

Universidad de Valladolid

ESCUELA DE INGENIERÍAS
INDUSTRIALES

UNIVERSITY OF VALLADOLID
SCHOOL OF INDUSTRIAL ENGINEERING

Final Project International Semester

Lean Indicators in the Automotive
Industry

Author:
Mkhize, Samukelisiwe

Tutors:
Angel Manuel Gento Municio
Juan Luis Elorduy González
Organización de Empresas y CIM

Valladolid, June 2025

Acknowledgements

I wish to express my sincere gratitude to all the individuals and institutions who have contributed to the successful completion of this final project.

First and foremost, I would like to thank my tutor, Mr. Ángel M. Gento, for his consistent academic support, thoughtful feedback, and insightful guidance throughout the development of this research. His mentorship has been invaluable to my learning journey.

I also acknowledge with appreciation the academic and administrative support provided by my home institution, the Durban University of Technology (DUT), South Africa, and my host institution, the University of Valladolid, Spain. Participating in the Erasmus+ Programme has enriched both my academic and personal experience, and I am grateful to the European Commission for making this international opportunity possible.

Finally, I extend my deepest thanks to my fellow students, lecturers, and coordinators of the Industrial Engineering School - International Semester programme for fostering an intellectually stimulating environment. This project would not have been possible without the collaborative spirit and professional learning culture that surrounded me during this academic journey.

RESUMEN (in Spanish)

Este proyecto presenta un estudio teórico de los Indicadores, Métricas y KPI (Indicadores Clave de Rendimiento) en la industria automotriz. Se explora cómo estas medidas de rendimiento se definen, clasifican y alinean con los principios de la Manufactura Lean, como la eliminación de desperdicios y la mejora continua. A partir de una revisión bibliográfica y ejemplos industriales, se desarrolla un marco de clasificación que agrupa las medidas en categorías operativas, financieras y de recursos humanos. Se analizan KPIs clave como la Eficiencia General de los Equipos (OEE), la Tasa de Desperdicio y el Rendimiento de Primera Pasada (FPY). El estudio también considera las tendencias en transformación digital, los retos de estandarización y futuras líneas de investigación. El trabajo concluye destacando los KPIs más utilizados en operaciones automotrices y la importancia de su alineación con los objetivos estratégicos de Lean.

- Palabras clave: Manufactura Lean, Indicadores Clave de Rendimiento, Industria Automotriz, Industria 4.0, Eficiencia Operativa

Abstract

This project presents a theoretical study of Lean Indicators, Metrics, and Key Performance Indicators (KPIs) in the automotive industry. It explores how these performance measures are defined, classified, and aligned with Lean Manufacturing principles such as waste elimination and continuous improvement. Based on literature review and industrial examples, a classification framework is developed that groups performance measures into operational, financial, and human resource categories. Key KPIs such as Overall Equipment Effectiveness (OEE), Scrap Rate, and First Pass Yield (FPY) are discussed. The study also considers digital transformation trends, challenges of standardisation, and future research directions. The project concludes by highlighting the most frequently used KPIs in automotive operations and the importance of aligning them with strategic Lean goals.

- **Keywords:** Lean Manufacturing, Key Performance Indicators, Automotive Industry, Industry 4.0, Operational Efficiency

Table of Contents

1	Introduction	5
1.1	Background and Motivation	5
1.2	Purpose of the Study.....	6
1.3	Research Objectives	7
1.4	Research Questions	7
1.5	Scope, Delimitations and Structure of the Paper	8
2	Conceptual Foundations of Lean Performance Measurement in the Automotive Industry	9
2.1	Introduction	9
2.2	Origins of Lean and the Toyota Production System.....	9
2.3	Waste Elimination and Value Definition	10
2.4	Flow, Pull and Work System Synchronisation	11
2.5	Standardisation and Continuous Improvement.....	12
2.6	Lean Performance in Global Automotive Production.....	12
2.7	Conclusion	13
3	Definitions and Classification of Lean Indicators, Metrics, and KPIs in the Automotive Industry	13
3.1	Introduction	13
3.2	Defining Lean Indicators, Metrics, and KPIs	13
3.3	Key Differences and Conceptual Relationships.....	14
3.4	Classification of Lean Performance Measures	14
3.5	Contribution to Continuous Improvement	16
3.6	Challenges in Definition and Implementation.....	16
3.7	Best Practices for KPI Selection and Use	16

3.8 Conclusion	17
4 Theoretical Application of Lean Indicators, Metrics, and KPIs in Automotive Manufacturing	17
4.1 Introduction	17
4.2 Key Lean Indicators and Metrics in Automotive Operations	17
4.3 Performance Measurement Systems and KPI Trees.....	19
4.4 Integration of Lean KPIs and Industry 4.0 Technologies	19
4.5 Case Studies: Application in Automotive Firms.....	20
4.6 Challenges in Implementing Lean KPIs	21
4.7 Conclusion	21
5 Challenges, Trends, and Future Research in Lean Performance Measurement in the Automotive Industry	22
5.1 Introduction	22
5.2 Challenges in Lean Performance Measurement	22
5.2.1 Implementation and Standardisation of Lean Tools	22
5.2.2 Compliance with Quality Standards and Operational Integration	
22	
5.2.3 Management Resistance and Cultural Barriers.....	22
5.2.4 Complexity in Performance Measurement Design	23
5.2.5 Fragmentation of Data Systems.....	23
5.3 Trends in Lean Performance Measurement	23
5.3.1 Integration with Industry 4.0	23
5.3.2 Emphasis on Soft Lean Practices	23
5.3.3 Use of Advanced Multi-Criteria Decision-Making Tools	23
5.3.4 Sustainable Lean Manufacturing (SLM)	24
5.4 Future Research Directions.....	24
5.4.1 Development of Integrated Performance Models.....	24

5.4.2	Investigating Synergies Among Lean, Standards, and Industry 4.0	24
5.4.3	Longitudinal and Empirical Validation Studies	24
5.4.4	Adaptive KPIs in Disrupted Environments.....	24
5.5	Conclusion	24
6	Conclusion and Recommendations	25
6.1	Conclusion	25
6.2	Theoretical Contributions	26
6.3	Practical Recommendations	26
6.4	Limitations of the Study.....	27
6.5	Suggestions for Future Research.....	27
6.6	Final Reflection.....	28
7	References.....	29

Table of Figures

FIGURE 1-1: OBJECTIVES OF THE FINAL PROJECT	7
FIGURE 1-2 STRUCTURE OF THE FINAL PROJECT	8
FIGURE 2-1: THE TOYOTA PRODUCTION SYSTEM (TPS) STANDS AS A PIONEERING MANAGEMENT PHILOSOPHY	9
FIGURE 2-2: THE 8 TYPES OF WASTE	10
FIGURE 2-3: VALUE STREAM MAPPING OF A MANUFACTURING PLANT WITH MANUFACTURING PROCESSES AND KANBAN BURSTS	11
FIGURE 2-4: KAIZEN	12
FIGURE 4-1: EXAMPLE OF A KPI TREES.....	20

Table of Tables

TABLE 3-1: CLASSIFICATION OF LEAN PERFORMANCE MEASURES IN THE AUTOMOTIVE INDUSTRY ACCORDING TO ALL THE SOURCE USED TOGETHER	14
TABLE 4-1: KEY LEAN INDICATORS AND METRICS IN AUTOMOTIVE OPERATIONS	18

1 Introduction

1.1 Background and Motivation

Over the past few decades, industries around the world have faced increasing pressure to produce high-quality goods quickly, at lower cost, and with minimal waste. As global competition intensifies and supply chains grow more complex, organisations must continuously improve their operations to remain relevant and efficient. In response, many have adopted Lean manufacturing, a philosophy that focuses on eliminating waste, improving flow, and maximising customer value through structured, continuous improvement (Womack, Jones, & Roos, 1990).

Lean principles were originally developed as part of the Toyota Production System (TPS) in post-war Japan, a system that prioritised Just-in-Time production, respect for people, and the relentless pursuit of perfection. These principles later spread globally and have since been adapted across a range of sectors beyond automotive, including healthcare, logistics, and aerospace (Liker, 2004). Lean has become more than just a methodology; it represents a mindset and culture that shapes how organisations think about value creation, efficiency, and process design (Liker, 2004).

