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Abstract
In this paper we provide a family of reduced plane curves with two branches that have a
constant Tjurina number in their equisingularity class, along with a closed formula for it in
terms of topological data.
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1 Introduction

Let (C f , 0) be a germ of a reduced plane curve singularity with r ≥ 1 branches. One of its
main analytic invariants is the Tjurina number, which can be computed as

τ(C f ) = dimC

C{x, y}
( f , fx , fy)

,

where f = 0 is a defining equation for (C f , 0). Despite being a well-studied invariant,
several important problems remain open. Among these, determining a closed formula for the
minimal Tjurina number in a fixed topological class in terms of topological invariants stands
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out as one of the most challenging. A closely related and even more difficult problem is the
characterization of plane curves with a constant Tjurina number within an equisingularity
class.

While determining a closed formula for the minimal Tjurina number in a fixed equisingu-
larity class is completely solved for r = 1 (see [2, 23]), it remains open for r > 1. In fact, for
r > 1 a recursive formula was proven by Briançon et al. [8] for positive weight deformations
of a semi-quasihomogeneous curve xa + yb, i.e. plane curves with r = gcd(a, b) branches
that are all topologically equivalent and have a single Puiseux pair. Recently, Genzmer [21,
22] has provided an algorithm that allows the computation of the minimal Tjurina number
in a fixed topological class. However, a closed formula, or even a manageable recursive one
in terms of topological data, is still far beyond reach at this moment.

The search for curves with a constant Tjurina number in the equisingularity class is even
less developed. Except for cases where the equisingularity class contains only one analytic
representative, there are few known irreducible cases: irreducible plane curve singularities
with value semigroup 〈β0, . . . , βg〉 satisfying gcd(β0, . . . , βg−1) = 2. The case g = 2
was first described in 1990 by Luengo and Pfister [27], and the general case for g ≥ 2 was
provided by Abreu and the second-named author [11] in 2022. Up to best of the authors’
knowledge, there are no cases in the literature of plane curves with r > 1 branches in which
all different analytical representatives in a class of equisingularity have the same Tjurina
number.

The main goal of this paper is to present a family of plane curve singularities with two
branches that have a constant Tjurina number in their equisingularity class butwhose branches
can achieve distinct Tjurina numbers, along with a closed formula for this number in terms
of topological data.

To provide such a family, we have used the ideas of [11]. There, a computation of the
Tjurina number in terms of the set of values of Kähler differentials plays a crucial role. For
an irreducible plane curve, Berger [7] shows that μ(C) − τ(C) = �(� f \ S) where μ(C)

is the Milnor number, S is the semigroup of values of C and �C is the set of values of the
Kähler differentials of C . Our first main result, Theorem 2.10, presents a generalization of
this result for any reduced plane curve. More precisely, we show that for a reduced plane
curve C with r ≥ 1 branches we always have

μ(C) − τ(C) = d(�C , S)

where d(� f , S) indicates the distance between the values set � f := � f ∪ {0} and S as
presented in Sect. 2. This result has its own interest as it is provided for any r ≥ 1 and
presents an alternative method to compute the Tjurina number of a reduced plane curve to
the ones presented in [6, 24].

The next step is a careful study of the set of values of the Kähler differentials �C . In [6,
24] some relations are presented that allow us to express τ(C) in terms of the Tjurina number
of irreducible components {Ci ; i = 1, . . . , r} of C , the intersection multiplicity of [Ci ,C j ]0
and an analytical invariant �i for 2 ≤ i ≤ r related with the values of Kähler differentials
of C . In Sect 3, we study the set �C for C = C1 ∪ C2 considering C1 and C2 equisingular
plane branches with value semigroup 〈β0, . . . , βg〉 and I := [C1,C2]0 > ngβg where
ng = gcd(β0, . . . , βg−1). In this case, considering logarithmic differentials, we describe the
infinite fibers of�C (see Sect 3.1) that allow us to compute�2 and to show that the conductor
of �C depends only on [C1,C2]0 and the multiplicity of Ci (see Theorem 3.14). Therefore,
we show that in this case the conductor of �C only depends on topological data and thus it
is independent of the analytic type of the curve. This result also has its own interest as for
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the family of irreducible plane curve singularities with value semigroup 〈β0, . . . , βg〉, where
gcd(β0, . . . , βg−1) = 2 provided in [11] the conductor of � may change but the Tjurina
number is still constant. Then, our family with two branches has even a stronger behavior in
this sense.

These two ingredients, the generalization of Berger’s result and the description of the
infinite fibers of�C , are enough to achieve ourmain goal. In Sect. 4, consideringC = C1∪C2

such thatC1 andC2 sharing the same value semigroup 〈β0, . . . , βg〉 and I > ngβg , we prove
(Theorem 4.1)

τ(C) = 2I + μ(C1) − 1

that is, the Tjurina number is given by only topological data, i.e. the intersection multiplicity
and the Milnor number μ(C1) = μ(C2) of the branches. This result gives us new examples
of topological classes where the Tjurina number is constant. Moreover, in contrast to the
irreducible case, the number of possible plane curves with two branches belonging to this
family is quite large. In addition, our formula allows to provide a new proof in this particular
case of the inequalityμ(C)/τ(C) < 4/3 provided by the first named author [3] for any plane
curve.

A deeper analysis of our results reveals that achieving similar results in more general
cases presents an interesting yet challenging problem. To conclude the paper, we discuss
some of the key difficulties in these cases and propose conjectures that could guide future
investigations.

2 Value sets of fractional ideals

LetC f be a (reduced) germ of complex plane curve singularitywith equation f = ∏r
i=1 fi =

0 where fi ∈ C{x, y} is irreducible. Each fi defines a branch Ci and its analytical type is
characterized by the local ring Oi := C{x, y}/( fi ) up to C-algebra isomorphism. The field
of fraction Ki of Oi is isomorphic to C(ti ) and associated to it we have a canonical discrete
valuation vi : Ki → Z := Z ∪ {∞}. The isomorphic image of Oi in C(ti ) ∼= Ki can be
given by C{tni ,

∑
j≥n a j t

j
i } where n is the multiplicity of fi , the set {n, j; a j �= 0} does not

admit a nontrivial common divisor and

ϕi (ti ) =
⎛

⎝tni ,
∑

j≥n

a j t
j
i

⎞

⎠ (2.1)

is a Newton–Puiseux parametrization of Ci . Notice that we have fi
(
tni ,

∑
j≥n a j t

j
i

)
= 0,

or equivalently fi
(
x,

∑
j≥n a j x

j
n

)
= 0. We call si (x) = ∑

j≥n a j x
j
n a Puiseux series of

the branch Ci . If h ∈ C{x, y} and ϕi (ti ) = (xi , yi ) ∈ C{ti } × C{ti } is a parametrization
of Ci , we denote ϕ∗

i (h) := h(xi , yi ) ∈ C{ti }. Thus, if h ∈ Oi with h ∈ C{x, y}, then we
get vi (h) = ordti ϕ∗

i (h) = [ fi , h]0, where [ fi , h]0 := [Ci ,Ch]0 denotes the intersection
multiplicity of Ci and Ch at the origin.

The image of vi of Oi \ {0}, that is
S(Ci ) := {vi (h) ∈ N : h ∈ Oi , h �= 0}

is the semigroup of values of Ci and it is a numerical semigroup whose minimal generating
set can be computed from a Newton–Puiseux parametrization (cf. [31]) as follows.
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If f ∈ C{x, y} is irreducible with Newton–Puiseux parametrization (tn,
∑

j≥n a j t j ), let
(z) ⊆ Z be the set of multiples of z, β0 = n and set

ei−1 = gcd{β0, . . . , βi−1}, βi = min{ j : a j �= 0, j /∈ (ei−1)} for i = 1, . . . , g where eg = 1.

Let us define n0 = 1,

β0 = β0, β1 = β1 and βi+1 = niβi + βi+1 − βi where , ni = ei−1/ei for 1 ≤ i < g.
(2.2)

It follows (cf. [31]) that the values semigroup S(C f ) is minimally generated by the ele-
ments β0, . . . , βg, i.e.

S(C f )=〈β0, . . . , βg〉 = {
γ ∈ N : γ =m0β0+· · ·+mgβg with mi ∈ N, for i=0, . . . , g

}
.

