4.3 Resultados

El fallo 6 (Figura 36) se detecta de forma similar los métodos anteriores, los
tiempos de observacion son similares, sin embargo, las alarmas que detecta el
autoencoder LSTM son similares al autoencoder.

En el fallo 12 (Figura 37) los dos estadisticos del autoencoder LSTM han
detectado mas rapido los fallos que los dos modelos anteriores y ademas con
un porcentaje de alarmas superior

Por altimo, el fallo 15 (Figura 38) ahora vuelve a no ser detectado por el

estadistico Q, aligualqueen PCA vemos que el autoencoder es superior a estos
dos en este caso.
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Detectado por T2 Detectado por Q
Fallo | FalsasA (%) | Alarmas(%) | t_Fallo(obs) | FalsasA(%)| Alarmas(%) | t_Fallo(obs)
1 1,25 99,87 161 0 99,75 162
2 2,5 98,99 168 1,25 98,74 170
3 1,25 1,26 No Detect. 1,875 0,75 No Detect.
4 0 7,67 No Detect. 6,875 100,00 156
5 1,25 25,66 168 6,25 23,40 157
6 0 99,75 162 2,5 100,00 156
7 2,5 51,95 157 2,5 100,00 156
8 0 97,74 178 0 97,99 176
9 1,25 1,13 No Detect. 0 0,50 No Detect.
10 0 37,23 262 0,625 21,38 257
11 0,625 18,11 444 0 87,30 162
12 0,625 99,37 160 3,125 99,50 158
13 0 94,21 206 0 95,47 196
14 1,875 13,96 No Detect. 3,125 100,00 157
15 0,625 1,64 No Detect. 2,5 2,01 No Detect.
16 2,5 18,24 353 1,875 13,96 396
17 1,25 80,13 184 0 95,72 178
18 0 88,55 252 5 90,06 239
19 0 1,13 No Detect. 0 49,81 340
20 0 36,86 245 0 50,44 242
21 0 37,74 668 0,625 40,75 640
Tabla 12. deteccion de fallos mediante LSTM
Promedios LSTM
Falsas Alarmas (%) | Alarmas (%) | Tiempo de deteccion (observaciones)
T2 0,83 48,15 251,20
Q 1,82 65,12 227,67

Tabla 13. Resumen Estadistico LSTM

Total Fallos LSTM
T? 15
Q 18
Tabla 14. Fallos detectados con LSTM

En vista a los resultados obtenidos, observamos que la red LSTM detecta
menor nimero de fallos que el autoencoder pero mayor numero que PCA de
forma global, vemos que los estadisticos siguen la misma dinamica que el
método anterior, Q es superior en los dos tipos de autoecoders, pero T? es
superior en PCA.
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Por otra parte, si bien de forma general, el autoencoder ha detectado mas fallos
y mas alarmas también ha detectado mas falsas alarmas, donde destaca el
LSTM por detectar un nimero minimo de las mismas, especialmente en la
estadistica Q.

4.5 RAE distribuido

4.5.1 Entrenamiento

La manera de entrenar es igual para los tres escenarios de variables
distribuidas (sesgo 1, sesgo 1.5 y sesgo 0.5), con la Unica diferencia en la
conformacion de los grupos que se logran a través del método Minimum
Redundancy Maximum Relevance (mRMR), tal y como vimos en el apartado
2.8.1. Donde este sesgo, nos indica que umbral ponemos para decidir que
variables entran en cada bloque. Por ejemplo, si el sesgo es iguala 1, hemos
puesto como umbral el valor medio del indice mMRMR (ImrmR), €s decir, si entre
dos variables x; y x; el indice Imrmr €5 mayor que el umbral, la variable x; entra
en el bloque definido por la variable xi, si es menor no entra. Y esto se hace con
todas las variables.

En todos los casos, lasvariables elegidas se subdividen en distintos subgrupos
gue posibilitan el desarrollo de un sistema de monitorizacion distribuida. En
este sistema, cada submodelo recoge dinamicas particulares de una porcion
especifica de la planta, Tablas 15, 16y 17.

Se lleva a cabo una seleccion inicial de 240,000 muestras libres de fallos,
suprimiendo las columnas que no aportan informacion, al igual que en los
métodos anteriores, ya que necesitamos eliminar la mayor cantidad de ruido.

Los indices de las variables se agrupan en funcion de la estructura que
corresponde a cada sesgo (1, 1.5 0 0.5) y se crean matrices normalizadas X;n
para cada grupo i, segun el resultado del mMRMR, y se va a generar ahora un
autoencoder recurrente por cada bloque.

La funcion de entrenamiento de cada autoencoder LSTM es idéntica a la
empleada en el apartado 3, con la diferencia de que entrenamos un modelo de
autoencoder con diferente nimero de variables para cada bloque, por lo tanto,
hemos de emplear una configuracion neuronal diferente para cada caso.

