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A B S T R A C T

Evaluating the carbon efficiency (CE) of wastewater treatment plants (WWTPs) is crucial for guiding these fa
cilities towards carbon neutrality. Nevertheless, enhancing carbon performance ought not to be pursued to the 
detriment of pollutant removal efficiency. In this study, the CE of WWTPs is calculated as a composite index that 
integrates carbon emissions with the volume of pollutants removed from wastewater, including organic matter, 
suspended solids, nitrogen, and phosphorus. To achieve this, the Stochastic Non-parametric Envelopment of Data 
(StoNED) method is employed. This approach, distinct from the commonly used Data Envelopment Analysis 
(DEA), accounts for both empirical data and random variations in the estimation of CE, thereby enhancing the 
reliability of the CE evaluation. The study assesses the CE of 109 Spanish WWTPs, finding that none of them are 
fully carbon efficient. This involves that all plants have potential to reduce greenhouse gas emissions without 
sacrificing pollutant removal efficiency. The average CE of the WWTPs is 0.529, indicating a possible reduction 
in carbon emissions by approximately 0.076 kg of CO2 equivalent per cubic meter of wastewater treated. The 
analysis also reveals that neither the volume of wastewater treated nor the type of reactor used for secondary 
treatment has a significant impact on the CE of the facilities. The CE metric proposed in this study serves as an 
important decision-support tool for advancing towards the carbon neutrality of wastewater treatment processes. 
By providing a more comprehensive understanding of the environmental performance of WWTPs, it helps 
identifying areas for improvement and guiding policy and operational decisions.

1. Introduction

High-standard wastewater treatment is essential to remove pollut
ants prior to safe environmental discharge. Untreated sewage released 
into water ecosystems such as rivers and seas can significantly damage 
them (Feng et al., 2022). Such practices contravene the Sustainable 
Development Goals, specifically Goal 6, which emphasizes the critical 
role of wastewater treatment in fostering a sustainable and healthy 
environment (United Nations, 2015). However, the energy-intensive 
nature of wastewater treatment is well-documented (Huang et al., 
2021), with wastewater treatment plants (WWTPs) accounting for over 
20% of electrical consumption in local authorities (Longo et al., 2016). 
This energy use has substantial implications for greenhouse gas (GHG) 

emissions, especially in areas predominantly reliant on non-renewable 
energy sources (Cardoso et al., 2021).

The necessity to curtail GHG emissions is formally acknowledged in 
the Proposal for a Directive of the European Parliament and of the 
Council concerning Urban Wastewater Treatment (UE, 2023). This 
proposal aims to align the reduction of GHG emissions from wastewater 
with the objectives of the European Green Deal and the RePower EU 
Plan, underlining the urgency to address the environmental impacts of 
wastewater management. Understanding the current carbon efficiency 
(CE) of WWTPs is instrumental in quantifying the potential for reducing 
GHG emissions in these facilities (Xi et al., 2023). This approach aims to 
achieve GHG reductions without sacrificing the quality of the treated 
effluent. In essence, it involves diminishing GHG emissions while 
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ensuring that the level of pollutants removed from the wastewater re
mains consistent, thereby minimizing the environmental impact of the 
treatment processes (Sala-Garrido et al., 2023). This strategy is in line 
with the overarching objectives of sustainable wastewater management, 
which focuses not only on adhering to treatment standards but also on 
reducing the carbon footprint associated with the treatment process. 
Such a dual focus is increasingly recognized as a critical component of 
environmental sustainability in wastewater management (Gémar et al., 
2018; Chen et al., 2023).

Because of the relevance of this topic, some previous studies have 
assessed the eco-efficiency of WWTPs from a multi-dimensional 
perspective, i.e., integrating carbon emissions, quantity of pollutants 
removed and operational costs into a synthetic index. Although these 
assessments uniformly employ the Data Envelopment Analysis (DEA) 
technique, they vary in the complexity of the models applied. Some 
earlier studies (Molinos-Senante et al., 2014; Xi et al., 2023) utilized the 
most fundamental DEA model. In contrast, others like Molinos-Senante 
et al. (2016) and Gémar et al. (2018) adopted a non-radial DEA 
approach. Further research (Dong et al., 2017; Gómez et al., 2018; 
Ramírez-Melgarejo et al., 2021; Ferreira et al., 2023; Afonso et al., 2024) 
introduced elements of uncertainty in the eco-efficiency assessment. 
Cross-efficiency techniques were also employed in the eco-efficiency 
assessment of WWTPs (Mocholi-Arce et al., 2020; Sala-Garrido et al., 
2023). Additionally, the temporal dimension has been considered in 
recent research, as evidenced by Fallahiarezoudar et al. (2022) and Chen 
et al. (2023).

