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Abstract

In this paper we provide a family of reduced plane curves with two branches that have a
constant Tjurina number in their equisingularity class, along with a closed formula for it in
terms of topological data.
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1 Introduction

Let (C¢, 0) be a germ of a reduced plane curve singularity with » > 1 branches. One of its
main analytic invariants is the Tjurina number, which can be computed as
Cix,
7(Cy) = dime Gyt
(f ’ f X f y)
where f = 0 is a defining equation for (C, 0). Despite being a well-studied invariant,
several important problems remain open. Among these, determining a closed formula for the
minimal Tjurina number in a fixed topological class in terms of topological invariants stands
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out as one of the most challenging. A closely related and even more difficult problem is the
characterization of plane curves with a constant Tjurina number within an equisingularity
class.

While determining a closed formula for the minimal Tjurina number in a fixed equisingu-
larity class is completely solved for r = 1 (see [2, 23]), it remains open for » > 1. In fact, for
r > 1 arecursive formula was proven by Briancon et al. [8] for positive weight deformations
of a semi-quasihomogeneous curve x? + y?, i.e. plane curves with r = gcd(a, b) branches
that are all topologically equivalent and have a single Puiseux pair. Recently, Genzmer [21,
22] has provided an algorithm that allows the computation of the minimal Tjurina number
in a fixed topological class. However, a closed formula, or even a manageable recursive one
in terms of topological data, is still far beyond reach at this moment.

The search for curves with a constant Tjurina number in the equisingularity class is even
less developed. Except for cases where the equisingularity class contains only one analytic
representative, there are few known irreducible cases: irreducible plane curve singularities
with value semigroup (B, ..., B,) satisfying ged(By. ..., B,—1) = 2. The case g = 2
was first described in 1990 by Luengo and Pfister [27], and the general case for g > 2 was
provided by Abreu and the second-named author [11] in 2022. Up to best of the authors’
knowledge, there are no cases in the literature of plane curves with r > 1 branches in which
all different analytical representatives in a class of equisingularity have the same Tjurina
number.

The main goal of this paper is to present a family of plane curve singularities with two
branches that have a constant Tjurina number in their equisingularity class but whose branches
can achieve distinct Tjurina numbers, along with a closed formula for this number in terms
of topological data.

To provide such a family, we have used the ideas of [11]. There, a computation of the
Tjurina number in terms of the set of values of Kéhler differentials plays a crucial role. For
an irreducible plane curve, Berger [7] shows that u(C) — 7(C) = #(A s \ S) where u(C)
is the Milnor number, S is the semigroup of values of C and Ac is the set of values of the
Kihler differentials of C. Our first main result, Theorem 2.10, presents a generalization of
this result for any reduced plane curve. More precisely, we show that for a reduced plane
curve C with » > 1 branches we always have

1(C) —t(C) =d(Ac, )

where d (A7f, S) indicates the distance between the values set A7f = Ay U({0} and S as
presented in Sect. 2. This result has its own interest as it is provided for any » > 1 and
presents an alternative method to compute the Tjurina number of a reduced plane curve to
the ones presented in [6, 24].

The next step is a careful study of the set of values of the Kihler differentials A¢ . In [6,
24] some relations are presented that allow us to express 7 (C) in terms of the Tjurina number
of irreducible components {C;; i =1, ..., r} of C, the intersection multiplicity of [C;, C;]o
and an analytical invariant ®; for 2 < i < r related with the values of Kéhler differentials
of C. In Sect 3, we study the set A¢ for C = C1 U C; considering C; and C; equisingular
plane branches with value semigroup (B, .. .,Eg) and I := [Cy, C2lo > ngfBg where
ng = ged (EO, R Bg_l ). In this case, considering logarithmic differentials, we describe the
infinite fibers of A ¢ (see Sect 3.1) that allow us to compute ®» and to show that the conductor
of A¢ depends only on [Cy, C2]p and the multiplicity of C; (see Theorem 3.14). Therefore,
we show that in this case the conductor of A¢ only depends on topological data and thus it
is independent of the analytic type of the curve. This result also has its own interest as for
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the family of irreducible plane curve singularities with value semigroup (B, . . . , Eg), where
gcd(Bo, - - - » Eg_l) = 2 provided in [11] the conductor of A may change but the Tjurina
number is still constant. Then, our family with two branches has even a stronger behavior in
this sense.

These two ingredients, the generalization of Berger’s result and the description of the
infinite fibers of A ¢, are enough to achieve our main goal. In Sect. 4, considering C = C1UC2
such that C; and C; sharing the same value semigroup (By. ..., B,) and I > n,B,, we prove
(Theorem 4.1)

T(C) =21 + u(Cy) — 1

that is, the Tjurina number is given by only topological data, i.e. the intersection multiplicity
and the Milnor number 1 (C1) = w(C>) of the branches. This result gives us new examples
of topological classes where the Tjurina number is constant. Moreover, in contrast to the
irreducible case, the number of possible plane curves with two branches belonging to this
family is quite large. In addition, our formula allows to provide a new proof in this particular
case of the inequality «(C)/t(C) < 4/3 provided by the first named author [3] for any plane
curve.

A deeper analysis of our results reveals that achieving similar results in more general
cases presents an interesting yet challenging problem. To conclude the paper, we discuss
some of the key difficulties in these cases and propose conjectures that could guide future
investigations.

2 Value sets of fractional ideals

Let C ¢ be a (reduced) germ of complex plane curve singularity with equation f = [[;_, fi =
0 where f; € C{x, y} is irreducible. Each f; defines a branch C; and its analytical type is
characterized by the local ring &; := C{x, y}/(f;) up to C-algebra isomorphism. The field
of fraction % of 0} is isomorphic to C(#;) and associated to it we have a canonical discrete
valuation v; : % — Z := Z U {oo}. The isomorphic image of ¢; in C(t;) = % can be
given by C{z]", ijn aj tl.’} where n is the multiplicity of f;, the set {n, j; a; # 0} does not
admit a nontrivial common divisor and

gty =11y a;rf @1

jzn

is a Newton—Puiseux parametrization of C;. Notice that we have f; (ti", ijn aj ;I;’ ) =0,

i . .
j=najxn aPuiseux series of

or equivalently f; (x, ijn ajx%) = 0. Wecall 5;(x) = )
the branch C;. If h € C{x, y} and ¢;(t;) = (x;, yi) € C{t;} x C{t;} is a parametrization
of C;, we denote ¢ (h) := h(x;, y;) € C{t;}. Thus, if h € 0; with h € C{x, y}, then we
get v; (h) = ordy, (p;k(h) = [fi, hlo, where [f;, h]p := [C;i, Cp]o denotes the intersection
multiplicity of C; and C}, at the origin.

The image of v; of &; \ {0}, that is

S(Ci) :={vi(h) eN : he 6;, h # 0}

is the semigroup of values of C; and it is a numerical semigroup whose minimal generating
set can be computed from a Newton—Puiseux parametrization (cf. [31]) as follows.
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If f € C{x, y} is irreducible with Newton—Puiseux parametrization (z", ) a_,-tj ), let

(z) € Z be the set of multiples of z, By = n and set

j=n

ej—1 =ged{Bo, ..., Bi—1}, Bi =min{j :a; #0,j ¢ (¢;—1)} fori =1,..., g where eg = 1.