Since S(C f ) is a numerical semigroup it admits a conductor c(S(C f )), that is the minimun
element in S(C f ) such that c(S(C f )) + N ⊂ S(C f ) and it can be computed (cf. [31]) by

c(S(C f )) =
g∑

i=1

(ni − 1)β i − β0 + 1 = v( fy) − β0 + 1. (2.3)

The topological (equisingularity) class of the branchC f is totally determined by its values
semigroup.

For f = ∏r
i=1 fi with r > 1 the topological class of C f is also characterized by a

semigroup as we describe in the sequel.
The total ring of fraction K of the local ring O = C{x, y}/( f ) is isomorphic to∏r
i=1 C(ti ). If πi : K → Ki denotes the natural projection then we can consider

v : K → Z
r
defined by v(q) = (v1(q), . . . , vr (q)) where q ∈ K and vi (q) stands

for vi (πi (q)).
In what follows we set I := {1, . . . , r} and we consider the product order on Z

r , that is,
given α = (α1, . . . , αr ), β = (β1, . . . , βr ) ∈ Z

r ,

α ≤ β ⇐⇒ αi ≤ βi for all i ∈ I.

The values semigroup of C f is the additive submonoid of N
r defined by

S = S(C f ) := {v(h) = (v1(h), . . . , vr (h)) ∈ N
r : h ∈ O, h is not a divisor of 0}.

For J = { j1, . . . , jk} ⊂ I and α = (α1, . . . , αr ) ∈ Z
r we put prJ (α) = (α j1 , . . . , α jk ) ∈

N
k . Notice that S � S(C1) × · · · × S(Cr ) and prJ (S) = S(C fJ) where f J = ∏

j∈J f j .
Some elementary properties of the semigroup of values S are the following (see [17]):

(1) If α, β ∈ S, then
min{α, β} := (min{αi , βi })i∈I ∈ S.

(2) If α, β ∈ S and j ∈ I with α j = β j , then there exists ε ∈ S such that ε j > α j = β j and
εi ≥ min{αi , βi } for all i ∈ I\{ j}, with equality if αi �= βi .

(3) The semigroup S has a conductor cS := c(S),which is defined to be the minimal element
of S such that γ ∈ S whenever γ ≥ cS . Moreover, we get (see [17])

cS = (c1 +
∑

i∈I\{1}
I1,i , . . . , cr +

∑

i∈I\{r}
Ir ,i ), (2.4)

where ci := c(S(Ci )) and Ii, j = [ fi , f j ]0.
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Remark 2.1 The conductor of the semigroup of a plane curve C defined by f is closely
related to its Milnor number μ(C) = dimC C{x, y}/( fx , fy). In fact, if f is irreducible then
μ(C) = cS and for f = ∏r

i=1 fi we get

μ(C) =
r∑

i=1

pri (cS) − r + 1 =
r∑

i=1

ci + 2
∑

1≤i< j≤r

Ii, j − r + 1. (2.5)

For r > 1, the semigroup S is no longer finitely generated, but it is finitely determined
(see [9, 17]). However, if we allow v(h) ∈ S ⊂ Z

r
for any h ∈ O , that is, vi (0) = ∞, then

(S,min,+) is a finite generated semiring (see [14]).
Now, for a given A ⊆ Z

r
, α ∈ Z

r and an index subset ∅ �= J ⊂ I, we define

FJ(A, α) = {
β ∈ A : β j = α j ∀ j ∈ J and βk > αk ∀k /∈ J

}
,

FJ(A, α) = {
β ∈ A : β j = α j ∀ j ∈ J and βk ≥ αk ∀k /∈ J

}
.

The fiber of α in A is defined as F(A, α) = ∪r
i=1Fi (A, α). We will abuse of notation and

denote Fi (A, α) := F{i}(A, α).

The fibers F(S, α) are important in order to determine S in terms of its projections (see
[17]).

An element γ ∈ S is called a maximal element of S if F(S, γ ) = ∅. If, moreover,
FJ(S, γ ) = ∅ for all J ⊂ I such that ∅ �= J �= I, then γ is said to be absolute maximal. On
the other hand, if γ is a maximal and if FJ(S, α) �= ∅ for all J ⊂ I such that �J ≥ 2, then
γ will be called relative maximal. It is easily checked that the set of maximal elements of S
is finite.

Definition 2.2 Let A ⊂ Z
r
be a set satisfying the properties (1), (2) and (3). We will say

that α has infinite fiber in A with respect to J ⊂ I, writing F A
J (α) = ∞, if there exists

β ∈ FJ(A, α) such that prI\J(β) ≥ prI\J(cA).

Observe that α has infinite fiber in A with respect to J ⊂ I is the same as saying that

{δ ∈ N
r | prJ(δ) = prJ(α), prI\J(δ) ≥ prI\J(cA)} ⊆ A,

or equivalently, there exists β ∈ FJ(A, α) such that β + FJ(N
r , 0) ⊂ FJ(A, α). There are

several other characterizations of infinite fibers see [17, Proposition 2.4] and [18, Lemma
1.8] for further details.

Many of the above properties hold for fractional ideals of O and its set of values. For the
convenience of the reader, we present them in the next section.

2.1 Basic properties of value set of fractional ideals

A fractional ideal J ⊂ K of O is a O-module such that there exists a regular element h ∈ O
satisfying h J ⊂ O . It follows that for any fractional ideal J of O its value set E := v(J ) is
a relative ideal of S, i.e. S + E ⊆ E and there exists γ ∈ S such that γ + E ⊆ S.

By [4, 10], for any two fractional ideals J2 ⊂ J1 ofO we can compute the length l(J1/J2)
(as O-modules) by comparing their value sets by means a saturated chain as follows.

For a fractional ideal J ⊂ K , a saturated chain in E = v(J ) is a sequence

α0 < α1 < · · · < αn

of elements in E such that for every element ε ∈ Z
r such that αi < ε < αi+1 one has ε /∈ E .

Such a chain is said to have length n. According to [10, Proposition 2.3], any saturated chain
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in E between α0 and αn has the same length. This property allows us to define a distance
function between two elements in E : if α0, αn ∈ E with α0 < αn then its distance in E ,
denoted by dE (α0, αn), is the length of any saturated chain in E with α0 as initial element
and αn as final element.

Example 2.3 Let f = (y2 − 2x2y − x3 + x4)(y2 + x3). According to [12, Example 3.11]
we get

S = S(C f ) = {(0, 0), (k, k); 2 ≤ k ≤ 7}∪{(6, 6+k1), (6+k2, 6), k1, k2 ∈ N}∪{(8, 8)+N
2}.

Thus, cS = (8, 8). We have dS((0, 0), (8, 8)) = 8 as we can see with the following two
different saturated chains of length 8 in S :

α0 = (0, 0) < α1 = (2, 2) < α2 = (3, 3) < α3 = (4, 4) < α4 = (5, 5)
< α5 = (6, 6) < α6 = (7, 6) < α7 = (7, 7) < α8 = (8, 8),

α0 = (0, 0) < α1 = (2, 2) < α2 = (3, 3) < α3 = (4, 4) < α4 = (5, 5)
< α5 = (6, 6) < α6 = (6, 7) < α7 = (6, 8) < α8 = (8, 8).

As for S, the value set of a fractional ideal also satisfies properties (1), (2) and (3)
(see [10]). So, if J is a fractional ideal of O , then its value set E has always a minimum
mE := min{α ∈ E} and a conductor cE := min{γ ∈ E : γ + N

r ⊆ E}.
In this way, the colength of fractional ideals can be computed according the following

Theorem 2.4 [10, Section 2] Let J2 ⊂ J1 be fractional ideals of O with Ei = v(Ji ) for
i = 1, 2. Then,

l(J1/J2) = d(E1\E2) := dE1(mE1 , cE2) − dE2(mE2 , cE2).

Remark 2.5 In general, for any two subsets E1, E2 ⊆ Z
r , E2 � E1 satisfying properties

(1), (2), (3) we define its distance as d(E1\E2) = dE1(mE1 , cE2) − dE2(mE2 , cE2).

Also, it is obvious that for any γ ≥ cE2 we have

d(E1\E2) = dE1(mE1 , γ ) − dE2(mE2 , γ ).

This method has the disadvantage that we need a lot of information about the value set
E . In order to avoid the use of a saturated chain in E, Guzmán and Hefez [15] provided an
alternative method to compute colengths just by using the set of relative maximal points of
the value set and its projections.

