

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Electrónica Industrial y Automática

Sistema automatizado de alerta en

factoría por megafonía

Autor:

Truchuelo Mariscal, Guillermo

 Tutor:

Moya De La Torre, Eduardo Julio
Departamento de Ingeniería de

Sistemas y Automática

Valladolid, mayo de 2025

 1

RESUMEN

En este documento se describe el proceso de implantación de un nuevo
sistema de avisos a operarios dentro de una factoría desarrollado durante las
prácticas en empresa en Michelin Valladolid.

Dicho proyecto surge de la necesidad de mejorar la comunicación y eficiencia
en la gestión de alertas en tiempo real, reemplazando el sistema antiguo
(SAF) por una solución basada en PI System (Osisoft) y Microsoft Power
Automate. El sistema integra datos de autómatas industriales, visualiza
estados de máquinas (como prensas y cabeceros de línea) mediante paneles
interactivos en PI Vision, y envía notificaciones automatizadas a equipos de
mantenimiento y producción a través de Microsoft Teams.

PALABRAS CLAVE

Automatización industrial, PI System, Osisoft, Autómatas programables (PLC),
Alertas en tiempo real.

 2

 3

ABSTRACT

This document describes the implementation process of a new operator alert
system within a factory, developed during an internship at Michelin Valladolid.

The project arose from the need to improve communication and efficiency in
real-time alert management by replacing the legacy system (SAF) with a
solution based on PI System (Osisoft) and Microsoft Power Automate. The
system integrates data from industrial programmable logic controllers (PLCs),
visualizes machine statuses (such as presses and line headers) through
interactive dashboards in PI Vision, and sends automated notifications to
maintenance and production teams via Microsoft Teams.

KEYWORDS

Industrial Automation, PI System, Osisoft, Programmable Logic Controllers
(PLC), Real time alerts.

 4

 5

SIGLAS Y ACRÓNIMOS

• IIoT – Industrial Internet of Things (Internet Industrial de las Cosas)

• IA – Inteligencia Artificial

• ML – Machine Learning (Aprendizaje Automático)

• MAG – Magasin (Almacén)

• INT – Entero

• DINT – Doble Entero

• MSG – Mensaje

• MRA – Mantenimiento de Red y Accesos

• SAF – Sistema de Alertas de Fabricación

• PAM – Pantalla de Alertas Múltiples

• CdL – Cabecero de Línea

• XIO – Examine If Open

• XIC – Examine If Closed

• OTE – Output Energize

• OTL – Output Latch

• OTU – Output Unlatch

 6

 7

ÍNDICE

1. INTRODUCCIÓN Y OBJETIVOS .. 15

1.1. INTRODUCCIÓN ... 15

1.2. JUSTIFICACIÓN DEL PROYECTO ... 16

1.3. OBJETIVOS... 16

1.4. ESTRUCTURA DE LA MEMORIA .. 17

2. FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL .. 19

2.1. CONCEPTOS BÁSICOS .. 19

2.2. CONTROLADOR LÓGICO PROGRAMABLE (PLC) 20

2.3. PROGRAMACIÓN DE AUTÓMATAS ... 21

3. DESCRIPCIÓN DEL SISTEMA PREVIO ... 31

3.1. ANÁLISIS ORGÁNICO .. 31
3.1.1. ORGANIZACIÓN DE SAF (SISTEMA DE ALERTAS DE
FABRICACIÓN) ... 31
3.1.2. Ficheros de configuración ... 32
3.1.3. Funcionamiento ... 33

3.2. MANUAL DE USUARIO .. 33
3.2.1. BREVE DESCRIPCIÓN DE SAF .. 33
3.2.2. PUESTA EN MARCHA DE SAF2 .. 35
3.2.3. CONFIGURACIÓN DE SAF2 ... 36

4. DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO) 51

4.1. PI SYSTEM ... 51
4.1.1. INTRODUCCIÓN .. 51
4.1.2. FUNCIONAMIENTO ... 51
4.1.3. PI SERVER ... 52
4.1.4. PI VISION ... 55

4.2. MICROSOFT POWER AUTOMATE.. 55

5. MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS 57

5.1. COCCIÓN ... 58
5.1.1. ESTADO DE LAS PRENSAS ... 58
5.1.2. CALIDADES.. 70

5.2. ALMACÉN SÓTANO ... 76

 8

5.3. ALMACÉN DE CEPILLADO ... 82

5.4. CEPILLADO .. 84
5.4.1. AVISO DE DEFECTOS CEPILLADO .. 84
5.4.2. SORTEO DE CEPILLADO ... 87

6. PI SYSTEM .. 95

6.1. COCCIÓN ... 95
6.1.1. PRENSAS... 95
6.1.2. CABECERO DE LA LÍNEA C .. 109

6.2. CEPILLADO ... 114

6.3. ALMACENES DEL SÓTANO Y CEPILLADO ... 118

7. CONCLUSIONES Y LÍNEAS FUTURAS .. 119

7.1. CONCLUSIONES ... 119

7.2. LÍNEAS FUTURAS ... 120

BIBLIOGRAFÍA .. 121

ANEXOS .. 123

 9

ÍNDICE DE FIGURAS

Figura 1. Representación de los niveles que conforman un sistema de
automatización industrial .. 19
Figura 2. PLC Allen-Bradley ... 21
Figura 3. Ejemplo programación Diagrama de Bloques 22
Figura 4. Ejemplo programación Diagramas de Funciones Secuenciales o
GRAFCET ... 23
Figura 5. Ejemplo programación Ladder .. 24
Figura 6. Diálogo 1 SAF ... 36
Figura 7. Esquema funcionamiento PI System .. 52
Figura 8. Ejemplo del histórico de los datos almacenados en PI Server 53
Figura 9. Ejemplo de estructuración de los datos en PI Server 53
Figura 10. Ejemplo de creación de una función sencilla en PI Server 54
Figura 11. Ejemplo de definición de reglas para detección de anomalías en PI
Server .. 54
Figura 12. Ejemplo de alerta en PI Server (Trigger, a la izquierda, es la
definición del evento; Subscriptions, a la derecha, es el destino de la
notificación) .. 55
Figura 13. Ejemplo de visualización de datos con PI Vision desde navegador
 ... 55
Figura 14. Ejemplo de flujo de trabajo con Power Automate 56
Figura 15. Esquema de distribución de las zonas de interés dentro de la
fábrica ... 57
Figura 16. Ejemplo de visualización del estado de las prensas y cabecero 58
Figura 17. Desencadenantes de defectos en prensa (I) 59
Figura 18. Desencadenantes de defectos en prensa (II) 60
Figura 19. Bits de estado S:99 ... 60
Figura 20. Condiciones necesarias para defecto y atasco en CdL 61
Figura 21. Variables enteras (N:50) donde se almacena el estado del
cabecero y de las prensas dentro del programa del cabecero 62
Figura 22. Descomposición en bits 16 de los estados del cabecero y las
prensas ... 62
Figura 23. Ubicación de la rutina R029_Osisoft dentro del programa
PROC_ANI ... 63
Figura 24. Lectura del estado en programa del almacén de animación 64
Figura 25. Configuración instrucción MSG para lectura de estados 64
Figura 26. Configuración de la comunicación en la instrucción MSG de lectura
de los estados .. 65
Figura 27. Ejemplo de representación de dos prensas con defecto 65
Figura 28. Esquema ejemplo del funcionamiento de la pila de defectos........ 66

 10

Figura 29. Programación pila de defectos ... 67
Figura 30. Esquema ejemplo del funcionamiento del muestreo de dos en dos
de los defectos ... 68
Figura 31. Programación muestreo de defectos de dos en dos....................... 69
Figura 32. Ubicación de la rutina R031_C_Intercambios dentro del programa
PROC_GES .. 70
Figura 33. Programación envío a SAF .. 70
Figura 34.Configuración instrucción MSG tipo escritura para envío a SAF 71
Figura 35. Configuración de la comunicación en la instrucción MSG de
escritura .. 71
Figura 36. Esquema ejemplo del funcionamiento del programa para muestreo
de las calidades y unidades en almacén ... 72
Figura 37. Programación muestreo de las calidades y unidades en almacén 73
Figura 38. Inicialización paquete mensaje a SAF .. 73
Figura 39. Barride de los elementos del inventario .. 74
Figura 40. Solicitud envío de mensaje a SAF ... 74
Figura 41. Preparación paquete de mensaje a OSISOFT 75
Figura 42. Ubicación de la rutina R032_Megafonia_Auto dentro del programa
del Almacén del Sótano ... 76
Figura 43. Activación de los avisos a megafonía ... 76
Figura 44. Etapa 0 del GRAFCET ... 77
Figura 45. Etapa 1 del GRAFCET ... 77
Figura 46. Etapa 2 del GRAFCET ... 77
Figura 47. Acciones o desencadenantes de envío de mensaje del almacén del
sótano a megafonía automática ... 78
Figura 48. Inicialización de variable entera de para aviso a megafonía 78
Figura 49. Activación de bits de aviso a mantenimiento y producción 79
Figura 50. Envío MSG para megafonía ... 80
Figura 51. Reinicio del bit enviar MSG a megafonía ... 80
Figura 52. Temporizadores para reenvío de avisos... 81
Figura 53. Ubicación de la rutina R032_Megafonia dentro del programa del
Almacén de Cepillado .. 82
Figura 54. Acciones o desencadenantes de envío de mensaje del almacén de
cepillado a megafonía automática ... 82
Figura 55. Envío de mensaje y activación del bit de aviso para el almacén de
cepillado.. 83
Figura 56. Instrucción MSG tipo escritura del almacén de cepillado 83
Figura 57. Defectos en Cepillado .. 84
Figura 58. Bit avisos por megafonía activos .. 84
Figura 59. Temporizador para repetición de avisos por megafonía 85
Figura 60. Activación bit enviar mensaje a megafonía y código de mensaje .. 85

 11

Figura 61. Envío de mensaje a megafonía ... 86
Figura 62. Combinatoria para asignación de operarios por sorteo 88
Figura 63. Cuota de probabilidad efectiva para la línea 1 89
Figura 64. Cuota de probabilidad efectiva para la línea 2 89
Figura 65. Cuota de probabilidad efectiva para la línea 3 90
Figura 66. Cuotas de probabilidad acumulada para las 3 líneas..................... 90
Figura 67. Restablecimiento de las cuotas de probabilidad 91
Figura 68. Activación de sorteo de cada una de las líneas 92
Figura 69. Activación de situación de reposo para el sorteo de cada una de las
líneas ... 93
Figura 70. Control pila de sorteo .. 93
Figura 71. Lectura de mensaje de sorteo y copia en variables OSISOFT 94
Figura 72. Localización de los datos correspondientes a la megafonía para la
prensa 1 dentro de la base de datos de PI Server .. 95
Figura 73. Descomposición de los datos proporcionados por la prensa C1 ... 96
Figura 74. Creación de expresión "Descomposición_Bits" 97
Figura 75. Análisis de estado para cada bit ... 99
Figura 76. Creación de evento de Aviso a Mantenimiento 99
Figura 77. Definición del evento de aviso a mantenimiento para prensa no
abre .. 100
Figura 78. Definición de criterios desencadenantes de aviso 100
Figura 79. Diseño del mensaje de aviso ... 100
Figura 80. Suscripciones a los avisos ... 101
Figura 81. Flujo diseñado con Power Automate para publicar mensaje en
Teams .. 101
Figura 82. Parámetros del trigger del flujo en Power Automate 102
Figura 83. Parámetros de la función Html a texto en Power Automate 103
Figura 84. Creación de la variable Texto en Power Automate 103
Figura 85. Partes en las que se divide el texto ... 104
Figura 86. Función Redactar en Power Automate .. 104
Figura 87. Acción en Power Automate para publicar un mensaje en Teams 105
Figura 88. Ejemplo de aviso a través de Teams ... 105
Figura 89. Creación de expresión para visualización del estado de las prensas
 .. 106
Figura 90. Expresión para definición de colores para cada bit de estado ... 107
Figura 91. Pantalla Línea C de cocción con sistema previo (SAF) 107
Figura 92. Nuevo sistema de visualización Línea C con PI Vision 108
Figura 93. Asignación de colores para los distintos estados de las prensas en
PI Vision ... 108
Figura 94. Localización del cabecero de la línea C dentro de la base de datos
de PI Server ... 109

 12

Figura 95. Asignación de colores para los distintos estados del cabecero en PI
Vision .. 110
Figura 96. Etiquetas para la visualización de dos defectos 110
Figura 97. Etiquetas de estado de las prensas .. 111
Figura 98. Cadenas de caracteres para cada una de las líneas a visualizar 111
Figura 99. Visualización de dos prensas en defecto en PI Vision 111
Figura 100. Atributos de la sección PANTALLA del cabecero de línea 112
Figura 101. Asignación de colores para las unidades en almacén en PI Vision
 .. 112
Figura 102. Visualización la calidad y unidades en almacén para dicha calidad
con PI Vision .. 113
Figura 103. Pantalla Línea C de cocción con sistema nuevo (PI Vision) 113
Figura 104. Sección para los datos de la pantalla de sorteo 114
Figura 105. Datos y etiquetas para la pantalla de sorteo en PI Server 114
Figura 106. Función estado de la línea 1 en PI Vision 115
Figura 107. Asignación de colores para el estado de la línea 1 116
Figura 108. Resultado final de la visualización de la pantalla de sorteo con PI
Vision .. 116
Figura 109. Pantalla de sorteo de cepillado con nuevo sistema (PI Vision) . 117
Figura 110. Aviso a mantenimiento en almacén del sótano a través de Teams
 .. 118
Figura 111. Aviso al equipo AMF2 de producción en almacén del sótano a
través de Teams .. 118

 13

ÍNDICE DE TABLAS

Tabla 1. Lógica de las instrucciones XIC y XIO ... 25
Tabla 2. Lógica de las instrucciones OTE, OTL y OTU .. 25
Tabla 3. Tabla de la verdad para la operación AND .. 27
Tabla 4. Tabla de la verdad para la operación NOT .. 27
Tabla 5. Tabla de la verdad para la operación OR... 28
Tabla 6. Tabla de la verdad para la operación XOR .. 28
Tabla 7. Variables OSISOFT para la línea C de cocción 64
Tabla 8. Expresión para entregar el último estado registrado 97
Tabla 9. Expresión para la descomposición del estado en bits 98
Tabla 10. Asignación de estados y colores para cada bit 106
Tabla 11. Asignación de valores enteros a cada color 106
Tabla 12. Posibles estados del cabecero y sus colores 109
Tabla 13. Asignación de valores enteros a cada color 109
Tabla 14. Asignación de valores enteros y colores al número de unidades en
almacén ... 112
Tabla 15. Códigos de estado para las líneas de cepillado 115

 14

INTRODUCCIÓN Y OBJETIVOS

 15

1. INTRODUCCIÓN Y OBJETIVOS

1.1. INTRODUCCIÓN

A diario pueden surgir distintos inconvenientes durante el proceso de
fabricación de los neumáticos (atasco de ruedas, prensa no abre, falta de una
determinada calidad de neumático en almacén, etc.). Con el objetivo de
resolver cualquiera de estos problemas de manera eficiente, se pretende
diseñar un sistema de alerta a los trabajadores a través de mensajes
automatizados que recibirán en sus dispositivos móviles u ordenadores.

Los elementos empleados para el desarrollo del proyecto son los siguientes:

• Controladores lógicos programables (PLC): el software utilizado para la
programación de los autómatas es el proporcionado por Rockwell
Automation (RSLogix 500 y Logix 5000). Para poder cargar las
modificaciones realizadas en los programas de los autómatas es
necesario disponer de un servidor de comunicaciones que permita la
conectividad de los dispositivos con estas aplicaciones, para ello se
dispone del software RSLinx.

• PI System: es una plataforma de gestión de datos en tiempo real
desarrollada por Osisoft (ahora parte de AVEVA). Se utiliza para
recopilar, almacenar, analizar y visualizar datos operacionales
procedentes de múltiples fuentes industriales, como los PLC. En este
proyecto, PI System permite centralizar la información de los procesos
de fabricación, detectar eventos anómalos y generar condiciones de
alerta basadas en datos en tiempo real.

• PI Vision: es la herramienta de visualización web del PI System que
permite crear paneles gráficos e interfaces personalizadas para
monitorizar los datos del sistema de forma intuitiva. Los operadores y
responsables pueden acceder a estos paneles desde cualquier
dispositivo conectado a la red, lo que facilita el diagnóstico y
seguimiento de incidencias.

• Microsoft Power Automate: es una herramienta de automatización de
flujos de trabajo desarrollada por Microsoft. Permite conectar distintas
aplicaciones y servicios para ejecutar tareas automáticas. En este
caso, Power Automate se encarga de detectar las condiciones de
alerta provenientes del PI System y enviar notificaciones automáticas a
los usuarios correspondientes.

INTRODUCCIÓN Y OBJETIVOS

 16

• Microsoft Teams: es una plataforma de colaboración y comunicación
en equipo de Microsoft. Dentro del sistema de alertas, Teams actúa
como el canal por el cual los trabajadores reciben los mensajes
automáticos generados por Power Automate. Esto garantiza una
respuesta rápida ante cualquier incidente en la planta de fabricación.

1.2. JUSTIFICACIÓN DEL PROYECTO

Este proyecto surge de la necesidad de renovación de un sistema de alertas a
operarios en la fábrica de neumáticos de Michelin en Valladolid,
concretamente en la sección de renovado, en la que se realiza el
recauchutado de neumáticos de camión usados.

Para informar de cualquiera de los problemas que puedan surgir durante el
proceso de fabricación se creó un sistema de alertas de fabricación (SAF), el
cual, a través de un sistema de megafonía, alertaba del problema. Dicho
sistema fue desarrollado en Visual Basic. NET 2008, su arquitectura
monolítica y dependencia de tecnologías obsoletas limitaban su escalabilidad,
por lo que era necesario implantar un nuevo sistema.