Let us define ng =1,

Bo=PFo. Br=F1 and Biyy =niB;+Bit1 — B where, nj =¢;_1/e;forl <i<g.
(2.2)

It follows (cf. [31]) that the values semigroup S(C r) is minimally generated by the ele-
ments B, ..., Eg, ie.

S(Cr)=(Bo.... . Bg) ={y e N:y=moBo+--+mgB, withm; €N, for i=0,...,g}.

Since S(Cr) is a numerical semigroup it admits a conductor ¢(S(C)), that is the minimun
element in S(C r) such that ¢(S(Cy)) + N C S(Cy) and it can be computed (cf. [31]) by

8
e(S(C) = (i — DB —Bo+1=v(fy) = Bo+ 1. (23)
i=1

The topological (equisingularity) class of the branch C ¢ is totally determined by its values
semigroup.

For f = [[i_, fi with r > 1 the topological class of Cy is also characterized by a
semigroup as we describe in the sequel.

The total ring of fraction .#  of the local ring & = C{x, y}/(f) is isomorphic to
[T, C@). If ;; : & — % denotes the natural projection then we can consider
v > 7" defined by v(g) = (vi1(g),...,v-(g)) where ¢ € % and v;(q) stands
for v; (71 (¢)).

In what follows we set I := {1, ..., r} and we consider the product order on Z", that is,
givena = (ag,...,o),8=B1,....6r) €Z,

o <fB< «o; <B; forall i € I.
The values semigroup of C is the additive submonoid of N defined by
S =58(Cp):={vh) = (i(h),...,v.(h)) e N : h e O, hisnotadivisor of 0}.

Ford = {ji,.... i} CIanda = (ay,...,0) € Z" we put pry(a) = (aj,..., ;) €
N*. Notice that S C S(Cy) x -+ x 8§(Cy) and pry(S) = S(Cy,) where f; = ]_[jGJ fi
Some elementary properties of the semigroup of values S are the following (see [17]):
(1) Ifa, B € S, then
min{e, B} := (min{e;, BiDier € S.
(2) Ifa, B € Sand j € T witha; = B;, then there exists € € S such thate; > a; = 8; and
€; > min{o;, B;} foralli € T\{j}, with equality if o; # B;.
(3) The semigroup S has a conductor ¢g := ¢(S), which is defined to be the minimal element
of S such that y € § whenever y > c¢g. Moreover, we get (see [17])

es=(1+ ), Niveeoert D L) (2:4)

ieT\{1} ieT\{r}

where ¢; 1= ¢(S(C;)) and I; j = [fi, filo.
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Remark 2.1 The conductor of the semigroup of a plane curve C defined by f is closely
related to its Milnor number 1 (C) = dimc¢ C{x, y}/(fy, fy). Infact, if f is irreducible then
u(C) =csandfor f =[[;_, fi we get

u(C)=Zpri(cs)—r+1—Zc,+2 o L+l 2.5)

i=1 l<1<]<r

For r > 1, the semigroup S is no longer ﬁmtely generated, but it is finitely determined
(see [9, 17]). However, if we allow v(h) € S C 7" for any h € 0, that is, v; (0) = oo, then
(S, min, +) is a finite generated semiring (see [14]).

Now, for a given A C 7', a € 7" and an index subset fJ # J C I, we define

Fy(A,a)={B€A : Bj=a; Vjed and B> Vk ¢J},
F3(A,o)={BeA : Bj=a; VjeJ and B >ax Vk¢J}.

The fiber of « in A is defined as F(A, o) = U/_, F; (A, o). We will abuse of notation and
denote F; (A, a) := F|;(A, ).

The fibers F (S, o) are important in order to determine S in terms of its projections (see
(17D.

An element y € S is called a maximal element of S if F(S,y) = . If, moreover,
F3(S,y)=0forallJ C I suchthat@ # J # I, then y is said to be absolute maximal. On
the other hand, if y is a maximal and if F3(S, o) # @ for all J C I such that §J > 2, then
y will be called relative maximal. It is easily checked that the set of maximal elements of S
is finite.

Definition2.2 Let A C Z' be a set satisfying the properties (1), (2) and (3). We will say
that o has infinite fiber in A with respect to J C I, writing F 34 (a) = oo, if there exists
B € Fs(A, ) such that prr\g5(8) > prr\s(ca).

Observe that o has infinite fiber in A with respect to J C T is the same as saying that

(8 eN" | prs(8) = pra(@), pring(8) = prrya(ea)} C A,

or equivalently, there exists 8 € Fs(A, «) such that 8 + F3(N",0) C F3(A, ). There are
several other characterizations of infinite fibers see [17, Proposition 2.4] and [18, Lemma
1.8] for further details.

Many of the above properties hold for fractional ideals of ¢ and its set of values. For the
convenience of the reader, we present them in the next section.

2.1 Basic properties of value set of fractional ideals

A fractional ideal J C % of 0 is a -module such that there exists a regular element i € &
satisfying hJ C 0. It follows that for any fractional ideal J of & its value set E := v(J) is
arelative ideal of S, i.e. S + E C E and there exists y € S suchthat y + E C S.

By [4, 10], for any two fractional ideals J, C J; of & we can compute the length /(J;/J>)
(as 0-modules) by comparing their value sets by means a saturated chain as follows.

For a fractional ideal J C ¢, a saturated chain in E = v(J) is a sequence

o <al <. <

of elements in E such that for every element € € Z" such thata’ < € < a'*! onehase ¢ E.
Such a chain is said to have length n. According to [10, Proposition 2.3], any saturated chain
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in E between o and " has the same length. This property allows us to define a distance
function between two elements in E: if «°, o € E with «® < o” then its distance in E,
denoted by dg(a®, ™), is the length of any saturated chain in E with «© as initial element
and «" as final element.

Example2.3 Let f = (y*> — 2x%y — x> + x*)(»? + x3). According to [12, Example 3.11]
we get

§=5(Cy) ={(0,0), (k. k); 2 <k < T)U{(6, 6++k1), (6+k2.6), k1. ky € NJU{(8, 8)+N}.

Thus, ¢s = (8, 8). We have ds((0, 0), (8,8)) = 8 as we can see with the following two
different saturated chains of length 8 in S :

=00 <al=2,2)<e?=@3B3)<a’=44) <a*=(5,5)
<a®=(6,6) <a®=(7,6) <o’ =(7,7) <a®=(8,8),

" =0,0<a'=2,2)<a?=03,3) <a’=44) <a*=(5,5)
<ad=(6,6)<a®=(6,7) <a’ =(6,8) <ad=8,?8).

As for S, the value set of a fractional ideal also satisfies properties (1), (2) and (3)
(see [10]). So, if J is a fractional ideal of &, then its value set E has always a minimum
mg = min{e € E} and a conductor ¢cg :=min{y € E : y + N C E}.

In this way, the colength of fractional ideals can be computed according the following

Theorem 2.4 [10, Section 2] Let J, C Jy be fractional ideals of 0 with E; = v(J;) for
i=1,2. Then,

Z(JI/J2) = d(El\E2) = dEl (mEl s cEz) - dE2 (mE27 CE2)~

Remark 2.5 In general, for any two subsets E1, E; € Z", E» C Ej satisfying properties

(1), (2), (3) we define its distance as d(E|\E2) = dg,(mEg,, ¢g,) — dg,(mE,, CE,).
Also, it is obvious that for any y > ¢g, we have

d(E\\E2) =dg,(mg,,y) —dg,(mE,, ).