Despite this diversity in models, all these studies share the general 
limitations inherent in the DEA methodology. As a non-parametric 
method, DEA is deterministic and does not account for noise in the 
estimation, implying that any deviation from the efficiency frontier is 
attributed solely to inefficiency. Moreover, DEA does not allow for the 
statistical significance evaluation of estimated parameters 
(Molinos-Senante and Maziotis, 2022). The identified limitations of the 
DEA underscore the necessity for alternative methodological approaches 
to assess the CE of WWTPs. In contrast to DEA, parametric methods such 
as Stochastic Frontier Analysis (SFA) account for both inefficiency and 
statistical noise. However, a major limitation of SFA is the need to 
specify a functional form, such as Cobb-Douglas or Translog, for the 
production technology. Moreover, the results are highly sensitive to the 
assumed distribution of inefficiency, such as half-normal, exponential, 
or gamma distributions (Murwirapachena et al., 2024). Equally, the 
Stochastic Non-parametric Envelopment of Data (StoNED) method, 
pioneered by Johnson and Kuosmanen (2011), stands out as a significant 
advancement. The StoNED method effectively addresses some of the 
shortcomings of DEA by incorporating a stochastic element into the 
non-parametric efficiency analysis.

The StoNED methodology merges econometric techniques with 
linear programming. This approach employs non-linear programming to 
delineate the frontier’s form, specifically to determine the coefficients of 
variables. It then postulates about the distribution of inefficiency and 
noise to ascertain efficiency scores for each unit (Kuosmanen et al., 
2013; Cheng et al., 2015). This method incorporates both inefficiency 
and noise elements. Analogous to DEA, StoNED does not necessitate a 
predefined functional form for the production technology. Additionally, 
it maintains the principles of convexity, monotonicity, and returns to 
scale (Kuosmanen and Kortelainen, 2012).

In the context of assessing the performance of water utilities, Mur
wirapachena et al. (2024) evaluated the efficiency of a sample of water 
utilities in South Africa using DEA, SFA, and StoNED. They concluded 
that the StoNED approach is most suitable for samples with high het
erogeneity. This aligns with our case study, which includes over 100 
WWTPs varying significantly in reactor type for secondary treatment 
and in size. Conversely, Lin and Lu (2024) explored the performance 
assessment of cities’ cultural regeneration using chance-constrained 
data envelopment analysis (CCDEA), StoNED, and bootstrap methods, 
finding that both CCDEA and bootstrap methods are appropriate in 

contexts with data or industry uncertainty. However, this does not apply 
to the wastewater treatment sector, where data tends to be robust. 
Instead, the StoNED method proves valuable in industries or processes 
where external factors, such as water demand, significantly impact 
performance (Lin and Lu, 2024).

Originally devised for efficiency evaluation in the Finnish electricity 
sector (Kuosmanen, 2012; Saastamoinen and Kuosmanen, 2016), the 
StoNED method has been adopted in various other industries due to its 
advantageous attributes. This includes applications in the port sector 
(Rødseth et al., 2024), solar power energy (Delnava et al., 2023), and 
domestic water supply (Maziotis et al., 2023). Within the context of 
wastewater treatment, there is a solitary study employing the StoNED 
method, which concentrated on the influence of age and technology on 
the energy efficiency of WWTPs (Molinos-Senante and Maziotis, 2022). 
However, the efficiency assessments carried out using this method have 
not incorporated variables pertaining to carbon emissions.

The primary aim of this study is to evaluate the CE of a sample of 
WWTPs using the StoNED method. Unlike past research based on the 
DEA method, the StoNED approach provides a more robust and reliable 
framework for analyzing CE in WWTPs. It yields insights that are not 
solely reliant on empirical data but are also adjusted for random fluc
tuations, thereby augmenting the precision and trustworthiness of the 
efficiency evaluation. This methodological advancement represents a 
notable progression in appraising WWTPs, facilitating a more thorough 
and realistic examination of their carbon performance. Additionally, this 
study quantifies the potential carbon emission reductions for each 
evaluated facility. The empirical analysis is centered on a dataset 
comprising 109 Spanish WWTPs for the year 2021.