Debido a sus altas prestaciones se optó por PI System como solución
tecnológica para la gestión de alertas. SAF no sólo se encargaba de alertar,
sino que también gestionaba la visualización de los estados de las prensas de
la Línea C de cocción en tiempo real y el sorteo de cepillado, por lo que el
nuevo sistema elegido era perfecto para llevar a cabo el proyecto, ya que
también cuenta con un sistema de visualización (PI Vision), el cual ya se
utilizaba previamente en otras zonas dentro de la fábrica.

1.3. OBJETIVOS

Los objetivos planteados para el desarrollo del proyecto son los siguientes:

• Adquirir y aplicar conocimientos relacionados con la programación de
autómatas (PLC).

• Comprender el funcionamiento del proceso industrial.

• Conocer los protocolos de comunicación entre los distintos dispositivos
que forman parte del proceso.

• Modificar el programa de los autómatas creando las rutinas y variables
oportunas para la gestión de las alertas.

• Programar las rutinas necesarias para la visualización de los datos
recogidos por los autómatas en pantallas.

INTRODUCCIÓN Y OBJETIVOS

 17

• Gestionar los datos proporcionados por los autómatas desde PI
System y crear las pantallas informativas con PI Vision.

• Automatizar mensajes a Microsoft Teams a través de flujos de trabajo
con Microsoft Power Automate.

1.4. ESTRUCTURA DE LA MEMORIA

Este documento recoge los fundamentos teóricos acerca de la automatización
industrial utilizados durante el proyecto, el funcionamiento del sistema previo
y el proceso de desarrollo del nuevo sistema. La memoria se va a estructurar
de la siguiente manera:

• Introducción y objetivos: consta de una breve introducción acerca del
proyecto, su justificación y los objetivos que se pretende alcanzar
durante su elaboración.

• Fundamentos de automática industrial: breve introducción a la
automatización industrial, se tratarán las principales características
de los controladores lógicos programables y su programación.

• Descripción del sistema previo: detalla las principales características
del sistema de alertas previo y su funcionamiento.

• Descripción del software (sistema nuevo): se describen las
características y funcionamiento de los programas que conforman el
nuevo sistema que se pretende implantar.

• Modificación de los programas de los autómatas: explica el
funcionamiento de los programas de los distintos autómatas y las
modificaciones realizadas durante el proceso.

• PI System: explica el proceso de gestión de los datos obtenidos de
los autómatas, la creación de las pantallas y la automatización de
alertas.

• Conclusiones y líneas futuras: contiene las consideraciones
alcanzadas en el proyecto y posibles mejoras a implementar en el
futuro.

• Bibliografía: material empleado como referencia para la elaboración
del proyecto.

INTRODUCCIÓN Y OBJETIVOS

 18

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 19

2. FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL
En este apartado se tratará de hacer una introducción a los conceptos
básicos de automática industrial.

2.1. CONCEPTOS BÁSICOS

La automatización industrial es el conjunto de herramientas y técnicas
utilizadas para solucionar tareas repetitivas de forma automática. [1]

Para explicar el funcionamiento de un sistema automatizado, éste se va a
dividir en 3 niveles:

• Nivel Supervisor: cualquier ordenador o computadora industrial con el
que, a través de un software especial, se puede llevar a cabo la
visualización y parametrización del proceso industrial (en este caso el
software será PI System). Para la comunicación se utiliza un protocolo
Ethernet Industrial.

• Nivel de Control: nivel donde se ejecutan todos los programas
relacionados con la automatización del proceso. Este nivel está
compuesto por controladores lógicos programables o PLC.

Los PLCs son los autómatas encargados de ejecutar la lógica de
control. Pueden estar interconectados con varios dispositivos de
entradas y salidas y pueden comunicarse a través de varios protocolos
de comunicación industrial.

• Nivel de Campo: lo conforman los equipos terminales de datos como
sensores (captan variables físicas) y actuadores (ejecutan acciones).
[2]

Figura 1. Representación de los niveles que conforman un sistema de automatización industrial

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 20

2.2. CONTROLADOR LÓGICO PROGRAMABLE (PLC)

Un PLC (Programmable Logic Controller) es un dispositivo utilizado para
controlar maquinaria y procesos industriales de forma automática. Entre sus
características podemos destacar:

• Programación flexible: los PLC se pueden programar para realizar una
amplia variedad de funciones. Los lenguajes de alto nivel más
utilizados son lenguaje Ladder, diagramas de funciones secuenciales o
diagramas de bloques.

• Entradas y Salidas digitales y analógicas (E/S): las entradas reciben
señales de sensores o interruptores, mientras que las salidas
controlan actuadores como motores o válvulas.

• Fiabilidad y Durabilidad: diseñados para entornos industriales, los PLC
son robustos y capaces de operar en condiciones extremas de
temperatura, vibración y ruido.

• Comunicación Industrial: permiten la comunicación con otros
dispositivos industriales y sistemas de control a través de redes
industriales como Ethernet o Profibus.

• Modularidad: muchos PLC son modulares, lo que permite ampliar su
funcionalidad añadiendo más módulos de E/S, módulos de
comunicación, etc.

La estructura de un PLC se puede describir en varios componentes
esenciales:

• Unidad Central de Procesamiento (CPU): es el cerebro del PLC. Se
encarga de ejecutar las instrucciones del programa de control, realizar
cálculos, gestionar datos y tomar decisiones. La CPU también maneja
la comunicación con otros dispositivos.

• Memoria: se divide en varios tipos:

- Memoria de programa: donde se almacena el programa de
usuario que define las operaciones del PLC.

- Memoria de datos: usada para almacenar datos temporales y
valores de procesos como contadores, temporizadores, etc.

- Memoria no volátil: para almacenar información que debe
permanecer después de apagar el dispositivo.

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 21

• Módulos de E/S: permiten que el PLC interactúe con el proceso que
controla. Los módulos de entrada reciben señales de diversos
sensores o interruptores, mientras que los módulos de salida envían
señales a actuadores como motores, válvulas, etc.

• Fuente de Alimentación: suministra la energía necesaria para el
funcionamiento de los componentes internos del PLC.

• Interfaz de Comunicación: proporciona conectividad con otros
dispositivos de control y sistemas de monitorización.

• Interfaz Hombre-Máquina (HMI): aunque no siempre se encuentra
integrada en el PLC, es una parte importante del sistema. Permite a los
operadores interactuar con el PLC, proporcionando una interfaz para
monitorizar y ajustar procesos.

• Software de Programación: utilizado para crear, modificar y depurar el
programa que el PLC ejecutará. El software utilizado durante este
proyecto será el proporcionado por Rockwell Automation, utilizando los
programas RSLogix 500 y Logix 5000, según su compatibilidad con las
versiones más antiguas y modernas con los controladores Allen-
Bradley. [3]

Figura 2. PLC Allen-Bradley [10]

2.3. PROGRAMACIÓN DE AUTÓMATAS

Los 3 principales lenguajes de alto nivel que más se utilizan en la
programación de PLCs son diagramas de bloques, diagramas de funciones
secuenciales y Ladder.

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 22

• Diagrama de Bloques: La relación entre las entradas y salidas se
establece mediante el uso de bloques de función, donde cada boque
tiene un propósito o funcionalidad específica. Dichas entradas y
salidas de los bloques están conectadas mediante enlaces los cuales
pueden usarse para conectar dos puntos lógicos del diagrama. Ya sea
una variable de entrada con una entrada del bloque, una salida de un
bloque con una entrada de otro bloque o una salida de un bloque con
una variable de salida. [11]

Figura 3. Ejemplo programación Diagrama de Bloques[11]

• Diagramas de Funciones Secuenciales o GRAFCET: Este lenguaje es
bastante útil para controlar procesos que se basan en etapas
secuenciales. Estas etapas pueden ser acciones por ejecutar o
transiciones a través de condiciones lógicas. Cada etapa permanece
inactiva mientras no se hayan cumplido y activado toda una serie de
etapas anteriores que conlleven a la activación de ella, o bien que
haya sido activadas directamente por el programador en la
configuración inicial. [11]

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 23

Figura 4. Ejemplo programación Diagramas de Funciones Secuenciales o GRAFCET[11]

• Ladder: el diagrama Ladder o diagrama de escalera es el lenguaje de
interfaz gráfica más utilizado sin duda como lenguaje de programación
de PLC, su nombre se debe a su forma estructural semejante a una
escalera por donde corren dos rieles verticales, entre los cuales
existen varios rieles horizontales que contienen la lógica.
El riel izquierdo es el que recibe el flujo de energía (entrada) que
representa el voltaje y deja pasar la energía al riel derecho que
representa la tierra (salida). Su parecido con los antiguos
controladores de relés es innegable y su lectura obedece siempre la
misma secuencia; de izquierda a derecha y de arriba hacia abajo.

Este lenguaje se basa en el uso de contactos y bobinas, ambos
pueden ser normalmente abiertos (NA) o normalmente cerrados (NC), y

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 24

en dependencia de esto será su valor para activarse o desactivarse.
[11]

Figura 5. Ejemplo programación Ladder[11]

Los controladores utilizados en este proyecto están programados en lenguaje
Ladder. A continuación, se explicará más detalladamente algunas de las
instrucciones básicas de este lenguaje y que serán utilizadas a lo largo del
proyecto.

INSTRUCCIONES TIPO RELÉ

XIC

Cuando un dispositivo cierra su circuito, el módulo cuyo terminal está
cableado al dispositivo detecta el circuito cerrado. El procesador refleja este
estado activado en la tabla de datos. Cuando el procesador encuentra una
instrucción XIC que direcciona el bit correspondiente al terminal de entrada, el
procesador determina si el dispositivo está activado (cerrado). Si el
procesador encuentra un estado activado, establece la lógica de escalera
como verdadera para esta instrucción. Si el procesador encuentra un estado
desactivado, establece la lógica de escalera como no verdadera para dicha
instrucción.

XIO

Cuando un dispositivo abre su circuito, el módulo cuyo terminal de entrada
está cableado al dispositivo detecta un circuito abierto. El procesador refleja
este estado desactivado en la tabla de datos. Cuando el procesador
encuentra una instrucción XIO que direcciona el bit correspondiente al
terminal de entrada, el procesador determina si el dispositivo está
desactivado (abierto). Si el procesador encuentra un estado desactivado,
establece la lógica de escalera como verdadera para esta instrucción. Si el

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 25

procesador encuentra un estado activado, establece la instrucción XIO como
falsa.

 Si el bit está: La instrucción es: Estado lógico del bit:

XIC Activado Verdadera 1
Desactivado Falsa 0

XIO Desactivado Verdadera 0
Activado Falsa 1

Tabla 1. Lógica de las instrucciones XIC y XIO

OTE

La instrucción OTE se usa para controlar un bit en la memoria. Si el bit
corresponde a un terminal del módulo de salida, el dispositivo cableado a
este terminal se activa cuando la instrucción se habilita y se desactiva cuando
la instrucción se inhabilita. Si las condiciones de entrada que preceden la
instrucción OTE son verdaderas, el procesador habilita la instrucción OTE. Si
las condiciones de entrada que preceden la instrucción OTE son falsas, el
procesador inhabilita la instrucción OTE. Cuando las condiciones de renglón
se hacen falsas, el dispositivo correspondiente se desactiva.

OTL

Cuando se asigna una dirección a una instrucción OTL que corresponde a un
terminal de un módulo de salida, el dispositivo de salida conectado a dicho
terminal se activa cuando el procesador establece (habilita) el bit en la
memoria del procesador. Si las condiciones de entrada que preceden la
instrucción son verdaderas, el procesador habilita la instrucción OTL. Cuando
las condiciones del renglón se hacen falsas (después de ser verdaderas), el
bit permanece establecido y el dispositivo de salida correspondiente
permanece activado. Use la instrucción OTU para desactivar el bit que se
enclavó con la instrucción OTL.

OTU

La instrucción OTU es una instrucción de salida retentiva que solamente
desactiva un bit (no puede activar un bit). Esta instrucción normalmente se
usa en parejas con una instrucción OTL (enclavamiento de salida) donde
ambas instrucciones direccionan el mismo bit. La instrucción desactiva el bit
que la instrucción OTL activó.

Si el renglón es: El procesador: Estado lógico del bit:
Verdadero Activa el bit 1
Falso Desactiva el bit 0

Tabla 2. Lógica de las instrucciones OTE, OTL y OTU

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 26

INSTRUCCIONES DE TEMPORIZADOR

TON

La instrucción TON se usa para activar y desactivar una salida después que el
temporizador ha funcionado durante un intervalo de tiempo preseleccionado.
La instrucción TON comienza a acumular el tiempo cuando el renglón se hace
verdadero y continúa hasta que ocurre cualquiera de los siguientes eventos:

- el valor acumulado es igual al valor preseleccionado
- el renglón se hace falso
- una instrucción de restablecimiento restablece el temporizador
- el procesador restablece el valor acumulado cuando las condiciones

del renglón se hacen falsas independientemente de que el
temporizador haya sobrepasado o no el tiempo de espera

RES

La instrucción RES es una instrucción de salida que restablece un
temporizador o contador. La instrucción RES se ejecuta cuando su renglón es
verdadero.

COMPARADORES

EQU

La instrucción EQU se usa para probar si dos valores son iguales. La fuente A
y la fuente B pueden ser valores o direcciones que contienen valores.

También existen otros comparadores para probar si dos valores no son
iguales, si uno es mayor que otro, menor que otro, etc.

INSTRUCCIONES DE CÁCULO

ADD

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 27

La instrucción ADD se usa para sumar un valor (origen A) y otro valor (origen
B) y colocar el resultado en el destino. El origen A y el origen B pueden ser
valores o direcciones que contienen valores.

También existen otras muchas operaciones de cálculo como la resta, división,
multiplicación, etc.

CLR

La instrucción CLR se para poner a cero todos los bits de una palabra. El
destino debe ser una dirección de palabra.

INSTRUCCIONES LÓGICAS

AND

Se usa esta instrucción para realizar una operación AND usando los bits en
las dos direcciones de origen.

Origen A Origen B Resultado
0 0 0
1 0 0
0 1 0
1 1 1

Tabla 3. Tabla de la verdad para la operación AND

NOT

Se usa esta instrucción para realizar una inversión de bit

Origen Resultado
0 1
1 0

Tabla 4. Tabla de la verdad para la operación NOT

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 28

OR

La instrucción OR se usa para realizar una operación OR usando los bits en
los dos orígenes (constantes o direcciones).

Origen A Origen B Resultado
0 0 0
1 0 1
0 1 1
1 1 1

Tabla 5. Tabla de la verdad para la operación OR

XOR

La instrucción XOR se usa para realizar una operación O exclusivo con el uso
de los bits en los dos orígenes (constantes o direcciones).

Origen A Origen B Resultado
0 0 0
1 0 1
0 1 1
1 1 0

Tabla 6. Tabla de la verdad para la operación XOR

INSTRUCCIONES PARA MOVER O MODIFICAR BITS

MOV

La instrucción MOV es una instrucción de salida que copia la dirección de
origen a un destino. La instrucción mueve los datos durante cada escaneo
siempre que el renglón permanezca verdadero.

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 29

INSTRUCCIONES DE ARCHIVO

COP

La instrucción COP es una instrucción de salida que copia los valores en el
archivo de origen al archivo de destino. No se cambia el origen. La instrucción
COP no usa los bits de estado.

INSTRUCCIÓN DE MENSAJE

MSG

Esta instrucción de mensaje (MSG) se usa para leer o escribir un bloque de
datos a otra estación en la red DH+, a un coprocesador de control conectado,
al VMEbus (Versa Module Europa, arquitectura de bus usada para
interconectar módulos) que usa un procesador PLC-5 VME o a otro nodo en
una red Ethernet. [4]

FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL

 30

DESCRIPCIÓN DEL SISTEMA PREVIO

 31

3. DESCRIPCIÓN DEL SISTEMA PREVIO
A continuación, se describirá tanto el funcionamiento como la organización
del sistema de alertas de fabricación (SAF).

3.1. ANÁLISIS ORGÁNICO

3.1.1. ORGANIZACIÓN DE SAF (SISTEMA DE ALERTAS DE
FABRICACIÓN)

La primera versión de SAF fue desarrollada en Visual Basic .NET 2003 con
Programación Orientada a Objetos, pero a partir de la versión 2 (SAF2) está
en Visual Basic.NET 2008.

Dentro de SAF2 existen las siguientes clases de objetos:

• Buzón: es un buffer de recepción de mensajes de autómata que es
dado de alta en RSLinx.

• ColeccionDeBuzones: es la colección de todos los objetos de Buzón.
• Campo: es una entidad que asocia un nombre simbólico con un valor

tipo cadena de texto.
• Variable: cuyo valor procede de un Buzón y que será referenciado en

los mapas de pantalla para que su valor sea mostrado.
• Constante: cuyo valor es definido al iniciarse el programa.
• ColeccionDeCampos: es la colección de todos los objetos de Campo.
• Mapa (de pantalla): es la definición de las informaciones que deben

aparecer en una pantalla; se compone de variables, constantes y
literales.

• ColeccionDeMapas: es la colección de todos los objetos Mapa.
• Dispositivo: es un sistema que recibe mensajes de SAF y de él cuelgan

una o varias pantallas u otros sistemas de presentación.
• Pantalla: es una referencia a la visualización de una pantalla de

visualización física.
• ColeccionDePantallas: es la colección de todos los objetos pantalla.
• Funciones script: son funciones desarrolladas en VBScript o JavaScript

que son invocadas para obtener los contenidos de las variables a
partir del contenido de los buzones.

• ColeccionDeOpciones: es una clase de uso generalizado que contiene
las opciones leídas en cada fichero de organización.

DESCRIPCIÓN DEL SISTEMA PREVIO

 32

3.1.2. Ficheros de configuración

Todos los objetos de las clases citadas son creados al iniciarse el programa
según las definiciones contenidas en diversos ficheros de configuración en
formato texto ASCII:

• Fichero de cabecera o raíz del que cuelgan los demás.
• Fichero de buzones: es una lista de elementos formados por un

nombre de variable, una función script de conversión y un tag RSLinx.
Cada línea bien formada creará un campo en la colección de campos y
un buzón en la colección de buzones.