This method has the disadvantage that we need a lot of information about the value set
E. In order to avoid the use of a saturated chain in £, Guzman and Hefez [15] provided an
alternative method to compute colengths just by using the set of relative maximal points of
the value set and its projections.

Remark 2.6 The notion of maximal, relative maximal and absolute maximal for a value set
is defined in an analogous way as in the semigroup case. For any value set E, we will denote
by M(E), RM(E), AM(E) the sets of maximal, relative maximals and absolute maximals
of E.

Let us briefly explain the Guzmén and Hefez’s method to compute colengths without the
use of a saturated chain, we refer to [15] for further details.
For any fractional ideal J of &, there is a canonical filtration indexed by « € Z" defined
as
J)={heJ; vh) = al.

Therefore, given J, € J; two fractional ideals with value sets E; = v(J;), we have that for
any y > cg, the colength (and hence its distance) is

[(J1/J2) =1(J1/J1(y) — 1(J2/ J2(y)). (2.6)
Recall that J1(y) = J2(y). In this way, we have
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Theorem 2.7 [15, Cor. 11] Let J be a fractional ideal of € with value set E = v(J) and
mg = ol If y > cg, then

TN o o
l(J(y))‘;(V’ o = 5N+ a)\pri(E)) — 6)),

where ©; is defined as
0;=0, O;=¢{ U pr«(RM(E7), for2<i<r,
{i}CIuc(l,....i}
with pri(aj,, ..., a;) =aj and Eg = pry(E) if = {j1, ..., js}-

As an application of Theorem 2.7 we will provide an alternative way to compute the delta
invariant 6 (C) of a reduced plane curve C.

Example 2.8 Let C = U;1C; be areduced plane curve such that each branch C; is defined by
Jfi- If O denotes its local ring, then its normalization & is isomorphic to C{#;} x - - - x C{z}.
Since 0 is a Gorenstein ring (see [18]), the conductorideal ¥ := {z € & : z& C O}issuch

that B B
7 7 1 (0
sO)=Ill=)=ll=)==Il=].
Notice that v(¢) = N” and v(%) = ¢s + N, in particular, these values sets do not have

maximal points, that is, ®; (v(£)) = ©; (v(%)) = 0 for all i € I.In addition, we get

mg(g) = cﬂ(g) = (0, ey 0) e N and Mmy¢) = Cy(g) = Cs.

According to (2.6) we get [(2) = 1(%) — I(%55). Notice that '(cs) = %, that is
7 . 7

1(%) = 0 and, by Theorem 2.7 we have

G
! (m”) =Y (pri(es)—0—4(N+0)\pri(N)=0)) = Y " pri(es) = Y _(ci+y_ Li ),
S

iel iel iel J#
where the last equality follows by (2.4).
Since ¢; = 2§; where §; = §(C;) is the delta invariant of the branch we get

1 (¢ 1 Vi 1
50 =3t (%) —2 (m)) =3 2@+ L) =2 6k ) Ly,

ieT i ieT j<i

In this way, we recover the well-known formula for the delta invariant of the curve C and, as
an immediate consequence of Proposition 2.5 we also obtain that

1 (0 o

In [24] is presented a way to compute the data ®; given in Theorem 2.7 without knowing
the relative maximal of the values set of a fractional ideal or any information of the values
set of E. Let us present this result.

Given J C # a fractional ideal of ¢ with E := v(J) and 7w : ¥ — _#; the natural
projection we put

Hi(J):=JNkermw; and A5(J) :=NjegN;(J).
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In this way, setting [1,7) ={1,...,i — 1} for 1 <i <r we get (cf. [24, Cor. 2.8])

0; = 4(pr; (E) \ vi (S1,i)()))- 2.7

We consider .A{1,1y(J) = pr;(E) to obtain ®; = 0 as in Theorem 2.7. In this way, we get
the following

Proposition 2.9 [24, Cor. 2.9] Let J, C Jy be fractional ideals of 0 with E; = v(J;) for
i =1,2. Then,

J
l <7;) = Z (#(pri (ED\pri(E2)) — 2(pri (ED\vi (A1, (J1))) + H(pri (E2)\vi (A1,i)(]2)))) -
ieT
Notice that Theorems 2.5, 2.7 (and (2.6)) and Proposition 2.9 provide alternative ways to
compute colength of fractional ideals according to the data available in each situation.
In this paper, we are interested in computing the codimension of a particular fractional
ideal that gives us an important analytic invariant of a plane curve: the Tjurina number.

2.2 Tjurina number

Let C be a plane curve defined by f = [[;.; fi and C; be the branch given by f; = 0. The
Tjurina number of C is T = 7(f) := dimc C{x, y}/(f, fx, fy). Denoting by h the class of
h € C{x, y} in € and considering the ideal J := & f, + O fy we have that T = l(?).

An alternative, but equivalent, approach to compute the Tjurina number is by using the
module of Kihler differentials of the curve. Let Q' = C{x, y}dx+C{x, y}dy be the C{x, y}-
module of holomorphic forms on C? and consider the submodule .Z (f) := C{x, y}df +
£, The module of Kihler differentials of C is

Ql
Q= =
F(f)
that is the &-module &dx + ¢dy module the relation d f = 0.
If i = (x;, yi) € C{t;} x C{t;} is a parameterization (non necessarily a Newton—Puiseux
parameterization) of the branch C; and h(x, y) € & then, as before, we denote ‘/’? (h) =
h(x;, y;) € C{t;}. In addition, given w = A(x, y)dx 4+ B(x, y)dy € Q, we define

ol (@) =1i(g] (A) - xj +¢](B) - ¥)) € Cl),
where x/, y! denote, respectively, the derivative of x;, y; € C{z;} with respect to ;. We put
0 Q) ={(@f (@), ..., ¢} (@) 0w eQr}C X.

By [6, Theorem 3], if Tor(S2y) denotes the torsion submodule of Q7 then we have
ker(¢*) = Tor(L2y) and the following ¢-module isomorphism:

Q= 2.8)
Y= Tory) '

In this way, ¢*($2 ) is a fractional ideal of & and, considering v; () := v; (¢} (®)), its value
set is given by

Ar =0 Q) ={vw): = W(w),...,v(®); e}

Recall that $ \ {0} C Ay so,ea, < esandmy, = (,86, ..., By) where ﬂé = min{a €
S(C;) \ {0}} is the multiplicity of the branch C;.
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The set A  is an important analytic invariant of the curve which was used for the analytical
classification of plane curves (see [25]) and, according to Pol [29, Proposition 3.31], the
Jacobian ideal J is isomorphic to ¢*(S2 r). Moreover, she shows that

v(Afy + Bfy) = v(Ady — Bdx) + ¢s — 1, consequently v(J)=As+es—1 (2.9)

where 1 =(1,...,1) e N,

In the case r = 1, Berger [7] proved that the Milnor number and the Tjurina number of
Cy arerelated by T = u — (A £\ S). Since the distance function is the natural generalization
for the difference of values set of fractional ideals in the irreducible case, it is natural to ask
for a extension of Berger’s expression for the case r > 1. From the identity (2.9) and the
previous results, we obtain the following generalization of Berger’s result.