2. Methodology

This section outlines the procedural steps undertaken to estimate the 
CE of the assessed WWTPs utilizing the StoNED methodology. The initial 
phase in the StoNED technique involves establishing the objective 
function, which, for this investigation, is identified as the carbon frontier 
function: 

lnCi = ln(ai + βiyi) + εi (1) 

where ln stands for logarithm, C denotes carbon emissions, i is the 
WWTP evaluated, a presents the constant term (intercept), y is a vector 
of outputs generated in WWTPs. As we discuss in the next section, 
outputs include the quantity of different pollutants removed during the 
wastewater treatment process. We note that in Eq. (1), βi is a parameter 
to be estimated. εi is the composite error term of the frontier model. The 
error term includes two parts, inefficiency, ui and noise, vi which follow 
the normal distribution and the standard normal distribution, respec
tively (Kuosmanen and Kortelainen, 2012). In other words, νi ∼ N

(
0, σ2

ν
)

and ui ∼ N+
(
0, σ2

u
)
, where σ2

v and σ2
u denote the variance of noise and 

inefficiency, respectively. Inefficiency has an expected value which is 
presented by E(u) = μ. It is directionally proportional to the parameter 

σu : μ = σu

̅̅
2
π

√

(Aigner et al., 1977), where σu shows the standard devi
ation of inefficiency.

To estimate the parameters of Eq. (1), the convex nonparametric 
least squares (CNLS) techniques, i.e., a non-linear programming method 
was employed (Eq. (2)). CNLS identifies the function that best fits the 
data from the family of continuous, monotonic increasing, concave 
functions that can be non-differentiable (Kuosmanen and Kortelainen, 
2012): 

min
α,β

∑I

i=1
ε2

i (2) 

subject to: 

lnCi = ln(ai + βiyi)+ εi i=1,…, I; 
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δi = ai + βiyi ≥ aj + βjyi i, j = 1,…, I; 

βi ≥0 i = 1,…, I 

The first constraint in Model (2) is the carbon emissions regression 
equation. We note that the β coefficients can be viewed as marginal 
products, analogous to the multiplier weights in a linear programming 
framework within DEA (Eskelinen and Kuosmanen, 2013). The differ
ence is that the coefficients βi are specific to each treatment plant while 
coefficients in DEA method are only explicit to each input. The constant 
term a presents the scale of operations of wastewater treatment process. 
It is set ai = 0, under the assumption that WWTPs are functioning at 
their optimal scale size. The second constraint in Model (2) ensures 
convexity of the carbon function with outputs which means that when 
carbon emissions reach its optimal levels then outputs will incur small 
increases.

Finally, the last constraint guarantees monotonicity in outputs 
(Johnson and Kuosmanen, 2011, 2012), aligning these constraints with 
the foundational assumptions of DEA (Saastamoinen and Kuosmanen, 
2016).

The subsequent phase entails calculating the CE scores, achieved by 
adopting specific distributional assumptions for the inefficiency and 
noise terms, which are assumed to follow half-normal and standard 
normal distributions, respectively. According to Kuosmanen (2012), 
Kuosmanen et a. (2013), and Kuosmanen et al. (2015), the method of 
moments is then applied to estimate the expected value of inefficiency 
along with the variances of both inefficiency and noise terms. Analogous 
to SFA, the StoNED methodology incorporates Jondrow et al.’s (1982)
technique for determining the expected inefficiency value, described as 
follows: 

E(ui|εi)= μ* + σ*

⎡

⎢
⎣

ϕ
(

−
μ*
σ*

)

1 − Φ
(

−
μ*
σ*

)

⎤

⎥
⎦ (3) 

where ϕ is the standard normal density function and Φ is the standard 
normal cumulative distribution function, μ* = − εiσ2

u/
(
σ2

u +σ2
v
)

and σ2
* =

σ2
uσ2

v/
(
σ2

u +σ2
v
)

(Kuosmanen and Kortelainen, 2012). The estimated in
efficiency value ûi is subsequently used to calculate the CE score for any 
WWTP i as follows: 

CEi = exp(− ûi)= exp (E(ui|εi) (4) 

CEi vary between zero and one. A score of one signifies complete effi
ciency in terms of carbon emissions for the WWTP, indicating optimal 
performance in comparison to its peers. Scores below one highlight 
carbon inefficiency, suggesting the possibility for reduction in carbon 
emissions while maintaining the level of pollutants removed from the 
wastewater unchanged.

Since GHG emissions are incorporated as inputs in the assessment, 
utilizing the CE scores derived from Equation (4), the potential carbon 
emission reductions achievable by a plant, should it operate at full 
carbon efficiency, are calculated in the following manner: 

PCSi =ACi × (1 − CEi) (5) 

where PCSi denote the potential savings in carbon emissions (kg/m3 

wastewater), ACi are the actual (observed) levels of carbon emissions for 
each WWTP i (kg/m3 wastewater) and CEi is the CE efficiency score 
obtained from the StoNED approach.

3. Case study and data sample

The identification of outliers and atypical observations is crucial for 
assessing the relative performance of units, such as WWTPs (De Witte 
and Marques, 2010a). A peer index approach (De Witte and Marques, 

2010b) was applied to the original database comprising 147 WWTPs to 
identify atypical observations. As a result, 38 WWTPs identified as 
outliers and therefore, were removed from the database leading to a 
total of 109 WWTPs whose carbon efficiency was evaluated.

