
 

 

 
 

 
PHD PROGRAMME IN INDUSTRIAL ENGINEERING 

 
 

 
 

DOCTORAL THESIS: 
 
 

DEVELOPMENT OF MODELING AND CONTROL 
STRATEGIES IN MICROALGAE-BACTERIA 
PHOTOBIOREACTORS FOR WASTEWATER 

TREATMENT 
 
 
 
 
 

Submitted by Irina Bausa Ortiz in fulfillment of the 
requirements for the PhD degree by the Universidad de 

Valladolid 
 
 
 

Supervised by: 
Dr. César de Prada Moraga 

Dr. Raúl Muñoz Torre 
Dra. Smaranda Podar Cristea 

 



 
 

  



 
 

Agradecimientos 

A mis directores de tesis César de Prada, Raúl Muñoz y Smaranda Podar, por su 

inestimable guía y enseñanzas durante todo el proceso. Infinitamente agradecida a César 

por su dedicación y apoyo constantes. Muchas gracias a Raúl por su compromiso y guía 

en cada detalle para obtener mejores resultados experimentales.  

A todos los miembros del Departamento de Ingeniería de Sistemas y Automática, 

especialmente a los del grupo de investigación “Control y Supervisión de Procesos”, 

muchas gracias por su cálida acogida y continuo respaldo durante todo el camino. Muchas 

gracias a todos los profesores del grupo y a los colaboradores externos, por su orientación 

y sus valiosas contribuciones. Gracias especialmente a Gloria y César, por guiarnos a 

todos durante este camino. Muchas gracias a todos los técnicos, especialmente a Teresa 

Álvarez, por su inmediata disposición a ayudar en todo momento. A Erika Oliveira, 

muchas gracias por todo el apoyo prestado y las ideas aportadas. A Carlos, José Luis, 

Cristian y Suní, muchas gracias por la acogida.  

A los profesores, técnicos e investigadores del Departamento de Ingeniería Química y 

Ambiental, gracias por estar siempre disponibles para aclarar dudas y aportar soluciones. 

Quisiera agradecer a todos los investigadores del Instituto de Procesos Sostenibles, 

especialmente a los del grupo de microalgas, por su inestimable ayuda y ánimos en todo 

momento. Muchas gracias a Bárbara Muñoz y Lara Méndez, por su paciencia y 

dedicación en el entrenamiento para el trabajo de laboratorio. Muchísimas gracias al 

profesor Daniel Navia, de la Universidad Técnica Federico Santa María y a Bárbara 

Muñoz, por la colaboración en el montaje de la instalación experimental. A Sara 

Rodríguez, Nerea Rodríguez, Thalita, Frida, Patty, Marianela, Diego, Xochitl y Gulsum, 

por su colaboración durante los experimentos en el laboratorio. Muchas gracias a Andrés 

Felipe, por su ayuda y valiosas contribuciones para la redacción del primer artículo. 

A mi familia, especialmente a mi madre, muchas gracias por el apoyo, comprensión y 

fuerzas. A mi tía, tíos, primas y primos, por seguir de cerca con cariño todo el proceso. 

A la familia que hemos construido durante el doctorado: Erika, Tomás, Dani, Alejandra, 

Rogelio, Yury, Felipe y Sergio, muchas gracias por todos los buenos momentos 

compartidos. 



 
 

A todos mis amigos, por su cariño y ánimos en todo el camino: a los “jefes” Ania y Reinel, 

Elaine, Rodolfo, Daily, Javier, Ernesto, César Ernesto, Pedro Fernández, José A, Dalmay, 

Ramón, Lily, Jorge y Marita; muchas gracias por tantos años de amistad. Muchas gracias 

a Alina y Fanny, por los consejos y compañía.  

A las mejores embajadoras de Brasil en Valladolid: Rafaella, Erika, Aline y Fabiana. 

Gracias por su amistad y por ayudarme a hacer de esta ciudad mi casa.  

  



 
 

 

Summary 

English 

 

Population growth and industrialization have resulted into a substantial increase in 

wastewater production, thereby establishing water purification as a primary concern on a 

global scale. In this context, microalgae-bacteria based wastewater treatment has emerged 

as a solution for wastewater treatment and nutrient recovery at a low-energy demand. The 

increasing number of microalgae-based applications demands the development of model-

based information and decision support systems that can deal with their complex 

behavior.  