Para unificar el codigo y emplear unos nimeros maximoy minimo de neuronas

se han establecido los criterios para la arquitectura de todos los modelos de
autoencoder LSTM definidos en la Tabla 18.
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Sesgo 1l | Variables
X1 1, 44, 15, 49, 12, 48, 30, 37, 45
X2 3,4,7,8, 10, 11, 13, 16, 18, 19, 22, 25, 31, 35, 43, 47, 50
X3 5,17, 42, 46, 52
X4 2,921, 51
X5 20, 27, 28, 33, 34, 36
X6 6,23, 24, 29, 38, 39, 41
X7 14, 26, 32, 40

Tabla 15. Agrupacion de variables obtenida para Sesgo = 1 en mRMR

Sesgo 1,5 | Variables

X1 1, 44, 14, 40, 15, 45,49

X2 7,8, 10, 11, 13, 16, 18, 19, 22, 25, 31, 35, 43, 47, 50

X3 5,17, 46, 52

X4 2,9,21, 42, 51

X5 20, 27, 26, 33, 36

X6 4,6, 23, 24, 38, 39, 41

X7 3,29, 30, 34, 37

X8 12, 26, 42, 38

Tabla 16. Agrupacion de variables obtenida para Sesgo = 1,5 en mRMR

Sesgo 0,5 | Variables

X1 1,29 14, 39, 44, 51

X2 8,31, 4, 37, 22,10, 25, 6, 43, 11, 18, 35, 50, 3,47, 19,

16, 41, 29,7, 21, 13, 33, 20

X3 5,46, 52, 42, 34, 17

X4 36, 27, 15, 28, 45, 26, 40, 23, 30, 38, 49

X5 32, 23,12, 48

Tabla 17. Agrupacion de variables obtenida para Sesgo = 0,5 en mRMR
Capa | Nombre de capa| Tipo de capa Dimensidn Fun.ciér! fje Tipo
activacion

0 Input Entrada (5, input_dim) — Entrada
1 encodedl LSTM [5,(max (input_dim / 1.3),4) ] SELU Encoder
2 encoded? LSTM (max (input_dim /3),2)  SELU (Er:‘i;c;‘lir)
3 repeat_vector RepeatVector [5,(max (input_dim/3),2)] — Decoder
4 decodedl LSTM [5, (max (input_dim / 3), 2)] SELU Decoder
5 decoded2 LSTM [5,(max (input_dim / 1.3),4)] SELU Decoder
6 output Dense 52 Lineal Salida

Tabla 18. Arquitectura encoders DLSTM
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Tras el entrenamiento se generan tantos autoencoders LSTM como grupos de
variables tengamos por sesgo y se obtienen las series de estadisticos T2y Q
para cada grupoy sus umbrales, los cuales emplearemos mas adelante para
la deteccidn por grupos.

Finalmente se aplica un esquema de inferencia bayesiana, tal y como se
describe en el apartado 2.8.2, para combinar la informacion procedente de
todos los blogues en una Unica decision global sobre el estado del proceso. De
esta manera obtenemos los BICS de T2y Q, los cuales son equivalentes a los
estadisticos de los apartados anteriores y sus umbrales (que en este caso
corresponde al valor 1-a,, donde a es el grado de precision deseado, en este
caso 0.5), los cuales emplearemos mas adelante en la deteccion de fallos, del
mismo modo que en los apartados anteriores.

Entonces se almacenan todos los datos obtenidos en un fichero para la
posterior deteccion, el cual incluye: los modelos de encoders y decoders,
estadisticos y umbrales por grupo y BICs.

4.5.2 deteccion de Fallos

Se lleva a cabo la identificacion de errores en los tres esquemas distribuidos
mediante el empleo de los modelos que han sido entrenados previamente en
cada conjunto de variables.

El propdsito de este método es crear un mecanismo de diagnostico que pueda
combinar informacion proveniente de cada submodelo local y producir un
indice total mas resistente frente a interrupciones o errores de diferentes tipos.