Data from 109 Spanish WWTPs were collected through a regional 
water authority, i.e., Catalan Water Agency. All evaluated facilities are 
located in the Catalonia region, situated in the northeast of Spain. They 
are operated by both private companies and public entities. Regardless 
of the operator, all facilities are regulated by the Catalan Water Agency 
in accordance with the European Urban Wastewater Directive (91/271/ 
ECC). All evaluated facilities incorporate a standard treatment sequence 
comprising pretreatment, primary treatment, and secondary treatment 
stages. The distinctions among them primarily lie in the specific tech
nology utilized for secondary treatment. Thirty-three facilities, consti
tuting 30.3% of the total, employ piston flow technology for secondary 
treatment. An identical number of WWTPs utilize a concentric reactor 
design for this stage, while 22 facilities, representing 20.2% of the 
sample, adopt the carousel modality. Additionally, 16 WWTPs, or 14.7% 
of the total, operate based on the complete mix approach, and 2 facil
ities, accounting for 1.8% of the sample, utilize biofilters for secondary 
treatment. All WWTPs remove suspended solids (SS), organic matter, 
nitrogen (N) and phosphorus (P) from wastewater according to the legal 
thresholds defined by the European Urban Wastewater Directive (91/ 
271/ECC). The assessed WWTPs vary significantly in size, with capac
ities ranging from 7844 m3 per year to 121,095,795 m3 per year. The 
average capacity of these facilities is approximately 4,104,880 m3 per 
year.

The choice of variables in this research was guided by the primary 
aim of the study, namely, the assessment of CE of WWTPs, along with 
insights from previous studies (Ramírez-Melgarejo et al., 2021; Chen 
et al., 2023) and the availability of data. Given that the principal func
tion of WWTPs is to remove pollutants from wastewater, a collection of 
quality-adjusted outputs (Equation (6)) was incorporated into the esti
mation of CE: 

PRij =WVj *
(
Pollutantiij − Pollutanteij

)
(6) 

where PRij denotes the per annum quantity of pollutants removed 
when treating wastewater for each pollutant j and WWTP i measured in 
kg/year; WVi presents the volume of treated wastewater by the WWTP i 
measured in m3/year; Pollutantiij captures the concentration of each 
pollutant j in the influent (i) of the WWTP i measured in kg/m3 and 
Pollutanteij captures the concentration of each pollutant j in the effluent 
(e) of the WWTP i measured in kg/m3. Reflecting the primary pollutants 
extracted from wastewater in the evaluated facilities, our study en
compasses four quality-adjusted outputs, specifically: i) organic matter 
(expressed as chemical oxygen demand, COD), SS, N and P.

Regarding the input, our evaluation concentrated on indirect GHG 
emissions linked to the electricity usage in WWTPs, quantified in kilo
grams of CO2 equivalent per year (kg CO2eq/year). Statistical data on 
indirect GHG emissions for each assessed WWTP were provided by the 
Catalan Water Agency, the regulatory body for all facilities analyzed in 
this study. These emissions were calculated based on the carbon emis
sion factor for electricity production in 2022, which stood at 273 
gCO2eq/kWh (Gencat, 2024). It is important to note that all WWTPs 
evaluated exclusively utilize electricity sourced from the external grid. 
There was an absence of statistical information on direct GHG emissions 
for the WWTPs under consideration. This represents a limitation of the 
current study, which could potentially be addressed in future research if 
WWTPs commence monitoring and gathering data on direct GHG 
emissions.

The descriptive statistics of the variables employed in the study are 
reported in Table 1.

R. Sala-Garrido et al.                                                                                                                                                                                                                          Journal of Cleaner Production 478 (2024) 143928 

3 



4. Results and discussion

4.1. Carbon frontier function estimation

As we discussed in the methodology section, the first step to estimate 
CE of WWTPs is estimating the carbon frontier function (Eq. (1)). The 
estimated coefficients (β) for the quality-adjusted outputs (y)) are 
detailed in Table 2. These coefficients are all statistically significant 
from zero, indicating that for the WWTPs evaluated, an increase in the 
quantity of pollutants removed from wastewater correlates with higher 
carbon emissions. According to the estimated parameters’ magnitudes, 
the removal of organic matter from wastewater has a notably high 
impact on carbon emission levels. The findings suggest that a 1% in
crease in the removal of organic matter (COD) and SS from wastewater is 
associated with a rise in GHG emissions by 0.312% and 0.283%, 
respectively. Additionally, the removal of N and P from wastewater is 
also found to affect carbon emissions, with a 1% increase in the removal 
of P and N leading to a 0.244% and 0.125% increase in carbon emis
sions, respectively.