Remark 2.6 The notion of maximal, relative maximal and absolute maximal for a value set
is defined in an analogous way as in the semigroup case. For any value set E , we will denote
by M(E), RM(E), AM(E) the sets of maximal, relative maximals and absolute maximals
of E .

Let us briefly explain the Guzmán and Hefez’s method to compute colengths without the
use of a saturated chain, we refer to [15] for further details.

For any fractional ideal J of O, there is a canonical filtration indexed by α ∈ Z
r defined

as
J (α) = {h ∈ J ; v(h) ≥ α}.

Therefore, given J2 ⊆ J1 two fractional ideals with value sets Ei = v(Ji ), we have that for
any γ ≥ cE2 the colength (and hence its distance) is

l(J1/J2) = l(J1/J1(γ )) − l(J2/J2(γ )). (2.6)

Recall that J1(γ ) = J2(γ ). In this way, we have
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Theorem 2.7 [15, Cor. 11] Let J be a fractional ideal of O with value set E = v(J ) and
mE = α0. If γ ≥ cE , then

l

(
J

J (γ )

)

=
r∑

i=1

(γi − α0
i − �((N + α0

i )\pri (E)) − �i ),

where �i is defined as

�1 = 0, �i = �
⋃

{i}�J⊆{1,...,i}
pr∗(RM(EJ)), for 2 ≤ i ≤ r ,

with pr∗(α j1 , . . . , α js ) = α js and EJ = prJ(E) if J = { j1, . . . , js}.
As an application of Theorem 2.7 we will provide an alternative way to compute the delta

invariant δ(C) of a reduced plane curve C .

Example 2.8 LetC = ∪i∈ICi be a reduced plane curve such that each branchCi is defined by
fi . If O denotes its local ring, then its normalization O is isomorphic to C{t1} × · · · × C{tr }.
Since O is a Gorenstein ring (see [18]), the conductor ideal C := {z ∈ O : zO ⊂ O} is such
that

δ(C) = l

(
O

O

)

= l

(
O

C

)

= 1

2
l

(
O

C

)

.

Notice that v(O) = N
r and v(C ) = cS + N

r , in particular, these values sets do not have
maximal points, that is, �i (v(O)) = �i (v(C )) = 0 for all i ∈ I. In addition, we get

mv(O ) = cv(O ) = (0, . . . , 0) ∈ N
r and mv(C ) = cv(C ) = cS .

According to (2.6) we get l(OC ) = l( O
O (cS)

) − l( C
C (cS)

). Notice that C (cS) = C , that is

l( C
C (cS)

) = 0 and, by Theorem 2.7 we have

l

(
O

O(cS)

)

=
∑

i∈I
(pri (cS)−0−�(N+0)\pri (Nr ))−0)) =

∑

i∈I
pri (cS) =

∑

i∈I
(ci+

∑

j �=i

Ii, j ),

where the last equality follows by (2.4).
Since ci = 2δi where δi = δ(Ci ) is the delta invariant of the branch we get

δ(C) = 1

2
l

(
O

C

)

= 1

2
l

(
O

O(cS)

)

= 1

2

∑

i∈I
(ci +

∑

j �=i

Ii, j ) =
∑

i∈I
(δi +

∑

j<i

Ii, j ).

In this way, we recover the well-known formula for the delta invariant of the curve C and, as
an immediate consequence of Proposition 2.5 we also obtain that

δ(C) = 1

2
l

(
O

C

)

= l

(
O

C

)

.

In [24] is presented a way to compute the data �i given in Theorem 2.7 without knowing
the relative maximal of the values set of a fractional ideal or any information of the values
set of E . Let us present this result.

Given J ⊂ K a fractional ideal of O with E := v(J ) and π : K → Ki the natural
projection we put

Ni (J ) := J ∩ ker πi and NJ(J ) := ∩ j∈JN j (J ).
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In this way, setting [1, i) = {1, . . . , i − 1} for 1 < i ≤ r we get (cf. [24, Cor. 2.8])

�i = �(pri (E) \ vi (N[1,i)(J ))). (2.7)

We consider N[1,1)(J ) = pri (E) to obtain �1 = 0 as in Theorem 2.7. In this way, we get
the following

Proposition 2.9 [24, Cor. 2.9] Let J2 ⊂ J1 be fractional ideals of O with Ei = v(Ji ) for
i = 1, 2. Then,

l

(
J1
J2

)

=
∑

i∈I

(
�(pri (E1)\pri (E2)) − �(pri (E1)\vi (N[1,i)(J1))) + �(pri (E2)\vi (N[1,i)(J2)))

)
.

Notice that Theorems 2.5, 2.7 (and (2.6)) and Proposition 2.9 provide alternative ways to
compute colength of fractional ideals according to the data available in each situation.

In this paper, we are interested in computing the codimension of a particular fractional
ideal that gives us an important analytic invariant of a plane curve: the Tjurina number.

2.2 Tjurina number

Let C be a plane curve defined by f = ∏
i∈I fi and Ci be the branch given by fi = 0. The

Tjurina number of C is τ = τ( f ) := dimC C{x, y}/( f , fx , fy). Denoting by h the class of
h ∈ C{x, y} in O and considering the ideal J := O fx + O fy we have that τ = l(OJ ).

An alternative, but equivalent, approach to compute the Tjurina number is by using the
module of Kähler differentials of the curve. Let
1 = C{x, y}dx+C{x, y}dy be theC{x, y}-
module of holomorphic forms on C

2 and consider the submodule F ( f ) := C{x, y}d f +
f 
1. The module of Kähler differentials of C is


 f := 
1

F ( f )
,

that is the O-module Odx + Ody module the relation d f = 0.
If ϕi = (xi , yi ) ∈ C{ti }× C{ti } is a parameterization (non necessarily a Newton–Puiseux

parameterization) of the branch Ci and h(x, y) ∈ O then, as before, we denote ϕ∗
i (h) :=

h(xi , yi ) ∈ C{ti }. In addition, given ω = A(x, y)dx + B(x, y)dy ∈ 
 f , we define

ϕ∗
i (ω) : = ti (ϕ

∗
i (A) · x ′

i + ϕ∗
i (B) · y′

i ) ∈ C{ti },
where x ′

i , y
′
i denote, respectively, the derivative of xi , yi ∈ C{ti } with respect to ti . We put

ϕ∗(
 f ) = {(ϕ∗
1 (ω), . . . , ϕ∗

r (ω)) : ω ∈ 
 f } ⊂ K .

By [6, Theorem 3], if Tor(
 f ) denotes the torsion submodule of 
 f then we have
ker(ϕ∗) = Tor(
 f ) and the following O-module isomorphism:

ϕ∗(
 f ) ∼= 
 f

T or(
 f )
. (2.8)

In this way, ϕ∗(
 f ) is a fractional ideal of O and, considering vi (ω) := vi (ϕ
∗
i (ω)), its value

set is given by

� f = v(ϕ∗(
 f )) = {v(ω) : = (v1(ω), . . . , vr (ω)); ω ∈ 
 f }.
Recall that S \ {0} ⊂ � f so, c� f ≤ cS and m� f = (β1

0 , . . . , β
r
0) where β i

0 = min{α ∈
S(Ci ) \ {0}} is the multiplicity of the branch Ci .
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The set� f is an important analytic invariant of the curvewhichwas used for the analytical
classification of plane curves (see [25]) and, according to Pol [29, Proposition 3.31], the
Jacobian ideal J is isomorphic to ϕ∗(
 f ). Moreover, she shows that

v(A fx + B fy) = v(Ady − Bdx) + cS − 1, consequently v(J) = � f + cS − 1 (2.9)

where 1 = (1, . . . , 1) ∈ N
r .

In the case r = 1, Berger [7] proved that the Milnor number and the Tjurina number of
C f are related by τ = μ−�(� f \S). Since the distance function is the natural generalization
for the difference of values set of fractional ideals in the irreducible case, it is natural to ask
for a extension of Berger’s expression for the case r > 1. From the identity (2.9) and the
previous results, we obtain the following generalization of Berger’s result.

Theorem 2.10 Let C be a reduced plane curve. With the previous notation, let us denote by
� = � f ∪ {0}. Then, we have

τ = μ − d(� \ S). (2.10)

Proof Consider C = ∪r
i=1Ci . Since J ⊂ O we have E := v(J) ⊂ S and cE ≤ mE + cS . As

we have remarked, m� = (β1
0 , . . . , β

r
0) and by (2.9) we get mE = cS + (β1

0 , . . . , β
r
0) − 1.