4.5.2.1 Deteccidn de fallos por grupo

En primer lugar, realizamos la deteccion con los estadisticos de cada subgrupo
para todos los fallos, este procedimiento es idéntico al realizado en los
apartados anteriores, ya que la deteccion se realiza con los estadisticos T2y Q
de cada subgrupoy sus umbrales en cada agrupacion obtenida en mRMR por
sesgo, representando la deteccion del fallo IDV6 obtenemos las figuras 40, 41
y 42.
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Figura 40. Estadisticos T? y Q fallo IDV6 (Sesgo=1)

Como se observa en este caso, la mayoria de los grupos detectan el fallo, pero
el grupo 7 no, esto es debido a que no todas las variables contribuyen al fallo
de la misma manera y al distribuir el método, conseguimos aislar que grupos
presentan mayor susceptibilidad al fallo.
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Figura 41. Estadisticos T2y Q fallo IDV6 (Sesgo=1,5)
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En este caso vemos que todos los grupos detectan fallo menos el grupo 8, el
cual, tal y como podemos observar en las Tabla 15y 16 comparte variables con

el grupo 7, el cual no detectaba fallo en la agrupacion de sesgo 1.
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Figura 42. Estadisticos T? y Q fallo IDV6 (Sesgo=0,5)
En este caso es el grupo 5 el que no detecta fallo para el mismo ID de fallo, por

lo tanto, vemos que los datos contenidos en el subgrupo son los Unicos que no
contribuyen al fallo.
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Del mismo modo que en los apartados anteriores, se ha realizado el calculo de
las contribuciones al fallo para cada grupo de variables en cada sesgo y fallo,
que se obtiene del cuadrado de los residuos.

Esto posibilita observar qué variables tienen mayor impacto en la anomalia
detectada, lo cual ayuda a identificar la causa del error, como el grupo de
variables es menor las graficas representadas son mas esclarecedoras ya que
permiten una mejor discriminacion entre variables adyacentes.

Debido al gran nUmero de graficas obtenidas, se ha tomado como ejemplo el
fallo IDV6, donde se ha detectado que el bloque 1 ha sido el mayor
contribuyente a la produccion del mismo, por ende, representando la
contribucion al fallo del bloque 1 para cada uno de los sesgos, obtenemos la
Figura 43:

Diagnostica de error_tnipo X1n Diapndstica de armar - Grupo X1n

1o~
-

2 e 206
] . . 3
-

Dizgnastica de erar - Grups X1n

o

02l
- . . R —
2 : T ; :

Figura 43. Contribuciones al fallo grupo X1 IDV6

Se observa claramente la importancia de las variables 1y 2 en la produccion
del fallo, por lo tanto, podriamos concluir que son las causantes directas del
mismo.

A continuacion, presentamos la lista de los fallos detectados con los distintos
sesgos (Tabla 19, 20y 21), pudiendoobservar que bloquescontribuyen alfallo.
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Grupo X1 X2 X3 X4 X5 X6 X7
Fallo

Tabla 19. Deteccion por bloque sesgo 1

Observamos que hay fallos que s6lo impactan a un grupo de variablesy que
solamente algunos bloques los detectan, como el 4, el 9 0 el 11. En cambio,
otros fallos, como el 6, el 7 y el 12, tienen un impacto mas amplio en las
variables del proceso.

Se nota,ademas, quealgunos bloquesidentifican la mayor parte de los errores;
en este caso, el bloque 2. En cambio, otros tienen una contribucion mas baja:
por ejemplo, el bloque 7 solo detecta 7 fallos.

Es notable que el bloque 4, a pesar de contener solo 5 variables, sea de los

mas propensos a fallos (14, junto con el blogue 3, 4 y 5). Esto nos indica que
las variables del cuarto bloque son muy relevantes para la deteccion.
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Grupo | X1 | X2 X3 X4 X5 X6 X7 X8
Fallo

1 Sl Sl Sl Sl Sl Sl Sl

2 Sl Sl Sl Sl Sl Sl Sl

3

4 SI

5 Sl Sl Sl Sl Sl Sl Sl Sl

6 Sl Sl Sl Sl Sl Sl Sl

7 Sl Sl Sl Sl Sl Sl Sl Sl

8

9

Tabla 20. Deteccion por bloque sesgo 1,5

En este caso la deteccion de fallos por grupos es similar al anterior, la principal
diferencia reside en que el grupo 8 es quien detecta menos fallos en vez del 7
en el apartado anterior, sin embargo, ninglin grupo ha sido capaz de detectar
los fallos en los IDs 3, 9y 15, a diferencia del anterior, donde el grupo 4 si ha
detectado falloen losID 9y 15.

Por ultimo, con el sesgo 0,5, es decir un umbral por debajo del valor medio,
vemos que el grupo 1 es quien detecta la mayor cantidad de fallosy el 5 la

menor, también vemos que con respecto al sesgo 1 se deja de detectar el fallo
9.
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rupo |X1n|X2n |X3n |X4n |X5n
Fallo
1 SISl Sl SI Sl
2 SISl Sl Sl Sl
3 NO NO NO NO NO
4 S NO NO NO NO
5 SISl Sl Sl Sl
6 SISl Sl SI Sl
7 SISl Sl SI Sl
8 SISl Sl Sl Sl
9 NO NO NO NO NO
10 SISl Sl SI NO
11 S NO NO NO NO
12 SISl Sl SI Sl
13 SISl Sl Sl Sl
14 SISl NO NO NO
15 S NO NO NO NO
16 SISl Sl SI NO
17 SISl NO NO NO
18 SISl Sl SI Sl
19 NO NO I NO NO
20 SISl Sl NO NO
21 NO sl Sl NO NO