• Fichero de constantes: es una lista de elementos formados por un
nombre de campo y un valor asignado de tipo texto ASCII. Un campo
variable, cuyo valor procederá rutinariamente de la conversión de
contenido de un buzón, podrá recibir un valor inicial desde el fichero
de constantes.

• Fichero de mapas: es una lista de elementos formados por un nombre
de mapa, un tiempo de latencia y un nombre de fichero con la
definición del mapa.

• Fichero de definición de un mapa: es un fichero de texto ASCII en el
que aparecen literales, constantes y variables y que, una vez
procesado para que las constantes y variables sean sustituidas por
sus valores, es enviado a una o varias pantallas; puede haber varios
de estos ficheros.

• Fichero de dispositivos: es una lista de elementos formados por un
nombre de dispositivo, tipo de protocolo, tipo de empaquetado de
datos, dirección puerto-IP local y dirección puerto-IP remoto.

• Fichero de pantallas: es una lista de elementos formados por un
nombre de dispositivo, número de pantalla y el nombre del mapa que
se les envía.

• Fichero script: es una fuente VBScript o JavaScript donde se
programan las funciones para obtener los valores de las variables a
partir del contenido de los buzones más otras funciones para otros
usos.

DESCRIPCIÓN DEL SISTEMA PREVIO

 33

3.1.3. Funcionamiento

SAF2 se basa en cuatro hilos de ejecución diferentes:

• El hilo del diálogo principal:
o Al arrancar:

- Lee el fichero de cabecera o raíz.
- Genera los objetos con los que trabaja en función de la

configuración y pone operativo el programa.
- En el momento de cargar en memoria el fichero de

funciones script, se ejecutará el cuerpo principal de tal
fichero, lo cual permite personalizar SAF.

o Reinicia el programa cuando se pulsa el botón del dialogo principal.
• El evento DataChange de RSLinx:

o Efectúa un evento cada vez que se recibe un mensaje de autómata
sobre un buzón.

o Invoca una función script por cada elemento definido en el fichero
de buzones que afecte al buzón que recibió un mensaje.

o Actualiza una variable a partir de cada buzón mediante la ejecución
de cada función script.

• Un temporizador cíclico para refrescar los mapas:
o Cada vez que cambia una variable que afecta a uno o más mapas,

se lanza una cuenta atrás de la latencia de cada mapa afectado y,
tras agotarse la cuenta atrás, se actualiza el mapa.

o Cada mapa actualizado es enviado inmediatamente a las pantallas
suscritas al mismo (es distribuido).

• Un temporizador cíclico de vigilancia de RSLinx:
o Verifica periódicamente que RSLinx está operativo y conectado y, si

no, lo conecta e incluso lo inicia si está apagado.

3.2. MANUAL DE USUARIO

3.2.1. BREVE DESCRIPCIÓN DE SAF

SAF2 funciona en entorno Windows, recibe mensaje de autómatas Allen-
Bradley a través de RSLinx y envía mensajes IP bajo protocolo UDP o TCP, en
formato para pantallas luminosas de LEDs MPE (MP Electronics) o como texto
ASCII terminado por <CR> (carriage return).

Así, el origen de los mensajes serán los autómatas de la red PLC Allen-Bradley
y el destino serán dispositivos de presentación como pantallas de LEDs,

DESCRIPCIÓN DEL SISTEMA PREVIO

 34

reproductores de mensajes vocales u otros, conectados a una red IP con
protocolo UDP o TCP y formato específico MPE o texto ASCII delimitado por
<CR>.

SAF2 trabaja con los siguientes elementos:

• Buzones: son los buffers de recepción RSLinx donde los autómatas
dejan sus mensajes para SAF.

• Variables: reciben informaciones de los contenidos de los buzones una
vez tratados.

• Constantes: son variables que reciben un valor inicial al arrancar el
programa y cuyo contenido no cambia posteriormente.

• Scripts: son funciones script estándar de Windows, en VBScript o
JavaScript, que son usadas para actualizar el contenido de las
variables a partir de los mensajes recibidos en los buzones (todos
deben estar en un único fichero).

• Mapas de pantalla: son modelos o formatos de la información que será
mostrada en las pantallas y se componen de literales, variables y
constantes.

• Dispositivos: son sistemas conectados a la red de los cuales pueden
colgar en una red local aneja varias pantallas o elementos
funcionalmente equivalentes.

• Pantallas: son los elementos físicos que reciben los mapas procesados
a fin de ser visualizados en ellas.

El proceso normal de SAF2 es el siguiente:

• Un autómata hace llegar un mensaje a SAF.
• SAF lanza una o varias funciones scripts y cada una de ellas pone al

día una variable interna de SAF a la cual se le asigna el resultado de la
función script que se le ha asociado.

• Cada uno de los mapas que usa alguna de las variables que resulta
actualizada es puesta al día.

• Cada una de las pantallas que está suscrita a los mapas afectados
recibe un mensaje UDP o TCP, de formato MPE o ASCII, dependiendo
del tipo de dispositivo del que cuelga.

• Para el caso de las pantallas MPE, se usa un convertidor de protocolo
IP Ethernet a red RS485 que, según están configurados actualmente,
permite enviarle un mensaje UDP con destino a una de las varias
pantallas que pueden estar en la red RS485 (normalmente una).

DESCRIPCIÓN DEL SISTEMA PREVIO

 35

De lo anterior se deduce que:

• Un mensaje puede poner al día más de una variable gracias a que
pueden crearse varios buzones con el mismo PLC Allen-Bradley y
lanzar en cada uno de ellos una función script diferente y cada una de
ellas depositará su resultado en una variable diferente; una posibilidad
es que un script genere un resultado en formato HTML y otro script
para pantalla MPE.

• Una variable puede poner al día más de un mapa pues puede ser
referenciada en más de uno de ellos.

• Un mapa puede ser enviado a más de una pantalla pues puede haber
varias pantallas que hacen uso de un mismo mapa.

• Cada variable es actualizada por una función script, pero una misma
función script puede ser invocada por varias variables con el fin de que
todas esas variables sean actualizadas siguiendo un mismo proceso,
aunque probablemente a partir de un tag PLC Allen-Bradley diferente.

Además:

• Puede programarse una función script que realice un proceso interno a
Windows, pero sin utilizar los datos recibidos en el buzón (ejemplo:
obtener la fecha del sistema).

• Una función script puede utilizar toda la potencialidad de un módulo
script estándar de Windows: acceso a otras aplicaciones, acceso a
bases de datos, utilización de diccionarios y listas, etc.

3.2.2. PUESTA EN MARCHA DE SAF2

Para poner en marcha SAF2, hay que ejecutar SAF.exe seguido de un nombre
de un fichero de configuración raíz y éste, a su vez, hará referencia a otros
ficheros que definen los elementos citados en el capítulo previo.

No obstante, en la versión 2 de SAF se ha empezado a poner todos los
ficheros de configuración en un subdirectorio que cuelga de donde está el
ejecutable SAF.exe y a pasar como parámetro ese subdirectorio seguido de
“\” y el nombre de un fichero raíz de la configuración. De este modo, puede
disponerse de varias configuraciones, cada una de ellas separada en un
subdirectorio aislado.

DESCRIPCIÓN DEL SISTEMA PREVIO

 36

Cuando SAF2 arranca, leerá el fichero raíz, cargará los demás ficheros de
configuración, creará los objetos con los que trabaja y activará sus tareas
internas.

Al iniciarse, aparece el siguiente diálogo:

Figura 6. Diálogo 1 SAF

Como se puede ver, aparece la opción recargar opciones, es decir, volver a
cargar la configuración y empezar de cero el programa.

Cuando estemos probando una nueva configuración, modificaremos los
ficheros implicados y no hará falta detener SAF, lo que nos permite dar
marcha atrás y dejar que el programa siga en marcha.

3.2.3. CONFIGURACIÓN DE SAF2

Para configurar SAF2, habrá que crear y rellenar convenientemente los
siguientes ficheros de texto:

• Un fichero raíz.
• Un fichero con la lista de constantes.
• Un fichero con la lista de buzones.
• Un fichero de funciones script.
• Un fichero con la lista de mapas de pantalla.
• Un fichero con la lista de dispositivos (de los cuales cuelgan sus

pantallas).

DESCRIPCIÓN DEL SISTEMA PREVIO

 37

• Un fichero con la lista de pantallas de nuestra red.
• Puede haber otros ficheros utilizados por las funciones script (listas de

datos u otros).

Todos estos ficheros cumplen unas reglas generales comunes:

• Deben ser editados con un editor plano, como el bloc de notas
(notepad.exe).

• Cuando una línea comienza por una comilla simple es considerada un
comentario y, si no, un mandato de configuración.

• Pueden escribirse espacios extra donde se desee.
• Un mandato es una línea de texto formada por varios fragmentos

separados por uno o varios espacios.
• Cada fragmento, si se compone de subpartes, están separadas por

una coma.

Fichero raíz

Veamos el contenido del fichero raíz de la primera puesta en marcha:

' Configuracion RAIZ_SAF1

CONSTANTES CONFIG_SAF1\LISTA_CONSTANTES.TXT

FUNCIONES CONFIG_SAF1\FUNCIONES.VBS

BUZONES CONFIG_SAF1\LISTA_BUZONES.TXT

MAPAS CONFIG_SAF1\LISTA_MAPAS.TXT

PANTALLAS CONFIG_SAF1\LISTA_PANTALLAS.TXT

DISPOSITIVOS CONFIG_SAF1\LISTA_DISPOSITIVOS.TXT

Aparece un comentario en la primera línea (que empieza con una comilla
simple).

Cada nombre de fichero de configuración aparece precedido por una palabra
de tres letras que indica su función. Estas funciones son:

• CONSTANTES: fichero de lista de constantes.
• FUNCIONES: fichero de funciones script.
• BUZONES: fichero de lista de buzones.
• MAPAS: fichero de lista de mapas.
• PANTALLAS: fichero de lista de pantallas.
• DISPOSITIVOS: fichero de lista de dispositivos.

DESCRIPCIÓN DEL SISTEMA PREVIO

 38

Por cada línea de las anteriores habrá un fichero con una lista en su interior y
además, para cada elemento de la lista MAPAS habrá que definir cada uno de
esos mapas.

No importa en que se escriban las líneas de este fichero pues SAF2 las lee
todas en primer lugar y después las procesa en el orden lógico que le permite
crear su estructura de datos interna.

Fichero de constantes

Veamos el fichero de constantes de la primera puesta en marcha:

' Literales
'
' Sintaxis: <simbolico> <literal>
'
' escribir un unico literal sin espacios
'
' para codigos especiales, usar % y dos cifras hexadecimales
'
' para incluir un espacio, escribir %20
'
' el simbolico puede ser usado en los mapas, precedido por @
'

SPACE %20
SPACE2 %20%20
SPACE4 %20%20%20%20
SPACE8 %20%20%20%20%20%20%20%20
SPACE16 %20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20

PERCENT %25

SYNC %C9
NOSYNC %CA
LINEA %C7
COLOR %A1
NEGRO %A10
ROJO %A11
VERDE %A12
AMBAR %A13
CORRER %E0
CENTRO %E1
INMED %F0
BLINK %A0
TIPO %C1
ESPACIO %20
VELOC %C4
ESPERA %B3

En primer lugar, decir que no se trata realmente de constantes sino de
valores iniciales, es decir, que cada una de estas “llamadas” constantes

DESCRIPCIÓN DEL SISTEMA PREVIO

 39

podría ser actualizada posteriormente a través de una función script pero
tendrá el valor inicial especificado en este fichero.

Para definir una constante, basta con escribir un texto que figurará como
identificador o nombre, dejar uno o más espacios de separación y escribir un
único fragmento de texto que será su valor.

Cuando se desea especificar un carácter especial, puede hacerse a través del
valor hexadecimal de su código ASCII que debe ser expresado con un carácter
tanto por ciento (%) seguido por las dos cifras hexadecimales. Este es el caso
de los caracteres especiales de control de las pantallas, el propio carácter
espacio, que es usado como separador o el carácter “%” que es usado como
prefijo de los códigos hexadecimales.

Fichero de buzones

Veamos el fichero de buzones de la primera puesta en marcha de la versión
2.0 de SAF:

' Lista de buzones DH
'
' Sintaxis: <campo> <conversor> <tag_rockwell>
'
' el campo puede ser usado en los mapas, precedido por @
'
' el conversor debe ser definido como funcion en el modulo VBS
'
' el topic del tag rockwell debe ser declarado en RSLinx
'
' si un campo tiene el mismo nombre que una constante, esta sera sobrescrita por el buzon
' (en realidad, una constante no es mas que una variable con valor inicial)
'

' calidades de coccion que escasean
CALIDADES CALIDADES [SAF1ADCG_UP]N250:0,L51
HHMM_CALIDADES HHMM_CALIDADES [SAF1ADCG_UP]N250:0,L51

' Tres números de operario con destino a cada linea de recogida de cepillado
STATUS_LINEA_1 STATUS_LINEA [SAF1EXCP]N251:0,L1
STATUS_LINEA_2 STATUS_LINEA [SAF1EXCP]N251:1,L1
STATUS_LINEA_3 STATUS_LINEA [SAF1EXCP]N251:2,L1

' Dos canales SAM de megafonia automatica
ALOCUCION_NORMAL MEGAFONIA [SAF1EXCP]N252:0,L2
ALOCUCION_LUDICA MEGAFONIA [SAF1EXCP]N253:0,L2

' Pantalla de Alertas Multiples de Coccion
STATUS_CABECERA_C STATUS_CABECERA [SAF1CBLC]N100:0,L1
STATUS_PRENSA_C1 STATUS_PRENSA_C1 [SAF1CBLC]N100:1,L1
STATUS_PRENSA_C2 STATUS_PRENSA_C2 [SAF1CBLC]N100:2,L1
STATUS_PRENSA_C3 STATUS_PRENSA_C3 [SAF1CBLC]N100:3,L1
STATUS_PRENSA_C4 STATUS_PRENSA_C4 [SAF1CBLC]N100:4,L1
STATUS_PRENSA_C5 STATUS_PRENSA_C5 [SAF1CBLC]N100:5,L1
STATUS_PRENSA_C6 STATUS_PRENSA_C6 [SAF1CBLC]N100:6,L1

DESCRIPCIÓN DEL SISTEMA PREVIO

 40

STATUS_PRENSA_C7 STATUS_PRENSA_C7 [SAF1CBLC]N100:7,L1
STATUS_PRENSA_C8 STATUS_PRENSA_C8 [SAF1CBLC]N100:8,L1
STATUS_GLOBAL_C STATUS_GLOBAL [SAF1CBLC]N100:0,L9
CALIDADES_WEB CALIDADES_WEB [SAF1ADCG_UP]N250:0,L51

Como se puede leer, hay que especificar para cada buzón:

• Un nombre de campo, es decir, una variable.
• Un conversor, es decir, el nombre de una función script.
• Un tag RSLinx.

El nombre de campo, o variable, es un simbólico que podrá ser especificado
en los mapas de pantalla precedido por un carácter arroba de modo que, en
su lugar, aparecerá el valor que le haya asignado la función script.

El tag RSLinx indica un mapa de memoria similar a un fragmento de fichero
de autómata y ese es precisamente el buzón.

Cuando un buzón definido en este fichero recibe un mensaje de un autómata,
SAF invoca a la función script especificada pasándole el contenido del buzón.
Cuando la función script es ejecutada y SAF retoma el control, el valor
retornado por la función script es depositado por SAF como valor del campo.
Pasado un cierto instante, llamado latencia, todos los mapas que usan la
variable que ha sido modificada son puestos al día y transmitidos a todas las
pantallas físicas suscritas al mismo.

En el ejemplo, hay una variable CALIDADES y la función script que actualiza
dicha variable también ha sido llamada CALIDADES. Se verá posteriormente
que el mapa que usa la variable CALIDADES presentará el texto @CALIDADES
donde se desea que aparezca su contenido. Por otro lado, en el fichero de
funciones script también habrá una función llamada CALIDADES que es la que
recibe los valores del buzón, los procesa y genera el texto que será
depositado en la variable CALIDADES. Evidentemente, no hay por qué poner el
mismo nombre a la variable y a la función.

Hay otra línea con HHMM_CALIDADES que presenta una particularidad ya
citada previamente. La función script HHMM_CALIDADES es invocada cuando
se actualiza el mismo buzón usado para CALIDADES, es decir, sobre el mismo
instante. Sin embargo, el script HHMM_CALIDADES no usa los datos del
buzón, sino que le pide la hora y los minutos al sistema Windows y los retorna
a SAF.

DESCRIPCIÓN DEL SISTEMA PREVIO

 41

Fichero de script

Se trata de un fichero VBScript o JavaScript estándar de Windows. Al ser un
único fichero, hay que optar por uno de los dos lenguajes.

Tal fichero, como cualquier otro script, dispondrá de:

• Instrucciones que se ejecutan en el momento de su carga en memoria.
• Funciones invocadas desde tales instrucciones.
• Otras funciones que serán invocadas desde el interior de SAF cuando

éste reciba un mensaje sobre algún buzón; estos son los conversores.