Llleorem 2.10 Let C be a reduced plane curve. With the previous notation, let us denote by
A = Ay U{0}. Then, we have -
T=pu—dA\S). (2.10)

Proof Consider C = U!_,C;. Since J C & we have E := v(J) C Sand ¢cg < mg + ¢g. As
we have remarked, mp = (,3(1), ..., By) and by (2.9) we get mg = ¢5 + (/36, By — L
Thus, considering the relation (2.6) with y = 2¢g + (,35, ..., By) — 1 we have

f:z(é):l(i)_z(i). @.11)
J o(y) J()

Notice that [(T/O(y)) = (T O(cs)) + (O (es)/O(y)) with v(C(es)) = e¢s + N and
v(O(y)) = y + N'. In this way, by Theorems 2.5 and 2.7, we have
o o 1% r i
l (WV)) =1 (m) +1 ( ]ﬁ((c;))> = dS(Ov CS) + Z[:] (P’”i(cs) + ,3() - 1)
=ds0.¢cs) + i By +n—1

where the last equality follows by Remark 2.5.
On the other hand, the relation (2.9) between v(J) and A f gives

z(i):z 0" (Qf) :l< 0" () )H 9" (2)(cs)
J) P*(Q)(es + (B - BY) P*(Q)(cs) *(Qles + (Bl B )

Since ca; < c5, we get v(@*(Qf)(cs + (,3(}, o Bp) = ¢es+ (,3(%, ..., By) + N and
v(p*(R2)(cs)) = es + N, that is, the second above summand is Z;:l ,36. In addition,
denoting A = A s U {0} we have

; ( ©* ()
@*(2)(cs)

In this way, we get

(2.12)

) =da,((By, .-, By es) = dx (0, ¢cs) — L.

J —
| — )| =d+ -1 L. 2.1
<J(y)> (0, cs) ,+§ﬂo (2.13)

Therefore, by (2.11), (2.12) and (2.13), we obtain
T =+ dg(0, cs) — dx(0, ¢5) = u — d(A\S).

[}
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Example 2.11 Let f = fi f> where fi = y> — 2x%y — x> + x* and f» = y*> + x3. Since
u(C1) = u(Cz2) = c; = ¢z =2 and I 5 = 6 it follows, by (2.5), that u = u(Cy) = 15.
By Example 2.3, we have ¢ = (8, 8) and ds((0, 0), (8, 8)) = 8. According to [12, Example
3.11] we get

A=A;U{0,0)}={0,0), (k. k); 2 <k <5}U{(6,6) + N
A saturated chain in A connecting (0, 0) to (8, 8) is

V=00 <a'=2,2)<e?=03B,3) <a’>=44) <a*=(5,5)
<a¥=(6,6)<a®=(7,6)<a’ =(7,7) <a®=(8,7) <a®=(8,8),

that is, dz((0, 0), (8, 8)) = 9. Hence, by Theorem 2.10, we get
T =pu—d(A\S) = pu+ds((0,0), (8,8) —dx((0,0), (8,8) =pu+8—-9=p—1=14,

that coincides with calculation with SINGULAR [16].

3 Logarithmic differentials

As before, let C be a reduced plane curve defined by f. According to (2.9), the values set
v(J) determines and it is determined by the set A. In [29], Pol shows that such analytical
invariants are related to the values set of residues of logarithmic differentials or equivalently
to the values set of the Saito module. Let us recall these objects and some results concerning
to them.

According to Saito [30], a meromorphic differential W € (1/f)Q! is a logarithmic form
along C if there exist n € Q!, p,q € C{x,y} with ged(q, f) = 1 such that gW =
(pdf + fn)/ f orequivalently, % € C{x, y} and he denotes the set of logarithmic forms
along C by Q'(log C).

Since W = w/ f € Q' (log C) is equivalent to get gw € .Z(f) = C{x, y}df + fQ! for

some g € C{x, y} coprime with f or é‘;AAdd’; € (f) we can consider the C{x, y}-module

f-Q'og €) ={we Q'; 3g € Clx, y}, ged(q, f) = 1 such that gw € F(f)}

3.1

> dxAdx

=loecay @i e}

called the Saito module associated to C.
We have that f - Q! (log C) is generated by two elements. Moreover,

Saito’s criterion: {w;, @, }is aset of generators for f-Q!(log C) if and only if 3223;2 =uf
where u € C{x, y} is a unit.

Notice that Z(f) C f - Q! (log C), by [29, Proposition 3.22], we have that Tor (2 ) is
isomorphic (as ¢-module) to f - Q' (log C)/.Z (f). In particular, by [29, Proposition 3.31]
and (2.8), we get

Ql
f-Qllog €)
Given w € f - Q'(log C), such that gw = pdf + fn where n € Q', p,q € C{x, y}

with ged(q, f) = 1 the residue of w is res(w) = p/q € X where h denotes the class of
h € C{x, y} in 0. The &-module of logarithmic residues along C is then defined as

Fe = {res(®); we f Q' log C)} C .x.

J=o'(Qp) =
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We have that Z¢ is a fractional ideal of & and its values set Ay := v(Zc) satisfies (cf.
[29, Cor. 3.32])
acAr & F(—a,Ar)=90. (3.2)

According to Pol [29] we have that ¢(A f) is —(B(l), cee B(r)) +,...,D.

Remark3.1 If T = {1,...,r} withr > 1 and C = U;<1C; is a plane curve where each
branch C; is defined by f; then for ¥ # J C I we denote f7 = ]_[jEJ fj-In this case, given
w € f7- Ql(log Cy) whose class module Z (f) is @, we get vj(w) = oo forall j € J.
Moreover,

» € f7-Q'(log Co)\fr\s- Q' (log Cr\5) ifandonlyif FA;(v(@)) = oo,

that is v(®) has infinite fiber in A = Ay (see Definition 2.2).

3.1 Infinite fibers of diagonal curve with two branches

In what follows, we will use the values set of logarithmic residues along C to obtain infor-
mation on the set A, as the infinite fibers and its conductor, when C is defined by f = fi f>
and it has two equisingular branches with values semigroup S(C1) = S(C2) = (B, - - - » Eg>
and intersection multiplicity I = [f1, falo > ngﬁg that we call diagonal curve with two
branches.

Remark 3.2 A complete description of the infinite fibers of a semigroup with two equisingular
branches was given by Bayer [5]. The semigroup of values of a diagonal curve with any number
of branches was completely described by Delgado de la Mata [19], as well as provided the
name diagonal to this family.

Remark 3.3 Diagonal curves with two branches can be described in the following equivalent
way: itis acurve C : f = f1 f» = 0 where both branches have the same multiplicity at the
origin and I = [f1, f2lo > ngﬁg where (Bo, e, Bg) is the semigroup of values of one of
them. Clearly,if I > n gﬁg and both branches are equisingular then they have same semigroup
of values and consequently, they have the same multiplicity. On the other hand, assume f1, f>
are two branches with the same multiplicity say B, one of them with semigroup of values
(Bos -+ +» Bg) and I = [f1, f2lo > ngﬁg. Let us first assume that f], f> are transversal, i.e.

they don’t have the same tangent. In this case, we have I = Bé Now, by definition of the
generators of the semigroup (see Eq. (2.2)) we have Bz’+1 = n,ﬁi + (Bi+1 — Bi), where B;
denotes the Puiseux characteristic exponents. A straightforward induction on this formula
together with the fact that 8, > B, leads to prove ngf, > Eg against the hypothesis. Thus,
the two branches must have the same tangent. If both branches have the same tangent with
the required condition on the intersection multiplicity then a straightforward argument with
Noether’s formula shows that both have the same value semigroup.