Tabla 21. Deteccion por bloque sesgo 0,5

4.5.2.2 Deteccion de fallos global mediante BICs

Después, mediante la combinacion de indices estadisticos individuales por
medio de los Coeficientes de Influencia Bayesianos (BIC), realizaremos el
mismo procedimiento que en los apartados anteriores

Los pasos que se describen a continuacion son los que se siguen en el proceso
integral de deteccion, aplicado a todos los escenarios de fallo. Primero, para
cadaunodelos 21 errores del Tennessee Eastman Process, se carga el archivo
de datos correspondiente. Se lleva a cabo la normalizacién con los valores
maximo y minimos conseguidos en el periodo de entrenamiento, asegurando
asi la coherencia en relacion al espacio en que fueron entrenados los
autoencoders.

Luego, se extraen de cada conjunto solo las variables que forman parte del

subconjunto definido por mRMR y se crean las secuencias temporales
requeridas para la evaluacion de los modelos LSTM.
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Se examina cada subgrupo de manera independiente, empleando el
autoencoder LSTM preparado para ese conjunto, el codificador relacionadoy
los parametros estadisticos que se obtuvieron durante el entrenamiento.

A partir de las reconstrucciones, como ya se explico en el apartado 4.4.2 se
calculan los estadisticos para cada grupo, debido a que los autoencoders
tienen la capacidad de generar secuencias de longitudes variadas (a causa del
windowing), las series T2 y Q de cada grupo se reducen a la longitud minima
compartida y se almacenan en una matriz.

Se utilizan los BIC sobre las matrices previamente mencionadas para
determinar un indicador global de diagnostico. Esta combinacion, mediante la
ponderacion de la aportacion de cada grupo seglin su comportamiento
estadistico bajo condiciones normales, produce dos senales globales para la
monitorizacion:

e BIC_T?% combinacion de T? distribuidos a través de un enfoque
bayesiano.
e BIC_Q: combinacion de Q distribuidos por medio de Bayes.

Los umbrales globales uBIC_T? y uBIC_Q adquiridos en la fase de
entrenamiento, se emplean como criterio final de decision. Graficando el fallo

IDV6 obtenemos las siguientes representaciones correspondientes a los casos
de sesgo 1 (Figura 44), sesgo 1,5 (Figura 45) y sesgo 0,5 (Figura 46).
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Figura 44. Deteccion del fallo IDV6 con DLSTM1. BIC_T2 y BIC_Q
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Figura 45. Deteccion del fallo IDV6 con DLSTM2. BIC_T2 y BIC_Q
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Figura 46. Deteccion del fallo IDV6 con DLSTM3. BIC_T2 y BIC_Q

En el caso del fallo IDV12, también representado en los métodos anteriores
obtenemos la Figura 47, 48 'y 49.
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Figura 47. Deteccion del fallo IDV12 con DLSTM1. BIC_T2 y BIC_Q
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Figura 49. Deteccion del fallo IDV12 con DLSTM3. BIC_T2 y BIC_Q
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Por ultimo, representamos el fallo IDV15, también representado en todos los
métodos empleados en el que no se detecta fallo, figuras 50, 51y 52.
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Figura 50. Deteccion del fallo IDV15 con DLSTM1. BIC_T2 y BIC_Q

BIC T2 - 615 BCQ- 415

ar =_BiCT2 — Bca

0 200 00 600 800 1000 [ 200 400 a2 a 1000

Figura 51. Deteccion del fallo IDV15 con DLSTM2. BIC_T2 y BIC_Q
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Figura 52. Deteccion del fallo IDV15 con DLSTM3. BIC_T2 y BIC_Q

Se han utilizado las tres mismas métricas estandar para cada error:

1. Falsas alarmas: Se examina el porcentaje de muestras en la ventana
inicial normal (160 muestras) que sobrepasan el umbral sin error.

2. Alarmasidentificadas: Se estima el porcentaje de muestras posteriores
a la ventana normal que superan su umbral determinado.

3. Instante de deteccion: Se considera como el indice de la secuencia
inicial de diez muestras sucesivas que sobrepasan el limite del BIC. Esto
posibilita una deteccion mas sélida y menos susceptible al ruido.