Results shown in Table 2 are aligned with the findings of Longo et al. 
(2016), who, based on an analysis of 601 WWTPs, evidenced that the 
removal of organic matter and nutrients predominantly drives the en
ergy consumption in WWTPs. It is important to recognize that the pro
duction of electricity through conventional (non-renewable) energy 
sources entails GHGs emissions and therefore, the operation of WWTPs 
embraces carbon emissions as they are energy intensity facilities 
(Ramírez-Melgarejo et al., 2021). The results presented in Table 2
corroborate that an increased removal of pollutants from wastewater 
leads to higher carbon emissions levels. This finding underscores the 
importance of evaluating the environmental impact of wastewater 
treatment from a life cycle perspective, incorporating various environ
mental impact categories (Li et al., 2021). Within this framework, it is 
crucial for wastewater managers and regulators to adopt a range of 
policies and strategies aimed at achieving carbon neutral WWTPs, 
including reducing energy consumption, recovering energy from 
organic matter, and utilizing electricity generated from renewable 
sources (Li et al., 2022).

4.2. Carbon efficiency estimations

The CE scores for each WWTP assessed are depicted in Fig. 1. A 
significant observation from the analysis is that no facility is carbon 
efficient, with the highest CE score being 0.670 for WWTP16. This in
dicates a universal potential for enhancement in CE across all evaluated 

WWTPs. WWTP16, characterized as a medium-sized facility, treats 
approximately 1 million cubic meters of wastewater annually and is 
situated in a nitrate vulnerable zone, hence exhibiting a high N removal 
efficiency. Conversely, WWTP5, which records the lowest CE score of 
0.224, is another medium-sized facility with an annual treatment ca
pacity of about 1.4 million m3. Its location is in a touristic region leads to 
significant variations in monthly wastewater flows, likely contributing 
to its reduced CE. The mean CE score across the WWTPs stands at 0.529, 
suggesting an average potential to reduce GHG emissions by 47% while 
maintaining the current pollutant removal levels.

To gain deeper insights into the distribution of CE scores among the 
evaluated WWTPs, an examination of Fig. 2 is essential. The findings 
reveal that a majority of the WWTPs, 68 out of 109 (equating to 62%), 
registered CE scores within the range of 0.41–0.60. This indicates that 
these facilities need to reduce their GHG emissions by 40%–59% to be 
carbon efficient. Additionally, 26 plants, representing 24% of the total, 
exhibited moderate carbon performance, with CE scores spanning from 
0.61 to 0.80. Notably, this segment constitutes the facilities with the 
highest CE scores among all the WWTPs assessed. On the lower end of 

Table 1 
Descriptive statistics of the WWTPs evaluated.

Variable Unit of measurement Average Std. Dev. Minimum Maximum

Indirect carbon emissions kgCO2eq/year 411,307 1,275,428 2338 10,039,318
COD removed kg/year 2,791,539 11,680,492 2567 106,021,387
SS removed kg/year 1,504,366 6,932,355 893 67,171,650
N removed kg/year 149,680 536,491 163 4,152,857
P removed kg/year 35,558 164,284 16 1,506,131

Table 2 
Estimates of the coefficients of the carbon production function (Eq. (1)).

Variable Coef (β) St.Error T-stat P-value

Volume of COD removed 0.312 0.083 3.759 0.000
Volume of SS removed 0.283 0.094 3.011 0.003
Volume of P removed 0.244 0.041 5.951 0.000
Volume of N removed 0.125 0.031 4.032 0.000
R2 0.860 ​ ​ ​

The dependent variable is the GHG emissions.
Bold indicates that coefficients are statistically significant at 5% significance 
level.

Fig. 1. Carbon efficiency of the 109 wastewater treatment plants evaluated.

Fig. 2. Distribution of carbon efficiency scores across WWTPs.
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the spectrum, 15 plants (or 14%) displayed poor carbon performance, 
with CE scores between 0.21 and 0.40. Overall, these results underscore 
the suboptimal carbon performance of the wastewater treatment pro
cesses across the assessed WWTPs, highlighting that even the best per
formers have significant potential for GHG emission reductions.