Before that, let us recall some important fact about irreducible curves. Let C be an irre-
ducible plane curve with values semigroup S = (B, . . ., Eg). Without loss of generality, we
can assume that C is defined by a Weierstrass polynomial f € C{x}[y] with deg, (f) = fo
and Newton—Puiseux parametrization ¢ as (2.1).

Given n € N\ {0} we consider the C-vector space

Py = {h € C{x}[y]; deg,(h) < n}. (3.3)
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Since f € C{x}[y]is a Weierstrass polynomial with degy(f) = Bo,any H € C{x, y}canbe
uniquely expressed (by the Weierstrass division theorem) as H = gf + h with g € C{x, y}
and h € Pg,. So, C{x, y} = Pg, @ f - C{x, y} and the classes of H and & in 0 = % are
equal.

If v indicates the discrete valuation associated to C then we put vy (H) := v f(ﬁ) where
H denotes the class of H € C{x, y}in ¢.Inthis way, S = vr(O\{0}) = vr(Cix, y}\(f)) =
v (Pg, \ {0}). Following [11, Sec. 3], we introduce the following C-vector spaces:

E(f) = Pgydx + Pg—1dy, 9(f) =C{x, y}df + Clx, y} f dx,

where Pg, is given in (3.3). With the above notation, we have [11, Lemma 3.3]

Q'=&Hevs).

Since 9(f) C Z(f),iffw = wy+ w1 € Q' withwy € &(f) and w; € ¥(f) then the classes
 and @ of w, respectively of wy, in 2 ¢ are equal and v s (@) = v (@o). In this way, we get
Ayr = {vy(w); o € &(f)}. In what follows, to simplify the notation, given w € Q! when
we put v r(w) we understand v s (w) where @ indicates the class of w module .7 (f).

Let us now consider o = Adx — Bdy € f - Q(og Cy). According to (3.1) we get
Afy + Bfy = Mf for some M € C{x, y}. In particular, the relations

fro=Adf — fMdy and fywo=—-Bdf+ fMdx, (3.4)
allow us to compute the residue of w as res(w) = fi = fE. Thus, the value set of logarithmic
x ¥y

residues along C y can be done by

Ar ={vy(res(w)) =vs(B) —vs(fy); w=Adx + Bdy € f-Q(log Cy)}

={vs(B) — (u+ By — 1); Adx + Bdy € f-Q(log Cy)}, )

where vy (fy) = u + Bo — 1 (see (2.3)). In particular, as we are considering the irreducible
case, the property (3.2) translates to the fact that

AEAr & —A¢ Ay (3.6)
Proposition 3.4 [11, Proposition 3.7] Letw = Adx — Bdy € &(f) N f - Ql(log Cy), e
Bf + Afy = Mf. Under the previous notation, we have

bt ™M 4 (hot), ¢*(B)=bt""P + (hot),

* ekBk+l
(M) = kL
Y ;

0

withb € C* and vy (B) = vy(M) + Bo, where k = maXo<j<g{i; € { vy(res(w))}.

In what follows, let C ¢ = C1 U C, where Cy and C; are two equisingular plane branches
defined by Weierstrass polynomials fi, fo € C{x}[y] with value semigroup S; = S, =
(BO, .. .,Bg) and intersection multiplicity I := [ fi, f2lo > ngﬁg, where ng = €51 =
gcd(ﬁo, - Bg,l). In particular, there exists a Newton—Puiseux parametrization ¢; (#;) =

@0, Yoz, a1k for C; and i = 1,2 such that

algl) — a](cz) forevery k < Bgif I > ngﬁg 3.7
a,(cl) = a,Ez) forevery k < B, if I = ngﬁg. '

We would like to use Proposition 3.4 in the context of a plane curve with two equisingular
branches with I > ngf8,. To do so, we need the following technical lemmas to generalize
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Proposition 3.4 in this context. Let us recall a few facts regarding the maximal contact curves
associated to a branch. For a fixed i € {1,2}, letsay i = 1, any & € C{x, y} satisfying
Lf1, hlo = Bq will be called a maximal contact curve of genus ¢ — 1 with fi. In [31], Zariski
considers a particular set of maximal contact curves D, for 1 < g < g defined by a truncation
of the Puiseux series of the curve C; as follows:

1) _ M j/Bo 4 ... (D ,.j/Bo
Sq (x) = Z a;’x + + Z a; 'x .
Jj € (By) Jj€(eg—_1)

Po=Jj<Ph ﬁq—15qj<ﬂq

The minimal polynomial g, (x, ) € Clx, y] of s{" (x) is given by
g =[] &-sEn) (3.8)
e/j()/eqfl =1
and the plane branch D, given by g, has maximal contact with C}. In addition, g, is monic
with deg, (g,) = ef—fl. In what follows, we put gy = x. The branches D, are called semiroots
of C; and any element 2 € C{x}[y] with degy (h) < degy(fl), that is, h € Pg,, admits a
unique G-adic expansion (cf. [1, Chap. 1 and 3]) in terms of G = {gg, g1, - - ., gg}, that is,

h= > bato’ gy - 0, 0" (3.9)

with b, € C and
€)) Ofak<nk=e’;—;1f0r1§k§g.
(2) If we denote hy = g g} - -ggg_]l g¢°, then vy (he) # vi(h,) fora # y.
Remark 3.5 Notice that if h € C{x}[y] is given as (3.9), that is
h= > byeel e el
Y=0.....vg)ENEF!

and vy (h) = aoBy + -+ agf, withay # Oforg < gand 0 < oy < ny for1 <k <gq,
thatis, e, = maxj<;<g{e; : e; | vi(B)}, then

01 () = 97 (bagy -+ 9¢") + (hot) = O ) (@D)7 P + (hot),

where Qﬁl(;,)(a(l) ) is a polynomial in the coefficients of the Puiseux series of C;j. The

polynomial Qﬁl(h)(a(l) ) can be explicitly computed and satisfies some useful properties
related to the coefficients of the Puiseux series. We refer to [28, Sec. 1] for further details.

Remark 3.6 Notice that, by (3.7), Cy and C; share the same maximal contact curves. In
particular, given H € C{x}[y] with degy (H) < Bo we get vi(H) = va(H). Moreover,
if H € (x,y) then vi(dH) = v2(dH) = vi(H) = v2(H) so (a,a) € Ay p, for every
0AAaeS =95.

Now we are ready to provide the generalization of Proposition 3.4.

Lemma 3.7 Let Cy and C; be two equisingular plane branches with semigroup (B, . . . , Bg)
and intersection multiplicity I > ngﬁg. Ifo=Adx—Bdy e &(f1)N f1-Qlog Cy) with
B(f1)x + A(f1)y = Mfi, then we have

€k3}<+1

oF (M) = bit" PP L (hot), ¢F(B) =bit""® + (hot) for i=1,2

0
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where k = max{l : ¢; { (vi(B) —vi((f1)y))}. Moreover, by = by ifI > nng orey | vi(B)

for some q < g. Otherwise, each b; depends on the coefficients a ) with 1 < B;.