Estas métricas se han calculado tanto para BIC_T2 como para BIC_Q,

obteniendo asi seis indicadores por cada uno de los 21 fallos analizados como
se ve en las Tablas 22 a 30.
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4.5.3 Resultados

El fallo 6 (Figura 44, 45 y 46) se detecta de forma similar para todas las
agrupaciones de variables y al modelo no distribuido

En el fallo 12 (Figura 47, 48 y 49) es detectado también de forma similar en
todos los grupos y también de forma similar al modelo no distribuido

Por Gltimo, el fallo 15 (Figura 50, 51y 52) ahora vuelve a no ser detectado por
el estadistico Q, al igual que en PCA vemos que el autoencoder es superior a

estos dos en este caso.

Detectado por T2 Detectado por Q
Fallo FalsasA (%)| Alarmas(%) | t_Fallo(obs)| FalsasA(%) | Alarmas(%) | t_Fallo(obs)

1 1,875 99,245 166 1,25 99,874 161

2 3,125 98,994 168 0 98,742 170

3 1,875 0,377 No Detect. 1,25 1,006 No Detect.
4 1,875 32,83 496 2,5 100 156

5 0,625 22,39 171 1,875 30,189 157

6 1,25 100 158 2,5 100 156

7 1,875 38,113 157 2,5 100 156

8 0 97,736 178 0 97,862 177

9 1,875 0,881 No Detect. 0,625 1,132 No Detect.
10 0,625 29,308 300 0 24,025 258

11 2,5 54,591 163 0,625 91,447 162

12 0 96,981 182 1,25 99,748 158

13 0,625 94,843 204 0 95,094 199

14 0,625 41,887 No Detect. 2,5 100 156

15 1,25 2,013 No Detect. 1,25 1,761 No Detect.
16 0,625 13,836 465 0 20,881 362
17 0,625 79,874 179 0,625 96,981 177
18 0,625 89,811 248 0 90,189 238
19 0 1,635 No Detect. 0,625 58,239 173
20 0 33,711 244 0 39,623 245
21 0 32,075 708 0 41,258 641

Tabla 22. Deteccion de Fallos mediante DLSTM1

Total Fallos DLSTM1

T2

16

Q

18

Tabla 23. Fallos detectados por DLSTM1
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Promedios DLSTM1

Estadistico | Falsas Alarmas (%) | Alarmas (%) | Tiempo de deteccion (observaciones)
T? 1,04 50,53 261,69
Q 0,92 66,10 216,78

Tabla 24. Resumen estadistico DLSTM1

Se observa que la deteccion de fallos en el modelo distribuido, empleando los
BICs es similar al autoencoder LSTM, los tiempos de deteccion, numero de
fallos detectados y porcentaje de alarmas son muy similares.

Detectado por T2 Detectado por Q
Fallo FalsasA (%)| Alarmas(%) | t_Fallo(obs) | FalsasA(%) | Alarmas(%) | t_Fallo(obs)

1 0,625 99,497 164 0 99,874 161

2 1,875 98,868 169 2,5 99,119 167

3 1,875 1 No Detect. 0 1,258 No Detect.
4 0,625 18,868 497 2,5 100 156

5 1,25 24,025 175 1,875 33,836 157

6 1,25 100 159 2,5 100 156

7 0,625 38,113 160 2,5 100 156

8 0 97,358 179 0 97,736 178

9 0,625 0,252 No Detect. 0,625 0,755 No Detect.
10 0 25,66 258 0 33,585 206

11 1,875 30,818 166 0,625 90,566 161

12 0,625 95,346 186 2,5 99,748 158

13 0 94,969 204 0 94,969 199

14 1,875 14,088 No Detect. 3,125 100 156

15 0 0,629 No Detect. 0,625 1,509 No Detect.
16 0,625 12,956 468 0,625 25,535 365

17 1,25 76,478 179 1,25 96,604 177

18 1,25 88,931 251 0 90,314 237

19 3,125 5,031 No Detect. 0 60,377 173
20 1,875 50,566 237 0 40,126 244
21 0 38,742 673 0 40,503 642

Tabla 25. Deteccion de Fallos mediante DLSTM2

Total Fallos DLSTM?2

TZ

16

Q

18

Tabla 26. Fallos detectados por DLSTM2
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Promedios DLSTM2

Estadistico | Falsas Alarmas (%) | Alarmas (%) | Tiempo de deteccidn (observaciones)
T? 1,01 48,20 257,81
Q 1,01 66,97 213,83

Tabla 27. Resumen estadistico DLSTM2

En el caso del grupo de sesgo 0,5 (DLSTM3) se observa un menor numero de
detecciones que en los dos anteriores, esto puede deberse a que las
agrupaciones de variables tienen una menor correlacion entre ellas dentro del
proceso, por lo tanto, al separarlas del resto de variables limitan el aprendizaje
de la red neuronal.