However, Lean is only as effective as the organisation's ability to measure its performance. Identifying waste, optimising flow, and improving quality cannot be achieved through observation alone. Indicators, metrics, and Key Performance Indicators (KPIs) provide the necessary tools to monitor performance, support data-driven decisions, and validate whether Lean improvements are working (Coe et al., 2008). These performance measures help capture tangible results in critical areas such as production lead time, first-time quality, equipment effectiveness, and customer satisfaction.

Nowhere is this more evident than in the automotive industry, where Lean first emerged and remains most deeply rooted. Automotive manufacturing is highly dynamic, involving complex product designs, vast global supply networks, and intense pressure to meet both safety and sustainability targets. These characteristics make performance measurement not just helpful, but essential (Coe et al., 2008). Every process must be monitored and aligned with clear, value-driven targets. As companies invest in digital transformation and global coordination, the need for standardised, meaningful KPIs grows ever stronger.

Yet despite the widespread adoption of Lean practices, there is no universally accepted set of Lean indicators or performance metrics. Different organisations – even within the same industry – use varying definitions, frameworks, and tools to measure Lean success. This lack of consistency presents challenges for cross-industry benchmarking, collaboration, and theoretical development. It

also reflects a deeper issue: many organisations apply Lean tools without fully understanding the theoretical basis for performance measurement in a Lean system.

This final project is therefore motivated by the need to explore and clarify the conceptual foundations of Lean performance measurement. Instead of proposing implementation strategies, it seeks to provide a structured theoretical framework for understanding Lean indicators, metrics, and KPIs – particularly within the automotive sector. Drawing on literature from Lean theory and global operations design, the research will critically examine how performance should be measured in a Lean system, and why such measurement is essential for driving continuous improvement, efficiency, and value in today's global production networks.

1.2 Purpose of the Study

The purpose of this study is to develop a structured theoretical understanding of Lean performance measurement through an in-depth examination of indicators, metrics, and Key Performance Indicators (KPIs) within the context of automotive manufacturing. While Lean practices are widely implemented across the industrial world, the ways in which organisations define, classify, and apply performance measures often vary significantly – even within the same sector. This variation reveals a gap in the theoretical literature, particularly regarding how these measurement tools are conceptually grounded and how they support the overarching philosophy of Lean manufacturing.

Rather than offering implementation guidelines or solving practical operational problems, this research seeks to contribute to the academic body of knowledge by analysing the conceptual frameworks behind Lean KPIs. By focusing on theoretical definitions, performance categories, and their alignment with Lean principles such as value creation and waste reduction, the study aims to clarify how performance should be understood and measured in a Lean system.

This focus is particularly relevant in the automotive sector, where Lean originated and continues to evolve in response to globalisation, technological innovation, and environmental demands. As automotive manufacturers increasingly adopt data-driven strategies and digital performance tools, a strong theoretical foundation is necessary to ensure that performance measures remain meaningful, standardised, and aligned with Lean objectives.

This study aims to support academic discussions on Lean management by providing conceptual clarity and offering a basis for future theoretical and empirical research on performance measurement in Lean systems.

1.3 Research Objectives

This study aims to contribute to a theoretical understanding of Lean performance measurement by focusing on how indicators, metrics, and Key Performance Indicators (KPIs) are defined, interpreted, and used in the context of the automotive industry. The objectives are intentionally straightforward and designed to reflect what the study will realistically achieve based on conceptual research. The objectives of this study are as shown in figure 1-1:

1. **To conceptualise Lean indicators, metrics, and KPIs** by exploring their definitions, categories, and distinctions in the literature. (*What*)
2. **To analyse how these performance measures are applied in automotive operations** to monitor efficiency, quality, cost, and other performance areas. (*How*)
3. **To examine how Lean performance measures align with Lean philosophies**, such as the pillars of the Toyota Production System (e.g., Just-in-Time and Jidoka). (*Why*)
4. **To identify theoretical challenges** in the selection, standardisation, and interpretation of Lean KPIs across the automotive sector.

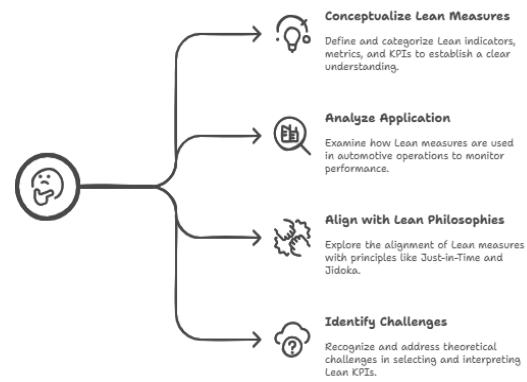


Figure 1-1: Objectives of the Final project

1.4 Research Questions

This research is guided by key questions that are designed to guide a structured, literature-based exploration of Lean performance measurement, with a focus on its conceptual foundations and relevance to automotive manufacturing

- What are Lean indicators, metrics, and KPIs, and how are they conceptually defined and distinguished in the literature?
- How are these performance measures theoretically applied in the context of automotive manufacturing operations?
- Why are these measures important in supporting Lean philosophies such as waste elimination, flow improvement, and continuous improvement?

- What theoretical challenges exist in selecting, interpreting, and standardising Lean KPIs across the automotive industry?

1.5 Scope, Delimitations and Structure of the Paper

This study is confined to a theoretical examination of Lean indicators, metrics, and Key Performance Indicators (KPIs), with a particular emphasis on their relevance and conceptual application in the automotive manufacturing sector. The research does not involve empirical data collection or case-based analysis; rather, it draws on established academic literature to construct a comprehensive conceptual framework. The analysis remains within the domain of Lean manufacturing and operations management, with reference to performance measurement tools that align with Lean philosophies such as value creation, waste elimination, and continuous improvement.

The scope is deliberately limited to performance measures situated within Lean contexts, excluding broader business metrics that do not directly support Lean objectives. While the primary industrial focus is on automotive manufacturing, theoretical references to other sectors are included where they enrich the conceptual discussion. These inclusions do not extend the empirical scope of the research but serve to illustrate the wider theoretical applicability of the models examined.

The structure of the Final project follows a logical progression and flow as shown in figure 1-2 from foundational concepts to focused theoretical exploration. The introductory chapter establishes the research context, objectives, and scope. The second chapter provides a conceptual overview of Lean manufacturing, with particular attention to the Toyota Production System and the evolution of Lean thinking as a theoretical framework. This foundation supports the analysis in the third chapter, which examines existing definitions, typologies, and classifications of Lean performance measures in the literature.

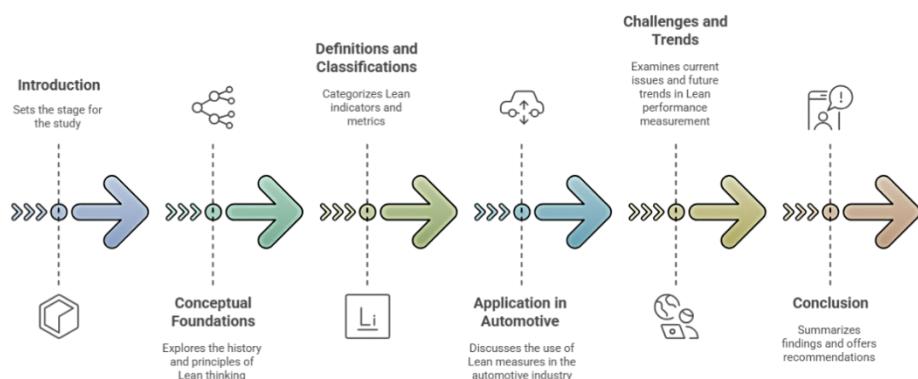
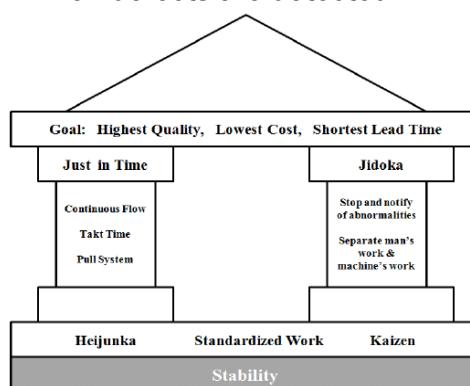


Figure 1-2 Structure of the Final Project

The fourth chapter narrows the focus to the automotive industry, considering how Lean indicators and KPIs are conceptually employed to evaluate operational performance in this sector. This is followed by a critical discussion

in chapter five of the theoretical challenges associated with selecting, interpreting, and standardising Lean performance measures, including the implications of digital transformation and sustainability concerns. The concluding chapter synthesises the study's findings and offers theoretical contributions, as well as directions for future research in the field of Lean performance measurement.