Proof From Proposition 3.4, we have the required expression fori = 1.

Since M, B € C{x}[y] with degy(M), degy(B) < Bo, by Remark 3.6, we get v2(B) =
vi(B) = 27:0 a;ﬁ, with oy # 0 and v2(M) = vi(M) = vi(B) — 30. So, considering the
G-expansion of M and B, according to Remark 3.5, fori = 1, 2 we have

. B R
o (M) = gf (0} g~ a" - 83" + (heot) = Q) 4y (@) T 4 (houw),

0F(B) = ¢f (bEgg%" - gg") + (ho.t) = bt/ ™ + (hot).

v1(B)—Bo ;

otolal

As @l (gy) =t Bo , independently of i, the coefficient of ¢; ing*(g," g, - gg") and

the coefficient of 7 B i @F(gg’g" - - gg") are the same, so
M (i) M B
bi _ Quoun@™) oM oy b ekBri
= T thatis QM (@) = S b = Ky, (3.10)
bF T b A
where the last equality follows using i = 1.
By [28, Lemma 1.7], Qy(M)(a(")) and b; = QB (B)(a(i)) are non-zero homogeneous

polynomials in the coefficients a ) of @i (t;) with k < B,. In this way, if g # gor I > n, B &
by (3.7), we get

ekﬁ
by=b; and Q) @®) = 0}l @) = %bl,
0

that is, the coefficients are independent of the branch C;. If ¢ = g and [ = ngﬁg then
OM (@) and QF (@) satisfy (3.10) and they depend on a;” with I < B,. O

By Remark 3.1, given @ € A ¢ with f = fi f>, to characterize the infinite fiber Fl.A () =
00 itis enough to characterize the values of differential formsin f; - Ql(log C ) with respect
to f;. Firstly, we will analyze the differential forms in &(f;) N f; - Qllog C 7). To do so,
we will apply similar ideas to the ones in [11, Sec. 4].

Proposition 3.8 Let Ci and Co be two equisingular plane branches with semlgroup
(Bos - - ﬂg) and intersection multiplicity I. Letw = Adx—B dy € £(f1)N f1-Q'(log Cy).

If
(a) 1 >ngﬁg or
(b) I =ngByandeg 1| Wi(B) = (c+By—1)

then
V@) =vi(B)+1—(c+By—D=v2(B)+1—(c+By—1), (3.11)

where c denotes the conductor of (B, . . ., Bg). In particular, w ¢ f> - Q' (log C»).

Proof Sincew = Adx—Bdy € &(f1)N f1-Q(og Cy) there exists M € C{x}[y] satisfying
B(f1)x + A(f1)y = Mf1 and, by (3.4),

(f1)yw = Mfidx — Bdfi. (3.12)
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According to Proposition 3.4 and Lemma 3.7, we have

ek Bit1

0

PH(M) = by 8PP L hot), @3(B) = byt P 4 (hout),

where k = max{l : ¢; { (vi(B) — v1((f1),))}. In addition, we get

@i (f1) = at} + (ho.t).
Thus,

05 ((f))yw) = @5 (M fidx — Bdf))
= (aex Bri1boty P o) (@lbytd P L hot) (3.13)

= (exBrs1 — Dabaty P71 4 (hot).

If I > ngB, = eg 1B, thenforall 0 < k < g — 1 wehave I # exfyyy. If I =ngf,
and eg1 | (vi(B) —vi((f1)y) thenk < g — 1 and thus [ = ngﬁg = eg_lﬂg # ekBri1-
So, for the condition a) or b) we get v2((f1)yw) = vi(B) + 1.

Since we have B, (f1);, € C{x}[y] with degy(B), degy((fl)y) < Po, it follows by
Remark 3.6 and (2.3) that
~ v2(B) = vi(B) and v2((f1)y) = vi((f1)y) =c+ By —1.50, va(w) = vi(B)+1—(c—
Bo—1D =v2aB)+1—(c—PBy—1D. |

Let us now focus on the case of a reduced plane curve singularity with two equisingular
branchesand I = [ f1, f2]o > ng,Bg. Recall that given w = Adx — Bdy € QL. its Weierstrass
1-form (see [20]) of w with respect to f] is given as

w = wy + w1 (3.14)
with wg = Pfidx — Qdf) € 9(f1) and w1 = Ajdx — B1dy € &(f1).

Remark3.9 For i, j € {1,2},i # j, given w € 9(f;) = C{x, y}fjdx + C{x, y}df; C
fj~Ql(log Cj)wegetvi(w) > I =[fi, filo =vi(fj) = vi(df;). In addition we have that

14 S(Ch) Cui(@(f))) Cui(f;-Qog C))).

In fact, given y € S(C;) we consider h € C{x, y} such that v;(h) = y. Since hdf; €
G(fj) C fj-Qlog C;j), we getv;(hdf;) =y + 1 € v;(9(f})) C vi(f; - Q' og C))).

Notice that Remark 3.9 implies that in order to compute the infinite fibers for which we
need to work a bit we only need to look at those w € f; - Q! (log C;) for which v; (w) < I +c.

Remark 3.10 Given w = Adx — Bdy € fi - Ql(log C1) we consider its Weierstrass 1-
form with respect to fi, that is @ = wg + w; with wg € 4(f1) and w1 € &(f1). Since
res(w) = res(wg) + res(wy), we have vy (res(w)) > min{v|(res(wo)), vi(res(wy))}. In
this way if v (res(w)) < Othen, since v; (res(wp)) > 0by construction, we get vy (res(w)) =
vi(res(wy)).

Lemma 3.11 Suppose that I > ngﬁg. Given w = wy + w1 € f1 - Q' (log Cy) as before.

If vi(res(w)) < 0 then vy(w) = n(w)) = I + va(res(w)) = I + vr(res(wy)) =
I +vi(res(wy)).
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Proof Given w = Adx — Bdy € fi - Ql(log C1) we consider its Weierstrass 1-form with
respect to fi, thatis w = wo + w1 with wy € 9 (f1) and w1 := A1dx — B1dy € &(f1). By
Remark 3.10 we get vy (res(w)) = vy (res(w;)) where res(w1) = B1/(f1)y.

By hypothesis I > ngf,, then since deg,(B1), deg,((f1)y) < By, by Remark 3.6, it
follows that

v (res(wy)) = v2(B1) — v2((f1)y) = v1(B1) — vi((f1)y) = vi(res(w1))

and by Proposition 3.8, we get va(w1) = I + va(res(wy)) = I + vi(res(w)) < 1.
On the other hand, v2(w) > min{vy(wp), v2(w;)}. By Remark 3.9, va(wp) > I and as
vo(wy) = I 4+ va(res(wy)) < I it follows that

v2(w) = v2(w1) =1 +v(res(w)) =1 +va(res(wr)) =1 +vi(res(wr)).

In addition, we have the following
Lemma 3.12 Suppose that I > ngﬁg, then c(v2(f1 - Q'(log C))) < I — Bo+ 1.

Proof Tt is sufficient to show that for any k € N with 0 < k < B, — 1 we have
I —k+BoN Cva(fi-Q'og C1)).
For k = 0 if we take n € N then x"df] € 9(f1) C f1 - Ql(log C1) and
I+nBy = v2(x"df1) € va(fi - Q' (log C1)).