In the pursuit of a circular economy and carbon neutrality, WWTPs 
are incorporating innovative combined technologies. For instance, the 
WWTP in Brunswick, Germany, exemplifies advanced resource recov
ery. This facility employs a thermal hydrolysis process that not only 
removes phosphorus and nitrogen from the return load of the sludge 
liquor but also facilitates the recovery of phosphorus to produce struvite 
and the recovery of nitrogen to produce ammonium sulfate solution. 
This process not only reduces waste but also generates renewable fer
tilizers and biogas, illustrating a shift towards producing valuable 
byproducts (Kleyböcker et al., 2024). Additionally, the integration of 
cutting-edge digital tools is transforming traditional wastewater man
agement approaches. Technologies such as the Internet of Things, cloud 
computing, big data analytics, artificial intelligence, blockchain, ro
botics, and digital twins are being deployed to enhance the automation 
and control of treatment processes. These technologies support more 
efficient operations and foster a transition from conventional waste
water treatment to resource recovery facilities, which are foundational 
to a sustainable and circular economy-based approach (Cairone et al., 
2024).

While the WWTPs analyzed in this study exhibit suboptimal perfor
mance in terms of carbon emissions, these findings are in alignment with 
existing literature. Employing machine learning and non-parametric 
techniques for a sample of Spanish WWTPs, Maziotis and 
Molinos-Senante (2023) concluded that operating costs and GHG 
emissions could be reduced by 62.7% to maintain the same level of 
wastewater services. Similarly, other studies assessing the eco-efficiency 
of Spanish WWTPs through non-parametric methods have reported 
modest eco-efficiency scores. For example, Molinos-Senante et al. 
(2014), Gómez et al. (2018), and Mocholi-Arce et al. (2020) recorded 
average eco-efficiency scores of 0.598, 0.454, and 0.480, respectively. In 
the context of Chinese facilities, Dong et al. (2017) noted an average 
eco-efficiency score of 0.619 across 736 WWTPs, while Chen et al. 
(2023) calculated an average eco-efficiency of 0.59 for a sample of 225 
WWTPs. A further decline in CE was highlighted by Xi et al. (2023), who 
reported an average score of 0.24 for over 1000 Chinese WWTPs. 
Consequently, our findings resonate with those from previous studies, 
indicating a consistent pattern of CE across different regions. The vari
ation in CE scores can be attributed to the analytical methods employed. 
Previous studies predominantly utilized non-parametric techniques for 
evaluating the performance of wastewater treatment processes, whereas 
our study innovatively combines non-parametric with parametric 
methods, marking a novel approach in this field of research.

Previous studies (Dong et al., 2017; Chen et al., 2023), have 
demonstrated the influence of technology and the volume of wastewater 
treated on the eco-efficiency of WWTPs. Consequently, the 109 facilities 
examined in this research were classified based on the type of secondary 
treatment technology employed, given that all WWTPs share similar 
pretreatment and primary treatment processes. Fig. 3 illustrates the 
average CE scores for each group of WWTPs, categorized by their 
respective technology. The findings reveal minor variations in CE across 
the different wastewater treatment technologies, with average values 
fluctuating between 0.517 and 0.545. To validate these observations 
statistically, a Kruskal-Wallis H test for independent samples was con
ducted to assess if there were significant differences in mean CE scores 
across the five technology groups. The derived p− value exceeded 0.05, 
indicating that the differences in average CE scores among the five 
groups are not statistically significant, thus supporting the initial 
observation of negligible differences in CE across the technologies.

Focusing on the size of the WWTPs, the volume of wastewater treated 
by the evaluated facilities ranges between 7844 m3/year and 
121,095,795 m3/year with an average value of 4,104,880 m3/year. 

Based on the distribution of WWTPs’ capacity, the following categories 
were established: i) facilities treating less than 100,000 m3/year (n =
18); ii) those treating between 100,000 and 500,000 m3/year (n = 29); 
iii) those treating between 500,000 and 2,000,000 m3/year (n = 29); iv) 
those treating between 2,000,000 and 8,000,000 m3/year (n = 23); and 
v) those treating more than 8,000,000 m3/year (n = 10).

Fig. 4 presents the average CE for each category based on the volume 
of wastewater treated. The range of these average CE scores is from 
0.417 to 0.569. However, similar to the findings regarding reactor type, 
the Kruskal-Wallis H test’s value exceeded 0.05. This outcome implies 
that the null hypothesis cannot be rejected, involving that the differ
ences in CE among the different size categories of WWTPs are not sta
tistically significant. Therefore, the study concludes that, irrespective of 
the plant size, the variance in CE is not considerable enough to be 
deemed statistically meaningful. This finding indicates that, unlike 
variables such as energy use or operational costs, the assessed WWTPs 
did not demonstrate economies of scale with respect to carbon effi
ciency. A plausible explanation for this discrepancy lies in the compo
sition of the synthetic indicator used in our analysis. Unlike traditional 
measures that focus solely on energy use or carbon emissions, our in
dicator also includes pollutants’ removal efficiency. This aspect in
troduces additional variability that may be influenced by factors not 
directly related to scale, thereby affecting the expected economies of 
scale in carbon efficiency.