From an engineering perspective, production processes in the field of biotechnology 

cannot be modeled and controlled in the same manner as other types of industrial 

processes. Significant adaptation is necessary to leverage the knowledge, modeling, and 

control techniques commonly utilized in process control. Microalgae-based wastewater 

treatment exhibits nonlinear and complex dynamics, hallmarks of biotechnological 

processes, and also encompasses persistent non-stationary regime behavior and influence 

of fluctuating perturbations. In order to confront the manifold challenges associated with 

the design, operation, and control of wastewater treatment systems based on microalgae-

bacteria consortia, new mathematical models must be developed. Correspondingly, 

control strategies, state- estimation techniques, and process optimization techniques must 

be revisited and adapted to the context of multiple perturbations and evolving 

environmental conditions that affect these processes. 

Objectives 

The present thesis focuses on the proposal of models and estimation methods in novel 

facilities for wastewater treatment using microalgae and bacteria, as well as the proposal 

of state estimation and model-based control strategies for these facilities. To this end, the 

modeling of anoxic-aerobic photobioreactor configurations is proposed, as well as a 

library of components that allows the reuse of models across diverse applications. The 

objective of the present study is to estimate states, parameters, and uncertainties in a 



 
 

microalgae-bacteria wastewater treatment plant, thereby facilitating the design and 

implementation of an online economic model predictive controller. 

Methodology 

In order to address the objectives of the thesis, the methodology employed has entailed 

the study of a variety of models that take into account the interactions between microalgae 

and bacteria in wastewater treatment. This study facilitates the selection of models for 

adequate representation of a microalgae-bacteria based wastewater treatment plant, as 

well as for the subsequent utilization of the model in the design of model-based control 

strategies. The modeling of a two-stage (anoxic-aerobic) wastewater treatment plant with 

biomass recycling was conducted and validated with real data from two lab-scale facilities 

under different operational conditions. Sensitivity analysis was conducted in both cases 

to ascertain the most influential parameters. Subsequently, parameter estimation was 

conducted via dynamic optimization, leveraging a robust objective function to address 

the uncertainties stemming from unreliable measurements. The model library of 

components was designed using the EcosimPro|PROOSIS® software and contains a 

variety of components for wastewater treatment. This library facilitates reuse of models 

and the connectivity of components. A novel approach for parameter estimation is 

presented and tested in a microalgae-bacteria photobioreactor. 

The challenges associated with the monitoring and control of industrial-scale wastewater 

treatment plants were examined. This study enables the identification of the primary 

limitations associated with the processes of monitoring and control. Among these 

limitations is the necessity of accessing online information regarding the status of the 

system, a requirement that poses a significant challenge in the context of biological 

processes. This challenge arises from the need for more reliable measuring devices or the 

high cost of on-line sensors. Subsequently, the Moving Horizon Estimation (MHE) 

technique was employed to estimate the states, parameters, and uncertainties in a 

simulation of a real-scale wastewater treatment plant. The online estimation of the system 

state facilitates the implementation of an economic Model Predictive Controller (eMPC), 

considering the microalgae biomass as a valuable product. 

  



 
 

Results and Conclusions 

Existing models in the literature were adapted to represent novel configurations of 

anoxic–aerobic algal–bacterial photobioreactors for wastewater treatment. Simulation 

results revealed the model's versatility in photobioreactors with one or two stages, 

including sedimentation and biomass recirculation. At the same time, the simulation 

results for two different plants confirmed the model's capability to reproduce the 

experimental data, even in the treatment of high-strength wastewaters. Parameter 

estimation allowed the determination of the values of the most influential parameters of 

the microalgae–bacteria process. In the same line, parameter estimation in the settler 

allows the estimation of the main parameters related to settleability properties, which are 

not well-established in microalgae–bacteria processes. The simulation results closely 

match the experimental data, further validating the accuracy of the model and its potential 

for further application in the system operation, control, and monitoring. 

The methodology for parameter estimation, when multiple outputs and parameters are 

involved in the optimization problem, was tested in a photobioreactor for wastewater 

treatment. This approach prevents convergence issues and facilitates a more optimal 

alignment between the experimental and simulated data. 

The library of model components for a microalgae-bacteria wastewater treatment plant 

was developed. The components developed can be reutilized for multiple simulations and 

allow the easy interconnection between plant components. 

The MHE technique was applied to a microalgae-based wastewater treatment process. 

The focus was on estimating multiple states and parameters concurrently in order to 

evaluate effluent water quality. This study employed an estimation model incorporating 

multiple states and parameters with a significant structural mismatch between the 

estimation model and the actual plant. Multi-rate measurements obtained from online 

measurements and analytical procedures enhanced the estimator's performance. 