Now consider k € Nsuchthat0 < k < Bo —1.By[29, Prop. 3.21], we have that ¢(A s, ) =
—Bo—l—l.Thus, weget—k € vl(res(fl-Ql(log C1))) so, thereexists w € fl-Ql(log C1)such
that vy (res(w)) = —k < 0. In this way, by Lemma 3.11, vy (w) = I + vi(res(w)) = I — k.
Taking any n € N we get

I —k+nBy=v(x"w) € v(fi - 2'(log C1)).

Hence _
I-By+1+N=|J U —k+BN) Cu(fi-Qlog C1)
k=0
and consequently, c¢(va(f7 - Ql(log Cp) <I-— EO + 1. O

Now we are able to describe the infinite fibers of A y where f = fif,and I > n gﬁg.
Theorem 3.13 Suppose that I > ngﬁg, then
v(fi-Q'dog C1)) =1+ Ay and c(va(fi- Q' (log C1)) =1— B+ 1.

Proof Letw € fi - Q! (log C1) and w = wg + w its Weierstrass 1-form with respect to fi,
thatis wg € Z(f1) N f1 - Q'(og C1) and w; = Ajdx — Bidy € £(f1) N f1 - Q' log Cy).

We have that vy (w) > min{va(wp), v2(w1)}.

If v2(w) > va(wp), then by Remark 3.9 we get va(w) > I and v2(w) € I + Ay
because ¢(Ay) = —EO + 1. If v2(w) = v2(w1), then by Proposition 3.8 we get vz (w1) =
I +vi(By) —vi((f1)y) € I + Ay . Hence, va(fi - Ql(log C)) CI+Ay.

On the other hand, let us consider / +8 € I + Ay, thatis,§ € Ay,.
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If§ > —Bo + 1 then, by Lemma 3.12, there exists w € fi - Ql(log C1) such that
v(w) =1+36.

If—ﬁo—l—l > § € Ay, thenthereexistsw € f1~521(10g C1)suchthatd = vy (res(w)) < 0.
So, by Lemma 3.11, we get

n(w) = n(w) =1+ v(res(w)) =1 +vi(res(wy)) =1 + 4.

Inthis way, I +A 5 C va(f1- ol (log Cy)). This conclude that vy ( f1 - ol (log C1)) = I+Ap
and, since ¢(Ay) = —,30 + 1, it follows that c(v2 (f7 - Q! (log Cy))) =1 — ,80 + 1. O

As a consequence we obtain

Theorem 3.14 Let f = fif> such that Cy, Cy are equisingular with values semigroup
(Bos - - ﬂg) I > ng,Bg and Ay its value set of Kdhler differentials. Then,

cAp)=U—PBo+1,1-Bo+1) (3.15)

In particular, ¢(A y) is independent of the analytic type of each of the branches.

Proof Since I > ngﬁg it follows by (2.2) that I — Bo > ¢(S1), by (2.3) and Remark 3.6 we
get (8,8) € Ay forany § > I — B. In addition, we have that 8, = min A| = min A,
and Theorem 3.13 implies that cap < (I —Bog+1,1—py+1). To prove the equality, it is
enough to show that (I — B8, I — B() € Ay is amaximal point (in fact an absolute maximal)
of Ay.

By Theorem 3.13, we get F{/i\}f(l—ﬁo, I—By) # oofori € {1, 2} (see Definition 2.2). Let

us consider for example i = 2, as the other case follows similarly. As F, {[2\}’ (I—Bo, I—By) #

oo then there exist o € f{g}(A U= BO, I — EO)) such that « is a maximal element of
A y. As the number of branches is » = 2 then the notion of maximal, relative maximal and
absolute maximal agree. Hence o = (o1, I — ,80) withoy > 1 — ﬂo is an absolute maximal in
Ay.Letusassumea # (I — Bo» I —Bo), thena = (I — By+n, I — By) for some n € N\{0}
is such that Fi1j(Ay, @) = Fpy(Af,a) =@ and ay € I + A since ¢(Az) = —,30 + 1, but
thisis a contradiction with Theorem 3.13. ]

Remark 3.15 A natural problem is to determine ¢(A f) for f = [];_, fi where the branches
C; are equisingular with semigroup (Bo. . . ., B,) and satisfy [; ; > ngBgforl <i < j <r.
A straightforward generalization of previous theorem would suggest that ¢(A ¢) = (1 — Bo+
ienviy v+ 1= Bo+ Xier\(ry Ir.i), but this turns out not to hold in general. Indeed,
consider fj =y, fo = y—x", f3 = y—x" with 1 <n < m.Inthiscase, g = 0,n9 = By =
land I13 =m > I1p = b3 = n > nofy = 1. According to [13, Example 20], one has
c(Af) = (m+1,n+1,m+1) # (1—=Bo+L2+03, 1-Bo+hi1+h3, 1—Bo+131+132).

Theorem 3.14 allows us to compute the invariant ®; described in Sect 2 for the fractional
ideal J = % ~ ¢*(Q2y) (see 2.8) whose values set is E = A . In fact, according

to Remark 3.1 we get w € fj - Ql(log Cy) if and only if v;(w) = oo. So, we have that
M) = fi - Q' (log C) and, by (2.7) we get O = £(A2 \ va(fi - @' (log C1))).

Corollary 3.16 With the previous notation we have that

Oy =1—-pFo+1—-N\Ay —H{A > Bo: A ¢& Ay}
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Proof By Theorem 3.13 we have that vo(f; - Ql(log C))) = 1+ Ap and c(v2(f -
Ql(log C1))) =1 — Bo + 1. Since ¢(A2) < c(va(f1 - Q! (log C1))) we have

0, = (A2 \ v2(f1 - Q' (log C1)))
=tloe My a<I—Pfo+1}—dH{del+Apy:6<1—po+1}
=1—-Bo+1—-N\Ar—f{y € Ap 1y <—Bo+1}.

It follows, by (3.6), that ©®, = I — o+ 1 — tN\As — #{A > Bo : A & A} o

4 The Tjurina number for two branches

In Sect. 3 we have computed the conductor ¢(A) of the value set A of Kihler differentials for a
plane curve C = C; UC, defined by f = fi f> such that Cy, C; are equisingular with values
semigroup (B, . - . » Bg) and intersection multiplicity / > n gﬁg. Also, in Theorem 2.10 we
have shown that the Tjurina number of a reduced plane curve C with any number of branches
can be computed in terms of the distance d (A\S) between its values semigroup S and its set
A = AU{0}. In addition, in Sect. 2 we explained how to compute this distance if one knows
the conductor of the values set. All this together allows us to provide explicit formulas for
the Tjurina number in this case.

Theorem 4.1 LetC = 9 uQC, bf aplane curve such that C1, Cy are equisingular with values
semigroup S(Ci) = (Bo, -, ﬁg), conductor ¢(S(C;)) = c and intersection multiplicity
1 =[Ci,Crlo > ngﬁg. Then, the Tjurina number of C is given by

t=2I+c—1.

In particular, T is constant in the equisingularity class of C.