2 Conceptual Foundations of Lean Performance Measurement in the Automotive Industry

2.1 Introduction

Performance measurement is central to Lean manufacturing systems, particularly in the automotive industry where synchronisation, precision, and quality must be continuously managed. Indicators, metrics, and Key Performance Indicators (KPIs) enable organisations to quantify operational performance and support continuous improvement, waste reduction, and standardisation. To evaluate the theoretical role of Lean performance measurement in the automotive sector, it is essential to understand the core concepts and principles that form the foundation of Lean thinking. This chapter presents the conceptual basis of Lean as it relates directly to measurement practices, with reference to both Lean manufacturing literature and work measurement theory as discussed in Groover (2013).

2.2 Origins of Lean and the Toyota Production System

Womack, Jones and Roos (1990) introduced the term "Lean" in their analysis of global automotive production, describing it as a system that achieves more with less—less inventory, fewer defects, less human effort, and less space—while delivering more customer value. Liker (2004) later defined Lean through its foundational elements: Just-in-Time (JIT), which focuses on producing only what is needed when it is needed, and Jidoka, which enables built-in quality by stopping production when defects are detected.

Figure 2-1: The Toyota Production System (TPS) stands as a pioneering management philosophy

source: (Simboli, Taddeo, & Morgante, 2014)

Both pillars as shown in Figure 2-1 rely on accurate, real-time measurement systems. For instance, JIT cannot function without metrics that monitor inventory levels, takt time, and lead times. Jidoka depends on defect tracking, downtime reports, and quality performance indicators. The systematic application of such metrics ensures visibility and responsiveness in operations, especially in high-volume automotive environments.

2.3 Waste Elimination and Value Definition

Lean theory distinguishes between value-adding and non-value-adding activities, a distinction that is critical to performance measurement. Value is defined strictly from the customer's perspective: a process adds value if the customer is willing to pay for the outcome (Womack & Jones, 1996). Activities that do not add value are classified as waste.

Ohno (1988) identified seven forms of waste: overproduction, waiting, unnecessary transport, over-processing, excess inventory, unnecessary motion, and defects. A later addition by Liker (2004) included underutilised employee creativity as shown in figure 2-2. Each of these forms of waste corresponds with a specific category of performance indicator.

Figure 2-2: The 8 types of waste

Source: (Tye, 2019)

For example:

- Overproduction and inventory waste are tracked using inventory turnover and takt time.
- Defects and over-processing are measured using first pass yield and rework rates.
- Waiting time is measured using lead time or process idle time.

Groover (2013) supports this approach by noting that in all work systems—manual, automated, or hybrid—the elimination of inefficiencies must be guided

by direct measurement. Work measurement techniques such as time studies and predetermined motion time systems (PMTS) provide quantitative foundations for evaluating and improving productivity, making them fully compatible with Lean's emphasis on identifying and eliminating non-value-adding activity.

2.4 Flow, Pull and Work System Synchronisation

Lean promotes the concept of continuous flow, where materials and tasks move smoothly through the value stream without interruption. In the automotive industry, this requires the precise coordination of multiple operations and the reduction of work-in-progress inventory. Flow is supported by metrics such as cycle time, throughput rate, and workstation balancing.

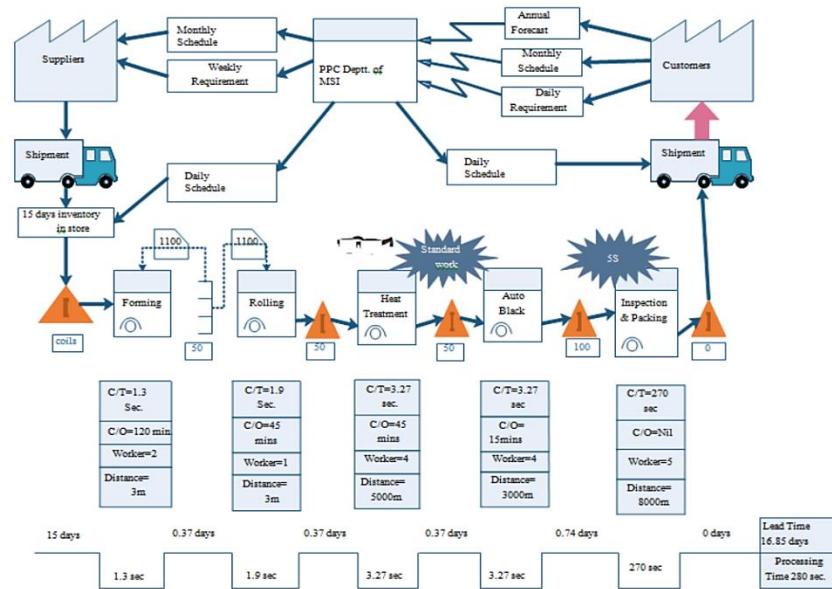


Figure 2-3: Value stream mapping of a manufacturing plant with manufacturing processes and kanban bursts

Source: (Palak P. Sheth, 2014)

Pull systems, as opposed to push systems, respond to actual customer demand rather than forecasted production. Pull is enabled by kanban systems that signal the need for replenishment. Relevant KPIs include kanban signal frequency, stockout rates, and order fulfilment lead time (Womack & Jones, 1996). Like in the example provided in figure 2-3 where potential errors were identified and proposed solutions are the standardisation of work and 5s which are very common in lean manufacturing as typical lean techniques.

Groover (2013) explains that work systems must be designed to support synchronisation and integration of tasks. He identifies that poorly balanced workflows result in inefficiencies that are only visible through performance measures such as line efficiency, idle time, and bottleneck identification. In

automotive manufacturing, these inefficiencies manifest in delays, backlogs, or quality issues—each of which can be traced using targeted KPIs.

2.5 Standardisation and Continuous Improvement

Standardisation of work is a cornerstone of both Lean and industrial work measurement. Lean organisations establish standardised processes to provide a reliable baseline for detecting variation and implementing improvement. Standard work documentation outlines expected sequence, timing, and quality standards for each task (Liker, 2004).

Figure 2-4: Kaizen

Source: "Subject Matter Experts: Be Proud!" (2024)

Continuous improvement (kaizen) shown in figure 2-4 requires frequent data collection and analysis. Lean KPIs such as Overall Equipment Effectiveness (OEE), downtime frequency, and defect rates are used to identify gaps between standard performance and actual outcomes. As Groover (2013) notes, consistent application of time-based work measurement helps detect inefficiencies and supports structured problem-solving.

Visual management tools—such as andon boards and digital dashboards—communicate performance data in real time to frontline workers and supervisors. These tools make it easier to react to abnormalities, support immediate corrective action, and engage all levels of the organisation in continuous improvement efforts.

2.6 Lean Performance in Global Automotive Production

The automotive sector is a highly globalised, capital-intensive industry that depends on precision, scale, and efficiency. OEMs such as Toyota, Volkswagen, and Ford operate complex global production networks where performance indicators are critical for operational coordination, supplier accountability, and quality control (Coe et al. 2008).

Performance measurement in this context goes beyond the plant floor. OEMs use KPIs not only for internal operations but also to monitor supplier compliance with Lean principles, including just-in-time delivery, zero-defect

quality, and cost targets. These expectations are typically embedded in supplier contracts and monitored using quantitative dashboards.