Veamos el código de la función CALIDADES ya citada anteriormente:

'---
'
' Conversor CALIDADES
'
' Genera el fragmento de mensaje para visualizar las calidades que escasean
' en el almacen de coccion para pantalla MP Electronics

' Entrada: un parametro array de x enteros donde el primer entero es el
' numero de calidades recibidas y cada entero sucesivo tiene en el byte
' alto el numero de calidad y en el bajo la cantidad media

' Salida: cadena de texto con una linea según sintaxis MP Electronics (ASEL)

' Criterio: visualizar cantidad 3 en ambar y 2 o menos en rojo y, si 0,
' que ademas parpadee
'

function CALIDADES(buffer)
 dim x
 dim calidad
 dim cantidad
 dim prefijo
 dim sufijo
 dim final

 ' calcula elemento final a escrutar
 final= ubound(buffer)
 if buffer(0)<final then final= buffer(0)

 ' inicializa variables
 prefijo= ""
 sufijo= ""
 CALIDADES= "" ' hace que esta variable sea tipo string

 ' escruta los elementos desde el 1 hasta
 ' la cantidad indicada en el elemento 0
 for x=1 to final
 ' toma el byte alto
 calidad= (buffer(x) and &hFF00) / 256
 ' toma el byte bajo
 cantidad= buffer(x) and 255
 ' elige color segun la cantidad que queda
 select case cantidad

DESCRIPCIÓN DEL SISTEMA PREVIO

 42

 case 0: ' color rojo y parpadeo
 prefijo= chr(&hA1) & "1" & chr(&hA0)
 sufijo= chr(&hA0)
 case 1: ' color rojo
 prefijo= chr(&hA1) & "1"
 sufijo= ""
 case 2: ' color rojo
 prefijo= chr(&hA1) & "1"
 sufijo= ""
 case 3: ' color ambar
 prefijo= chr(&hA1) & "3"
 sufijo= ""
 case else: ' color normal (verde)
 prefijo= CHR(&HA1) & "2"
 sufijo= ""
 end select
 ' concatenar...
 CALIDADES= CALIDADES & prefijo & calidad & ":" & cantidad & sufijo & " "
 next
 ' quita el espacio de mas del final
 CALIDADES= rtrim(CALIDADES)

end function

• El contenido del buzón es pasado a la función script como un objeto

del tipo array, eso implica que, para N enteros recibidos de un
autómata, dispondremos del elemento 0 al N-1.

• Para el caso particular del mensaje procesado por la función script
CALIDADES por acuerdo entre N1 y N2, el primer elemento (el
elemento 0) contendrá el número de elementos válidos que van a
continuación de modo que:
o El elemento 0 indica cuántos elementos de información hay a

continuación.
o El primer elemento de información es el 1 y el último elemento de

información es aquel cuyo valor aparece en el elemento 0.
o Puede haber más elementos nulos, no usados, hasta completar la

longitud del array.
o La longitud total del array se obtiene con la función ubound() y ha

de ser 37 en nuestro ejemplo, ya que el tag usado previamente en
la definición del buzón especifica ‘L37’.

• Observamos que esta función script retorna un valor de cadena, pero

vemos también que se usan unos códigos hexadecimales: son códigos
de control específicos para la pantalla física utilizada y, los usados
aquí, son particularmente para cambiar el color del texto y para
generar parpadeo en las pantallas.
o Para cambiar el color se escribe &HA1 (hexadecimal A1) seguido

de 0, 1, 2 o 3 (negro/apagado, rojo, verde, ámbar).

DESCRIPCIÓN DEL SISTEMA PREVIO

 43

o Para que una sección de texto parpadee, hay que anteponerle y
posponerle un carácter &HA1.

Cuando SAF recibe un mensaje sobre un buzón y llama a una de estas
funciones, asigna el texto generado a una variable. Pero, cuando la función
termina con error, SAF no asignará a la variable su valor retornado, sino el
mensaje de error generado por el intérprete del lenguaje script. Esto hará que
ese mensaje aparezca en la pantalla de visualización y el error sea fácilmente
detectable.

Inicialización de un script

Cuando SAF carga en memoria el fichero script, éste es compilado y ejecutado
de tal modo que, si hay funciones en su cuerpo principal, éstas serán
ejecutadas al momento.

Esto es particularmente útil cuando necesitamos, por ejemplo, cargar
diccionarios o conectar con servicios externos (bases de datos, por ejemplo).
También será útil para testear los conversores, ya que podemos invocar un
conversor en proceso de prueba desde el cuerpo principal del fichero script
sin que sea necesario invocarlo desde SAF, lo cual requeriría preparar una
simulación (autómata con programa, buzón, etc.).

Veamos un ejemplo de carga de una lista de números y nombres:

'***
' Inicialización del módulo
'***
dim nombres
Set nombres= CargarTablaNT("NOMBRES.TXT")

Este módulo invoca la función CargarTablaNT() pasándole como argumento el
nombre de un fichero formado por líneas de texto compuestas por dos
fragmentos: un número en cifras y una o varias palabras sustituyendo un
nombre y apellidos (u otra funcionalidad similar).

Una vez ejecutada la función, si en alguna instrucción del fichero script
colocamos “nombre(i)” siendo “i” una variable entera, se obtendrá el nombre
del empleado número “i” tal cual haya sido definido en el fichero origen. Se
trata pues de un diccionario cuyo origen es un fichero de texto.

DESCRIPCIÓN DEL SISTEMA PREVIO

 44

El código de la función citada es el que sigue:

' --
' Cargar tabla con campos Numérico y Texto
'
' Ejemplo típico: Número de empleado <espacio> Nombre
'

function CargarTablaNT(fichero)
 dim objFSO
 dim objFile
 dim texto
 dim espacio
 dim numero
 dim nombre

 ' crea un diccionario
 set dic= CreateObject("Scripting.Dictionary")

 ' crea un manipulador de ficheros
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 ' crea un fichero abriéndolo como texto
 Set objFile = objFSO.OpenTextFile(fichero,1)
 ' lee linea a linea hasta el final
 While Not objFile.AtEndOfStream
 texto = CStr(objFile.ReadLine) ' lee una linea y convierte a texto
 espacio= instr(texto," ") ' busca la posición del primer espacio (separador)
 numero= cint(left(texto,espacio-1)) ' convierte a numérico lo anterior al espacio (clave)
 nombre= right(texto,len(texto)-espacio) ' extrae el texto a partir del espacio (atributo)
 dic.Item(numero)= nombre ' da de alta el elemento en el diccionario
 Wend
 ' cierra el fichero
 objFile.Close
 ' retorna el objeto diccionario
 Set CargarTablaNT= dic

end function

Un posible fichero de datos es el siguiente (NOMBERS.txt):

1 Lopez
2 Martinez
3 Najera
4 Perez
5 Menendez
6 Arias
7 Velasquez
8 Navarro
9 Arranz
10 Olea
11 Pereda
12 Mejias

Pueden darse otros usos como, por ejemplo, una lista que asocie un código
de mensaje con un texto de aviso.

DESCRIPCIÓN DEL SISTEMA PREVIO

 45

Es posible ejecutar en el cuerpo principal del módulo script esta y otras
funciones similares como conectar con una base de datos remota o local, u
otras como inicializar datos, enviar mensajes, etc. No obstante, la idea
principal es programar las funciones que convierten los datos recibidos por
los autómatas en mensajes legibles por el receptor que los necesita (humano
o máquina).

Fichero de lista de mapas

Veamos el fichero de mapas de la primera puesta en marcha de la versión 2.0
de SAF:

' Lista de mapas de pantalla
'
' Sintaxis: <identificador> <latencia> <fichero>
'
' latencia es el tiempo que se retrasa el refresco del mapa desde que cambia el ultimo
' campo contenido en el mismo (decimas de segundo de 2 a 600)
' la latencia debe ser superior al tiempo de ejecución del script más lento que afecte al mapa
'

COCCION 1 CONFIG_SAF1\MAPA_COCCION.TXT
CEPILLADO 1 CONFIG_SAF1\MAPA_CEPILLADO.TXT

MEGA_NORMAL 1 CONFIG_SAF1\MAPA_MEGAFONIA_NORMAL.TXT
MEGA_LUDICO 1 CONFIG_SAF1\MAPA_MEGAFONIA_LUDICA.TXT

STATUS_CABECERA_C 1 CONFIG_SAF1\MAPA_STATUS_CABECERA_C.TXT
STATUS_PRENSA_C1 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C1.TXT
STATUS_PRENSA_C2 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C2.TXT
STATUS_PRENSA_C3 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C3.TXT
STATUS_PRENSA_C4 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C4.TXT
STATUS_PRENSA_C5 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C5.TXT
STATUS_PRENSA_C6 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C6.TXT
STATUS_PRENSA_C7 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C7.TXT
STATUS_PRENSA_C8 1 CONFIG_SAF1\MAPA_STATUS_PRENSA_C8.TXT
STATUS_GLOBAL_C 1 CONFIG_SAF1\MAPA_STATUS_GLOBAL.TXT
CALIDADES_ESCASAS 3 CONFIG_SAF1\MAPA_CALIDADES_ESCASAS.TXT

En el mismo hay que especificar una línea por cada mapa con:

• El nombre del mapa
• La latencia
• El nombre del fichero donde está la definición del mapa

El nombre del mapa es necesario para cuando definamos las pantallas poder
decir a qué mapa está suscrita cada una.

Cuando un buzón recibe un mensaje, se lanza una función script que
actualiza el contenido de una variable y, al cambiar la variable, se actualizan
los mapas que la usan, al cambiar un mapa, es reenviado a las pantallas que
están suscritas al mismo.

DESCRIPCIÓN DEL SISTEMA PREVIO

 46

La latencia es el tiempo que hacemos transcurrir desde que un mapa se ve
afectado por una variable cambiante hasta que el mapa es recalculado y
reenviado a las pantallas afectadas. La existencia de la latencia se justifica
con el hecho de que, a veces, hay que dejar un pequeño tiempo al sistema
operativo para que libere un fichero.

Por otro lado, en ocasiones, un buzón afecta a varias variables por lo que
desencadenará la ejecución de varias funciones script que afectarán a su vez
a varios mapas y será necesario dar un pequeño tiempo para que todas las
funciones scripts tengan tiempo de finalizar su ejecución. De ese modo, se
ejecutarán todas las funciones script, posteriormente finalizará el tiempo de
latencia que cuenta a partir de la recepción del tag desde un autómata y se
producirá un único envío a las pantallas afectadas. Si no hubiera un tiempo
de latencia, cada fin de ejecución de una función script provocaría la
actualización de su variable asociada con la consecuente actualización de
todos los mapas que la usan y los envíos a todas las pantallas suscritas a
cada mapa recién afectado.

También, pueden llegar mensajes a diferentes buzones en instantes cercanos
del tiempo y la latencia retrasará la actualización del mapa para procurar que
no haya 'guiños', es decir, que, si pueden llegar por ejemplo dos mensajes
contra las variables de un mismo mapa con una separación de 5 segundos,
una latencia de 6 segundos o más hará que sólo se produzca una
actualización y, por tanto, un único envío a las pantallas afectadas. Si la
información cambia con cierta frecuencia podría interesar establecer una
latencia que baje la frecuencia de actualización.

El tercer parámetro es el nombre del fichero dónde aparece la definición del
mapa. Cada mapa requiere en general un fichero diferente.

 Fichero de definición de un mapa de pantalla

Veamos el mapa de pantalla de la primera puesta en marcha para la
información de calidades a punto de agotarse en el almacén de cocción:

' Mapa de visualizacion para Coccion / Prensas
'
' Marca: MP Electronics
'
' Modelo: MPC35-16 de 3 lineas independientes de 16 caracteres
'

@SYNC
 @LINEA 1
 @TIPO 8 @VELOC 20

DESCRIPCIÓN DEL SISTEMA PREVIO

 47

 @INMED @VERDE ALMACEN @SPACE COCCION
 @LINEA 2
 @TIPO 8 @VELOC 20
 @CORRER
 @CALIDADES @SPACE8
 @LINEA 3
 @TIPO 8 @VELOC 20
 @INMED @VERDE A @SPACE LAS @SPACE @HHMM_CALIDADES
@NOSYNC

Todos los elementos que van precedidos de un carácter arroba son variables
o constantes y, los que no, son literales; es decir, que los elementos que
empiezan por '@' serán sustituidos por su valor y el resto aparecerán tal cual.

Recordemos que una constante y una variable son elementos de SAF que
pertenecen a un mismo diccionario interno, pero:

• una constante recibe su valor al arrancar SAF y no será modificada
posteriormente, es decir, ningún buzón la referenciará.

• una variable recibe su valor desde un mensaje de autómata, pero
nada impide que también reciba un valor inicial en el fichero de
constantes.

En el mapa del ejemplo, @CALIDADES y @HHMM_CALIDADES son las únicas
variables y todos los demás elementos que comienzan por '@' son constantes.

Las constantes pueden ser divididas en dos grupos:

• @SPACE y @SPACE8 que sirven para presentar espacios en las
pantallas.

• las demás corresponden a mandatos hexadecimales específicos para
las pantallas MP Electronics.

De lo último se deduce que cada mapa de pantalla es específico para un
determinado hardware y requerirá una serie de constantes de mandato en el
fichero de constantes.

Como las variables forman parte integrante de los mapas, también las
funciones scripts que las generan tendrán que ser específicas para un
determinado hardware, ya que usan códigos hexadecimales específicos en
sus instrucciones.

DESCRIPCIÓN DEL SISTEMA PREVIO

 48

Fichero de lista de dispositivos

Un dispositivo es un aparato que se conecta a la red, recibe mensajes de
SAF2 y los hace llegar a una o más pantallas (o similares) que cuelgan del
mismo a través de una red local (física o virtual).

Actualmente se tienen en el taller 3 tipos de dispositivos:

• Convertidor serie Ethernet Digi Connect. Estos dispositivos incorporan
una red RS485 de la que está colgando una sola pantalla.

• Programa SAM (Sistema de Megafonía Automática). Tiene una red
virtual de la que pueden colgar varios canales de audio. A cada canal
se le puede cambiar la música de inicio, la velocidad de dicción y la
música de final.

• PC con programa PAM (Pantalla de Alertas Múltiples). Tiene una red
virtual de manera que cada nodo de esta tiene como destino una
ventana de internet Explorer que ocupa una determinada área de la
pantalla.

Veamos el fichero de lista de dispositivos para la primera puesta en marcha
de SAF2:

' Lista de pantallas

'

' Lista de dispositivos fisicos de remoto de alertas

'

' Sintaxis: <identificador> <protocolo> <tipo_empaquetado> <direccion_ip_local>
<puerto_ip_local> <direccion_ip_remota> <puerto_ip_remoto>

'

' identificador: simbolico del nodo remoto (pantalla, megafonia, etc.)

' protocolo: TCP o UDP

' tipo_empaquetado: PAM, texto plano para Pantalla de Alertas Multiples; MPE,
protocolo de pantallas MPE (ASEL)

' direccion_ip_local: direccion ip local (este ordenador)

' puerto_ip_local: puerto ip local (en este ordenador; 0=comodin)

' direccion_ip_remoto: direccion ip remoto (pantalla, etc.)

' puerto_ip_remoto: puerto ip remoto (pantalla, etc.)

'

PAM_COCCION TCP PAM 10.168.10.242 0 10.168.0.36 5807

MPE_DIS2 UDP MPE 10.168.10.242 58002 10.168.1.252 2101

MPE_MEDALLADO UDP MPE 10.168.10.242 58003 10.168.0.37 2101

MPE_CEPILLADO UDP MPE 10.168.10.242 58004 10.168.0.33 2101

SAM_MEGAFONIA UDP MPE 10.168.10.242 58005 10.168.2.11 2101

DESCRIPCIÓN DEL SISTEMA PREVIO

 49

Para cada dispositivo hay que especificar:

• El nombre simbólico del dispositivo (necesario para después definir
sus respectivas pantallas)

• El protocolo IP: TCP o UDP
• El formato de los datos: pantalla MPE o texto ascii para PAM
• La dirección IP local en el PC donde se ejecuta SAF2
• El puerto local (ayuda a mejorar la seguridad)
• La dirección IP remota del dispositivo de presentación de la

información
• El puerto IP remoto

Fichero de lista de pantallas

Éste especifica la lista de pantallas de nuestra red. Veamos el fichero para la
primera puesta en marcha de SAF2:

' Lista de pantallas
'
' Lista de pantallas fisicas de destino de alertas
'
' Sintaxis <punto_remoto>:<nodo_o_puerto_rs485> <mapa>
'
' punto_remoto: simbolico que referencia el dispositivo remoto que recibe la alerta
' nodo_o_puerto_rs485: nodo dentro de la red local de destino
' mapa: mapa cuyo contenido sera volcado sobre el dispositivo cuando alguna de sus variables cambie
de estado
'

PAM_COCCION:100 STATUS_CABECERA_C
PAM_COCCION:101 STATUS_PRENSA_C1
PAM_COCCION:102 STATUS_PRENSA_C2
PAM_COCCION:103 STATUS_PRENSA_C3
PAM_COCCION:104 STATUS_PRENSA_C4
PAM_COCCION:105 STATUS_PRENSA_C5
PAM_COCCION:106 STATUS_PRENSA_C6
PAM_COCCION:107 STATUS_PRENSA_C7
PAM_COCCION:108 STATUS_PRENSA_C8
PAM_COCCION:120 STATUS_GLOBAL_C
PAM_COCCION:121 CALIDADES_ESCASAS

MPE_DIS2:1 COCCION
MPE_MEDALLADO:3 COCCION
MPE_CEPILLADO:1 CEPILLADO

SAM_MEGAFONIA:1 MEGA_NORMAL
SAM_MEGAFONIA:2 MEGA_LUDICO

DESCRIPCIÓN DEL SISTEMA PREVIO

 50

Para cada pantalla hay que especificar:

• un nombre de dispositivo seguido por “:” y un número de pantalla
entre 1 y 255

• el nombre del mapa al que está suscrita la pantalla (el mapa que, tras
actualizarse, será enviado a la pantalla)

Como puede apreciarse en el ejemplo, el mapa COCCION será enviado a dos
pantallas diferentes. [14]

DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

 51

4. DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

4.1. PI SYSTEM

4.1.1. INTRODUCCIÓN

PI System es una cartera integrada de soluciones que permite a las
operaciones industriales recopilar, limpiar, almacenar, enriquecer y visualizar
datos operativos en tiempo real. Facilita a los operadores, gerentes de planta,
analistas de datos y ejecutivos optimizar la eficiencia, garantizar la resiliencia
e impulsar la sostenibilidad.

Aunque fue creado por OSISOFT, un fabricante de software de aplicación, en
2021 fue comprado por la empresa de producción AVEVA.

A continuación, se tratará de explicar tanto el funcionamiento como las
distintas soluciones que ofrece PI System de cara al tratamiento y
visualización de datos. [5]

4.1.2. FUNCIONAMIENTO

1- Recopilación de datos

Se capturan datos a través de sensores, gateways IIoT o activos
remotos.