Proof Let S be the values semigroup and A be the values set of Kéhler differentials of C. By
Theorem 2.10 and Remark 2.1 we get

t=pu—dA\S)=2c+2I—1—d(A\S). 4.1)

Since the values semigroup S of C is such that § € A = A U {(0,0)} and m = (Bo, Bo)
we get

d(A\ S) = d5((0,0), ¢(S)) — ds((0, 0), ¢(S)) = da((Bo, Bo), €(S) + 1 — (c + 1), (4.2)

where dg((0, 0), ¢(S)) = §(C) = ¢ + I (see Example 2.8).
By Theorem 3.14 we have ¢(A) = (I — Bo+ 1,1 —Bo+1) <{ +c, I +c) =c(S), so
we get
da((Bo, o). €(S)) = da((Bo, Bo), e(A)) + da(c(A), c(S)). 4.3)

If J = ¢*(S2y) then, by Theorem 2.7, we have that

J
da((Bo, Po), ¢(A)) =1 (m)

where ®1 = 0 and, by Corollary 3.16, ®, =1 — o+ 1 — N\ Ao —{L > Bo: A & Ay}.
Since, 1N\ Ay = Bo +8((N+ Bo) \ Az) and (N+Bo) \ A1 = {A > Bo: A & Ay} we get

da((Bo, Bo), e(A)) =1 —2Bp + 1. (4.4)

2
=Y (I = Bo+1—Po— 8N+ Bo)\A) — ©)),
i=1
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Considering J, = {0 € ¢*(Qy) : v(®) > e(A)}thenv(J.) = (I—fo+1, [—p1+1D)+N?
and, by Theorem 2.7, we have that

Je
da(e(A), e(8)) =1 <m> =2I+c—U—-po+1D)=2+po—-D. 45

The expressions (4.4) and (4.5) give us, by (4.3), that dA ((Bo, Bo), ¢(S)) = I +2¢c — 1.
So, by (4.2) we have d(A \ S) = ¢ and, consequently by (4.1) wehaver =2/ +c—1. O

Notice that, by the previous result, we get 4 — T = ¢ = u; = p» for a plane curve
C = C; U C, with C; and C; equisingular with values semigroup S(C;) = {8, . . ,Bg

and intersection multiplicity / > n gﬂ ¢ Where p; = c is the Milnor number of C;.
Example 4.2 Let us consider

f= y6 — 3x3y4 — 2x5y3 + 3)c6y2 - 6x8y —x° +x10

g = y6 — 3x3y4 +4x5y3 + (3x6 — %x7) y2 — (12x8 + %xg) y —x + %xlo — 6‘—4)5“.

h—y —3y4x3+( —x + 4x )y3+(—27éﬂx10+796x8—§x + 3x )y2+

2_ 9 11,3 .10_ 9 . 1 17
+< 1042568x S i - e - 20— 12x )> 3010936384 %
; 16 15 15 S 14 301 13 153 12 547 11 13,10 _ 9
+ oSt ® © — gaaosmr -+ oot — mwore s + iae f216% T 32X —X

We have that f, g and h are equisingular plane branches sharing the semigroup § = (6, 9, 19)
with conductor c =42 and I(g, h) =63 > I(f,h) =1(f,g) =58 > nyB, = 57.
In this case, using the SINGULAR software [16], we get T (f) = 35, t(g) = 36, t(h) = 37,

t(fg) =21(f,8)+c—1=157T=2I(f,h) +c— 1 =t(f, h) and 7(gh) = 169 = 2I(g, h) + ¢ — L.
that illustrate Theorem 4.1.

In [3], the inequality /T < 4/3 was showed for any plane curve. The previous results
allows to provide a new proof of that inequality in the case of a plane curve with two
equisingular branches with values semigroup S(C;) = (B, ..., Bg) and I > ngf,.

Corollary4.3 Let C = C1 U, be a plane curve defined such that Cy, C» are equisingular
with values semigroup S(C;) = (By. ..., B,) and intersection multiplicity I > ng 4. Then,
n/t < 4/3.

Proof From Theorem 4.1 we have 4t — 3u = 2] — 2c — 1 where ¢ = y; is the Milnor
number of the branch C;. By hypothesis I > ngf, > c, then the results follows. O

4.1 Remarks on the minimal Tjurina number in more general cases

To conclude, we draw attention to some challenges concerning the Tjurina number in a more
general setting.

First, Theorem 4.1 establishes that for a curve with two equisingular branches with values
semigroup S(C;) = (By. ..., B,). the condition I > ngf, is sufficient to guarantee a
constant Tjurina number within the equisingularity class. It is natural to ask up to what
extent this holds in the case of a curve with more than two branches. The following example
shows that if C = U?_,C; is a curve with r > 3 branches with values semigroup S(C;) =
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(Bo: - -+ Bg)s then condition I; ; := [C;, Cjlo > ngf, is not enough to have constant
Tjurina number in the whole equisingularity class.

Example 4.4 Consider f; = y° —x84+2x%y2, fo = y> — x84+ 3x3y2, f3 = y5 —x¥ 4+ x%y3
and f4 = y2 —x34+7x7y%. Wehavethat f = fi f> fzand g = fi f» f4 define two equisingular
curves each one with three equisingular branches with values semigroup (5, 8), all of them
have intersection multiplicity I; ; = 41 > 40 =n gﬁg. A computation with SINGULAR [16]
shows t(f) = 258 # 261 = 1(g).

It would be certainly good to obtain sufficient topological conditions for a curve with several
branches to have constant Tjurina number in the equisingularity class. In [11, 27] some
families of plane branches with constant Tjurina number in the equisingularity class are
shown. One could think that for a curve with two branches, to have constant Tjurina number
in the equisingularity class of each of the branches could be a sufficient condition to have
constant Tjurina number in the equisingularity class of the curve. The following example
shows that this is not enough.

Example 4.5 Let us consider the branches

1= (y5 _x7)2 _x10y3’ fr= (yS —X7)2 _ 5x]0y3 and f3 = (yS _x7 +x4y3)2 _ 3)6]0)13.

All branches are equisingular with semigroup (10, 14, 71) and, by [11], for any branch in this
equisingularity class the Tjurina number is constant 7(f;) = 94. Let us denote f = f] f>
and g = f>f3.Inbothcases [ f;, filo=142=2-71 = ngﬁg. A calculation with SINGULAR
[16] shows that t(f) = 402 # 406 = 7(g).

Following with Example 4.5, we observe that it is quite close to the curves considered in
Theorem 4.1. The difficulty here relies on the remaining cases of (b) of Proposition 3.8, i.e.
to compute values, with respect to f>, of those differentials w € &(f1) N fi - Q! (log Cy)
such that e, t res(w). In that cases, one can check that the initial term in Eq. (3.13)
cancels and one need to impose some open conditions in order to guarantee the value of w.
A careful analysis of this situation leads us to think that in the case of a plane curve with
two equisingular branches with values semigroup (B, ..., Bg) and/ =n gﬁg there should
exists an open Zariski set for which v (f - Q! (log C1)) =1+ 1+ Ay. This leads us to
propose the following conjecture.

Conjecture 4.6 Let C = C; U C; be a plane curve with two equisingular branches with
semigroup S1 = S2 = (Bo, - - -, ,Bg) and I = [Cy, Cylg = ngﬂg. Denote by c the conductor
of Si. Then, the minimal Tjurina number in the equisingularity class of C is

Tmin = 21 + c.

In fact, Conjecture 4.6 is actually true for S = (Bo, El) as showed in [8, Tableu 3, § pair]
(see also [26]).
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