Thus, considering the relation (2.6) with γ = 2cS + (β1
0 , . . . , β

r
0) − 1 we have

τ = l

(
O

J

)

= l

(
O

O(γ )

)

− l

(
J

J(γ )

)

. (2.11)

Notice that l(O/O(γ )) = l(O/O(cS)) + l(O(cS)/O(γ )) with v(O(cS)) = cS + N
r and

v(O(γ )) = γ + N
r . In this way, by Theorems 2.5 and 2.7, we have

l
(

O
O (γ )

)
= l

(
O

O (cS)

)
+ l

(
O (cS)
O (γ )

)
= dS(0, cS) + ∑r

i=1(pri (cS) + β i
0 − 1)

= dS(0, cS) + ∑r
i=1 β i

0 + μ − 1
(2.12)

where the last equality follows by Remark 2.5.
On the other hand, the relation (2.9) between v(J) and � f gives

l

(
J

J(γ )

)

= l

(
ϕ∗(
 f )

ϕ∗(
)(cS + (β1
0 , . . . , βr

0))

)

= l

(
ϕ∗(
 f )

ϕ∗(
)(cS)

)

+ l

(
ϕ∗(
 f )(cS)

ϕ∗(
)(cS + (β1
0 , . . . , βr

0))

)

.

Since c� f ≤ cS , we get v(ϕ∗(
 f )(cS + (β1
0 , . . . , β

r
0)) = cS + (β1

0 , . . . , β
r
0) + N

r and
v(ϕ∗(
 f )(cS)) = cS + N

r , that is, the second above summand is
∑r

i=1 β i
0. In addition,

denoting � = � f ∪ {0} we have

l

(
ϕ∗(
 f )

ϕ∗(
)(cS)

)

= d� f ((β
1
0 , . . . , β

r
0), cS) = d�(0, cS) − 1.

In this way, we get

l

(
J

J(γ )

)

= d�(0, cS) − 1 +
r∑

i=1

β i
0. (2.13)

Therefore, by (2.11), (2.12) and (2.13), we obtain

τ = μ + dS(0, cS) − d�(0, cS) = μ − d(�\S).

��
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Example 2.11 Let f = f1 f2 where f1 = y2 − 2x2y − x3 + x4 and f2 = y2 + x3. Since
μ(C1) = μ(C2) = c1 = c2 = 2 and I1,2 = 6 it follows, by (2.5), that μ = μ(C f ) = 15.
By Example 2.3, we have cS = (8, 8) and dS((0, 0), (8, 8)) = 8. According to [12, Example
3.11] we get

� = � f ∪ {(0, 0)} = {(0, 0), (k, k); 2 ≤ k ≤ 5} ∪ {(6, 6) + N
2}.

A saturated chain in � connecting (0, 0) to (8, 8) is

α0 = (0, 0) < α1 = (2, 2) < α2 = (3, 3) < α3 = (4, 4) < α4 = (5, 5)
< α5 = (6, 6) < α6 = (7, 6) < α7 = (7, 7) < α8 = (8, 7) < α9 = (8, 8),

that is, d�((0, 0), (8, 8)) = 9. Hence, by Theorem 2.10, we get

τ = μ − d(�\S) = μ + dS((0, 0), (8, 8)) − d�((0, 0), (8, 8)) = μ + 8− 9 = μ − 1 = 14,

that coincides with calculation with Singular [16].

3 Logarithmic differentials

As before, let C be a reduced plane curve defined by f . According to (2.9), the values set
v(J) determines and it is determined by the set �. In [29], Pol shows that such analytical
invariants are related to the values set of residues of logarithmic differentials or equivalently
to the values set of the Saito module. Let us recall these objects and some results concerning
to them.

According to Saito [30], a meromorphic differential W ∈ (1/ f )
1 is a logarithmic form
along C if there exist η ∈ 
1, p, q ∈ C{x, y} with gcd(q, f ) = 1 such that qW =
(pd f + f η)/ f or equivalently, W∧d f

dx∧dy ∈ C{x, y} and he denotes the set of logarithmic forms

along C by 
1(log C).
Since W = ω/ f ∈ 
1(log C) is equivalent to get qω ∈ F ( f ) = C{x, y}d f + f 
1 for

some q ∈ C{x, y} coprime with f or ω∧d f
dx∧dy ∈ ( f ) we can consider the C{x, y}-module

f · 
1(log C) = {
ω ∈ 
1; ∃ q ∈ C{x, y}, gcd(q, f ) = 1 such that qω ∈ F ( f )

}

=
{
ω ∈ 
1; ω∧d f

dx∧dx ∈ ( f )
}

,
(3.1)

called the Saito module associated to C .
We have that f · 
1(log C) is generated by two elements. Moreover,

Saito’s criterion: {ω1, ω2} is a set of generators for f ·
1(logC) if and only if ω1∧ω2
dx∧dy = u f

where u ∈ C{x, y} is a unit.
Notice that F ( f ) ⊂ f · 
1(log C), by [29, Proposition 3.22], we have that Tor(
 f ) is

isomorphic (as O-module) to f · 
1(log C)/F ( f ). In particular, by [29, Proposition 3.31]
and (2.8), we get

J ∼= ϕ∗(
 f ) ∼= 
1

f · 
1(log C)
.

Given ω ∈ f · 
1(log C), such that qω = pd f + f η where η ∈ 
1, p, q ∈ C{x, y}
with gcd(q, f ) = 1 the residue of ω is res(ω) = p/q ∈ K where h denotes the class of
h ∈ C{x, y} in O . The O-module of logarithmic residues along C is then defined as

RC := {res(ω); ω ∈ f · 
1(log C)} ⊂ K .
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We have that RC is a fractional ideal of O and its values set � f := v(RC ) satisfies (cf.
[29, Cor. 3.32])

α ∈ � f ⇔ F(−α,� f ) = ∅. (3.2)

According to Pol [29] we have that c(� f ) is −(β
1
0, . . . , β

r
0) + (1, . . . , 1).

Remark 3.1 If I = {1, . . . , r} with r > 1 and C = ∪i∈ICi is a plane curve where each
branch Ci is defined by fi then for ∅ �= J � I we denote fJ = ∏

j∈J f j . In this case, given

ω ∈ fJ · 
1(log CJ) whose class module F ( f ) is ω, we get v j (ω) = ∞ for all j ∈ J.
Moreover,

ω ∈ fJ · 
1(log CJ)\ fI\J · 
1(log CI\J) if and only if F�
I\J(v(ω)) = ∞,

that is v(ω) has infinite fiber in � = � f (see Definition 2.2).

3.1 Infinite fibers of diagonal curve with two branches

In what follows, we will use the values set of logarithmic residues along C to obtain infor-
mation on the set �, as the infinite fibers and its conductor, when C is defined by f = f1 f2
and it has two equisingular branches with values semigroup S(C1) = S(C2) = 〈β0, . . . , βg〉
and intersection multiplicity I = [ f1, f2]0 > ngβg that we call diagonal curve with two
branches.

Remark 3.2 Acomplete description of the infinite fibers of a semigroupwith two equisingular
brancheswasgivenbyBayer [5].The semigroupof values of a diagonal curvewith anynumber
of branches was completely described by Delgado de la Mata [19], as well as provided the
name diagonal to this family.

Remark 3.3 Diagonal curves with two branches can be described in the following equivalent
way: it is a curve C : f = f1 f2 = 0 where both branches have the same multiplicity at the
origin and I = [ f1, f2]0 > ngβg where 〈β̄0, . . . , β̄g〉 is the semigroup of values of one of
them.Clearly, if I ≥ ngβg and both branches are equisingular then they have same semigroup
of values and consequently, they have the samemultiplicity. On the other hand, assume f1, f2
are two branches with the same multiplicity say β0, one of them with semigroup of values
〈β0, . . . , βg〉 and I = [ f1, f2]0 ≥ ngβg. Let us first assume that f1, f2 are transversal, i.e.

they don’t have the same tangent. In this case, we have I = β
2
0. Now, by definition of the

generators of the semigroup (see Eq. (2.2)) we have β i+1 = niβ i + (βi+1 − βi ), where βi
denotes the Puiseux characteristic exponents. A straightforward induction on this formula

together with the fact that β1 > β0 leads to prove ngβg > β
2
0 against the hypothesis. Thus,

the two branches must have the same tangent. If both branches have the same tangent with
the required condition on the intersection multiplicity then a straightforward argument with
Noether’s formula shows that both have the same value semigroup.