Groover (2013) highlights that in such complex systems, measurement must address both productivity and consistency. Time-based metrics, quality indices, and cost performance measures are essential to understanding system-level efficiency. In Lean automotive environments, these measures must also align with customer-focused objectives and sustainability goals.

2.7 Conclusion

This chapter has outlined the conceptual foundations of Lean performance measurement in the automotive industry. From its origins in the Toyota Production System to its global application today, Lean manufacturing depends on the systematic measurement of performance to sustain flow, eliminate waste, and drive improvement. Concepts such as JIT, Jidoka, standardisation, and continuous improvement are all operationalised through Lean indicators, metrics, and KPIs.

Supported by industrial engineering theory, particularly as articulated by Groover (2013), these concepts are essential to the design and evaluation of automotive work systems. The next chapter will build upon this foundation by examining how indicators, metrics, and KPIs are defined and classified in the academic literature and how these tools serve to manage and monitor Lean performance.

3 Definitions and Classification of Lean Indicators, Metrics, and KPIs in the Automotive Industry

3.1 Introduction

The successful implementation of Lean manufacturing in the automotive industry depends on robust performance measurement systems that incorporate indicators, metrics, and Key Performance Indicators (KPIs). These tools help organisations track operational efficiency, identify improvement opportunities, and evaluate strategic outcomes. However, there remains confusion in the literature and industry over how these terms are defined, classified, and applied. This chapter addresses that gap by clearly defining Lean indicators, metrics, and KPIs, exploring their interrelationships, and presenting a structured classification aligned with the requirements of Lean automotive production systems.

3.2 Defining Lean Indicators, Metrics, and KPIs

Indicators, metrics, and KPIs serve overlapping but distinct roles in performance measurement. An indicator is typically a general signal or alert of process performance or deviation. These may include visual or qualitative cues,

such as andon lights or operator feedback, which highlight abnormal conditions but may not provide specific numerical values (Groover, 2013).

Metrics are quantifiable measures used to evaluate specific aspects of process performance. Common metrics in Lean systems include cycle time, throughput, inventory turnover, and defect rates (Liker, 2004; Shah & Ward, 2007). They enable organisations to track trends over time, evaluate process variability, and guide corrective action.

KPIs are a focused subset of metrics that are aligned with strategic objectives. They represent critical success factors and are used to evaluate overall organisational performance. In Lean automotive production, examples of KPIs include Overall Equipment Effectiveness (OEE), Issues Per Million (IPPM), and cost per unit produced (Measures of Performance-Metrics and KPI (Ghouat et al., 2020). These indicators are central to Lean execution and form the basis for operational control and strategic decision-making.

3.3 Key Differences and Conceptual Relationships

While all KPIs are metrics, not all metrics are KPIs. KPIs are typically fewer in number, carefully selected, and linked directly to an organisation's strategic goals. Metrics and indicators, in contrast, can be numerous and are often used at the departmental or process level. According to Sangwa & Sangwan (2018), KPIs in Lean systems must support value-stream performance, not just local optimisation.

In the context of Lean automotive manufacturing, indicators are often used as real-time visual tools (e.g., red/green lights on machinery), metrics support ongoing process control, and KPIs (Losonci et al. 2013) provide performance oversight at the plant or network level. For example, OEE is both a KPI and a metric, as it quantifies asset utilisation based on availability, performance, and quality dimensions.

3.4 Classification of Lean Performance Measures

In the automotive industry, Lean indicators, metrics, and KPIs are systematically categorised to support a comprehensive understanding of Lean performance. These categories address operational, financial, and human resource dimensions, enabling firms to evaluate their processes holistically. The following classification framework presents a practical and research-backed view of how these performance measures function across the enterprise:

Table 3-1: Classification of Lean Performance Measures in the Automotive Industry according to all the source used together

Category	Indicator / Metric / Description KPI	Source
----------	---	--------

Operational Measures	Overall Equipment Effectiveness (OEE)	Measures machine effectiveness: availability × performance × quality.	Ghouat et al., 2022; El Mamouni et al., 2024
	Cycle Time	Time taken to complete one unit or process.	Groover, 2013
	Throughput	Total output over a given time period.	Groover, 2013
	Production Line Efficiency	Tracks productivity of a specific production line.	Adriana et al. 2024
	Capacity Utilisation	Measures how much of the plant's total capacity is used.	Groover, 2013
	Defect Rate	Number of defective units per batch or production cycle.	Ghouat et al., 2022
	Supplier Lead Time	Time from order placement to material delivery.	Ghouat et al., 2022; Kumar Singh & Modgil, 2020
	Inventory Turnover Ratio	Frequency of inventory replacement.	Kumar Singh & Modgil, 2020
	Storage Space Utilisation	Assesses use of physical warehouse/storage capacity.	Groover, 2013
	Order Fill Rate	Percentage of orders delivered in full on first attempt.	Kumar Singh & Modgil, 2020
	On-Time Shipments & Delivery	Measures delivery reliability.	Kumar Singh & Modgil, 2020
	Process Variability	Evaluates consistency and stability in process outputs.	Salles et al., 2011
	Waste Reduction	Quantifies material, time, or motion waste removed.	Kumar et al., 2022
Financial Measures	Cost per Unit Produced	Total manufacturing cost divided by units produced.	Adriana et al. 2024
	Total Cost of Ownership (TCO)	Cumulative cost across product lifecycle.	Groover, 2013
	Expenditure on Employees	Total cost of training and workforce development.	Groover, 2013
	Gross Profit	Revenue minus cost of goods sold.	Groover, 2013
	Cash-to-Cash Cycle	Duration from payment to supplier to receipt from customer.	Beelaerts van Blokland et al., 2019
Human Resource Measures	Management Commitment	Qualitative or survey-based measure of leadership support.	Che Mamat. 2015
	Employee Training Hours	Number of training hours per employee per period.	Groover, 2013
	Employee Morale & Satisfaction	Survey-based assessment of staff engagement and satisfaction.	Che Mamat. 2015
	Employee Turnover Rate	Proportion of staff leaving the organisation.	Kumar et al., 2022
	Employee Involvement	Degree of participation in Lean initiatives or kaizen events.	Che Mamat. 2015
	Client Satisfaction & Retention	Customer feedback and repeat service usage.	Kumar Singh & Modgil, 2020
Key Performance Indicators (KPIs)	First-Pass Yield (FPY)	Percentage of products passing quality inspection without rework.	Ghouat et al., 2022
	Issues Per Million (IPPM)	Defects or failures per one million opportunities.	Adriana et al. 2024
	Supplier Lead Time	Strategic measure of supply chain responsiveness. (also listed under operational)	Ghouat et al., 2022
	Cost per Unit Produced	Used to benchmark cost efficiency across departments or facilities. (also financial)	Adriana et al. 2024
	Inventory Turnover Ratio	Assesses how effectively inventory supports Lean objectives. (also operational)	Kumar Singh & Modgil, 2020

	OEE	Frequently treated as a headline Lean KPI in manufacturing environments.	Ghouat et al., 2022; El Mamouni et al., 2024
	Production Efficiency Line	High-level KPI for assessing productivity and resource usage.	Adriana et al. 2024

A tree-like hierarchical KPI structure has been proposed by Ante et al. (2020), where KPIs are grouped to answer performance questions at strategic, tactical, and operational levels. This allows companies to connect high-level business goals with real-time shop floor performance indicators.

3.5 Contribution to Continuous Improvement

KPIs are instrumental in Lean's continuous improvement (kaizen) framework. In one automotive components company, the deployment of twenty-two new KPIs enhanced decision-making by enabling real-time comparisons across departments and production units (Ante et al., 2020). These metrics were used not only to track performance but also to benchmark progress, justify investments, and reinforce Lean behaviours.

Lean Six Sigma practices in automotive operations also rely on integrated KPIs for problem-solving, variation reduction, and standardisation (El Mamouni et al., 2022). In this context, metrics serve as both diagnostic tools and drivers of process stability.