Simulation results confirmed MHE's efficacy in the online estimation of pertinent 

microalgae-based wastewater treatment process variables.  

The MHE provided an estimation of the system’s states, parameters, and uncertainties, 

which were then used in the model of an economic predictive controller for an industrial 

wastewater treatment plant. The controller is designed to maximize biomass production 

despite process uncertainties.  



 
 

Español 

El crecimiento demográfico y la industrialización han provocado un aumento sustancial 

de la producción de aguas residuales, lo que ha convertido la purificación del agua en una 

preocupación fundamental a escala mundial. En este contexto, el tratamiento de aguas 

residuales basado en microalgas y bacterias se ha convertido en una solución para el 

tratamiento de aguas residuales y la recuperación de nutrientes con un bajo consumo 

energético. El creciente número de aplicaciones basadas en microalgas exige el desarrollo 

de sistemas de información y apoyo a la toma de decisiones basados en modelos que 

puedan hacer frente a su complejo comportamiento.  

Desde el punto de vista de la ingeniería, los procesos de producción en el campo de la 

biotecnología no pueden modelarse y controlarse de la misma manera que otros tipos de 

procesos industriales. Es necesaria una adaptación significativa para aprovechar los 

conocimientos, la modelización y las técnicas de control que se utilizan habitualmente en 

el control de procesos. El tratamiento de aguas residuales basado en microalgas presenta 

una dinámica no lineal y compleja, comportamiento persistente en régimen no 

estacionario y la influencia de perturbaciones fluctuantes. Para hacer frente a los múltiples 

retos asociados al diseño, funcionamiento y control de los sistemas de tratamiento de 

aguas residuales basados en consorcios de microalgas y bacterias, es necesario desarrollar 

nuevos modelos matemáticos. En consecuencia, las estrategias de control, las técnicas de 

estimación de estados y las técnicas de optimización de procesos deben revisarse y 

adaptarse al contexto de múltiples perturbaciones y condiciones ambientales cambiantes 

que afectan a estos procesos. 

Objetivos 

La presente tesis se centra en la propuesta de modelos y métodos de estimación en 

instalaciones novedosas para el tratamiento de aguas residuales mediante microalgas y 

bacterias, así como en la propuesta de estrategias de estimación de estados y control 

basado en modelo para dichas instalaciones. Con este fin, se propone el modelado de 

configuraciones de fotobiorreactores anóxicos-aeróbicos, así como una biblioteca de 

componentes que permite la reutilización de modelos en diversas aplicaciones. El 

objetivo del presente estudio es estimar los estados, los parámetros y las incertidumbres 



 
 

en una planta de tratamiento de aguas residuales con microalgas y bacterias, facilitando 

así el diseño y la implementación de un controlador predictivo económico en línea. 

Metodología 

Para abordar los objetivos de la tesis, la metodología empleada ha consistido en el estudio 

de diversos modelos que tienen en cuenta las interacciones entre microalgas y bacterias 

en el tratamiento de aguas residuales. Este estudio facilita la selección de modelos para 

la representación adecuada de una planta de tratamiento de aguas residuales basada en 

microalgas y bacterias, así como para la posterior utilización del modelo en el diseño de 

estrategias de control basadas en modelos. Se llevó a cabo el modelado de una planta de 

tratamiento de aguas residuales de dos etapas (anóxica-aeróbica) con reciclaje de biomasa 

y se validó con datos reales de dos instalaciones a escala de laboratorio en diferentes 

condiciones de operación. Se realizó un análisis de sensibilidad en ambos casos para 

determinar los parámetros más influyentes. Posteriormente, se llevó a cabo la estimación 

de parámetros mediante optimización dinámica utilizando una función objetivo robusta 

para abordar las incertidumbres derivadas de mediciones poco fiables. Se diseñó una 

biblioteca de modelos de componentes utilizando el software EcosimPro|PROOSIS® , 

esta biblioteca contiene una variedad de componentes utilizados en las plantas de 

tratamiento de aguas residuales con microalgas y bacterias. Esta biblioteca facilita la 

reutilización del modelo y la conectividad de los componentes. Además, se presentó y se 

probó un enfoque novedoso para la estimación de parámetros en un fotobiorreactor de 

microalgas y bacterias. 