Detectado por T2 Detectado por Q
Fallo FalsasA (%) | Alarmas(%) | t_Fallo(obs) | FalsasA(%) [ Alarmas(%) | t_Fallo(obs)

1 0,625 99,748 162 5 100 160

2 3,75 98,868 169 0 98,868 170

3 0 1,006 No Detect. 0 0,126 No Detect.
4 1,875 0,377 No Detect. 2,5 100 156

5 1,875 25,031 168 1,875 27,296 157

6 0,625 99,497 164 2,5 100 156

7 2,5 42,013 157 2,5 100 156

8 0 97,61 179 0 97,987 176

9 0 0,377 No Detect. 1,25 1,635 No Detect.
10 0,625 33,459 261 0 18,994 262

11 0 1,761 No Detect. 1,25 90,314 162

12 0 95,975 184 1,875 99,623 158

13 0 94,34 205 0 95,346 201

14 1,875 1,509 No Detect. 2,5 100 157

15 0 3,648 No Detect. 0 1,635 No Detect.
16 3,125 13,962 466 0,625 15,723 365

17 1,25 57,233 187 0 96,101 179

18 0 89,182 252 1,25 90,063 239

19 0 1,635 No Detect. 0 54,717 172
20 1,25 49,937 236 0 39,623 246
21 2,5 35,472 676 0,625 41,006 642

Tabla 28. Deteccion de Fallos mediante DLSTM3

Total Fallos DLSTM3

TZ

14

Q

18

Tabla 29. Fallos detectados DLSTM3
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Estadistico | Falsas Alarmas (%) | Alarmas (%) | Tiempo de deteccién (observaciones)
T? 1,04 44,89 247,57
Q 1,13 65,19 217,44
Tabla 30. Resumen Estadistico DLSTM3
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Capitulo 5. Conclusiones y trabajo futuro

5.1 Conclusiones

El presente trabajo ha abordado la monitorizacion de procesos industriales
mediante técnicas de deteccion de fallos basadas en datos, utilizando el
proceso Tennessee-Eastman (TE) como caso de referencia. A lo largo del
estudio se han comparado métodos clasicos y modernos con el objetivo de
evaluar su eficacia en la identificacion de anomalias.

Método Falsas Alarmas T2 (%) Alarmas (%) T?
PCA 1,28 57,72
Autoencoder 0,36 49,35
LSTM 0,83 48,15
DLSTM (Sesgo=1) 1,04 50,53
DLSTM (Sesgo=1,5) 1,01 48,20
DLSTM (Sesgo=0,5) 1,04 44,89

Tabla 31. Sumario de alarmas detectadas por T

Método Falsas Alarmas Q (%) Alarmas (%) Q
PCA 3,54 67,14
Autoencoder 3,30 73,42
LSTM 1,82 65,12
DLSTM (Sesgo=1) 0,92 66,10
DLSTM (Sesgo=1,5) 1,01 66,97
DLSTM (Sesgo=0,5) 1,13 65,19

Tabla 32. Sumario de alarmas detectadas por Q

Método Fallos detectados T? Fallos detectados Q
PCA 17 17
Autoencoder 14 20
LSTM 15 18
DLSTM (Sesgo=1) 16 18
DLSTM (Sesgo=1,5) 16 18
DLSTM (Sesgo=0,5) 14 18

Tabla 33. Sumario de fallos detectadas por método

Los resultados obtenidos, reflejados en las Tablas 31, 32 y 33 pueden
resumirse en los siguientes puntos:
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1. PCA demostr6 ser un método eficaz en la reduccion de dimensionalidad
y en la deteccion de fallos lineales, pero su capacidad se ve limitada en
presencia de relaciones no lineales o de caracter dinamico. Aun asi, su
bajo coste computacional lo hace un método muy a tener en cuenta a
la hora de detectar fallos, es por eso por lo que hoy en dia se sigue
empleando en numerosos procesos industriales.

2. El autoencoder clasico superd al PCA en escenarios con dependencias
complejas, logrando una mejor reconstruccion de los datos y una mayor
sensibilidad frente a ciertos fallos. Sin embargo, su ausencia de
memoria temporal restringe su aplicacion en procesos con secuencias
dependientes.

3. Los RAE (Recurrent Autoencoders), introducidos a continuacion,
ofrecieron un rendimiento ligeramente inferior al autoencoder de capas
densas en la deteccion de fallos con evolucion temporal, si bien este es
capaz de capturar patrones dinamicos que los enfoques anteriores no
conseguian modelar con precision, no ha conseguido los resultados
esperados aunque podemos destacar que ha sido mas preciso a la hora
de detectarlos, dado quelasfalsasalarmasproducidas por este método
han sido menores.