2- Almacenamiento de datos

Los datos son almacenados y gestionados por AVEVA Edge Data Store
y AVEVA PI Server:

• AVEVA Edge Data Store: Recopila, almacena y accede a datos de
operaciones de activos remotos en entornos hostiles. [15]

• AVEVA PI Server: motor de almacenamiento, contextualización,
análisis y notificación de datos, de gran volumen y en tiempo
real.[8]

3- Servicios en la nube

Dichos datos también pueden ser procesados por unos servicios de
datos basados en la nube (AVEVA Connect).[16]

4- Análisis y predicción

DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

 52

Se utilizan plataformas de inteligencia artificial y machine learning
para realizar análisis predictivos y generar insights sobre el
comportamiento futuro.

5- Visualización

Con AVEVA PI Vision se pueden convertir datos brutos en
visualizaciones detalladas y compartir información con toda la
empresa.

6- Integración de datos

Se integran otros sistemas empresariales y herramientas para mejorar
la integración y análisis a nivel corporativo [6] a través de aplicaciones
como AVEVA PI DataLink (complemento de Microsoft Excel que permite
recuperar información de PI System directamente en una hoja de
cálculo) [17] y AVEVA PI Integrator for Business Analytics (transforma
los datos de PI System a un formato listo para la toma de decisiones,
compatible con herramientas de inteligencia empresarial, como
Microsoft Power BI, Tableau, Tibco Spotfire y QlikView). [18]

Figura 7. Esquema funcionamiento PI System [12]

4.1.3. PI SERVER

PI Server es la solución estándar de la industria para almacenar, agregar,
contextualizar y utilizar datos de operaciones en tiempo real.

Entre sus principales características se pueden distinguir:

• Recuperación y almacenamiento de millones de etiquetas de datos y
cientos de miles de valores por segundo a lo largo de varias décadas.

DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

 53

Dichos valores se pueden entregar en tiempo real a usuarios y
sistemas en múltiples ubicaciones.

Figura 8. Ejemplo del histórico de los datos almacenados en PI Server[8]

• Estructuración de los datos en función de los equipos, activos y otros
objetos conocidos de los procesos de producción, incluido el flujo de
procesos entre ellos.

Figura 9. Ejemplo de estructuración de los datos en PI Server[8]

• Creación de cálculos, funciones, modelos predictivos de equipos,
análisis hipotéticos y lógica multifacética.

DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

 54

Figura 10. Ejemplo de creación de una función sencilla en PI Server[8]

• Definición de reglas para detectar y registrar eventos.

Figura 11. Ejemplo de definición de reglas para detección de anomalías en PI Server[8]

• Envío de alertas en tiempo real cuando se detecte un determinado
evento definido por el usuario. [8]

DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

 55

Figura 12. Ejemplo de alerta en PI Server (Trigger, a la izquierda, es la definición del evento;

Subscriptions, a la derecha, es el destino de la notificación) [8]

4.1.4. PI VISION

PI Vision es una herramienta basada en la web para crear pantallas y paneles
de control. Los usuarios pueden crear fácilmente visualizaciones
configurables de sus datos de operaciones en tiempo real.

Se puede acceder a visualizaciones de datos críticos y paneles de control en
cualquier momento y lugar, desde cualquier dispositivo o navegador. [7]

Figura 13. Ejemplo de visualización de datos con PI Vision desde navegador [7]

4.2. MICROSOFT POWER AUTOMATE

Power Automate es una aplicación de Microsoft para la automatización de
flujos de trabajo. Permite crear y personalizar tareas automáticas en la nube,

DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)

 56

integrando otras aplicaciones y servicios para recibir notificaciones,
sincronizar archivos, recopilar datos y mucho más.

Figura 14. Ejemplo de flujo de trabajo con Power Automate [9]

En la imagen anterior (Figura 14) tenemos un ejemplo muy sencillo de un flujo
creado con Power Automate. Cuando se cumplen unas determinadas
condiciones se envía un email. [9]

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 57

5. MODIFICACIÓN DE LOS PROGRMAS DE LOS
AUTÓMATAS

Las zonas de la fábrica de las que nos interesa recibir información son:

• Cocción: estado de las prensas y cabecero de la línea C, control de las
calidades en almacén y gestión de defectos.

• Almacén del sótano: gestión de defectos.
• Almacén de cepillado: gestión de defectos.
• Almacén del sótano: sorteo, estado de las líneas y gestión de defectos.

Figura 15. Esquema de distribución de las zonas de interés dentro de la fábrica

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 58

5.1. COCCIÓN

Los avisos a megafonía y la pantalla informativa del estado de las prensas
están gestionados por el almacén de cocción, el cual se divide en dos
programas: el de animación (PROC_ANI) y el de gestión (PROC_GES).

5.1.1. ESTADO DE LAS PRENSAS

En la pantalla se informará mediante un código de colores del estado de las
16 prensas de la línea C y de la cabecera de línea. Además, se irán
mostrando cada 3 segundos de dos en dos el tipo de defecto que tiene cada
prensa.

Se mostrará en pantalla una plantilla dividida en 17 cuadrados
correspondientes a cada una de las 16 prensas y otro para la cabecera,
cuando cambie el estado de la prensa su casilla correspondiente cambiará de
color:

Figura 16. Ejemplo de visualización del estado de las prensas y cabecero

El significado de cada uno de los colores de los posibles estados y el proceso
de creación de la pantalla se explicarán en apartados siguientes.

Cada prensa envía su estado a la Cabeza de Línea a través de los bits S:99.
Lo encontraremos en el programa de las prensas desde #42 en líneas 242 en
adelante. Los estados definidos para cada bit son los siguientes:

• S:99/1 → Prensa en autonomía
• S:99/2 → Prensa en parada
• S:99/3 → Prensa en producción
• S:99/4 → Prensa recalentando
• S:99/5 → Prensa en defecto
• S:99/6 → Sanción K
• S:99/7 → Aire no rearmado
• S:99/8 → Falta calidad
• S:99/9 → Validar Sanción K
• S:99/10 → Cambio membrana próximo
• S:99/11 → Prensa no abre
• S:99/12 → Prensa no cierra

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 59

Tomamos como ejemplo la prensa C9. Observamos cuáles son los
desencadenantes para los distintos bits de estado:

Figura 17. Desencadenantes de defectos en prensa (I)

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 60

Figura 18. Desencadenantes de defectos en prensa (II)

Figura 19. Bits de estado S:99

En este caso los bits activos son el S:99/4 (prensa recalentando) y el S:99/5
(prensa en defecto).

La cabeza de línea envía su estado y el de las prensas al Gateway de MRA
para que el PC de MRA tenga acceso a estos cambios mediante el programa
SAF2.

A continuación, vemos que, en el programa del autómata del cabecero, el
estado de este se almacena en N50:0 y, a partir de N50:1, el estado de las
16 prensas:

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 61

Figura 20. Condiciones necesarias para defecto y atasco en CdL

En la Figura 15, además de ver cuáles son las condiciones que desencadenan
la activación de los bits de defecto y atasco en el cabecero de línea (defecto
siliconado automático no se usa), tenemos la instrucción COP que nos
permite copiar los 16 estados de las prensas (los cuales por medio de una
instrucción MSG de tipo lectura hemos guardado en S:101) en N50:1 hasta
N50:16.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 62

Figura 21. Variables enteras (N:50) donde se almacena el estado del cabecero y de las prensas dentro

del programa del cabecero

Figura 22. Descomposición en bits 16 de los estados del cabecero y las prensas

Comprobamos que el estado de la prensa 9 es el correcto (bits 4 y 5 activos):

24 + 25 = 48

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 63

SAF2 recoge los cambios en los estados y se lo envía al ordenador de la
pantalla de cocción. En concreto se lo envía a un programa que se llama PAM
que es el encargado de mostrarlo.

Como anteriormente el envío del estado de las prensas a SAF se hacía desde
el almacén de animación (PROC_ANI), el envío a OSISOFT se hará en este
mismo programa.

Figura 23. Ubicación de la rutina R029_Osisoft dentro del programa PROC_ANI

Se utiliza la rutina R029_OSISOFT.

Con la modificación de este programa se va a tratar de lograr dos objetivos:

1) Lectura constante de los estados tanto del cabecero como de las
prensas, información que leeremos del programa del cabecero.

En primer lugar, hay que crear las variables donde queremos almacenar toda
la información que más tarde se va a extraer desde PI Server (OSISOFT), en
este caso se va a tratar de un array de 100 enteros:

Nombre Variable Tipo Dato

Exch_OSISOFT_INT[0] INT Estado Cabecera Línea C
Exch_OSISOFT_INT[1] INT Estado Prensa C1
Exch_OSISOFT_INT[2] INT Estado Prensa C2
Exch_OSISOFT_INT[3] INT Estado Prensa C3
Exch_OSISOFT_INT[4] INT Estado Prensa C4
Exch_OSISOFT_INT[5] INT Estado Prensa C5
Exch_OSISOFT_INT[6] INT Estado Prensa C6
Exch_OSISOFT_INT[7] INT Estado Prensa C7

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 64

Exch_OSISOFT_INT[8] INT Estado Prensa C8
Exch_OSISOFT_INT[9] INT Estado Prensa C9
Exch_OSISOFT_INT[10] INT Estado Prensa C10
Exch_OSISOFT_INT[11] INT Estado Prensa C11
Exch_OSISOFT_INT[12] INT Estado Prensa C12
Exch_OSISOFT_INT[13] INT Estado Prensa C13
Exch_OSISOFT_INT[14] INT Estado Prensa C14
Exch_OSISOFT_INT[15] INT Estado Prensa C15
Exch_OSISOFT_INT[16] INT Estado Prensa C16
Exch_OSISOFT_INT[20] INT Defecto 1 prensa (mostrar por pantalla)
Exch_OSISOFT_INT[21] INT Defecto 2 prensa (mostrar por pantalla)
Exch_OSISOFT_INT[99] INT Error lectura Mensaje Estado

Tabla 7. Variables OSISOFT para la línea C de cocción

Veremos cómo se realiza la lectura del mensaje proveniente del programa del
cabecero.

Figura 24. Lectura del estado en programa del almacén de animación

La instrucción es muy sencilla, el programa se va a encontrar constantemente
ejecutando la instrucción MSG (siempre que el bit de pruebas esté activo,
aunque en un futuro no hará falta y se eliminará). En caso de ocurrir un error
de comunicación se escribirá el valor entero 1 en la posición 99 del array de
enteros que hemos creado “Exch_OSISOFT_INT”.

Debemos configurar la instrucción MSG como un mensaje de tipo lectura:

Figura 25. Configuración instrucción MSG para lectura de estados

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 65

Se leerán 17 elementos (16 para cada una de las prensas y otro para el
cabecero) almacenados en el elemento N50:0 del autómata del que se
realiza la lectura y se almacenan en el array de enteros Exch_OSISOFT_INT,
empezando por la posición cero.

Ya sólo queda configurar la comunicación con el autómata del cabecero:

Figura 26. Configuración de la comunicación en la instrucción MSG de lectura de los estados

La comunicación se realiza a través del protocolo de red industrial DH+ (Data
Highway), en el canal B de esta red y el nodo del dispositivo de destino en la
red es 21 (en octal). También debemos especificar la ruta de comunicación
(Path). Toda esta información la podemos obtener conectándonos al
autómata del cabecero.

2) Se almacenará el número de dos prensas que en el momento
contengan algún tipo de defecto. Cada 3 segundos esos valores
cambiarán ordenadamente mostrando las dos siguientes prensas con
defecto. Esto servirá más adelante a la hora de visualizar el tipo de
defecto de las prensas de dos en dos en la pantalla:

Figura 27. Ejemplo de representación de dos prensas con defecto

Los tipos de defectos que se desean visualizar son defecto (valor en decimal
25 = 32), sanción K (26 = 64), aire no rearmado (27 = 128), validar sanción K
(29 = 512), prensa no abre (211 = 2048) y prensa no cierra (212 = 4096).

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 66

Como vemos, sólo nos van a interesar aquellas prensas cuyo valor de estado
en decimal sea igual o superior a 32.

Se creará una pila de datos de tipo entero (Defectos_LinC) donde se
almacenen aquellas prensas cuyo valor decimar supere 32 (si el cabecero se
encuentra en defecto también se informará de ello):

Figura 28. Esquema ejemplo del funcionamiento de la pila de defectos

Para recorrer los estados del cabecero y de las prensas de uno en uno se
hará uso de un iterador “Index_Defecto”. Cuando el estado de la prensa sea
superior a 32 se almacenará en la pila el valor del iterador (coincide con el
número de la prensa en la que nos encontramos). Para el caso del cabecero
de línea, cuando se encuentre en defecto (≠0) se añadirá el valor 100, esto
servirá para diferenciarlo del valor 0, el cual indica que se ha llegado al final
de la pila. Se utiliza otro iterador “Index_Def” que indica la posición dentro de
la pila, esto nos servirá a la hora de recorrer la pila ordenadamente de dos en
dos y poder almacenar esos dos valores en Exch_OSISOFT_INT[20] y
Exch_OSISOFT_INT[21].

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 67

Figura 29. Programación pila de defectos

Cuando se haya analizado el estado del cabecero y las 16 prensas
(Index_Defecto ≥ 17) se reiniciarán los iteradores y se activará el bit
R029_B_ListDefOK, el cual indica que la lista de defectos ha sido
completada. Para evitar que este proceso de búsqueda de defectos se realice
de forma constante se añadirá una instrucción XIO de este bit, cuando esté
desactivado se desencadena la búsqueda.

Finalmente, se va a tratar de recorrer la pila de defectos de dos en dos,
mostrando cada 3 segundos y de manera ordenada las prensas con algún
tipo de defecto:

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 68

Figura 30. Esquema ejemplo del funcionamiento del muestreo de dos en dos de los defectos

Cuando se ha completado la lista de defectos se inicializa el temporizador
(TON) P00_R0029_T_Pantalla_OSISOFT. Cada 3 segundos se copia en
Exch_OSISOFT_INT[20] y Exch_OSISOFT_INT[21] dos valores de la lista.

Se utilizan dos iteradores:

- Index_Pantalla: recorre de dos en dos la pila Defectos_LinC.
- Index_Pantalla_Next: indica el valor siguiente del iterador

Index_Pantalla, de esta forma se volverá al principio de la pila sin
llegar a mostrar dos valores vacíos en el siguiente muestreo.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 69

Figura 31. Programación muestreo de defectos de dos en dos

Una vez se ha llegado al final de la pila, se vacía la pila de defectos y se
restablece el bit R029_B_ListDefOK que desencadenaba la búsqueda de los
defectos.

Con esto sólo informamos de las prensas que se encuentran con alguno de
los defectos mencionados, será desde PI System donde se informará del tipo
de defecto que contiene la prensa en ese momento (se verá más adelante).

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 70

5.1.2. CALIDADES

Además del estado de las prensas, en la pantalla se informa de las calidades
cuyo almacenaje está por debajo de un umbral (3 en este caso). Hasta ahora,
la salida por pantalla de esta información estaba gestionada por SAF (Sistema
de Alertas de Fabricación), para sustituirla por OSISOFT será necesario
realizar las debidas modificaciones en el programa del autómata.

Figura 32. Ubicación de la rutina R031_C_Intercambios dentro del programa PROC_GES

El envío del mensaje a SAF lo encontramos en la rutina
R031_C_Intercambios, es ahí donde se implementarán las modificaciones
necesarias para el envío de la información a OSISOFT.

Figura 33. Programación envío a SAF

Cuando se activa el bit de envío a SAF (R860_B_EnvioSAF) se ejecuta la
instrucción de escritura del mensaje.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 71

Figura 34.Configuración instrucción MSG tipo escritura para envío a SAF

Figura 35. Configuración de la comunicación en la instrucción MSG de escritura

Los 51 datos almacenados en P00_R860_MensajeSAF se escriben en
N250:0 en la ruta de comunicación especificada.

Cuando finaliza la escritura del mensaje se reestablece el bit de envío del
mensaje. En caso de existir un error en la escritura del mensaje, se inicializará
un temporizador de 30 segundos que al finalizar reiniciará la instrucción
mensaje.

Anteriormente la visualización por pantalla era gestionada por SAF, ahora será
el autómata del almacén de gestión. El objetivo es mostrar aquellas calidades
y el número de ruedas para dicha calidad en almacén, siempre y cuando este
valor sea igual o inferior a 3. Se irán mostrando una a una cada 3 segundos.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 72

Figura 36. Esquema ejemplo del funcionamiento del programa para muestreo de las calidades y

unidades en almacén

Cada 3 segundos se incrementa una posición del array de enteros
(P00_R860_MensajeOSISOFT), el valor almacenado en dicha posición se
descompone en dos partes:

- Número de ruedas en almacén: por medio de la función MOD se
obtiene el resto de la división entre 10, obteniendo como resultado las
unidades. Dicho valor se escribe en la variable de enteros
Exch_OSISOFT_INT[0].

- Calidad: se divide el valor correspondiente entre 10, de forma que
eliminamos las unidades. El resultado se escribe en
Exch_OSISOFT_INT[1].

Cuando se llega al final del array se vuelve a comenzar el muestreo desde el
primer valor. Para recorrer el array se utiliza el iterador Index_Calidad,
además, también contamos con otro iterador Index_Calidad_Next que nos
permite saber si el siguiente valor es un cero y así poder volver al inicio sin
tener que recorrer el resto de valores nulos del mismo.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 73

Figura 37. Programación muestreo de las calidades y unidades en almacén

A continuación, se va a explicar detalladamente cómo se obtienen los valores
de las calidades. La preparación del mensaje la vamos a encontrar en la
rutina R860_B1_MensajeSAF.

Figura 38. Inicialización paquete mensaje a SAF

En primer lugar, se va a inicializar el paquete de mensaje tanto a SAF como a
OSISOFT poniendo todos sus valores a 0 (instrucción FILL).

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 74

Figura 39. Barride de los elementos del inventario
Se crea un bucle FOR que va a servir para recorrer los 50 elementos de la
tabla de inventario en la rutina R861_CX, que es donde obtendremos las
calidades con almacenaje igual o inferior a 3. En la primera posición del
mensaje (P00_R860_MensajeOSISOFT[0]) se va a escribir la hora actual
(servirá para saber la hora de la última actualización sobre el estado del
almacén).