Se examinaron los retos y limitaciones asociados con la supervisión y el control de plantas 

de tratamiento de aguas residuales a escala industrial. Entre las principales limitaciones 

encontradas, se encuentra la necesidad de acceder a información en línea sobre el estado 

del proceso, un requisito que plantea un reto importante en el contexto de los procesos 

biológicos. Este reto surge de la necesidad de disponer de dispositivos de medición más 

fiables o del elevado coste de los sensores en línea. Para superar esta limitación, se empleó 

la técnica de estimación de horizonte móvil para estimar los estados, los parámetros y las 

incertidumbres en una simulación de una planta de tratamiento de aguas residuales a 

escala industrial. La estimación en línea de los estados del proceso permitió la 

implementación de un controlador predictivo económico, considerando la biomasa de 

microalgas como un producto valioso.  



 
 

Resultados y conclusiones 

Los modelos existentes en la bibliografía se adaptaron para representar nuevas 

configuraciones de fotobiorreactores anóxicos-aeróbicos de algas y bacterias para el 

tratamiento de aguas residuales. Los resultados de las simulaciones realizadas revelaron 

la versatilidad del modelo en fotobiorreactores de una o dos etapas, incluyendo 

sedimentación y recirculación de biomasa. Al mismo tiempo, los resultados de simulación 

para dos plantas diferentes confirmaron la capacidad del modelo para reproducir los datos 

experimentales, incluso en el tratamiento de aguas residuales de alta concentración. Se 

realizó la estimación de parámetros del modelo, la cual permitió determinar los valores 

de los parámetros más influyentes del proceso de microalgas-bacterias. De igual manera, 

la estimación de parámetros en el sedimentador permitió estimar los principales 

parámetros relacionados con las propiedades de sedimentación, que no están bien 

establecidos en los procesos de microalgas-bacterias. Los resultados de simulación del 

modelo coinciden con los datos experimentales, lo que valida la precisión del modelo y 

su potencial para su futura aplicación en la operación, control y supervisión del sistema. 

Se desarrolló una metodología para la estimación de parámetros cuando hay múltiples 

salidas y parámetros involucrados en el problema de optimización, la misma se probó en 

un fotobiorreactor para el tratamiento de aguas residuales. Este enfoque evita problemas 

de convergencia y facilita una alineación más óptima entre los datos experimentales y los 

simulados. 

Se desarrolló una biblioteca de componentes del modelo para una planta de tratamiento 

de aguas residuales con microalgas y bacterias. Los componentes desarrollados pueden 

reutilizarse para múltiples simulaciones y permiten una fácil interconexión entre los 

componentes de la planta. 

Se aplicó la técnica MHE a un proceso de tratamiento de aguas residuales basado en 

microalgas. La aplicación de esta técnica permitió la estimación simultánea de múltiples 

estados y parámetros con el fin de evaluar la calidad del agua efluente. En este estudio se 

empleó un modelo de estimación que incorporaba múltiples estados y parámetros con un 

desajuste estructural significativo entre el modelo usado para la estimación y la planta 

real. Se utilizaron medidas con diferente período de muestreo, obtenidas a partir de 

mediciones en línea y procedimientos analíticos, las cuales mejoraron el rendimiento del 

estimador. Los resultados de la simulación confirmaron la eficacia de MHE en la 



 
 

estimación en línea de variables pertinentes del proceso de tratamiento de aguas 

residuales basado en microalgas.  

El MHE proporcionó los valores estimados de los estados, parámetros e incertidumbres 

del sistema, que luego se utilizaron en el modelo del controlador predictivo económico 

para una planta de tratamiento de aguas residuales industriales. El controlador se diseñó 

con el objetivo de maximizar la producción de biomasa a pesar de las incertidumbres del 

proceso.  
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Nomenclature: 

ABACO: microAlgae-BActeria COnsortia model 

ASMs: Activated Sludge Models 

BOD: Biological Oxygen Demand 

BSOM: Biodegradable soluble organic matter 

C: Carbon 

CO2: Carbon dioxide 

COD: Chemical Oxygen Demand 

CVP: Control Vector Parameterization 

CWM1: Constructed Wetland Model No. 1 

DAEs: Differential and Algebraic Equations 

DO: Dissolved Oxygen concentration 

EKF: Extended Kalman Filter 

ELO: Extended Luenberger Observer 

eMPC: economic Model Predictive Control 

FHGO: Filtered High Gain Observer 

FSP: Filtered Smith Predictor 

GPC: Generalized Predictive Controllers 

HRAPs: High-Rate Algal Ponds 

HRT: Hydraulic Retention Time 

IC: Inorganic carbon 

IDAS: Implicit Differential-Algebraic solver with Sensitivity capabilities 

IWA: International Water Association 

KF: Kalman Filter 

LBMPC: Learning-Based Model Predictive Control 

LS: Least squares 

M-estimators: Maximum Likelihood Estimators 

MHE: Moving Horizon Estimation 

MPC: Model Predictive Control 



 
 