4. La extension mediante RAE distribuidos ha permitido escalar el modelo
a sistemas de gran dimensionalidad, aportando interpretabilidad y
facilitando la localizacion de fallos en bloques especificos de variables.
Este enfoque distribuye la complejidad computacional y mejora la
robustez del diagnostico. Si bien los resultados esperados no han sido
los obtenidos, ha obtenido resultados globales similares al LSTM no
distribuido, con la ventaja de acotar los grupos de variables mas
influyentes en el fallo.

En conjunto, se concluye que la incorporacion de modelos recurrentes y de
esquemas distribuidos constituye una mejora sustancial respecto a los
enfoques tradicionales, contribuyendo a aumentar la fiabilidad, la seguridad y
la eficiencia en la operacion de procesos industriales.

5.2 Trabajo futuro

A partir de los resultados obtenidos, se plantean diversas lineas de
investigacion orientadas a ampliar y consolidar las aportaciones realizadas:

1. Mejora de arquitecturas: RAE: Investigar configuraciones mas complejas

o mixtas (fusionando CNN y RNN) o mediante RVAE para optimizar la
habilidad de representacion de secuencias.
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Puesta en practica en tiempo real: trasladar los modelos a ambientes
industriales con limitaciones de recursos computacionales y latencia,
analizando su factibilidad practica.

Integracion de modelos: Con el fin de lograr diagnésticos mas
exhaustivos, fusionar los RAE con otras metodologias de deteccion,
como los métodos basados en grafos o los modelos probabilisticos.

Generalizacion a otros procesos: verificar la solidez y la capacidad de
transferir los resultados mediante la validacion del método en otras
plantas piloto y procesos industriales que no sean el Tennessee-
Eastman.

Monitoreo explicable: analizar métodos de interpretabilidad que
posibiliten entender como los modelos identifican anomalias, lo que
favorece la adopcion en el sector industrial y mejora la confianza de los
trabajadores.

93



Bibliografia

[1] American Society for Quality (ASQ), “History of Quality.” [Online]. Available:
https://asq.org/quality-resources/history-of-quality. [Ultimo acceso: 3-Sep-
2025].

[2] M. P. Crosby, The History of Quality Management. Juran Institute, 2019.
[Online]. Available: https://www.juran.com/blog/quality-management-system/
[Ultimo acceso: 3-Sep-2025].

[3] W. A. Shewhart, Economic Control of Quality of Manufactured Product. New
York, NY, USA: D. Van Nostrand Company, 1931. [Online]. Available:
https://archive.org/details/economiccontrolo00shew. [Ultimo acceso: 3-Sep-
2025].

[4] P. D. Houston, “The Quality Revolutionin Japan:The Contributions of Deming
and Juran,” Peoria Magazines, 2018. [Online]. Available:
https://www.peoriamagazines.com/article/quality-revolution-japan-
contributions-deming-and-juran. [Ultimo acceso: 6-Sep-2025].

[5] https://blog.softexpert.com/es/que-es-ciclo-pdca/

[6] Juran Institute, “History of Joseph M. Juran.” [Online]. Available;
https://www.juran.com/about-us/dr-jurans-history/. Ultimo acceso: 6-Sep-
2025].

[7] International Organization for Standardization (ISO), “ISO 9000 Quality
management.” [Online]. Available: https://www.iso.org/iso-9001-quality-
management.html. [Ultimo acceso: 7-Sep-2025].

[8]https://corporatefinanceinstitute.com/resources/management/total-
quality management-tam/

[9] R. Karapetrovic, “ISO 9000: Evolution and Future Directions,” Quality
Management Journal, vol. 22, no. 1, pp. 30-40, 2015.

[10] H. F. Dodge and H. G. Romig, Sampling Inspection Tables: Single and
Double Sampling. New York, NY, USA: Wiley, 1959.

[11] ScienceDirect, “Quality Control - An Overview.” [Online]. Available:
https://www.sciencedirect.com/topics/engineering/quality-control. [Ultimo
acceso: 18-Sep-2025].

94


https://asq.org/quality-resources/history-of-quality
https://www.juran.com/blog/quality-management-system/
https://archive.org/details/economiccontrolo00shew
https://www.peoriamagazines.com/article/quality-revolution-japan-contributions-deming-and-juran
https://www.peoriamagazines.com/article/quality-revolution-japan-contributions-deming-and-juran
https://blog.softexpert.com/es/que-es-ciclo-pdca/
https://www.juran.com/about-us/dr-jurans-history/
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/iso-9001-quality-management.html
https://corporatefinanceinstitute.com/resources/management/total-quality%20management-tqm/
https://corporatefinanceinstitute.com/resources/management/total-quality%20management-tqm/
https://www.sciencedirect.com/topics/engineering/quality-control?utm_source=chatgpt.com

[12] M. S. Phadke, Quality Engineering Using Robust Design. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1989.