3.6 Challenges in Definition and Implementation

Despite their benefits, defining and implementing KPIs is not without challenges. Tahir et al. (2020) highlighted that a lack of clear purpose or alignment often renders KPIs ineffective. Moreover, differences in process types, technologies, and organisational maturity create inconsistency in how performance is measured across automotive plants.

There is also a tendency to over-measure or measure the wrong variables—particularly when KPIs are selected without considering the unique requirements of Lean systems. Mahmoodpour et al. (2020) emphasised the importance of SMART KPIs that are specific, measurable, achievable, realistic, and time-bound to ensure their practical relevance and reliability in Lean environments.

3.7 Best Practices for KPI Selection and Use

Best practices for Lean KPI development in the automotive industry include:

- Using a balanced approach that covers operational, financial, and human performance.
- Applying SMART criteria to ensure clarity and actionability.

- Engaging multiple stakeholders in KPI design to ensure alignment and ownership.
- Validating KPIs through benchmarking and expert consultation (Kang et al., 2019).
- Integrating visual management tools and digital dashboards for real-time feedback.

These practices ensure that KPIs not only measure performance but also reinforce Lean principles and promote continuous learning across all levels of the organisation.

3.8 Conclusion

This chapter has clarified the conceptual distinctions among Lean indicators, metrics, and KPIs and presented a detailed classification of performance measures tailored to the automotive industry. By categorising performance into operational, financial, and human dimensions, organisations can gain a holistic view of Lean effectiveness. Moreover, strategic KPIs provide the necessary feedback for guiding decision-making and sustaining Lean transformations. While challenges in definition and implementation persist, adopting best practices such as SMART frameworks and cross-functional involvement can improve the relevance and impact of Lean performance measurement systems.

4 Theoretical Application of Lean Indicators, Metrics, and KPIs in Automotive Manufacturing

4.1 Introduction

Lean manufacturing has long been a cornerstone of operational excellence in the automotive industry. With its emphasis on the elimination of waste, improvement of process flow, and enhancement of customer value, Lean requires robust systems of performance measurement. These systems are composed of indicators, metrics, and Key Performance Indicators (KPIs) that serve as analytical tools for assessing efficiency, diagnosing problems, and guiding continuous improvement efforts. In the context of modern automotive operations—characterised by high product complexity, global supply chains, and digital transformation—Lean performance measures are not merely supplementary but essential. This chapter explores the theoretical application of these tools across multiple operational domains, drawing from scholarly literature and real-world examples to illustrate how indicators, metrics, and KPIs support Lean objectives and strategic alignment.

4.2 Key Lean Indicators and Metrics in Automotive Operations

Lean performance in automotive manufacturing is evaluated using a structured hierarchy of indicators. Among the most widely applied are:

Table 4-1: Key Lean Indicators and Metrics in Automotive Operations

(Source: Adapted from Ghouat et al., 2022; Adriana et al. 2024 ; El Mamouni et al., 2024)

No.	Indicator / Metric	Description	Formula (where applicable)	Source
1	Overall Equipment Effectiveness (OEE)	Measures machine efficiency based on availability, performance, and quality.	$OEE = Availability \times Performance \times Quality$	Ghouat et al., 2022; El Mamouni et al., 2024
2	Scrap Rate	Percentage of defective units produced. Indicates quality issues and waste.	$(Scrapped\ Units / Total\ Units\ Produced) \times 100\%$	Adriana et al. 2024
3	Issues Per Million (IPPM)	Measures defects per million units. Supports Six Sigma and quality control.	$(Defective\ Units / Total\ Units\ Produced) \times 1,000,000$	Adriana et al. 2024
4	Cycle Time	Time taken to complete one unit or cycle of production.	Operating Time / Number of Units Produced	Groover, 2007
5	Takt Time	Aligns production speed with customer demand.	Available Time / Customer Demand	Liker, 2004
6	Lead Time	Total time from order to delivery, including processing and logistics.	Order Time + Procurement Time + Production Time + Transport Time	Groover, 2007
7	Inventory Turnover Ratio	Measures how often inventory is sold/replaced. Reflects flow efficiency.	Cost of Goods Sold / Average Inventory	Kumar Singh & Modgil, 2020
8	First-Pass Yield (FPY)	Percentage of units completed without rework or defects.	$(Units\ Passed\ Without\ Rework / Total\ Units\ Produced) \times 100\%$	Ghouat et al., 2022
9	Downtime Frequency	Number of equipment stoppages in a shift/day. Reflects reliability.	Recorded via machine logs and reports	Salles et al., 2011
10	Supplier Lead Time	Time between placing an order and receiving materials.	Calculated from procurement system timestamps	Ghouat et al., 2022
11	Rework & Rejection Rate	Number of units requiring rework or being rejected.	Quality reports and inspection data	Adriana et al. 2024
12	Utilisation Rate	Measures actual machine use compared to available time.	Actual Run Time / Available Machine Time	Groover, 2007
13	On-Time Delivery Rate	Proportion of orders delivered on or before the committed date.	$(Orders\ Delivered\ On\ Time / Total\ Orders) \times 100\%$	Kumar Singh & Modgil, 2020
14	Waste Reduction Index	Tracks reduction in waste (material/time/cost).	Tracked over time through waste logs and cost savings	Kumar et al., 2022
15	Employee Productivity	Output per labour input. Assesses workforce efficiency.	Units Produced / Total Labour Hours	Groover, 2007

These metrics collectively serve to identify bottlenecks, optimise workflows, and uphold Lean principles of flow efficiency, standardisation, and responsiveness.

4.3 Performance Measurement Systems and KPI Trees

A growing body of literature supports the use of structured, hierarchical Performance Measurement Systems (PMS) in Lean organisations. Ante et al. (2018) proposed the KPI Tree framework, which categorises Lean KPIs into three levels:

- Strategic KPIs: Focused on long-term business objectives such as customer satisfaction, sustainability, and return on investment.
- Tactical KPIs: Concerned with departmental or mid-level performance, including throughput, production cost, and line efficiency.
- Operational KPIs: Real-time shop-floor metrics such as defect rates, downtime, and line balancing.

This hierarchical approach ensures vertical alignment between corporate strategy and daily operations. The KPI tree model not only clarifies measurement focus across functions but also supports cascading accountability, enabling each organisational level to contribute directly to overall performance goals.

4.4 Integration of Lean KPIs and Industry 4.0 Technologies

The ongoing digitalisation of automotive manufacturing—through Industry 4.0 technologies—has dramatically enhanced the application of Lean KPIs. According to Ghouat et al. (2022), tools such as Enterprise Resource Planning (ERP), Machine-to-Machine (M2M) communication, and Automatic Identification and Data Capture (AIDC) enable real-time monitoring and control of key performance variables.

Examples of digital integration include:

- OEE tracked via machine sensors for instant feedback on asset performance.
- Inventory turnover and stock visibility monitored using RFID systems.
- Real-time updates on delivery performance through ERP-connected logistics dashboards.

The integration of Lean KPIs with smart technologies enables adaptive decision-making, predictive maintenance, and error-proofing (poka-yoke) — hallmarks of

a data-driven Lean system. This convergence enhances not only operational control but also agility and scalability in global production networks.