4.3. Potential carbon emission savings

Using the current carbon emissions data and the estimated CE scores 
for each WWTP as defined in Eq. (5), the potential carbon emissions per 

Fig. 3. Average carbon efficiency scores of wastewater treatment plants based 
on the type of secondary treatment.

Fig. 4. Average carbon efficiency scores of wastewater treatment plants based 
on the volume of wastewater treated.
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cubic meter of treated wastewater were calculated for each individual 
facility (Fig. 5). The average potential emission reduction across the 109 
evaluated facilities is estimated at 0.076 kg CO2eq/m3 wastewater. This 
implies that, on average WWTPs could potentially reduce GHG emis
sions by 0.076 kg for every cubic meter of wastewater treated. There is a 
notable variance in the potential emission reductions among the eval
uated WWTPs, with the lowest being 0.001 Kg CO2eq/m3 and the highest 
reaching 0.419 Kg CO2eq/m3. According to Eq. (5), these differences are 
primarily attributable to the varying quantities of pollutants removed 
from the wastewater in each facility. Considering the total volume of 
wastewater treated by all the evaluated facilities, the total potential 
reduction in carbon emissions is estimated to be approximately 19,284 
tons per year. Reducing these carbon emissions could represent a sig
nificant step towards diminishing GHG emissions from urban waste
water collection and treatment processes, as encouraged by the Proposal 
for a Directive of the European Parliament and of the Council concerning 
urban wastewater treatment (UE, 2023). Furthermore, achieving these 
reductions in GHG emissions from wastewater treatment processes 
could contribute significantly towards meeting Spain’s 2030 GHG 
reduction targets, which are set at a 27% reduction compared to 1990 
levels (UE, 2023). This approach not only aligns with environmental 
regulatory goals but also advances broader efforts to mitigate climate 
change impacts.

This study assesses the carbon efficiency of WWTPs focusing on in
direct GHG emissions associated with electricity use in WWTPs. How
ever, these facilities also present direct GHG emissions. On the one hand, 
direct CO2 emissions are considered carbon neutral due to their biogenic 
nature (Zhou et al., 2022). On the other hand, non- CO2 direct emissions 
such as CH4 and N2O are relevant due to their high global warming 
potential (Campos et al., 2016). According to a literature review by 
Maktabifard et al. (2023), approximately 30% of total GHG emissions 
from WWTPs are indirect, with the remainder being direct emissions. 
These proportions, however, may vary based on site-specific factors such 
as treatment technologies, plant size, and wastewater management 
strategies. Implementing mitigation strategies for reducing carbon 
emissions in WWTPs comes with recognized limitations and trade-offs. 
Effluent quality, operational cost and GHG emissions are potentially 
conflicting objectives (Barbu et al., 2017; Arnell et al., 2017). Hence, 
this study focuses on evaluating carbon efficiency rather than the overall 
carbon footprint of WWTPs. Carbon efficiency metric used is a synthetic 
index that, besides accounting for indirect GHG emissions, also in
tegrates pollutants removal efficiency, providing a more comprehensive 
measure of carbon efficiency.

WWTPs have a range of options to enhance carbon footprint, 
contingent upon their specific operational characteristics, primary 

sources of GHG emissions, and targeted outcomes. Some well- 
established measures for reducing carbon emissions in wastewater 
treatment processes include: i) use of renewable energy sources: utiliz
ing renewable energy can significantly cut indirect GHG emissions. 
Wastewater and sewage sludge are valuable sources for methane pro
duction, while WWTP areas can effectively accommodate solar panels 
(Płuciennik-Koropczuk et al., 2022). Transitioning to energy generated 
from renewable sources like these can significantly improve carbon ef
ficiency; ii) energy reduction: Operational modifications and the adop
tion of energy-efficient treatment technologies can reduce energy usage. 
Key strategies include adjusting solids retention time, optimizing mixed 
liquor recirculation, and regulating dissolved oxygen levels 
(Maktabifard et al., 2022); iii) enhancing energy production: 
Co-digestion enhances macronutrient balance, positively impacting en
ergy production and carbon efficiency within WWTPs (Chrispim et al., 
2021); iv) innovative technologies for N2O removal: Implementing 
systems based on anaerobic ammonia oxidation (anammox) is an 
emerging strategy for achieving energy neutrality and enhancing carbon 
efficiency in WWTPs (Wang et al., 2018) and; v) source separation 
systems: Separating black water from grey water at the source can lead 
to more efficient treatment, higher nutrient recovery, and increased 
biogas yield, all contributing to improved carbon efficiency 
(Maktabifard et al., 2023; Garrido-Baserba et al., 2022).The new Pro
posal for a Directive of the European Parliament and of the Council 
concerning urban wastewater treatment, approved in April 2024, 
highlights the necessity for ’progressively reducing greenhouse gas 
emissions to sustainable levels’ (Article 1). However, findings from our 
study, aligning with previous research, indicate that the majority of 
WWTPs currently exhibit poor carbon performance. In response, it is 
imperative that WWTPs adopt comprehensive technical actions, such as 
those described previously, to enhance their carbon efficiency and 
reduce their carbon footprint. Simultaneously, these technical actions 
must be supported by robust policy measures. This could involve 
establishing stricter regulatory standards for carbon emissions, offering 
financial incentives for early adopters of green technologies, and 
providing funding for research into innovative wastewater treatment 
solutions. Policymakers should also consider developing a framework 
for regular monitoring and reporting of carbon emissions from WWTPs, 
ensuring transparency and accountability. Together, these combined 
efforts will help align the operations of WWTPs with the objectives set 
forth in the new directive, fostering a more sustainable approach to 
urban wastewater management that not only addresses immediate 
environmental impacts but also contributes to broader climate change 
mitigation goals.