[13] Carro Paz, R. & Gonzalez Gémez, D. “Control Estadistico de Procesos”,
Universidad Nacional de Mar del Plata, recuperado en:
https://nulan.mdp.edu.ar/id/eprint/1617/1/12_control_estadistico.pdf

[14] J. F. MacGregor and T. Kourti, "Statistical process control of multivariate
processes," Control Engineering Practice, vol. 3, no. 3, pp. 403-414, 1995.

[15] S. W. Mason and N. D. Young, Multivariate Statistical Process Control with
Industrial Applications. Philadelphia, PA, USA: ASA-SIAM, 2002.

[16] H. Hotelling, “Multivariate quality control—illustrated by the air testing of
sample bombsights,” in Techniques of Statistical Analysis, C. Eisenhart, M. W.
Hastay,and W. A. Walllis, Eds. New York, NY, USA: McGraw-Hill, 1947, pp. 111-
184.

[17] E. Jackson, A User’'s Guide to Principal Components. New York, NY, USA:
Wiley, 1991.

[18] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA:
Springer, 2002.

[19] Charles Gauvin. Distances and outlier detection. 2021. url: https://www.
charlesgauvin.ca/post/distances-and-outlier-detection/ [Ultimo acceso: 10-10-
2025]

[20] K. Pearson, “On lines and planes of closest fit to systems of points in
space,” Philosophical Magazine, vol. 2, no. 11, pp. 559-572, 1901.

[21] Davide Massidda. Multivariate Process Control by Principal Component
Analysis Using T2 and Q errors. 2023. url:
https://towardsdatascience.com/multivariate-process-control-by-principal-
component-analysis-using-t%C2%B2-and-g-errors-c94908d 14b04 (Ultimo
Acceso: 13-10-2025).

[22] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133,
1943.

95



[23] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65, no. 6, pp.
386-408, 1958.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536, 1986.

[25] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” in Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics (AISTATS), vol. 15 of JMLR: W&CP 15, Fort
Lauderdale, FL, USA, 2011, pp. 315-323.

[26] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA: MIT Press, 2016.

[28] S. Haykin, Neural Networks and Learning Machines, 3rd ed., Pearson,
2009

[29] A. Zhang, Z. C. Lipton, M. Li y A. J. Smola, «Dive into Deep Learning,» [En
linea]. Available: https://d2l.ai/chapter_recurrent-modern/Istm.html. [Ultimo
acceso: 14 10 2025].

[30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[31] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-redundancy,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8,
pp. 1226-1238, 2005.

[32] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press,
2012.

[33] J. A. Barreto, E. L. Lima, y F. C. F. Silva, “A Bayesian inference approach for

multivariate process monitoring using decentralized statistics,” Journal of
Process  Control, vol. 24, no. 8, pp. 1253-1263, 2014.

96



[34] Z. Ge, Z. Song, y F. Gao, “Review on data-driven modeling and monitoring
for plant-wide industrial processes,” Chemometrics and Intelligent Laboratory
Systems, vol. 171, pp. 16-25, 2017

[35] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control
problem,” Computers & Chemical Engineering, vol. 17, no. 3, pp. 245-255,
1993, doi: 10.1016/0098-1354(93)80018-.

[36] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study
of basic data-driven fault diagnosis and process monitoring methods on the
benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22,
no. 9, pp. 1567-1581, 2012.

[37] C. Aldrich, Process Fault Diagnosis for Continuous Dynamic Systems
Over Multivariate Time Series, in C.-K. Ngan (ed.), Rijeka, Croatia: IntechOpen,
2019, ch. 1, doi: 10.5772/intechopen.85456.

[38] H. Chen, P. Tino, and X. Yao, “Cognitive fault diagnosis in Tennessee
Eastman Process using learningin the model space,” Computers & Chemical
Engineering, vol. 67, pp. 33-42, 2014, doi:
10.1016/j.compchemeng.2014.03.015.

[39] Massachusetts Institute of Technology - Braatz Group, “Braatz Group
Data.” [Online]. Available: http://web.mit.edu/braatzgroup/links.html. [Ultimo
acceso: 30-10-2025].

[40] Harvard University, “Harvard Dataverse Dataset,” doi:
10.7910/DVN/6C3JR1. [Online]. Available:
https://dataverse.harvard.edu/dataset.xhtml?persistentld=d0i:10.7910/DVN
/6C3JR1. [Ultimo acceso: 30-10-2025].

ChatGPT (OpenAl 2023) se utilizd para generar ideas iniciales y refinar la
redaccion de este trabajo. ChatGPT. (GPT-4). OpenAl. 27 de mayo de 2025. [En
linea]. 2023. Disponible en: https://chatgpt.com

97


http://web.mit.edu/braatzgroup/links.html
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
https://chatgpt.com/