Before that, let us recall some important fact about irreducible curves. Let C be an irre-
ducible plane curve with values semigroup S = 〈β0, . . . , βg〉. Without loss of generality, we
can assume that C is defined by a Weierstrass polynomial f ∈ C{x}[y] with degy( f ) = β0

and Newton–Puiseux parametrization ϕ as (2.1).
Given n ∈ N \ {0} we consider the C-vector space

Pn = {h ∈ C{x}[y]; degy(h) < n}. (3.3)
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Since f ∈ C{x}[y] is a Weierstrass polynomial with degy( f ) = β0, any H ∈ C{x, y} can be
uniquely expressed (by the Weierstrass division theorem) as H = q f + h with q ∈ C{x, y}
and h ∈ Pβ0 . So, C{x, y} = Pβ0 ⊕ f · C{x, y} and the classes of H and h in O = C{x,y}

( f ) are
equal.

If v f indicates the discrete valuation associated to C then we put v f (H) := v f (H)where
H denotes the class of H ∈ C{x, y} inO . In this way, S = v f (O\{0}) = v f (C{x, y}\( f )) =
v f (Pβ0 \ {0}). Following [11, Sec. 3], we introduce the following C-vector spaces:

E ( f ) = Pβ0 dx + Pβ0−1 dy, G ( f ) = C{x, y} d f + C{x, y} f dx,

where Pβ0 is given in (3.3). With the above notation, we have [11, Lemma 3.3]


1 = E ( f ) ⊕ G ( f ).

Since G ( f ) ⊂ F ( f ), if ω = ω0 +ω1 ∈ 
1 with ω0 ∈ E ( f ) and ω1 ∈ G ( f ) then the classes
ω and ω0 of ω, respectively of ω0, in 
 f are equal and v f (ω) = v f (ω0). In this way, we get
� f = {v f (ω); ω ∈ E ( f )}. In what follows, to simplify the notation, given ω ∈ 
1 when
we put v f (ω) we understand v f (ω) where ω indicates the class of ω module F ( f ).

Let us now consider ω = A dx − B dy ∈ f · 
(log C f ). According to (3.1) we get
A fy + B fx = M f for some M ∈ C{x, y}. In particular, the relations

fxω = A d f − f M dy and fyω = −B d f + f M dx, (3.4)

allow us to compute the residue of ω as res(ω) = A
fx

= B
fy
. Thus, the value set of logarithmic

residues along C f can be done by

� f = {v f (res(ω)) = v f (B) − v f ( fy); ω = Adx + Bdy ∈ f · 
(log C f )}
= {v f (B) − (μ + β0 − 1); Adx + Bdy ∈ f · 
(log C f )}, (3.5)

where v f ( fy) = μ + β0 − 1 (see (2.3)). In particular, as we are considering the irreducible
case, the property (3.2) translates to the fact that

λ ∈ � f ⇔ −λ /∈ � f . (3.6)

Proposition 3.4 [11, Proposition 3.7] Let ω = A dx − B dy ∈ E ( f ) ∩ f · 
1(log C f ), i.e.
B fx + A fy = M f . Under the previous notation, we have

ϕ∗(M) = ekβk+1

β0
b tv f (M) + (h.o.t.), ϕ∗(B) = b tv f (B) + (h.o.t.),

with b ∈ C
∗ and ν f (B) = ν f (M) + β0, where k = max0≤i<g{i; ei � v f (res(ω))}.

In what follows, let C f = C1 ∪C2 where C1 and C2 are two equisingular plane branches
defined by Weierstrass polynomials f1, f2 ∈ C{x}[y] with value semigroup S1 = S2 =
〈β0, . . . , βg〉 and intersection multiplicity I := [ f1, f2]0 ≥ ngβg, where ng = eg−1 =
gcd(β0, . . . , βg−1). In particular, there exists a Newton–Puiseux parametrization ϕi (ti ) =
(tβ0
i ,

∑
k≥β0

a(i)
k tki ) for Ci and i = 1, 2 such that

a(1)
k = a(2)

k for every k ≤ βg if I > ngβg

a(1)
k = a(2)

k for every k < βg if I = ngβg.
(3.7)

We would like to use Proposition 3.4 in the context of a plane curve with two equisingular
branches with I ≥ ngβg. To do so, we need the following technical lemmas to generalize
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Proposition 3.4 in this context. Let us recall a few facts regarding the maximal contact curves
associated to a branch. For a fixed i ∈ {1, 2}, let say i = 1, any h ∈ C{x, y} satisfying
[ f1, h]0 = βq will be called a maximal contact curve of genus q −1 with f1. In [31], Zariski
considers a particular set ofmaximal contact curves Dq for 1 ≤ q ≤ g defined by a truncation
of the Puiseux series of the curve C1 as follows:

s(1)
q (x) =

∑

j ∈ (β0)
β0 ≤ j < β1

a(1)
j x j/β0 + · · · +

∑

j ∈ (eq−1)

βq−1 ≤ j < βq

a(1)
j x j/β0 .

The minimal polynomial gq(x, y) ∈ C[x, y] of s(1)
q (x) is given by

gq(x, y) =
∏

ε
β0/eq−1=1

(y − s(1)
q (εx)) (3.8)

and the plane branch Dq given by gq has maximal contact with C1. In addition, gq is monic

with degy(gq) = β0
eq−1

. In what follows, we put g0 = x . The branches Dq are called semiroots
of C1 and any element h ∈ C{x}[y] with degy(h) < degy( f1), that is, h ∈ Pβ0 , admits a
unique G–adic expansion (cf. [1, Chap. 1 and 3]) in terms of G = {g0, g1, . . . , gg}, that is,

h =
∑

α=(α0,...,αg)∈Ng+1

bαg
α0
0 g

α1
1 · · · gαg−1

g−1 g
αg
g , (3.9)

with bα ∈ C and

(1) 0 ≤ αk < nk = ek−1
ek

for 1 ≤ k ≤ g.

(2) If we denote hα = g
α0
0 g

α1
1 · · · gαg−1

g−1 g
αg
g , then v1(hα) �= v1(hγ ) for α �= γ.

Remark 3.5 Notice that if h ∈ C{x}[y] is given as (3.9), that is
h =

∑

γ=(γ0,...,γg)∈Ng+1

bγ g
γ0
0 g

γ1
1 · · · gγg−1

g−1 g
γg
g

and v1(h) = α0β0 + · · · + αqβq with αq �= 0 for q ≤ g and 0 ≤ αk < nk for 1 ≤ k ≤ q ,
that is, eq = max1≤i≤g{ei : ei | v1(B)}, then

ϕ∗
1 (h) = ϕ∗

1 (bαg
α0
0 · · · gαq

q ) + (h.o.t.) = Qh
v1(h)(a

(1))tv f (h) + (h.o.t.),

where Qh
v1(h)(a

(1)) is a polynomial in the coefficients of the Puiseux series of C1. The

polynomial Qh
v1(h)(a

(1)) can be explicitly computed and satisfies some useful properties
related to the coefficients of the Puiseux series. We refer to [28, Sec. 1] for further details.

Remark 3.6 Notice that, by (3.7), C1 and C2 share the same maximal contact curves. In
particular, given H ∈ C{x}[y] with degy(H) < β0 we get v1(H) = v2(H). Moreover,
if H ∈ (x, y) then v1(dH) = v2(dH) = v1(H) = v2(H) so (α, α) ∈ � f1 f2 for every
0 �= α ∈ S1 = S2.

Now we are ready to provide the generalization of Proposition 3.4.

Lemma 3.7 Let C1 and C2 be two equisingular plane branches with semigroup 〈β0, . . . , βg〉
and intersection multiplicity I ≥ ngβg. If ω = A dx − B dy ∈ E ( f1)∩ f1 ·
1(log C1) with
B( f1)x + A( f1)y = M f1, then we have

ϕ∗
i (M) = ekβk+1

β0
bi t

v1(B)−β0
i + (h.o.t.), ϕ∗

i (B) = bi t
v1(B)
i + (h.o.t.) for i = 1, 2

123



   64 Page 14 of 22 P. Almirón, M. E. Hernandes

where k = max{l : el � (v1(B) − v1(( f1)y))}. Moreover, b1 = b2 if I > ngβg or eq | v1(B)

for some q < g. Otherwise, each bi depends on the coefficients a(i)
l with l ≤ βg.