Figura 40. Solicitud envío de mensaje a SAF

Una vez preparado el paquete de mensaje, se activa el bit R860_B_EnvioSAF.
No va a ser necesario un bit de envío de mensaje a OSISOFT porque va a
estar recogiendo datos constantemente, cuando se llegue al final del paquete
de mensaje, se vuelve a mostrar este mismo empezando por el principio
mostrando los nuevos valores.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 75

Figura 41. Preparación paquete de mensaje a OSISOFT

Dentro de la rutina R861_CX se recorre el bucle FOR y se escribe en el array
de mensaje aquellas cuya cantidad sea menor o igual a 3, cuando se llega al
final del bucle se retorna a la rutina 860.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 76

5.2. ALMACÉN SÓTANO

En este apartado se va a tratar de explicar el funcionamiento de la megafonía
automática del almacén del sótano y modificaciones implementadas para
poder comunicarse con OSISOFT.

En el programa del autómata del almacén del sótano disponemos de una
rutina cuya función es avisar por megafonía cuando ocurre un defecto.

Figura 42. Ubicación de la rutina R032_Megafonia_Auto dentro del programa del Almacén del Sótano

Figura 43. Activación de los avisos a megafonía

Al inicializarse el proyecto (FS, first scan) se escribe un 1 en la variable doble
entera (DINT) R032_Megafonia_G para activar los avisos a megafonía. Este
valor se copia en R032_Megafonia_GT para inicializar el GRAFCET.

• GRAFCET

Cuando estamos en la etapa 0 del GRAFCET, está activo el bit de enviar
mensaje a megafonía (R032_B_MSG_Megafonia) y el bit de anulación de
megafonía (1 con megafonía, 0 sin megafonía) o el bit de pruebas para la

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 77

eliminación de megafonía _GTM (bit de pruebas “Guillermo Truchuelo
Mariscal” creado para probar las modificaciones implementadas), se
reseteará el bit 0 de aviso a megafonía (R032_Megafonia_G.0) y se activará
el bit R032_Megafonia_G.1, es decir, se pasa a la etapa 1 del GRAFCET.

Figura 44. Etapa 0 del GRAFCET

Cuando estamos en la etapa 1 del GRAFCET, si se ha enviado el mensaje a
megafonía o ha transcurrido el tiempo entre envíos de mensajes a OSISOFT
(10 segundos), se reiniciará R032_Megafonia_G.1 y se activará
R032_Megafonia_G.0 (se vuelve a la etapa 0). En caso de que el mensaje no
se haya enviado, se reiniciará R032_Megafonia_G.1 y se activará
R032_Megafonia_G.4, se pasa a la siguiente etapa del GRAFCET (los bits 2 y
3 no se utilizan).

Figura 45. Etapa 1 del GRAFCET

Cuando nos encontramos en la etapa 2 del GRAFCET, se reinicia el bit
R032_Megafonia_G.4 y se activa R032_Megafonia_G.1.

Figura 46. Etapa 2 del GRAFCET

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 78

• ACCIONES

Si se activa cualquiera de los defectos o ha trascurrido el tiempo determinado
para insistir en el aviso a mantenimiento o a producción, se activará el bit de
enviar mensaje.

Figura 47. Acciones o desencadenantes de envío de mensaje del almacén del sótano a megafonía

automática

Figura 48. Inicialización de variable entera de para aviso a megafonía

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 79

El bit R032_Megafonia_G.0 se utiliza para para poner a 0 el valor de la
posición 1 de la variable de enteros COM_SOT_Megafonia. El valor de esta
variable va a ser el que se envíe a megafonía.

Figura 49. Activación de bits de aviso a mantenimiento y producción

La activación del bit R032_Megafonia_G.1 desencadenará el envío del
mensaje. Dependiendo del tipo de defecto detectado se escribirá en
COM_SOT_Megafonia[1] el valor entero correspondiente al aviso a
mantenimiento (101) o a producción (201). Se ha creado un array de 128
booleanos para avisar a OSISFOT llamado Exch_OSISOFT_BOOL, el bit 0
corresponde a mantenimiento y el 1 a producción. Se declara un tiempo entre
mensajes a OSISOFT de 10 segundos.

Cuando se finalice el envío del mensaje saldremos de la etapa 1 del
GRAFCET, por lo que el bit R032_Megafonia_GT.1 se desactivará y el valor de
COM_SOT_Megafonia[0] se incrementará (se utiliza como un contador de
defectos). Si se alcanza el valor 1000 el contador se reseteará.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 80

Figura 50. Envío MSG para megafonía

Utilizaremos un bit de pruebas como condición inicial en esta línea ya que tras
la eliminación de la megafonía no servirá. En esta línea se realiza la escritura
del mensaje de aviso en la dirección correspondiente a megafonía.

Figura 51. Reinicio del bit enviar MSG a megafonía

Se reinicia el bit de enviar mensaje a megafonía.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 81

Figura 52. Temporizadores para reenvío de avisos

Si persisten los defectos se volverá a enviar el mensaje de aviso cada 150
segundos tanto para mantenimiento como para producción.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 82

5.3. ALMACÉN DE CEPILLADO

Al igual que en el programa del almacén del sótano, se creará una variable de
tipo booleana que se encargará de alertar de los defectos cuando estos se
encuentren activos. A continuación, veremos el funcionamiento anterior de la
megafonía y las modificaciones realizadas para comunicarnos con OSISOFT.

Figura 53. Ubicación de la rutina R032_Megafonia dentro del programa del Almacén de Cepillado

Figura 54. Acciones o desencadenantes de envío de mensaje del almacén de cepillado a megafonía
automática

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 83

Si se produce un defecto se activa el bit de aviso a megafonía
R032_Aviso_Megafonia. Si transcurrido un tiempo continúa activo dicho
defecto, se reenvía el aviso.

Figura 55. Envío de mensaje y activación del bit de aviso para el almacén de cepillado

Si el silencio de la megafonía está desactivado y se activa el bit de aviso, se
envía el mensaje a megafonía a través de la función MSG.

Figura 56. Instrucción MSG tipo escritura del almacén de cepillado

En este caso se va a tratar de una instrucción de tipo escritura (Typed Write),
se van a tomar 2 elementos situados en Exch_MAGCEP_Megafonia (en la
posición 0 se encuentra el valor del contador de mensaje y en la posición 1 el
mensaje).

Para avisar a OSISOFT hemos creado una variable booleana
Exch_OSISOFT_BOOL.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 84

5.4. CEPILLADO

Este apartado se dividirá en dos partes: aviso de defectos y sorteo de
cepillado.

5.4.1. AVISO DE DEFECTOS CEPILLADO

Para la zona de cepillado se dispone de 2 líneas (B15 y B16) por las que
llegan las ruedas a cepillar (existe una tercera línea que se encuentra en
desuso).

Los defectos de la CDCN son gestionados por la B15, a continuación, veremos
el funcionamiento del programa.

Figura 57. Defectos en Cepillado

Si se produce un defecto (bits a 1) se activará su correspondiente bit de
estado de defecto de complejo CDCN enviado a SAF/SAM (N27 SLC a Panel
View).

Figura 58. Bit avisos por megafonía activos

Si se produce la activación de los avisos por megafonía (bit 0 de la dirección
N26:10 a 1) y el flanco de subida está activo (OSR) se producirán las
siguientes acciones:

- Si los avisos por megafonía están activos (bit 0 de la dirección N27:10
a 1) se activa un bit que se va a utilizar como auxiliar.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 85

- Si el bit auxiliar no está activo (avisos por megafonía no están activos)
y el estado de defectos de complejo CDCN enviado a SAF/SAM es
igual a 0, se activará el set para avisos por megafonía activos.

- Si el bit auxiliar está activo (avisos por megafonía activos) se producirá
un reset para avisos por megafonía activos.

Figura 59. Temporizador para repetición de avisos por megafonía

Si los avisos por megafonía están activos y el estado de defectos de complejo
CDCN enviado a SAF/SAM no es igual a 0 se producirán las siguientes
acciones:

- Si el valor acumulado (ACC, número de intervalos de base de tiempo
que la instrucción ha contado) del temporizador (TON) de alertas
megafonía es igual a 0, se activa un bit de defecto (este bit se activará
cada X segundos, siendo X el tiempo preseleccionado en el
temporizador que veremos a continuación).

- Se ejecuta el temporizador (TON), cuando se alcanza el valor
preseleccionado (90 segundos) se activa el bit de efectuado del
temporizador (DN).

- Si el bit de efectuado del temporizador (DN) está activo se restablecerá
el temporizador (RES).

Figura 60. Activación bit enviar mensaje a megafonía y código de mensaje

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 86

Si los avisos por megafonía están activos, hay un defecto activo y se activa el
flanco de subida, se enviará un mensaje a megafonía:

- Si el número de envío de mensaje a megafonía es menor que 0, la
dirección donde está guardado este valor (entero) se pondrá a 0.

- Si el número de envío de mensaje a megafonía es menor que 32767,
se incrementará dicho valor en una unidad.

- Si el número de envío de mensaje a megafonía es igual a 32767, se
reiniciará el valor de la dirección, cambiando su valor a 1.

- El código de mensaje de megafonía es 201, se escribirá este valor en
la dirección N62:225.

- Se activa el bit para enviar mensaje a megafonía.

Figura 61. Envío de mensaje a megafonía

Finalmente, se va a leer el mensaje que se va a enviar por megafonía. Si los
avisos por megafonía y el bit de enviar mensaje están activos, se producirán
las siguientes acciones:

- Si el flanco de subida está activo, se reseteará el bit de efectuado (DN,
se establece cuando el mensaje es transmitido correctamente. El bit
se restablece la siguiente vez que el renglón asociado va de falso a
verdadero) o se reseteará el bit de error (ER, se establece cuando ha
fallado la transmisión del mensaje, se restablece la siguiente vez que
el renglón asociado va de falso a verdadero).

- Si el nodo 70 octal está activo se ejecutará la instrucción mensaje
(MSG). En este caso, se va a tratar de una acción de escritura (Write).
En el bloque de control (Control Block) seleccionamos la dirección
donde vamos a realizar la escritura (N69:0), se trata de una dirección
de archivo entero de 14 palabras que contiene bits de estado,

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 87

dirección del archivo receptor y otros datos asociados con la
instrucción de mensaje.

Cuando la instrucción de mensaje se está siendo ejecutada se activa el bit de
habilitación EN (permanece establecido hasta que la transmisión del mensaje
se ha terminado y el renglón se hace falso), cuando el mensaje se ha
transmitido correctamente se activa el bit DN, y si la transmisión ha fallado se
activará el bit de error, ER.

- Si el bit de tiempo límite está activo (TO*) se restablecerán éste y el bit
de habilitación (EN).

- Si el bit de habilitación (EN) está activo se ejecutará un temporizador
para establecer un tiempo máximo de escritura del mensaje (Timeout
MSG).

Si el bit de efectuado (DN) no está activo y el temporizador ha
alcanzado el tiempo preseleccionado (7.5 segundos, bit DN del
temporizador activo), o si el nodo 70 octal no está activo, se
restablecerá el bit de habilitación (EN) de la instrucción de mensaje (se
detendrá la escritura del mensaje), se establecerá el bit de tiempo
límite (TO) y se reiniciará el temporizador (RES).

- Si el bit de efectuado del mensaje está activo (DN), se restablecerá el
bit de enviar mensaje (el mensaje ya ha sido enviado correctamente).

5.4.2. SORTEO DE CEPILLADO

La zona de cepillado, como se ha explicado anteriormente, dispone de 2
líneas por las que llegan las ruedas, las cuales son asignadas de manera
aleatoria a los operarios según son dispuestas por las líneas disponibles. Se
dispone de una pantalla informativa con las líneas y el número del operario
asignado.

Al igual que los defectos, la asignación aleatoria del operario es gestionada
por el programa de la B15. A continuación se explicará el funcionamiento del
programa.

• COMBINATORIA

En primer lugar, se va a tratar de calcular la combinatoria de forma que cada
operario sea asignado de forma aleatoria.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 88

Figura 62. Combinatoria para asignación de operarios por sorteo

Se toman los 16 bits bajos del RHC y se almacenan en la dirección N7:100,
se utiliza la instrucción AND para almacenar los 8 bits bajos del hard clock en
N7:101 (partiendo de los 16 bits almacenados en N7:100). Estos 8 bits los
vamos a multiplicar por 17 (instrucción MUL) y el resultado se va a almacenar
en la dirección N7:102. Finalmente se va a obtener el producto modular de
este valor utilizando la instrucción AND, obteniendo un número aleatorio entre
0 y 255, dicho valor entero se almacena en N7:103.

RHC (Read High Speed Clock): usado para grabar el tiempo de inicio y final de
un evento. SLC 500 dispone de un reloj con valores enteros de 20 bits que se
incrementa cada 10 µs. Cuando se activa esta instrucción y la dirección de
destino es una dirección de enteros, se almacenan los 16 bits bajos.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 89

El siguiente paso será asignar una cuota de probabilidad a cada línea de

trabajo:

Figura 63. Cuota de probabilidad efectiva para la línea 1

Si la RG20 no puede suministrar carcasa (bit 1 de la dirección B3:26 a 0) o si
se ha asignado el código de operario a RG20 (NEQ, código de operario
almacenado en N7:94 no es igual a 0), se pone a 0 el valor de la cuota de
probabilidad efectiva de la línea 1, almacenado en N7:113.

Si la RG20 puede suministrar carcasa (bit 1 de la dirección B3:26 a 1) y no se
ha asignado un código de operario a la RG20 (EQU, código de operario
almacenado en N7:94 es igual a 0), se escribe el valor almacenado en
N7:110 (cuota de probabilidad asignada a la línea 1) en la dirección N7:113
(cuota de probabilidad efectiva línea 1).

Figura 64. Cuota de probabilidad efectiva para la línea 2

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 90

Figura 65. Cuota de probabilidad efectiva para la línea 3

El proceso se repite para las líneas 2 (TBS1) y 3 (TB-05).

Figura 66. Cuotas de probabilidad acumulada para las 3 líneas

Si se ha asignado una cuota de probabilidad efectiva a cualquiera de las
líneas (NEQ, cuota de probabilidad efectiva de la línea no es igual a 0), se
pueden calcular las siguientes cuotas de probabilidad: N7:116 = N7:113 +
N7:114 + N7:115

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 91

- Cuota de probabilidad efectiva total (N7:116): suma de las cuotas de
probabilidad efectiva de las 3 líneas (N7:113 + N7:114 + N7:115).

- Cuota de la línea 1 ajustada al módulo aleatorio (N7:117): se
multiplica la cuota de probabilidad efectiva de la línea por 256 y se
divide entre la total ((N7:114*256)/N7:116).

Mismo procedimiento para las líneas 2 y 3 (N7:118 y N7:119).

- Cuota acumulada línea 2 (N7:120): suma de las cuotas de línea 1 y 2
ajustadas al módulo aleatorio (N7:117 + N7:118).

- Cuota acumulada línea 3 (N7: 121): suma de la cuota de línea 3
ajustada al módulo aleatorio y la acumulada de la línea 2 (N7:119 +
N7:120).

Figura 67. Restablecimiento de las cuotas de probabilidad

Si no se ha asignado una cuota de probabilidad efectiva a todas las líneas
(EQ, cuota de probabilidad efectiva de la línea es igual a 0), las cuotas
calculadas en el renglón anterior se restablecen al valor 0.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 92

• TRANSICIONES

Figura 68. Activación de sorteo de cada una de las líneas

Si el bit 0 de la dirección B15:80 está activo (1) y la cola de espera de la pila
de sorteo no está vacía (bit de vacío EM* de la dirección R6:12 está a 0) se
realizan las siguientes operaciones:

- Si el número aleatorio almacenado en N7:103 (calculado en el primer
renglón del diagrama) es mayor o igual que 0 (GEQ) y menor que (LES)
la cuota de línea 1 ajustada al módulo aleatorio, se reiniciará la
situación de reposo del sorteo (bit 0 de la dirección B14:80) y se
activará la asignación de RG20 para sorteo (bit 1 de la dirección
B14:80).

- Se repetirá el mismo proceso para las otras dos líneas, con las únicas
diferencias que para la línea 2 el valor aleatorio debe ser mayor o igual
que la cuota de línea 1 ajustada al módulo aleatorio (N7:117) y menor
que la cuota acumulada de la línea 2 (N7:120). Para la línea 3 debe
ser mayor o igual que la cuota acumulada de la línea 2 (N7:120) y
menor que la acumulada de la línea 3 (N7:121).

Bit de vacío EM: establecido por la instrucción FFU (descarga FIFO) para
indicar que la pila está vacía.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 93

Figura 69. Activación de situación de reposo para el sorteo de cada una de las líneas

Si los bits 1, 2 y 3 de la dirección 15:80 están activos se reseteará la
asignación para el sorteo y se activará la situación de reposo para la RG20,
TBS1 y TB-05, respectivamente.

• ACCIONES

Figura 70. Control pila de sorteo

Si se ha cumplido lo anterior y se ha activado el bit de asignación para el
sorteo de la RG20 (bits 1 de B14:80) se realizará la descarga de la FIFO (FFU),
de forma que el elemento en la posición 0 de la pila (N7:80) se almacenará
como el código de operario asignado a la RG20 (N7:94).

Mismo procedimiento para la TBS1 y TB-05.

MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS

 94

FFU (descarga FIFO): cuando las condiciones del renglón cambian de falsas a
verdaderas, se establece el bit de habilitación FFU (EU). Esto descarga el
contenido del elemento en la posición 0 de la pila en el destino (Dest). Todos
los datos en la pila son desplazados un elemento hacia la posición cero, y el
elemento con el número más alto queda en cero. Luego decrementa el valor
de posición. Esta instrucción descarga un elemento en cada transición de
falsa a verdadera del renglón, hasta que la pila esté vacía. Luego se establece
el bit de vacío (EM). El bit de efectuado (DN) es establecido por la instrucción
FFL (carga FIFO) para indicar que la pila está llena, esto inhibe la carga de la
pila. En la dirección de control se almacenan los bits de estado, la longitud de
la pila y el valor de la posición.