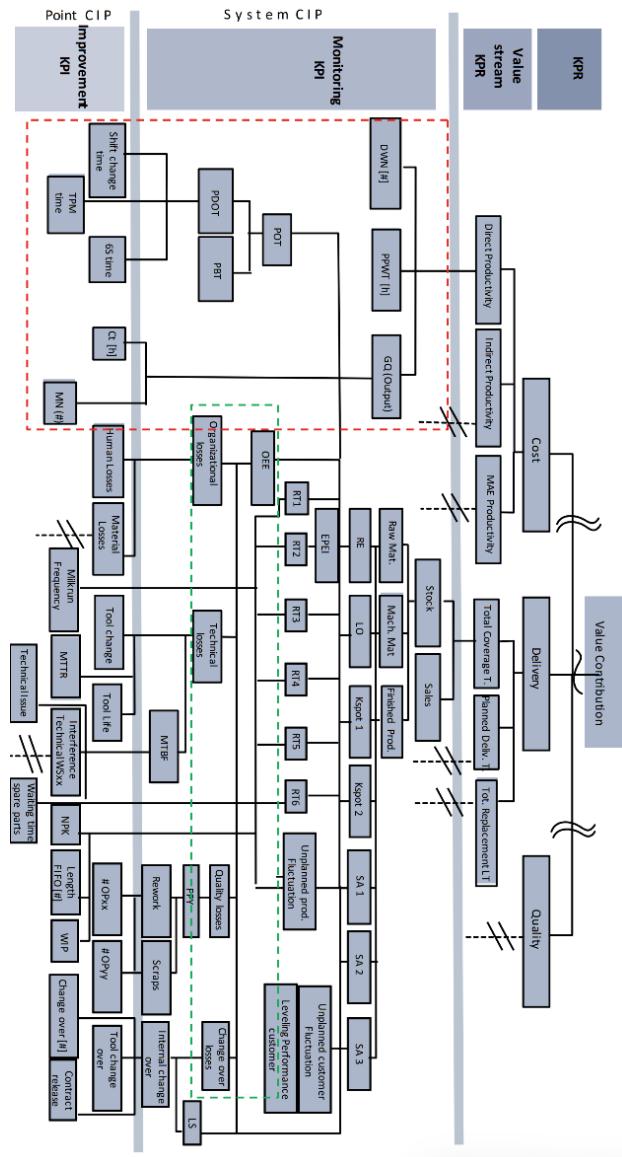


Figure 4-1: Example of a KPI Trees

Source: (Ante et al. 2018)

4.5 Case Studies: Application in Automotive Firms

Several automotive organisations have reported success using Lean KPIs in practice:

- A German automotive electrical harness firm implemented CTQ, SIPOC, and Value Stream Mapping (VSM), which led to an 8% increase in productive minutes per day (Adriana et al ,2024)

- MAHLE employed Action Research (AR) in conjunction with Lean and Six Sigma tools, achieving a 34.78% reduction in throughput time and a 73.53% drop in daily defects (Tébar-Rubio et al. 2022).
- Bosch's Production System (BPS) demonstrated how high-level decision variables are tightly integrated with KPI outputs, reinforcing Lean's strategic control mechanisms (Ante et al., 2018).

These cases validate the theoretical framework by illustrating how carefully selected and deployed Lean KPIs can lead to substantial performance gains.

4.6 Challenges in Implementing Lean KPIs

Despite their benefits, Lean performance measurement systems face several challenges:

- Consistency in Application: Salles et al. (2011) found that inconsistent use of Lean tools undermines KPI reliability. Sustainable improvements require a system-wide commitment to standardised practices.
- Static Metrics in Dynamic Systems: Traditional KPIs may lag real-time events, limiting their usefulness. Integrating dynamic data streams through Industry 4.0 infrastructure is essential for relevancy.
- Misalignment with Strategy: KPIs selected without alignment to strategic objectives can yield misleading or counterproductive results. SMART-based design (Specific, Measurable, Achievable, Realistic, Time-bound) ensures relevance and clarity (Adriana et al ,2024).
- Cultural Resistance: Performance measurement systems may face resistance if they are perceived as punitive rather than developmental. A participatory approach that involves operators and supervisors in KPI selection and review is critical for success.

4.7 Conclusion

This chapter has examined the theoretical application of Lean indicators, metrics, and KPIs within the automotive manufacturing sector. These performance measures are not merely evaluative tools but essential mechanisms for operational control, quality assurance, and strategic alignment. By integrating them with smart technologies and predictive analytics, manufacturers can move beyond traditional performance tracking toward proactive process management. However, the success of these systems depends on consistent implementation, cultural alignment, and integration with broader organisational goals. As the automotive industry continues to evolve under the influence of Industry 4.0, sustainability imperatives, and supply chain volatility, the role of Lean performance measurement will remain central to competitive success.

5 Challenges, Trends, and Future Research in Lean Performance Measurement in the Automotive Industry

5.1 Introduction

Despite its widespread adoption, the implementation and measurement of Lean performance in the automotive industry continue to face considerable challenges. While Lean principles are fundamentally aimed at enhancing efficiency and eliminating waste, operationalising these principles through indicators, metrics, and KPIs often encounters technical, cultural, and structural barriers. In parallel, the landscape of manufacturing is evolving, marked by technological advances, sustainability imperatives, and rising complexity. This chapter examines the prevailing challenges in implementing Lean performance systems, outlines emerging trends such as Industry 4.0 integration and sustainable lean manufacturing (SLM), and proposes future research directions necessary for refining and advancing Lean performance measurement in automotive contexts.

5.2 Challenges in Lean Performance Measurement

5.2.1 Implementation and Standardisation of Lean Tools

Achieving a mature and standardised implementation of Lean tools across various production environments remains a fundamental obstacle. Many automotive companies still struggle to integrate Lean Thinking beyond superficial tool usage. Colin-Lozano et al. (2019) reported that tools like Lean Maturity Models, although promising, require further development to be applicable across different organisations and clusters with varying levels of operational complexity and digital readiness.

5.2.2 Compliance with Quality Standards and Operational Integration

The integration of Lean practices with internationally mandated quality standards—such as IATF 16949:2016—poses another significant challenge. While compliance with these standards is essential for global competitiveness and supplier certification, their strict documentation and audit requirements can sometimes conflict with Lean's focus on simplification and flow (Affaki et al., 2024a and 2024 b). Managing the balance between regulatory conformance and Lean flexibility demands robust alignment between quality management systems and performance measurement frameworks.

5.2.3 Management Resistance and Cultural Barriers

Lean transformation is not solely a technical endeavour; it also demands a deep organisational shift. Che Mamat et al. 2015 highlights that employee resistance, poor communication, and insufficient leadership commitment are among the top barriers to successful Lean implementation. Where top management views KPIs as punitive or symbolic rather than as learning tools,

Lean measurement systems are likely to fail in fostering continuous improvement.

5.2.4 Complexity in Performance Measurement Design

Measuring Lean performance in dynamic manufacturing systems is inherently difficult. According to Dybå and Sharp (2012), the variability of processes, combined with contextual differences across departments and suppliers, complicates the creation of universal or comparative performance metrics. Moreover, the coexistence of traditional financial indicators with newer Lean-specific KPIs often leads to confusion in strategic focus and resource allocation.

5.2.5 Fragmentation of Data Systems

Siloed data architecture and inconsistent integration of information systems remain prevalent issues in many automotive firms. Performance data is often collected manually or stored in disconnected digital environments, which hinders real-time visibility and compromises the reliability of KPI dashboards (Sangwa et al., 2023). Without system-wide integration, Lean measurement loses its dynamic, actionable value.

5.3 Trends in Lean Performance Measurement

5.3.1 Integration with Industry 4.0

A growing trend in Lean performance management is the integration of Lean methodologies with Industry 4.0 technologies. This convergence enables automotive manufacturers to create cyber-physical production systems, where sensors, cloud platforms, and real-time dashboards enhance KPI visibility and responsiveness (Affaki et al., 2025). Real-time tracking of OEE, cycle time, and supplier performance enables predictive and adaptive control, aligning operational execution more closely with customer demand.

5.3.2 Emphasis on Soft Lean Practices

In contrast to the preliminary stages of Lean adoption—characterised by technical tools such as kanban, 5S, and SMED—current best practices increasingly highlight the role of soft Lean elements, such as leadership behaviour, communication, and employee empowerment. Mamat et al. (2015) propose that sustainable Lean systems rely as much on human engagement as on structural tools. As a result, performance measurement frameworks are now beginning to include employee morale, training effectiveness, and cross-functional collaboration as key indicators.

5.3.3 Use of Advanced Multi-Criteria Decision-Making Tools

To address the complexity of prioritising multiple Lean performance indicators, recent studies have adopted analytical techniques such as DEMATEL (Decision-Making Trial and Evaluation Laboratory) and fuzzy-VIKOR. These tools support the identification and weighting of KPIs with the most strategic impact across

the supply chain (Kumar Singh & Modgil, 2020), enabling a more rigorous and evidence-based approach to performance prioritisation.