Proof From Proposition 3.4, we have the required expression for i = 1.
Since M, B ∈ C{x}[y] with degy(M), degy(B) < β0, by Remark 3.6, we get v2(B) =

v1(B) = ∑q
l=0 αlβl with αq �= 0 and v2(M) = v1(M) = v1(B) − β0. So, considering the

G–expansion of M and B, according to Remark 3.5, for i = 1, 2 we have

ϕ∗
i (M) = ϕ∗

i (b
M
α g

α0−1
0 g

α1
1 · · · gαq

q ) + (h.o.t.) = QM
v1(M)(a

(i))tv1(B)−β0
i + (h.o.t.),

ϕ∗
i (B) = ϕ∗

i (b
B
α g

α0
0 g

α1
1 · · · gαq

q ) + (h.o.t.) = bi t
v1(B)
i + (h.o.t.).

As ϕ∗
i (g0) = tβ0

i , independently of i , the coefficient of tv1(B)−β0
i in ϕ∗

i (g
α0−1
0 g

α1
1 · · · gαq

q ) and

the coefficient of tv1(B)
i in ϕ∗

i (g
α0
0 g

α1
1 · · · gαq

q ) are the same, so

bi
bBα

= QM
v1(M)(a

(i))

bMα
, that is QM

v1(M)(a
(i)) = bMα

bBα
bi = ekβk+1

β0
bi , (3.10)

where the last equality follows using i = 1.
By [28, Lemma 1.7], QM

v j (M)(a
(i)) and bi = QB

v j (B)(a
(i)) are non-zero homogeneous

polynomials in the coefficients a(i)
k of ϕi (ti ) with k ≤ βq . In this way, if q �= g or I > ngβg ,

by (3.7), we get

b2 = b1 and QM
v1(M)(a

(2)) = QM
v1(M)(a

(1)) = ekβk+1

β0
b1,

that is, the coefficients are independent of the branch Ci . If q = g and I = ngβg then

QM
v1(M)(a

(i)) and QB
v1(B)(a

(i)) satisfy (3.10) and they depend on a(i)
l with l ≤ βg . ��

By Remark 3.1, given α ∈ � f with f = f1 f2, to characterize the infinite fiber F�
i (α) =

∞ it is enough to characterize the values of differential forms in f j ·
1(log C j )with respect
to fi . Firstly, we will analyze the differential forms in E ( f j ) ∩ f j · 
1(log C j ). To do so,
we will apply similar ideas to the ones in [11, Sec. 4].

Proposition 3.8 Let C1 and C2 be two equisingular plane branches with semigroup
〈β0, . . . , βg〉 and intersectionmultiplicity I . Letω = A dx−B dy ∈ E ( f1)∩ f1 ·
1(log C1).
If

(a) I > ngβg or

(b) I = ngβg and eg−1 | (ν1(B) − (c + β0 − 1))

then
ν2(ω) = ν1(B) + I − (c + β0 − 1) = ν2(B) + I − (c + β0 − 1), (3.11)

where c denotes the conductor of 〈β0, . . . , βg〉. In particular, ω /∈ f2 · 
1(log C2).

Proof Sinceω = A dx−B dy ∈ E ( f1)∩ f1 ·
(log C1) there exists M ∈ C{x}[y] satisfying
B( f1)x + A( f1)y = M f1 and, by (3.4),

( f1)yω = M f1dx − Bd f1. (3.12)
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According to Proposition 3.4 and Lemma 3.7, we have

ϕ∗
2 (M) = ekβk+1

β0
b2 t

v1(B)−β0
2 + (h.o.t.), ϕ∗

2 (B) = b2 t
v1(B)
2 + (h.o.t.),

where k = max{l : el � (v1(B) − v1(( f1)y))}. In addition, we get

ϕ∗
2 ( f1) = at I2 + (h.o.t.).

Thus,

ϕ∗
2 (( f1)yω) = ϕ∗

2 (M f1dx − Bd f1)

= (aekβk+1b2t
v1(B)+I−1
2 + h.o.t.)(aIb2t

v1(B)+I−1
2 + h.o.t.)

= (ekβk+1 − I )ab2t
v1(B)+I−1
2 + (h.o.t.).

(3.13)

If I > ngβg = eg−1βg then for all 0 ≤ k ≤ g − 1 we have I �= ekβk+1. If I = ngβg

and eg−1 | (ν1(B) − ν1(( f1)y) then k < g − 1 and thus I = ngβg = eg−1βg �= ekβk+1.

So, for the condition a) or b) we get v2(( f1)yω) = v1(B) + I .
Since we have B, ( f1)y ∈ C{x}[y] with degy(B), degy(( f1)y) < β0, it follows by

Remark 3.6 and (2.3) that
v2(B) = v1(B) and v2(( f1)y) = v1(( f1)y) = c+β0 − 1. So, v2(ω) = v1(B)+ I − (c−

β0 − 1) = v2(B) + I − (c − β0 − 1). ��
Let us now focus on the case of a reduced plane curve singularity with two equisingular

branches and I = [ f1, f2]0 > ngβg.Recall that givenω = Adx−Bdy ∈ 
1, itsWeierstrass
1-form (see [20]) of ω with respect to f1 is given as

ω = ω0 + ω1 (3.14)

with ω0 = P f1dx − Qd f1 ∈ G ( f1) and ω1 = A1dx − B1dy ∈ E ( f1).

Remark 3.9 For i, j ∈ {1, 2}, i �= j, given ω ∈ G ( f j ) = C{x, y} f jdx + C{x, y}d f j ⊂
f j ·
1(log C j ) we get vi (ω) ≥ I = [ fi , f j ]0 = vi ( f j ) = vi (d f j ). In addition we have that

I + S(Ci ) ⊂ vi (G ( f j )) ⊂ vi ( f j · 
1(log C j )).

In fact, given γ ∈ S(Ci ) we consider h ∈ C{x, y} such that vi (h) = γ . Since hd f j ∈
G ( f j ) ⊂ f j · 
1(log C j ), we get vi (hd f j ) = γ + I ∈ vi (G ( f j )) ⊂ vi ( f j · 
1(log C j )).

Notice that Remark 3.9 implies that in order to compute the infinite fibers for which we
need to work a bit we only need to look at thoseω ∈ f j ·
1(log C j ) for which vi (ω) ≤ I +c.

Remark 3.10 Given ω = Adx − Bdy ∈ f1 · 
1(log C1) we consider its Weierstrass 1-
form with respect to f1, that is ω = ω0 + ω1 with ω0 ∈ G ( f1) and ω1 ∈ E ( f1). Since
res(ω) = res(ω0) + res(ω1), we have v1(res(ω)) ≥ min{v1(res(ω0)), v1(res(ω1))}. In
thisway if v1(res(ω)) < 0 then, since v1(res(ω0)) ≥ 0 by construction,we get v1(res(ω)) =
v1(res(ω1)).

Lemma 3.11 Suppose that I > ngβg. Given ω = ω0 + ω1 ∈ f1 · 
1(log C1) as before.
If v1(res(ω)) < 0 then v2(ω) = v2(ω1) = I + v2(res(ω)) = I + v2(res(ω1)) =

I + v1(res(ω1)).
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Proof Given ω = Adx − Bdy ∈ f1 · 
1(logC1) we consider its Weierstrass 1-form with
respect to f1, that is ω = ω0 + ω1 with ω0 ∈ G ( f1) and ω1 := A1dx − B1dy ∈ E ( f1). By
Remark 3.10 we get v1(res(ω)) = v1(res(ω1)) where res(ω1) = B1/( f1)y .

By hypothesis I > ngβg, then since degy(B1), degy(( f1)y) < β0, by Remark 3.6, it
follows that

v2(res(ω1)) = v2(B1) − v2(( f1)y) = v1(B1) − v1(( f1)y) = v1(res(ω1))

and by Proposition 3.8, we get v2(ω1) = I + v2(res(ω1)) = I + v1(res(ω)) < I .
On the other hand, v2(ω) ≥ min{v2(ω0), v2(ω1)}. By Remark 3.9, v2(ω0) ≥ I and as

v2(ω1) = I + v2(res(ω1)) < I it follows that

v2(ω) = v2(ω1) = I + v2(res(ω)) = I + v2(res(ω1)) = I + v1(res(ω1)).