Una vez ya tenemos un operario asignado a cada línea, desde el programa de
la salida de la CDCN2 leemos las variables donde están almacenadas los
números de los operarios en la B15 mediante una instrucción mensaje de
tipo lectura y los almacenamos en las variables que hemos creado para
trabajar con ellas más adelante desde OSISOFT.

Figura 71. Lectura de mensaje de sorteo y copia en variables OSISOFT

PI SYSTEM

 95

6. PI SYSTEM
Una vez se han modificado los programas de los autómatas y se han creado
las variables oportunas, se va a utilizar PI System para apuntar a dichas
variables y así crear los avisos por Teams y elaborar mediante PI Vision las
pantallas para la línea C de cocción y sorteo de cepillado.

6.1. COCCIÓN

En PI Server se va a trabajar con los datos proporcionados de cada una de las
16 prensas y, además, del cabecero de línea, por lo que trataremos ambos
casos por separado.

6.1.1. PRENSAS

El trabajo realizado para cada una de las prensas se puede dividir en 4 pasos:

1) Descomposición del valor del estado en 16 bits
2) Creación de eventos
3) Creación de Avisos (mensajes en Teams)
4) Visualización a través de PI Vision

A continuación, se detallará todo el proceso:

1) Descomposición del valor del estado en 16 bits

Dentro de PI Server localizamos los datos de la Prensa 1 de la línea C de
cocción:

Figura 72. Localización de los datos correspondientes a la megafonía para la prensa 1 dentro de la

base de datos de PI Server

PI SYSTEM

 96

El valor enviado por el autómata se descompone, como vimos en apartados
anteriores, en 16 bits. Para aquellos casos en los que un determinado bit esté
activo su valor (Value) será True, de lo contrario será False.

Figura 73. Descomposición de los datos proporcionados por la prensa C1

En este caso están activos los bits 3 y 5, por lo que el valor de estado debería
ser: 23 + 25 = 8 + 32 = 40

Dicho valor coincide con el valor del estado recibido del autómata de la
prensa (40, se puede ver al final de la figura anterior).

Como ya se indicó anteriormente, PI Server permite realizar cálculos y crear
funciones con los datos. A continuación, veremos cómo se realiza la
descomposición en bits del valor del estado de las prensas.

Se pueden realizar varios tipos de análisis de datos:

• Expression (Expresión): permite realizar cálculos mediante funciones
matemáticas y lógicas.

PI SYSTEM

 97

• Rollup: útil para cálculo de métricas agregadas como promedios,
sumas, valores máximos y mínimos, etc.

• Event Frame Generation (Generación de Marcos de Eventos):
detección y registro de eventos.

• SQC (Control Estadístico de calidad): basado en técnicas de control
para el análisis de la variabilidad en los procesos.

En este caso, como necesitamos realizar cálculos para la descomposición en
bits, realizaremos un análisis de tipo Expression:

Figura 74. Creación de expresión "Descomposición_Bits"

En primer lugar, necesitamos obtener el valor del estado, el cual se encuentra
almacenado en el tag (etiqueta) llamado “Estado”, como vimos en la Figura
72. Para trabajar de una manera más eficiente y no sobrecargar el sistema,
se va a crear una variable de tipo entero a la que vamos a llamar “Tabla”, a
dicha variable se le va a entregar el valor del último estado registrado:

Name Expression
Tabla TagVal(‘Estado’,’*’)

Tabla 8. Expresión para entregar el último estado registrado

Donde:

• TagVal: es una función utilizada para recuperar el valor de una
variable.

• ‘Estado’: nombre del tag o variable de la que se desea recuperar el
valor.

• ‘*’: representa el momento de la consulta (Timestamp), se utiliza para
obtener el valor más reciente.

Una vez obtenido el valor del estado, procedemos a la descomposición en
bits, para ello vamos a realizar un análisis de dicho valor bit a bit.

Supongamos que el valor de nuestro estado es 40. Como hemos visto antes,
para que se dé este caso tienen que estar activos los bits 3 y 5, por lo que 40
en binario se escribiría de la siguiente manera: 0000000000101000

Como vamos a realizar un análisis bit a bit empezaremos por el de la posición
0 (situado más a la derecha). Dicho bit se corresponde al valor 20 igual a 1, el
cual en binario se escribe de la siguiente manera: 0000000000000001

PI SYSTEM

 98

Para hacer una comparación de ambos valores en binario utilizaremos la
expresión lógica AND, la cual devolverá un 1 para aquellos casos en los que
exista un 1 en la misma posición dentro de los dos valores:

 0000000000101000
AND
 0000000000000001
 0000000000000000 → 0

Como vemos ningún valor coincide y el resultado es cero. Si dividimos el valor
obtenido expresado en forma decimal entre el valor de dicho bit (20)
sabremos si ese bit se encuentra activo o no (1 si está activo, 0 si no lo está):

0
20

=
0
1

= 0

Lo mismo ocurrirá para los bits 1 y 2.

Veremos qué ocurre para el bit 3 (23 igual a 8):

 0000000000101000
AND
 0000000000001000
 0000000000001000 → 8

Realizamos el mismo cálculo:

8
23

=
8
8

= 1

El análisis del estado del bit 3 ha dado como resultado un 1, con lo que
comprobamos que ese bit está activo. Realizaremos el mismo análisis en los
16 bits en los que queremos descomponer el estado de las prensas.

Para realizar estos cálculos dentro del programa se crea la siguiente
expresión:

Name Expression Output Attribute
VariableN Abs(Tabla and 2^N)/2^N BIT_N|TAG VALUE

Tabla 9. Expresión para la descomposición del estado en bits

Donde:

• N: es el número del bit a analizar.
• Tabla: variable de tipo entero donde se encuentra el valor del estado.
• and: operación lógica utilizada para comparar los dos valores.

PI SYSTEM

 99

• Abs: valor absoluto. Se utiliza para asegurarnos que el valor sea
positivo.

Figura 75. Análisis de estado para cada bit

2) Creación de eventos

Una vez descompuesto el estado de las prensas en 16 bits vamos a crear
diferentes eventos, en este caso nos interesa saber cuándo la prensa no abre
(bit 11) y cuando no cierra (bit 12).

Creamos un análisis del tipo Event Frame Generation (Generación de Marco
de Eventos) al que llamamos “Aviso Mantenimiento Osisoft1”.

Figura 76. Creación de evento de Aviso a Mantenimiento

El desencadenante del evento (Start Trigger) es muy sencillo, cuando el valor
del bit 11 del estado de la prensa se encuentre activo, es decir, su valor sea
“True”. El evento finalizará (End Trigger) cuando se desactive el bit (“False”).

PI SYSTEM

 100

Figura 77. Definición del evento de aviso a mantenimiento para prensa no abre

Se creará otro evento igual para el bit 12 (prensa no cierra).

3) Creación de Avisos

Se genera una notificación cuando ocurre un evento, en este caso el evento
“Aviso Mantenimiento Osisoft1”, el cual hemos creado dentro de la sección de
megafonía en cada una de las prensas.

Figura 78. Definición de criterios desencadenantes de aviso

Diseño del mensaje:

Figura 79. Diseño del mensaje de aviso

Donde PARENT_NAME representa una cadena de texto que indica la prensa
en la que ha ocurrido el evento (por ejemplo, “PRENSA-C01”).

Este mensaje se enviará a una dirección de correo electrónico con el asunto
OSISOFT AVISO MANTENIMIENTO. La lista de direcciones a las que se desea
llegue los mensajes se puede editar en la pestaña de suscripciones.

PI SYSTEM

 101

Figura 80. Suscripciones a los avisos

Para poder redireccionar los mensajes enviados al correo electrónico y
visualizarlos en Microsoft Teams será necesario crear un flujo de trabajo a
través de la herramienta Microsoft Power Automate.

Figura 81. Flujo diseñado con Power Automate para publicar mensaje en Teams

Paso 1- Llegada de un nuevo correo a Outlook

El flujo se inicia cuando llega un correo nuevo a Outlook, para ello
disponemos de un trigger específico en Power Automate (When a new
email arrives).

Debemos configurar los parámetros del trigger para establecer unos
determinados criterios y así concretar qué correos recibidos nos interesan:

PI SYSTEM

 102

Figura 82. Parámetros del trigger del flujo en Power Automate

• No se incluyen archivos adjuntos (include attachments) en caso de que
los tenga.

• Se establece un filtro del asunto (subject filter), de esta forma el trigger
solo se activará cuando lleguen correos con el asunto “OSISOFT AVISO
MANTENIMIENTO”.

• El trigger se activa independientemente de la importancia del correo.
• Aunque el correo no contenga archivos adjuntos el trigger se activará.
• Los correos deben llegar a la carpeta “MEGAFONIA” en la bandeja de

entrada.

Paso 2- HTML a texto

Los correos recibidos están en formato HTML (HyperText Markup
Language), por lo que para extraer el contenido del correo haremos uso de
esta función.

PI SYSTEM

 103

Figura 83. Parámetros de la función Html a texto en Power Automate

Dentro de la sección de contenido (content), mediante una función
seleccionamos la parte del correo que nos interesa:

First(split(triggerOutputs()?['body/body'], 'This email was screened'))

• triggerOutputs()?['body/body']: recupera el cuerpo del correo que activó
el trigger.

• split(..., 'This email was screened'): La función split divide el contenido
del cuerpo del correo electrónico en una matriz de subcadenas,
utilizando la frase “This email was screened” como delimitador. Esto
significa que el contenido del correo electrónico se separará en dos
partes: una antes de la frase y otra después.

• First(...): La función First toma la primera subcadena de la matriz
resultante de la división. En otras palabras, se está extrayendo la parte
del correo electrónico que viene antes de la frase “This email was
screened”.

Paso 3- Texto

Figura 84. Creación de la variable Texto en Power Automate

PI SYSTEM

 104

Creamos una variable de tipo string llamada “Texto” en la que almacenamos
el texto plano extraído en la acción anterior.

Paso 4- Redactar

Para identificar las partes clave del texto se va a hacer uso de una función a
la que llamamos “Redactar”, se dividirá el texto en 3 partes, con los doble
saltos de línea como separador:

Figura 85. Partes en las que se divide el texto

Figura 86. Función Redactar en Power Automate

Donde:

• split(variables('Texto'), ...): división del texto almacenado en la variable
“Texto”. El siguiente elemento dentro de la función será el separador.

• concat(decodeUriComponent('%0A'),decodeUriComponent('%0A')): la
función concat() se utiliza para unir o concatenar dos o más cadenas
de texto en una sola. decodeUriComponent('%0A’) decodifica el
carácter ‘%0A’ que representa un salto de línea.

Paso 5- Publicar mensaje en un chat o canal

Finalmente, sólo queda seleccionar el destinatario en Teams y agregar un
formato al mensaje.

PI SYSTEM

 105

Figura 87. Acción en Power Automate para publicar un mensaje en Teams

Los mensajes se publicarán en el grupo “Asistencia Mantenimiento” en el
canal general.

Damos formato al mensaje de acuerdo con la división del texto realizada en la
acción anterior.

Una vez configurado todo lo anterior, se recibirán los avisos a través de
Microsoft Teams:

Figura 88. Ejemplo de aviso a través de Teams

PI SYSTEM

 106

4) Visualización a través de PI Vision

Finalmente, vamos a crear otro análisis de tipo Expresión que nos va a servir
para la visualización de los estados de cada una de las prensas con PI Vision.

Figura 89. Creación de expresión para visualización del estado de las prensas

Para ello hay que tener en cuenta cómo se va a representar cada estado en la
pantalla:

BIT ESTADO PRENSAS LÍNEA C
1 Autonomía
2 Parada
3 Producción (cociendo)
4 Recalentando
5 Defecto (color en parpadeo)
6 Sanción K (color fijo)
7 Aire no rearmado
8 Falta calidad (no implementado)
9 Validar Sanción K (color fijo)

10 Cambio membrana próximo (no implementado)
11 Prensa NO ABRE (color en parpadeo)
12 Prensa NO CIERRA (color en parpadeo)

Tabla 10. Asignación de estados y colores para cada bit

Como hay colores, o forma de representación de los colores, que se repiten
para varios bits, a cada uno de ellos les vamos a asignar un valor entero:

Valor Color
1 Rojo fijo
2 Rojo con parpadeo
3 Naranja fijo
4 Verde fijo
5 Blanco fijo
6 Gris fijo
7 Amarillo fijo
8 Rosa fijo

Tabla 11. Asignación de valores enteros a cada color

PI SYSTEM

 107

Crearemos una variable que tomará dicho valor en función del bit activo:

- Si BIT_6 = 1 o BIT_9 = 1, entonces Variable1 = 1
- Si BIT_5 = 1 o BIT_11 = 1 o BIT_12 = 1, entonces Variable1 = 2
- Si BIT_4 = 1, entonces Variable1 = 3
- Si BIT_3 = 1, entonces Variable1 = 4
- Si BIT_2 = 1, entonces Variable1 = 5
- Si BIT_1 = 1, entonces Variable1 = 6
- Si BIT_7 = 1, entonces Variable1 = 7
- En caso de error (ningún bit activo), Variable1 = 8.

El valor de Variable1 se almacena en el atributo de salida BIT_CALCULO, esta
es la etiqueta a la que se apuntará para la visualización desde PI Vision.

Figura 90. Expresión para definición de colores para cada bit de estado

El objetivo es crear un sistema de visualización igual o simular al anterior y
que estaba gestionado por SAF:

Figura 91. Pantalla Línea C de cocción con sistema previo (SAF)

Basándonos en el sistema anterior (Figura 32), a través de PI Vision creamos
la nueva pantalla:

PI SYSTEM

 108

Figura 92. Nuevo sistema de visualización Línea C con PI Vision

En este apartado nos centraremos en el análisis de los estados de las 16
prensas (cuadrados de 1 a 16).

Para la visualización del estado de cada una de las prensas el análisis es muy
sencillo, basta con asignar un color a cada posible valor que pueda tomar la
variable que apunta a la etiqueta BIT_CALCULO:

Figura 93. Asignación de colores para los distintos estados de las prensas en PI Vision

La visualización de la hora es gestionada por el propio sistema PI Vision, el
resto de los elementos son gestionados por el cabecero de la línea C, el cual
analizaremos en el apartado siguiente.

PI SYSTEM

 109

6.1.2. CABECERO DE LA LÍNEA C

El análisis de los datos del cabecero será muy similar al realizado con las
prensas.

Figura 94. Localización del cabecero de la línea C dentro de la base de datos de PI Server

Dentro de la sección MEGAFONIA descomponemos el valor entero del estado
en 16 bits de igual manera y lo almacenamos en las etiquetas (tags)
correspondientes.

El procedimiento de cara al envío de los avisos por Teams es el mismo al
explicado para las prensas (se avisará cuando el cabecero entre en defecto o
atasco).

Con PI Vision se a tratar de visualizar 3 distintos tipos de información: el
estado del cabecero, visualización de dos en dos de las prensas que tengan
algún tipo de defecto, calidades con almacenaje igual o inferior a 3.

1) Estado del Cabecero

Los posibles estados que puede tomar el cabecero son los siguientes:

BIT ESTADO CABEZA LÍNEA C
Ningún bit activo OK

BIT_0=1 y BIT_1=0 Defecto
BIT_1=1 Atasco

Tabla 12. Posibles estados del cabecero y sus colores

Al igual que con las prensas, asignamos un valor a los colores que
representan cada estado:

Valor Color
1 Azul
2 Rojo
3 Verde

Tabla 13. Asignación de valores enteros a cada color

PI SYSTEM

 110

Realizamos un análisis tipo Expression almacenando el resultado en la
etiqueta “Calculo_Estado” y configuramos la visualización del estado del
cabecero en PI Vision:

Figura 95. Asignación de colores para los distintos estados del cabecero en PI Vision

2) Visualización de las prensas con algún tipo de defecto

Si recordamos, cuando modificamos el programa del autómata del almacén
de animación (PROC_ANI), uno de los objetivos fue que se almacenaran en las
variables Exch_OSISOFT_INT[20] y Exch_OSISOFT_INT[21] las prensas que en
ese momento tuvieran algún tipo de defecto (defecto, prensa no abre, prensa
no cierra, sanción K o validar sanción K), de esta forma podríamos mostrar
cada 5 segundos dos prensas distintas y sus estados.

Crearemos dos etiquetas que apunten a dichas variables enteras:

Figura 96. Etiquetas para la visualización de dos defectos

Además, para diferenciar cada tipo de defecto, se crean otras etiquetas que
apunten a los bits de estado de las distintas prensas:

PI SYSTEM

 111

Figura 97. Etiquetas de estado de las prensas

Como los elementos que queremos visualizar son dos cadenas de caracteres,
se crean dos etiquetas de tipo string de forma que, a través de otro análisis y
haciendo uso de las etiquetas vistas en las figuras 37 y 38, se pueda mostrar
de manera más legible la información.

Figura 98. Cadenas de caracteres para cada una de las líneas a visualizar

La representación en PI Vision quedará de la siguiente forma:

Figura 99. Visualización de dos prensas en defecto en PI Vision

Donde cada 5 segundos se mostrarán las dos siguientes prensas que se
encuentren con algún tipo de defecto (si el tipo de defecto fuese el de sanción
K en la prensa 14 y prensa no abre en la 17 se mostraría por pantalla
“SANCIÓN K C13 / C17 NO ABRE”, por ejemplo).

3) Calidades

Como los datos de las calidades y el número de ruedas (inferiores a 3) para
dicha calidad los tomamos del almacén de gestión (PROC_GES), el análisis de
estos datos lo realizaremos dentro de la sección “PANTALLA”.

PI SYSTEM

 112

Figura 100. Atributos de la sección PANTALLA del cabecero de línea

Calidad_Almacen y Unidades_Almacen son etiquetas que apuntan a las
variables enteras Exch_OSISOFT_INT[0] y Exch_OSISOFT_INT[1] del almacén
de gestión (PROC_GES).