5.3.4 Sustainable Lean Manufacturing (SLM)

Sustainability has become a prominent dimension of Lean performance, especially in light of climate change regulations and consumer expectations. According to Kumar et al. (2022), Sustainable Lean Manufacturing integrates environmental, social, and economic metrics into Lean measurement systems. Examples of such KPIs include carbon emissions per unit, worker safety incidents, and energy usage efficiency. The goal is to align waste elimination with broader sustainability imperatives.

5.4 Future Research Directions

5.4.1 Development of Integrated Performance Models

Future research should focus on the development of comprehensive, integrative models that link Lean implementation maturity with both financial and non-financial performance metrics. Sezen et al. (2012) advocate for frameworks that capture Lean adherence while also reflecting broader business outcomes such as innovation, customer retention, and resilience.

5.4.2 Investigating Synergies Among Lean, Standards, and Industry 4.0

There is growing interest in exploring the combined effects of Lean Thinking, IATF 16949 compliance, and Industry 4.0 integration. (Oumaima El Affaki et al. 2024b) suggests that when properly aligned, these systems generate synergistic outcomes in operational excellence, but this area remains under-researched.

5.4.3 Longitudinal and Empirical Validation Studies

Much of the current literature is theoretical or based on short-term case studies. There is a need for longitudinal research using real-time, quantitative data to validate the impact of KPIs on Lean outcomes (Psomas, 2021). This would provide a stronger empirical foundation for decision-makers seeking to invest in Lean performance infrastructure.

5.4.4 Adaptive KPIs in Disrupted Environments

Recent disruptions—including COVID-19, semiconductor shortages, and geopolitical instability—have highlighted the need for resilient KPI systems that can adapt to sudden changes. Future studies should investigate how performance measurement frameworks can be redesigned to remain relevant and informative during crises (Beelaerts van Blokland et al., 2019).

5.5 Conclusion

The application of Lean performance measurement in the automotive industry continues to evolve in response to technical, managerial, and environmental pressures. While challenges such as cultural resistance, measurement

complexity, and regulatory integration persist, emerging trends point toward greater adaptability and alignment with digital and sustainable business models. The integration of Industry 4.0 tools, the rise of soft Lean practices, and the focus on sustainable KPIs are reshaping how performance is conceptualised and measured. To remain relevant, future research must bridge theory and practice, build empirically validated models, and consider the full range of strategic, operational, and human-centred performance indicators.

Based on the literature reviewed and theoretical frameworks examined, several Lean performance indicators consistently emerge as the most widely adopted in the automotive manufacturing sector. Chief among these is Overall Equipment Effectiveness (OEE), which serves as a comprehensive measure combining availability, performance efficiency, and quality. OEE is widely used due to its ability to capture machine-level productivity and reveal hidden inefficiencies. Alongside OEE, the Scrap Rate and First-Pass Yield (FPY) are crucial for assessing product quality and process reliability, particularly in high-volume production environments. Time-based metrics such as Cycle Time and Takt Time are also prominent, as they directly reflect flow efficiency and customer demand alignment. Inventory Turnover Ratio and On-Time Delivery Rate are commonly used at the supply chain level, providing insight into logistical performance and responsiveness. These indicators are not only operationally essential but also closely tied to Lean principles such as waste elimination, pull production, and continuous improvement, making them indispensable in most automotive KPI dashboards.

6 Conclusion and Recommendations

6.1 Conclusion

This study set out to explore, from a theoretical perspective, the use of Lean indicators, metrics, and Key Performance Indicators (KPIs) within the automotive manufacturing industry. Recognising the long-standing relationship between Lean philosophy and the automotive sector—originating from the Toyota Production System—this research examined how performance is measured in alignment with Lean principles such as waste reduction, flow, standardisation, and continuous improvement.

Through an extensive literature review and synthesis of academic and industrial insights, the study identified a comprehensive set of Lean performance measures, including OEE, cycle time, takt time, first-pass yield, IPPM, inventory turnover, and employee productivity. These indicators are not merely evaluative tools but serve as essential levers for Lean transformation, providing visibility into operational efficiency, quality outcomes, and strategic alignment.

The study also outlined the theoretical frameworks that underpin performance measurement systems, notably the KPI tree structure that distinguishes

strategic, tactical, and operational KPIs. Furthermore, it discussed how performance measurement systems are being transformed through the integration of Industry 4.0 technologies such as ERP, M2M communication, and predictive analytics, enabling real-time data collection, visualisation, and decision-making.

However, despite these advances, the study found that numerous challenges hinder the effective application of Lean KPIs. These include inconsistent implementation of Lean tools, misalignment between KPIs and strategic goals, data fragmentation, management resistance, and difficulties in performance measurement design. The emergence of soft Lean practices, sustainable performance measurement, and advanced analytical tools presents both an opportunity and a requirement for the evolution of traditional Lean frameworks.

Ultimately, Lean performance measurement in the automotive industry is not a static practice but a dynamic and evolving discipline. As the industry responds to pressures related to digital transformation, sustainability, and global uncertainty, performance systems must become more adaptable, integrated, and human-centred.

6.2 Theoretical Contributions

This research contributes to the Lean body of knowledge in several ways:

- It provides a structured and theoretically grounded classification of Lean indicators, metrics, and KPIs, clarifying their definitions, relationships, and hierarchy within performance systems.
- It synthesises emerging trends such as the integration of Lean with Industry 4.0, Sustainable Lean Manufacturing (SLM), and soft Lean practices, positioning these developments within existing Lean theory.
- It expands the scope of Lean performance measurement to include human-centred and predictive indicators, offering a more holistic view of operational excellence.
- It proposes future research directions that address gaps in current literature, particularly the need for longitudinal, quantitative, and disruption-resilient studies.

6.3 Practical Recommendations

For practitioners in the automotive manufacturing sector, this study offers the following actionable recommendations:

- Align KPIs with Lean principles and strategic objectives: Performance measures should not be selected based on convenience or tradition but should be directly linked to waste elimination, flow, value creation, and customer responsiveness.

- Integrate digital technologies: Manufacturers should leverage Industry 4.0 tools (e.g. ERP, IoT, and AI) to transition from reactive to proactive performance systems. Real-time dashboards and predictive analytics enhance decision-making and responsiveness.
- Promote a Lean performance culture: Engage employees in the design, interpretation, and refinement of KPIs. Performance systems should be participatory rather than top-down, encouraging ownership and learning.
- Balance technical and soft indicators: While operational metrics are essential, organisations should also measure employee involvement, training effectiveness, communication, and customer satisfaction as part of a balanced scorecard.
- Incorporate sustainability indicators: Environmental, social, and economic KPIs should be embedded into performance frameworks to reflect the full impact of Lean practices on triple-bottom-line performance.

6.4 Limitations of the Study

This study is primarily theoretical in nature and does not include empirical data or case-based analysis. While it draws on a wide range of academic sources and industrial reports, the findings would benefit from empirical validation. Additionally, due to the evolving nature of Lean and digital technologies, some emerging tools and frameworks may not yet be fully represented in the current literature.

6.5 Suggestions for Future Research

Building upon the findings and limitations of this study, future research should aim to:

- Conduct longitudinal case studies to examine the long-term impact of Lean KPIs on organisational performance.
- Investigate how Lean KPIs can be adapted in times of crisis or disruption, such as during pandemics, supply chain breakdowns, or geopolitical shocks.
- Explore the relationship between digital maturity and KPI reliability, particularly in the context of smart factories and cyber-physical systems.
- Develop and test integrated Lean–Sustainability performance frameworks, including KPIs that measure carbon impact, circular economy readiness, and workforce well-being.

- Examine cross-cultural or regional variations in Lean performance measurement practices, particularly between developed and emerging automotive markets.