��
In addition, we have the following

Lemma 3.12 Suppose that I > ngβg, then c(v2( f1 · 
1(log C1))) ≤ I − β0 + 1.

Proof It is sufficient to show that for any k ∈ N with 0 ≤ k ≤ β0 − 1 we have

I − k + β0N ⊂ v2( f1 · 
1(log C1)).

For k = 0 if we take n ∈ N then xnd f1 ∈ G ( f1) ⊂ f1 · 
1(log C1) and

I + nβ0 = v2(x
nd f1) ∈ v2( f1 · 
1(log C1)).

Now consider k ∈ N such that 0 < k ≤ β0−1. By [29, Prop. 3.21], we have that c(� f1) =
−β0+1.Thus,weget−k ∈ v1(res( f1·
1(log C1))) so, there existsω ∈ f1·
1(log C1) such
that v1(res(ω)) = −k < 0. In this way, by Lemma 3.11, v2(ω) = I + v1(res(ω)) = I − k.
Taking any n ∈ N we get

I − k + nβ0 = v2(x
nω) ∈ v2( f1 · 
1(log C1)).

Hence

I − β0 + 1 + N =
β0−1⋃

k=0

(I − k + β0N) ⊆ v2( f1 · 
1(log C1))

and consequently, c(v2( f1 · 
1(log C1))) ≤ I − β0 + 1. ��
Now we are able to describe the infinite fibers of � f where f = f1 f2 and I > ngβg .

Theorem 3.13 Suppose that I > ngβg, then

v2( f1 · 
1(log C1)) = I + � f1 and c(v2( f1 · 
1(log C1))) = I − β0 + 1.

Proof Let ω ∈ f1 · 
1(log C1) and ω = ω0 + ω1 its Weierstrass 1-form with respect to f1,
that is ω0 ∈ G ( f1) ∩ f1 · 
1(log C1) and ω1 = A1dx − B1dy ∈ E ( f1) ∩ f1 · 
1(log C1).

We have that v2(ω) ≥ min{v2(ω0), v2(ω1)}.
If v2(ω) ≥ v2(ω0), then by Remark 3.9 we get v2(ω) ≥ I and v2(ω) ∈ I + � f1

because c(� f1) = −β0 + 1. If v2(ω) = v2(ω1), then by Proposition 3.8 we get v2(ω1) =
I + v1(B1) − v1(( f1)y) ∈ I + � f1 . Hence, v2( f1 · 
1(log C1)) ⊆ I + � f1 .

On the other hand, let us consider I + δ ∈ I + � f1 , that is, δ ∈ � f1 .
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If δ ≥ −β0 + 1 then, by Lemma 3.12, there exists ω ∈ f1 · 
1(log C1) such that
v2(ω) = I + δ.

If−β0+1 > δ ∈ � f1 then there existsω ∈ f1 ·
1(log C1) such that δ = v1(res(ω)) < 0.
So, by Lemma 3.11, we get

v2(ω) = v2(ω1) = I + v2(res(ω1)) = I + v1(res(ω1)) = I + δ.

In this way, I+� f1 ⊆ v2( f1 ·
1(log C1)). This conclude that v2( f1 ·
1(log C1)) = I+� f1
and, since c(� f1) = −β0 + 1, it follows that c(v2( f1 · 
1(log C1))) = I − β0 + 1. ��

As a consequence we obtain

Theorem 3.14 Let f = f1 f2 such that C1,C2 are equisingular with values semigroup
〈β0, . . . , βg〉, I > ngβg and � f its value set of Kähler differentials. Then,

c(� f ) = (I − β0 + 1, I − β0 + 1) (3.15)

In particular, c(� f ) is independent of the analytic type of each of the branches.

Proof Since I > ngβg it follows by (2.2) that I − β0 > c(S1), by (2.3) and Remark 3.6 we
get (δ, δ) ∈ � f for any δ ≥ I − β0. In addition, we have that β0 = min�1 = min�2,

and Theorem 3.13 implies that c� f ≤ (I − β0 + 1, I − β0 + 1). To prove the equality, it is
enough to show that (I −β0, I −β0) ∈ � f is a maximal point (in fact an absolute maximal)
of � f .

ByTheorem 3.13, we get F
� f
{i} (I−β0, I−β0) �= ∞ for i ∈ {1, 2} (seeDefinition 2.2). Let

us consider for example i = 2, as the other case follows similarly. As F
� f
{2} (I −β0, I −β0) �=

∞ then there exist α ∈ F {2}(� f , (I − β0, I − β0)) such that α is a maximal element of
� f . As the number of branches is r = 2 then the notion of maximal, relative maximal and
absolute maximal agree. Hence α = (α1, I −β0)with α1 ≥ I −β0 is an absolute maximal in
� f . Let us assume α �= (I −β0, I −β0), then α = (I −β0+n, I −β0) for some n ∈ N\{0}
is such that F{1}(� f , α) = F{2}(� f , α) = ∅ and α1 ∈ I + �2 since c(�2) = −β0 + 1, but
this is a contradiction with Theorem 3.13. ��

Remark 3.15 A natural problem is to determine c(� f ) for f = ∏r
i=1 fi where the branches

Ci are equisingular with semigroup 〈β0, . . . , βg〉 and satisfy Ii, j > ngβg for 1 ≤ i < j ≤ r .
A straightforward generalization of previous theoremwould suggest that c(� f ) = (1−β0+∑

i∈I\{1} I1,i , . . . , 1 − β0 + ∑
i∈I\{r} Ir ,i ), but this turns out not to hold in general. Indeed,

consider f1 = y, f2 = y−xn, f3 = y−xm with 1 < n < m. In this case, g = 0, n0 = β0 =
1 and I1,3 = m > I1,2 = I2,3 = n > n0β0 = 1. According to [13, Example 20], one has
c(� f ) = (m+1, n+1,m+1) �= (1−β0+ I1,2+ I1,3, 1−β0+ I2,1+ I2,3, 1−β0+ I3,1+ I3,2).

Theorem 3.14 allows us to compute the invariant �2 described in Sect 2 for the fractional
ideal J = 
 f

T or(
 f )
� ϕ∗(
 f ) (see 2.8) whose values set is E = � f . In fact, according

to Remark 3.1 we get ω ∈ f1 · 
1(log C1) if and only if v1(ω) = ∞. So, we have that
N1(J ) = f1 · 
1(log C1) and, by (2.7) we get �2 = �(�2 \ v2( f1 · 
1(log C1))).

Corollary 3.16 With the previous notation we have that

�2 = I − β0 + 1 − �N\�2 − �{λ > β0 : λ /∈ �1}.
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Proof By Theorem 3.13 we have that v2( f1 · 
1(log C1)) = I + � f1 and c(v2( f1 ·

1(log C1))) = I − β0 + 1. Since c(�2) ≤ c(v2( f1 · 
1(log C1))) we have

�2 = �(�2 \ v2( f1 · 
1(log C1)))

= �{α ∈ �2 : α < I − β0 + 1} − �{δ ∈ I + � f1 : δ < I − β0 + 1}
= I − β0 + 1 − �N \ �2 − �{γ ∈ � f1 : γ < −β0 + 1}.

It follows, by (3.6), that �2 = I − β0 + 1 − �N\�2 − �{λ > β0 : λ /∈ �1}. ��

4 The Tjurina number for two branches

In Sect. 3we have computed the conductor c(�) of the value set� ofKähler differentials for a
plane curveC = C1 ∪C2 defined by f = f1 f2 such thatC1,C2 are equisingular with values
semigroup 〈β0, . . . , βg〉 and intersection multiplicity I > ngβg . Also, in Theorem 2.10 we
have shown that the Tjurina number of a reduced plane curveC with any number of branches
can be computed in terms of the distance d(�\S) between its values semigroup S and its set
� = �∪{0}. In addition, in Sect. 2 we explained how to compute this distance if one knows
the conductor of the values set. All this together allows us to provide explicit formulas for
the Tjurina number in this case.

Theorem 4.1 Let C = C1∪C2 be a plane curve such that C1,C2 are equisingular with values
semigroup S(Ci ) = 〈β0, . . . , βg〉, conductor c(S(Ci )) = c and intersection multiplicity

I = [C1,C2]0 > ngβg. Then, the Tjurina number of C is given by

τ = 2I + c − 1.