El único análisis que se va a realizar es el de asignación de colores al número
de unidades en el almacén para su visualización en PI Vision:

Unidades_Almacen Calculo_Color Color
0 1 Rojo
1 2 Naranja
2 3 Amarillo
3 4 Verde

Tabla 14. Asignación de valores enteros y colores al número de unidades en almacén

Utilizamos otra variable Calculo_Color y no trabajamos directamente con

Unidades_Almacen porque en PI Vision no se puede asignar un valor al cero.

Figura 101. Asignación de colores para las unidades en almacén en PI Vision

PI SYSTEM

 113

La representación en PI Vision quedará de la siguiente manera:

Figura 102. Visualización la calidad y unidades en almacén para dicha calidad con PI Vision

Resultado final de la pantalla de cocción:

Figura 103. Pantalla Línea C de cocción con sistema nuevo (PI Vision)

Para la visualización a través del navegador ha sido necesario la instalación
de un ordenador con conexión a Internet.

PI SYSTEM

 114

6.2. CEPILLADO

En la zona de cepillado, para indicar a los operarios a qué línea debían acudir
a recoger la siguiente rueda a cepillar, existía un visualizador de 7 segmentos
gestionado por SAF. Tras la eliminación de este sistema y con el objetivo de
poder representarlo mediante PI Vision fue necesario la instalación de una
nueva pantalla y ordenador con acceso a Internet como los instalados en la
línea C de cocción.

Como vimos en apartados anteriores, cuando se realizó la modificación del
programa del autómata de la salida de la CDCN2 (SAL_CDCN2) se crearon 3
variables de tipo entero para indicar el estado de las líneas por las que
llegaban las ruedas a la zona de cepillado.

A continuación, se detallará el proceso de creación de la nueva pantalla.

Figura 104. Sección para los datos de la pantalla de sorteo

La salida de la CDCN2 es gestionada por la transística de neumáticos B16,
por lo que en PI Server estos datos se tratarán en la sección TR_B16.

Figura 105. Datos y etiquetas para la pantalla de sorteo en PI Server

Las variables Exch_OSISOFT_INT[0], Exch_OSISOFT_INT[1] y
Exch_OSISOFT_INT[2] son representadas por las etiquetas Sorteo_Linea 1, 2 y
3, respectivamente.

A diferencia de lo visto en el apartado anterior para cocción, el análisis del
estado de las líneas no se hará desde PI Server, sino que se hará
directamente con PI Vision, donde también se pueden crear funciones.

PI SYSTEM

 115

Antes de crear nuestra función, debemos conocer qué significan los distintos
valores que pueden tomar las líneas:

Sorteo_Linea N ESTADO
2000 DISPUESTA
3000 OCUPADA
4000 BLOQUEADA
5000 EN ESPERA
9000 ERROR COMUNICACIÓN
otro número de operario

Tabla 15. Códigos de estado para las líneas de cepillado

La programación de nuestra función es muy sencilla:

- Si Sorteo_Linea N es igual a 2000, entonces escribimos la cadena de
caracteres “DISPUESTA”

- Si Sorteo_Linea N es igual a 3000, entonces “OCUPADA”
- Si Sorteo_Linea N es igual a 4000, entonces “BLOQUEADA”
- Si Sorteo_Linea N es igual a 5000, entonces “EN ESPERA”
- Si Sorteo_Linea N es igual a 9000, entonces “ERROR COM”
- Si Sorteo_Linea N es igual a un valor entero distinto a los anteriores,

entonces se mostrará el propio valor, el cual representa el número de
operario que debe acudir a dicha línea.

Figura 106. Función estado de la línea 1 en PI Vision

Finalmente, solo queda otorgar un color a cada uno de los posibles estados:

PI SYSTEM

 116

Figura 107. Asignación de colores para el estado de la línea 1

Los estados “OCUPADA” y “BLOQUEADA” se mostrarán en rojo. Como PI Vision
sólo permite trabajar con rangos, la representación del número de operario
(naranja) será para aquellos valores inferiores a 1000 (no hay operarios con
un número superior).

Figura 108. Resultado final de la visualización de la pantalla de sorteo con PI Vision

PI SYSTEM

 117

Resultado final de la nueva pantalla en la zona de cepillado con la
visualización del estado de las tres líneas a través de PI Vision:

Figura 109. Pantalla de sorteo de cepillado con nuevo sistema (PI Vision)

PI SYSTEM

 118

6.3. ALMACENES DEL SÓTANO Y CEPILLADO

Para los programas de ambos autómatas se crearon las variables booleanas
Exch_OSISOFT_BOOL[0] para avisar a mantenimiento (en el caso del almacén
del sótano también se podrá avisar a producción a través de
Exch_OSISOFT_BOOL[1]).

Se realizan los ajustes pertinentes en PI Server (visto en el apartado de
cocción) y finalmente llegarán avisos a Microsoft Teams como los siguientes:

Figura 110. Aviso a mantenimiento en almacén del sótano a través de Teams

Figura 111. Aviso al equipo AMF2 de producción en almacén del sótano a través de Teams

CONCLUSIONES Y LÍNEAS FUTURAS

 119

7. CONCLUSIONES Y LÍNEAS FUTURAS

7.1. CONCLUSIONES

El nuevo sistema de alertas implementado en la factoría Michelin de
Valladolid ha resultado ser un éxito en términos de mejora de la comunicación
y eficiencia en la gestión de alertas en tiempo real. A continuación, se
resumen las principales conclusiones obtenidas:

• Mejora en la Comunicación: el nuevo sistema basado en PI System y
Microsoft Power Automate ha reemplazado eficazmente el antiguo
sistema SAF, eliminando las limitaciones tecnológicas y mejorando la
escalabilidad.

La integración con Microsoft Teams ha permitido enviar notificaciones
específicas a los equipos de mantenimiento y producción, reduciendo
el ruido producido por la megafonía y asegurando que los avisos
lleguen a las personas o grupos indicados, de este modo los
trabajadores pertenecientes al grupo de mantenimiento no recibirán
avisos correspondientes al de producción, y viceversa.

• Visualización en Tiempo Real: la transición desde el sistema anterior
(SAF) hacia PI Vision se realizó sin interrupciones significativas en las
operaciones, lo que demuestra la robustez del nuevo sistema.

• Automatización y Eficiencia: la automatización de los flujos de trabajo
con Power Automate ha reducido la necesidad de intervención manual,
minimizando errores y acelerando los tiempos de respuesta.

• Adaptabilidad y Futuro: el sistema implementado es altamente
adaptable y puede extenderse a otras áreas de la fábrica,
aprovechando la infraestructura ya existente.

Finalmente, tras la realización del proyecto se han logrado los objetivos
marcados en el comienzo de la memoria:

• Adquirir y aplicar conocimientos relacionados con la programación de
autómatas (PLC).

• Comprender el funcionamiento del proceso industrial.

• Conocer los protocolos de comunicación entre los distintos dispositivos
que forman parte del proceso.

• Modificar el programa de los autómatas creando las rutinas y variables
oportunas para la gestión de las alertas.

CONCLUSIONES Y LÍNEAS FUTURAS

 120

• Programar las rutinas necesarias para la visualización de los datos
recogidos por los autómatas en pantallas.

• Gestionar los datos proporcionados por los autómatas desde PI
System y crear las pantallas informativas con PI Vision.

• Automatizar mensajes a Microsoft Teams a través de flujos de trabajo
con Microsoft Power Automate.

7.2. LÍNEAS FUTURAS

A continuación, se detallan algunas de las posibles mejoras para este sistema
en el futuro:

• Optimización del Tiempo de Refresco: por el momento PI Vision
presenta ciertas limitaciones, una de ellas es el tiempo de refresco, el
cual se realiza cada 5 segundos. Esto es un ligero inconveniente ya
que, en ocasiones la visualización del color representado no se
corresponde con el que debería (muestra el correspondiente al del
dato del refresco anterior).

La reducción del tiempo de refresco conlleva la modificación para
todas aquellas pantallas conectadas a la misma red de fábrica, lo que
puede llevar a que el sistema se sobrecargue. Se espera que PI
System introduzca mejoras próximamente que permitan una
visualización en tiempo real más efectiva.

• Integración de técnicas de Inteligencia Artificial (IA) y Machine Learning
(ML): útil para predecir fallos en las máquinas antes de que ocurran,
mejorando el mantenimiento preventivo e identificar patrones y
optimizar el proceso de producción.

• Expansión a Otras Áreas de la Fábrica: extender el sistema de alertas y
visualización a otras líneas de producción, aprovechando la
escalabilidad de PI System.

• Mejoras en la Interfaz de Usuario de PI Vision: desarrollar interfaces
más intuitivas y personalizables, permitiendo a los operarios adaptar
los paneles a sus necesidades específicas.

• Sostenibilidad y Eficiencia Energética: utilizar los datos recopilados
para analizar y optimizar el consumo energético de las máquinas.

BIBLIOGRAFÍA

 121

BIBLIOGRAFÍA
[1] Brolla Factory, «¿Qué es la Automatización Industrial y sus
características?,» [En línea]. Disponible en:
https://brollafactory.com/es/blog/automatizacion-industrial-que-es-y-sus-
caracteristicas/#%C2%BFQue_es_la_Automatizacion_Industrial. [Último
acceso: 22 febrero 2025]

[2] Cursos Aula21, «¿Qué es la automatización industrial?,» [En línea].
Disponible en: https://www.cursosaula21.com/que-es-la-automatizacion-
industrial/. [Último acceso: 22 febrero 2025]

[3] Cursos Femxa, «Autómatas Programables,» [En línea]. Disponible en:
https://www.cursosfemxa.es/blog/automatas-programables. [Último acceso:
26 febrero 2025]

[4] Allen-Bradley, «Controladores Programables PLC-5 — Referencia del
Conjunto de Instrucciones,» Manual técnico, 2000.

[5] OSISOFT, «OSISOFT,» [En línea]. Available:
https://aplicaciones.campusbigdata.com/aplicacion/osisoft/. [Último acceso:
15 marzo 2025]

[6] AVEVA, «PI SYSTEM,» [En línea]. Available:
https://discover.aveva.com/product-pi-system/brochure-aveva-pi-
system?utm_source=website-aveva&utm_medium=cta-
brochure&utm_campaign=op-pi-new&utm_content=pathfactory-content.
[Último acceso: 15 marzo 2025]

[7] AVEVA, «PI VISION,» [En línea]. Available:
https://www.aveva.com/content/dam/aveva/documents/datasheets/Datash
eet_AVEVA_PIVision_24-01.pdf. [Último acceso: 15 marzo 2025]

[8] AVEVA, «PI SERVER,» [En línea]. Available: https://www.aveva.com/es-
es/products/aveva-pi-server/. [Último acceso: 20 marzo 2025]

[9] Microsoft, «Power Automate,» [En línea]. Disponible en:
https://www.microsoft.com/es-es/power-platform/products/power-automate.
[Último acceso: 21 marzo 2025]

[10] Open Soft Systems, «3-Day Rockwell Allen-Bradley SLC 500 Maintenance
& Fault Finding Course,» [En línea]. Disponible en:
https://opensoftsystems.co.uk/3-day-rockwell-allen-bradley-slc-500-
maintenance-fault-finding-course/. [Último acceso: 8 mayo 2025]

https://brollafactory.com/es/blog/automatizacion-industrial-que-es-y-sus-caracteristicas/#%C2%BFQue_es_la_Automatizacion_Industrial
https://brollafactory.com/es/blog/automatizacion-industrial-que-es-y-sus-caracteristicas/#%C2%BFQue_es_la_Automatizacion_Industrial
https://www.cursosaula21.com/que-es-la-automatizacion-industrial/
https://www.cursosaula21.com/que-es-la-automatizacion-industrial/
https://www.cursosfemxa.es/blog/automatas-programables
https://aplicaciones.campusbigdata.com/aplicacion/osisoft/
https://discover.aveva.com/product-pi-system/brochure-aveva-pi-system?utm_source=website-aveva&utm_medium=cta-brochure&utm_campaign=op-pi-new&utm_content=pathfactory-content
https://discover.aveva.com/product-pi-system/brochure-aveva-pi-system?utm_source=website-aveva&utm_medium=cta-brochure&utm_campaign=op-pi-new&utm_content=pathfactory-content
https://discover.aveva.com/product-pi-system/brochure-aveva-pi-system?utm_source=website-aveva&utm_medium=cta-brochure&utm_campaign=op-pi-new&utm_content=pathfactory-content
https://www.aveva.com/content/dam/aveva/documents/datasheets/Datasheet_AVEVA_PIVision_24-01.pdf
https://www.aveva.com/content/dam/aveva/documents/datasheets/Datasheet_AVEVA_PIVision_24-01.pdf
https://www.aveva.com/es-es/products/aveva-pi-server/
https://www.aveva.com/es-es/products/aveva-pi-server/
https://www.microsoft.com/es-es/power-platform/products/power-automate
https://opensoftsystems.co.uk/3-day-rockwell-allen-bradley-slc-500-maintenance-fault-finding-course/
https://opensoftsystems.co.uk/3-day-rockwell-allen-bradley-slc-500-maintenance-fault-finding-course/

BIBLIOGRAFÍA

 122

[11] AutomatismosMundo, «Los lenguajes de programación de PLC,» [En
línea]. Disponible en: https://automatismosmundo.com/los-lenguajes-de-
programacion-de-plc/. [Último acceso: 8 mayo 2025]

[12] TIGA, «Integrating AVEVA PI with Enterprise Systems,» [En línea].
Disponible en: https://www.tiga.us/resources/pi-data-integration. [Último
acceso: 8 mayo 2025]

[13] Automation Networks, «RSLinx Classic and Enterprise Software,» [En
línea]. Disponible en: https://automation-networks.es/glossary/rslinx-classic-
and-enterprise-software. [Último acceso: 9 mayo 2025]

[14] F. Berzosa, SAF – Sistema de Alertas de Fabricación, Manual de Usuario.
Versión 2.0, Michelin España y Portugal, S.A., 2012.

[15] AVEVA, «AVEVA Edge Data Store,» [En línea]. Disponible en:
https://www.aveva.com/es-es/products/aveva-edge-data-store/. [Último
acceso: 9 mayo 2025]

[16] AVEVA, «CONNECT,» [En línea]. Disponible en: https://www.aveva.com/es-
es/solutions/connect/. [Último acceso: 9 mayo 2025]

[17] AVEVA, «AVEVA PI DataLink,» [En línea]. Disponible en:
https://www.aveva.com/en/products/aveva-pi-datalink/. [Último acceso: 9
mayo 2025]

[18] AVEVA, «PI Integrator for Business Analytics 2020 R2 SP1,» [En línea].
Disponible en: https://docs.aveva.com/bundle/pi-integrator-for-business-
analytics/page/1023068.html. [Último acceso: 9 mayo 2025]

https://automatismosmundo.com/los-lenguajes-de-programacion-de-plc/
https://automatismosmundo.com/los-lenguajes-de-programacion-de-plc/
https://www.tiga.us/resources/pi-data-integration
https://automation-networks.es/glossary/rslinx-classic-and-enterprise-software
https://automation-networks.es/glossary/rslinx-classic-and-enterprise-software
https://www.aveva.com/es-es/products/aveva-edge-data-store/
https://www.aveva.com/es-es/solutions/connect/
https://www.aveva.com/es-es/solutions/connect/
https://www.aveva.com/en/products/aveva-pi-datalink/
https://docs.aveva.com/bundle/pi-integrator-for-business-analytics/page/1023068.html
https://docs.aveva.com/bundle/pi-integrator-for-business-analytics/page/1023068.html

ANEXOS

 123

ANEXOS
ANEXO I. DOCUMENTACIÓN SLC 500

ANEXO II. PANTALLA DE ALERTAS MÚLTIPLES (PAM)

	1. INTRODUCCIÓN Y OBJETIVOS
	1.1. INTRODUCCIÓN
	1.2. JUSTIFICACIÓN DEL PROYECTO
	1.3. OBJETIVOS
	1.4. ESTRUCTURA DE LA MEMORIA

	2. FUNDAMENTOS DE AUTOMÁTICA INDUSTRIAL
	2.1. CONCEPTOS BÁSICOS
	2.2. CONTROLADOR LÓGICO PROGRAMABLE (PLC)
	2.3. PROGRAMACIÓN DE AUTÓMATAS

	3. DESCRIPCIÓN DEL SISTEMA PREVIO
	3.1. ANÁLISIS ORGÁNICO
	3.1.1. ORGANIZACIÓN DE SAF (SISTEMA DE ALERTAS DE FABRICACIÓN)
	3.1.2. Ficheros de configuración
	3.1.3. Funcionamiento

	3.2. MANUAL DE USUARIO
	3.2.1. BREVE DESCRIPCIÓN DE SAF
	3.2.2. PUESTA EN MARCHA DE SAF2
	3.2.3. CONFIGURACIÓN DE SAF2

	4. DESCRIPCIÓN DEL SOFTWARE (SISTEMA NUEVO)
	4.1. PI SYSTEM
	4.1.1. INTRODUCCIÓN
	4.1.2. FUNCIONAMIENTO
	4.1.3. PI SERVER
	4.1.4. PI VISION

	4.2. MICROSOFT POWER AUTOMATE

	5. MODIFICACIÓN DE LOS PROGRMAS DE LOS AUTÓMATAS
	5.1. COCCIÓN
	5.1.1. ESTADO DE LAS PRENSAS
	5.1.2. CALIDADES

	5.2. ALMACÉN SÓTANO
	5.3. ALMACÉN DE CEPILLADO
	5.4. CEPILLADO
	5.4.1. AVISO DE DEFECTOS CEPILLADO
	5.4.2. SORTEO DE CEPILLADO

	6. PI SYSTEM
	6.1. COCCIÓN
	6.1.1. PRENSAS
	6.1.2. CABECERO DE LA LÍNEA C

	6.2. CEPILLADO
	6.3. ALMACENES DEL SÓTANO Y CEPILLADO

	7. CONCLUSIONES Y LÍNEAS FUTURAS
	7.1. CONCLUSIONES
	7.2. LÍNEAS FUTURAS

	BIBLIOGRAFÍA
	ANEXOS