6.6 Final Reflection

In conclusion, Lean performance measurement is not simply a matter of tracking numbers—it is a strategic enabler of transformation. As the automotive industry faces unprecedented changes in technology, regulation, and customer expectations, organisations must move beyond static dashboards and embrace dynamic, integrated, and people-centred performance systems. The future of Lean lies not only in what we measure, but in how we use those measurements to drive purposeful and sustainable improvement.

7 References

Adriana, B., Rueda, F. R., & Alonso, G. (2024). *Key Performance Indicator (KPI)*. 493–512. https://doi.org/10.1007/978-3-031-70984-5_21

Ante, G., Facchini, F., Mossa, G., & Digiesi, S. (2018). Developing a key performance indicators tree for lean and smart production systems. *IFAC-PapersOnLine*, 51(11), 13–18. <https://doi.org/10.1016/j.ifacol.2018.08.227>

Beelaerts van Blokland, W., van de Koppel, S., Lodewijks, G., & Breen, W. (2019). Method for performance measurement of car companies from a stability-value leverage perspective. *International Journal of Lean Six Sigma*, 10(1), 411–434. <https://doi.org/10.1108/ijlss-03-2017-0024>

Che Mamat, R., Md Deros, B., Ab Rahman, M. N., Khalil Omar, M., & Abdullah, S. (2015). Soft Lean Practices For Successful Lean Production System Implementation In Malaysia Automotive Smes: A Proposed Framework. *Jurnal Teknologi*, 77(27). <https://doi.org/10.11113/jt.v77.6910>

Coe, N. M., Dicken, P., & Hess, M. (2008). Global Production networks: Realizing the Potential. *Journal of Economic Geography*, 8(3), 271–295. <https://doi.org/10.1093/jeg/lbn002>

Coe, N. M., & Hess, M. (2013). Global production networks, labour and development. *Geoforum*, 44, 4–9. <https://doi.org/10.1016/j.geoforum.2012.08.003>

Colín-Lozano, H. D., Guerra-Loji, S., Vargas-Alvarado, M. A., & Vázquez-Hernández, J. (2019). Lean manufacturing maturity model for an automotive cluster: A case study in Mexico. Proceedings of the International Conference on Industrial Engineering and Operations Management. (n.d.).

David Colín-Lozano, H., Guerra-Loji, S., Vargas-Alvarado, M., María Valdez-De La Rosa, L., & Vázquez-Hernández, J. (2019). *Lean Manufacturing Maturity Model for an automotive cluster: a case study in Mexico*. Retrieved from <https://ieomsociety.org/toronto2019/papers/101.pdf>

Ghouat, M., Benhadou, M., Benhadou, B., & Haddout, A. (2022). Assessment of the Potential Impact of Industry 4.0 Technologies on the Levers of Lean

Manufacturing in Manufacturing Industries in Morocco. *International Journal of Emerging Technology and Advanced Engineering*, 12(7), 78–85. https://doi.org/10.46338/ijetae0722_08

Groover, M. P. (2013). *Work Systems : the Methods, Measurement & Management of Work*. Harlow: Pearson Education UK.

Kang, N., Zhao, C., Li, J., & Horst, J. A. (2015). *Analysis of key operation performance data in manufacturing systems*. <https://doi.org/10.1109/bigdata.2015.7364078>

Kumar Singh, R., & Modgil, S. (2020). Assessment of Lean Supply Chain Practices in Indian Automotive Industry. *Global Business Review*, 24(1), 097215091989023. <https://doi.org/10.1177/0972150919890234>

Kumar, N., Kaliyan, M., Thilak, M., & Acevedo-Duque, Á. (2021). Identification of specific metrics for sustainable lean manufacturing in the automobile industries. *Benchmarking: An International Journal*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/bij-04-2021-0190>

Liker, J. K. (2004). *The Toyota Way : 14 Management Principles from the world's Greatest Manufacturer*. New York Mcgraw Hill Professional.

Losonci, D., & Demeter, K. (2013). Lean production and business performance: international empirical results. *Competitiveness Review*, 23(3), 218–233. <https://doi.org/10.1108/10595421311319816>

Mamouni¹, A., Abouelhanoune², Y., & Bakkali¹, A. (2024). MANUFACTURING PERFORMANCE IMPROVEMENT IN AUTOMOTIVE INDUSTRY. *ACADEMIC JOURNAL of MANUFACTURING ENGINEERING*, 22(4 /2024). Retrieved from https://ajme.ro/PDF_AJME_2024_4/L13.pdf

Ohno, T. (1988). *Toyota Production System : beyond large-scale Production*. London: Crc Press.

Oumaima El Affaki, Benhadou, M., & Abdellah Haddout. (2024a). Lean Management, IATF Automotive Standard, Industry 4.0, and Operational

Excellence: Correlation Analysis and Synergy Model Development. *TEM Journal*, 13(4), 2884–2893. <https://doi.org/10.18421/tem134-24>

Oumaima El Affaki, Benhadou, M., & Abdellah Haddout. (2024b). Roadmap to achieve operational excellence through Lean Management implementation and quality management system conformance. *Acta Logistica*, 11(1), 79–86. <https://doi.org/10.22306/al.v11i1.452>

Palak P. Sheth. (2014). Value Stream Mapping: A Case Study of Automotive Industry. *International Journal of Research in Engineering and Technology*, 03(01), 310–314. <https://doi.org/10.15623/ijret.2014.0301055>

Pankaj, R. (2023, July 21). The manufacturing industry operates in a rapidly evolving market with changing customer preferences. Retrieved March 15, 2024, from Mobility Solutions Limited website: <https://mslindia.net/blog/best-practices-for-continuous-improvement-in-manufacturing>

Psomas, E. (2021). Future research methodologies of lean manufacturing: a systematic literature review. *International Journal of Lean Six Sigma, ahead-of-print*(ahead-of-print). <https://doi.org/10.1108/ijlss-06-2020-0082>

Salles, J. A. A., Díaz, L. E. C., & Estévez, P. G. (2011). Lean production and business efficiency: An artificial neural network analysis in auto parts companies. Proceedings of the 1st International Technology Management Conference (ITMC). (n.d.).

Sangwa, N. R., Sangwan, K. S., Paidipati, K. K., & Shah, B. (2023). Lean performance measurement system for an Indian automotive supply chain. *International Journal of Quality & Reliability Management*, 40(5), 1292–1315. <https://doi.org/10.1108/ijqrm-03-2022-0113>

Sezen, B., Karakadilar, I. S., & Buyukozkan, G. (2012). Proposition of a model for measuring adherence to lean practices: applied to Turkish automotive part suppliers. *International Journal of Production Research*, 50(14), 3878–3894. <https://doi.org/10.1080/00207543.2011.603372>

Shah, R., & Ward, P. T. (2007). Defining and Developing Measures of Lean Production. *Journal of Operations Management*, 25(4), 785–805. <https://doi.org/10.1016/j.jom.2007.01.019>

Simboli, A., Taddeo, R., & Morgante, A. (2014). Value and Wastes in Manufacturing. An Overview and a New Perspective Based on Eco-Efficiency. *Administrative Sciences*, 4(3), 173–191. <https://doi.org/10.3390/admsci4030173>

Subject Matter Experts: Be Proud! (2024). Retrieved April 23, 2025, from Allegromediadesign.com website: <https://www.allegromediadesign.com/blog/subject-matter-experts-be-proud-allegro-loves-you-just-how-you-are>

Tébar-Rubio, J. V., Ramírez, F. J., & Ruiz-Ortega, M. J. (2022). Conducting Action Research to Improve Operational Efficiency in Manufacturing: The Case of a First-Tier Automotive Supplier. *Systemic Practice and Action Research*, 36(3). <https://doi.org/10.1007/s11213-022-09616-w>

Tye, R. (2019, August 31). Lean Six Sigma Green Belt Training: Group 1-2020. Retrieved May 11, 2024, from Haldan Consulting website: <https://haldanconsulting.com/the-8-wastes-of-lean/>

Womack, J. P., & Jones, D. T. (1996). Lean Thinking—Banish Waste and Create Wealth in Your Corporation. *Journal of the Operational Research Society*, 48(11), 1148–1148. <https://doi.org/10.1038/sj.jors.2600967>