In particular, τ is constant in the equisingularity class of C.

Proof Let S be the values semigroup and � be the values set of Kähler differentials of C . By
Theorem 2.10 and Remark 2.1 we get

τ = μ − d(� \ S) = 2c + 2I − 1 − d(� \ S). (4.1)

Since the values semigroup S of C is such that S ⊆ � = � ∪ {(0, 0)} and m� = (β0, β0)

we get

d(� \ S) = d�((0, 0), c(S)) − dS((0, 0), c(S)) = d�((β0, β0), c(S)) + 1− (c + I ), (4.2)

where dS((0, 0), c(S)) = δ(C) = c + I (see Example 2.8).
By Theorem 3.14 we have c(�) = (I − β0 + 1, I − β0 + 1) ≤ (I + c, I + c) = c(S), so

we get
d�((β0, β0), c(S)) = d�((β0, β0), c(�)) + d�(c(�), c(S)). (4.3)

If J = ϕ∗(
 f ) then, by Theorem 2.7, we have that

d�((β0, β0), c(�)) = l

(
J

J (c(�))

)

=
2∑

i=1

(I − β0 + 1 − β0 − �((N + β0)\�i ) − �i ),

where �1 = 0 and, by Corollary 3.16, �2 = I − β0 + 1− �N \ �2 − �{λ > β0 : λ /∈ �1}.
Since, �N \�2 = β0 + �((N+β0) \�2) and (N+β0) \�1 = {λ > β0 : λ /∈ �1} we get

d�((β0, β0), c(�)) = I − 2β0 + 1. (4.4)
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Considering Jc = {ω ∈ ϕ∗(
 f ) : v(ω) ≥ c(�)} then v(Jc) = (I−β0+1, I−β1+1)+N
2

and, by Theorem 2.7, we have that

d�(c(�), c(S)) = l

(
Jc

Jc(c(S))

)

= 2(I + c − (I − β0 + 1)) = 2(c + β0 − 1). (4.5)

The expressions (4.4) and (4.5) give us, by (4.3), that d�((β0, β0), c(S)) = I + 2c − 1.
So, by (4.2) we have d(� \ S) = c and, consequently by (4.1) we have τ = 2I + c − 1. ��

Notice that, by the previous result, we get μ − τ = c = μ1 = μ2 for a plane curve
C = C1 ∪ C2 with C1 and C2 equisingular with values semigroup S(Ci ) = 〈β0, . . . , βg〉
and intersection multiplicity I > ngβg where μi = c is the Milnor number of Ci .

Example 4.2 Let us consider

f = y6 − 3x3y4 − 2x5y3 + 3x6y2 − 6x8y − x9 + x10

g = y6 − 3x3y4 + 4x5y3 +
(
3x6 − 3

2 x
7
)
y2 −

(
12x8 + 3

8 x
9
)
y − x9 + 13

2 x10 − 1
64 x

11.

h = y6 − 3y4x3 +
(
− 6

19 x
6 + 4x5

)
y3 +

(
− 3

27436 x
10 + 9

76 x
8 − 3

2 x
7 + 3x6

)
y2+

+
(
− 3

1042568 x
13 + 3

13718 x
12 − 9

1444 x
11 + 3

38 x
10 − 9

152 x
9 − 12x8

)
y − 1

3010936384 x
17

+ 3
79235168 x

16 − 15
8340544 x

15 + 5
109744 x

14 − 301
438976 x

13 + 153
11552 x

12 − 547
1216 x

11 + 13
2 x10 − x9

We have that f , g and h are equisingular plane branches sharing the semigroup S = 〈6, 9, 19〉
with conductor c = 42 and I (g, h) = 63 > I ( f , h) = I ( f , g) = 58 > n2β2 = 57.

In this case, using the Singular software [16], we get τ( f ) = 35, τ (g) = 36, τ (h) = 37,

τ( f g) = 2I ( f , g) + c − 1 = 157 = 2I ( f , h) + c − 1 = τ( f , h) and τ(gh) = 169 = 2I (g, h) + c − 1.

that illustrate Theorem 4.1.

In [3], the inequality μ/τ < 4/3 was showed for any plane curve. The previous results
allows to provide a new proof of that inequality in the case of a plane curve with two
equisingular branches with values semigroup S(Ci ) = 〈β0, . . . , βg〉 and I > ngβg.

Corollary 4.3 Let C = C1 ∪ C2 be a plane curve defined such that C1,C2 are equisingular
with values semigroup S(Ci ) = 〈β0, . . . , βg〉 and intersection multiplicity I > ngβg. Then,
μ/τ < 4/3.

Proof From Theorem 4.1 we have 4τ − 3μ = 2I − 2c − 1 where c = μi is the Milnor
number of the branch Ci . By hypothesis I > ngβg > c, then the results follows. ��

4.1 Remarks on theminimal Tjurina number inmore general cases

To conclude, we draw attention to some challenges concerning the Tjurina number in a more
general setting.

First, Theorem 4.1 establishes that for a curve with two equisingular branches with values
semigroup S(Ci ) = 〈β0, . . . , βg〉, the condition I > ngβg is sufficient to guarantee a
constant Tjurina number within the equisingularity class. It is natural to ask up to what
extent this holds in the case of a curve with more than two branches. The following example
shows that if C = ∪r

i=1Ci is a curve with r ≥ 3 branches with values semigroup S(Ci ) =
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〈β0, . . . , βg〉, then condition Ii, j := [Ci ,C j ]0 > ngβg is not enough to have constant
Tjurina number in the whole equisingularity class.

Example 4.4 Consider f1 = y5 − x8 + 2x5y2, f2 = y5 − x8 + 3x5y2, f3 = y5 − x8 + x4y3

and f4 = y5−x8+7x5y2.Wehave that f = f1 f2 f3 and g = f1 f2 f4 define two equisingular
curves each one with three equisingular branches with values semigroup 〈5, 8〉, all of them
have intersection multiplicity Ii, j = 41 > 40 = ngβg. A computation with Singular [16]
shows τ( f ) = 258 �= 261 = τ(g).

It would be certainly good to obtain sufficient topological conditions for a curve with several
branches to have constant Tjurina number in the equisingularity class. In [11, 27] some
families of plane branches with constant Tjurina number in the equisingularity class are
shown. One could think that for a curve with two branches, to have constant Tjurina number
in the equisingularity class of each of the branches could be a sufficient condition to have
constant Tjurina number in the equisingularity class of the curve. The following example
shows that this is not enough.

Example 4.5 Let us consider the branches

f1 = (y5 − x7)2 − x10y3, f2 = (y5 − x7)2 − 5x10y3 and f3 = (y5 − x7 + x4y3)2 − 3x10y3.

All branches are equisingular with semigroup 〈10, 14, 71〉 and, by [11], for any branch in this
equisingularity class the Tjurina number is constant τ( fi ) = 94. Let us denote f = f1 f2
and g = f2 f3. In both cases [ fi , f j ]0 = 142 = 2 ·71 = ngβg.A calculation with Singular
[16] shows that τ( f ) = 402 �= 406 = τ(g).

Following with Example 4.5, we observe that it is quite close to the curves considered in
Theorem 4.1. The difficulty here relies on the remaining cases of (b) of Proposition 3.8, i.e.
to compute values, with respect to f2, of those differentials ω ∈ E ( f1) ∩ f1 · 
1(log C1)

such that eg−1 � res(ω). In that cases, one can check that the initial term in Eq. (3.13)
cancels and one need to impose some open conditions in order to guarantee the value of ω.
A careful analysis of this situation leads us to think that in the case of a plane curve with
two equisingular branches with values semigroup 〈β0, . . . , βg〉 and I = ngβg there should
exists an open Zariski set for which v2( f1 · 
1(log C1)) = I + 1 + � f1 . This leads us to
propose the following conjecture.

Conjecture 4.6 Let C = C1 ∪ C2 be a plane curve with two equisingular branches with
semigroup S1 = S2 = 〈β0, . . . , βg〉 and I = [C1,C2]0 = ngβg. Denote by c the conductor
of Si . Then, the minimal Tjurina number in the equisingularity class of C is

τmin = 2I + c.

In fact, Conjecture 4.6 is actually true for S = 〈β0, β1〉 as showed in [8, Tableu 3, δ pair]
(see also [26]).
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