Fig. 5. Potential carbon emission savings if wastewater treatment plants were carbon efficient.
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5. Conclusions

A comprehensive assessment of the CE of WWTPs is essential for 
reducing GHG emissions associated with wastewater treatment pro
cesses, aligning with the environmental goals set by the European Union 
(and other countries). Despite the significance of this issue, previous 
research has been somewhat limited and predominantly utilized DEA, a 
non-parametric and deterministic method. To address the constraints of 
DEA, this study is at the forefront of estimating the CE of WWTPs uti
lizing the StoNED method. This methodological shift marks a significant 
advance in the evaluation of WWTPs, enabling a more detailed and 
realistic analysis of their carbon performance.

The empirical study conducted focuses on a sample of 109 WWTPs 
located in Spain. The findings indicate that none of the evaluated 
WWTPs achieved carbon efficiency, implying that all possess the po
tential to diminish GHG emissions while maintaining their current levels 
of pollutant removal from wastewater. Specifically, it was estimated 
that, on average WWTPs could reduce GHG emissions by 0.759 kg of 
CO2eq per cubic meter of wastewater treated. The study also found that 
neither the type of reactor employed for secondary treatment, nor the 
annual volume of wastewater treated had a significant impact on the CE 
of WWTPs. The consistency of the CE results obtained through the 
StoNED method with previous research underscores the method’s utility 
and relevance in the context of the wastewater treatment process.

To align with the new carbon emissions standards set by the Proposal 
for a Directive of the European Parliament and of the Council on urban 
wastewater treatment, WWTP managers and policymakers should 
promptly initiate both technical and regulatory measures. These actions 
are essential for reducing the carbon footprint associated with waste
water treatment processes, thereby facilitating a transition toward more 
sustainable GHG emission levels. In the short to medium term, this will 
involve integrating advanced treatment technologies that are more 
energy-efficient, adopting renewable energy sources, and enforcing 
stricter emission regulations. Additionally, incentivizing innovations in 
carbon reduction techniques and enhancing operational efficiencies will 
be crucial for meeting these new standards and promoting sustainable 
environmental practices. The application of the StoNED approach in this 
study provides valuable insights into the CE of WWTPs. This aligns with 
broader environmental objectives and sustainability goals, emphasizing 
the importance of integrating advanced and nuanced methodological 
approaches in environmental performance assessments. Furthermore, 
the StoNED approach enables policymakers to distinctly identify the 
impact of the removal of each specific pollutant during the wastewater 
treatment process on GHG emissions. This capability facilitates a more 
targeted approach in the decision-making process, allowing for more 
precise interventions and strategies to reduce emissions in wastewater 
treatment. Such an approach is particularly beneficial for tailoring 
policies and operational adjustments to the specific emission profiles 
and treatment efficiencies of individual pollutants, thereby enhancing 
the overall effectiveness of environmental management in the waste
water sector.

Our study is subject to certain limitations. Firstly, it only in
corporates indirect GHG emissions due to the unavailability of data on 
direct GHG emissions. Therefore, future research endeavors should aim 
to encompass the assessment of direct GHG emissions in WWTPs. Such 
an inclusion would permit a more nuanced analysis of the environ
mental performance of wastewater treatment processes. Additionally, 
the present analysis is confined to data pertaining to GHG emissions and 
wastewater volume for the year 2021. Future studies should extend their 
focus to a longitudinal examination of carbon performance. This would 
involve measuring productivity changes and their components over 
time, providing a more comprehensive understanding of how the most 
and least efficient plants have evolved and improved their performance 
over time.
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