N: Nitrogen  

N-NH4+: Nitrogen in the form of ammonium 

N–NO3−: Nitrogen in the form of nitrate 

N–NO2−: Nitrogen in the form of nitrite 

NARMAX: Nonlinear AutoRegressive Moving Average model with eXogenous inputs 

NLP: Nonlinear programming 

NMPC: Nonlinear Model Predictive Control 

O2: Oxygen 

ODEs: Ordinary Differential Equations 

OOP: Object-oriented programming 

OCP: Optimal control problem 

P: Phosphorus 

PAR: Photosynthetically Active Radiation 

PDEs: Partial Differential Equations  

PI controllers: Proportional Integral controllers 

PID controllers: Proportional - Integral - Derivative controllers 

PPFD: Photosynthetic Photon Flux Density 

P–PO42−: Phosphorus in the form of phosphate 

PWM: Plant-Wide Model 

RTO: Real-Time Optimization 

RWQM1: River Water Quality Model 1 

SFWD: Synthetic Food Waste Digestate 

SHGO: Standard High Gain Observer 

SMC: Sliding Mode Control 

SNOPT: Sparse Nonlinear OPTimizer 

SQP: Sequential Quadratic Programming 

SRT: Sludge Retention Time 

STOs: Super Twisting Observers 

SWW: Synthetic wastewater 



 
 

TOC: Total Organic Carbon 

TN: Total Nitrogen 

TSS: Total Suspended Solids 

UKF: Unscented Kalman Filter 

VSS: Volatile Suspended Solids 

WLS: Weighted least squares 

WW: Wastewater 

WWTPs: Wastewater Treatment Plants 
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1. Introduction to microalgae-bacteria based wastewater 

treatment processes 

One of the greatest challenges facing humanity today is the availability of water resources 

suitable for direct human consumption. At the same time, population growth and 

industrialization have led to a significant increase in wastewater production. As a result, 

water purification is currently a primary concern on a global scale.  

Wastewater contains a wealth of organic and inorganic nutrients that, if discharged 

untreated, can cause ecosystem imbalances due to excessive biological and chemical 

oxygen demands (BOD and COD, respectively). In addition, the presence of high 

concentrations of nutrients such as dissolved nitrogen and phosphorus can lead to 

eutrophication of water bodies, resulting in environmental problems such as oxygen 

depletion and unpleasant malodorous emissions to the air. Eutrophication also promotes 

the growth of unwanted microbes that threaten other aquatic life and degrade the quality 

of drinking water.  

The traditional three-stage treatment process for wastewater treatment at wastewater 

treatment plants (WWTPs) includes primary solids removal, secondary biodegradable 

organic matter removal, and tertiary nutrient removal (Fig. 1.1). In primary treatment, 

wastewater enters large sedimentation tanks where suspended solids settle to the bottom. 

This process helps removing about 60% of the suspended solid waste present in the 

wastewater. During secondary treatment, the remaining organic matter is broken down 

by microorganisms in an oxygen-rich environment, eliminating up to 90% of pollutants 

through this biological treatment. Tertiary treatment is designed to remove any remaining 

contaminants, pathogens, and nutrients from wastewater. Several advanced techniques 

are used in tertiary treatment, which are WWTPs specific. 

In WWTPs, secondary and tertiary treatment face significant challenges associated with 

high costs, energy-intensive treatment, and difficulties in the simultaneous removal of 

nitrogen and phosphorus. In fact, the mechanical aeration required for organic matter 

degradation in activated sludge systems can account for 45-60% of the total operating 

costs in conventional WWTPs (Chae and Kang, 2013). In addition to these challenges, 

today's wastewater treatment systems must deal with increasing demands for higher water 

quality and the presence of new chemical products and emerging contaminants in 

wastewater.  
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Fig. 1.1. Simplified schematic of the wastewater treatment process (Water Service 

Corporation, 2024) 

 

Microalgae and bacteria-based wastewater treatment systems in high-rate algal ponds 

(HRAPs) were proposed in the late 1950s as an alternative for secondary or tertiary 

wastewater treatment (Oswald and Gotaas, 1957). In these treatment systems, microalgae 

grow using inorganic carbon as a carbon source and light as an energy source. During this 

process, microalgae provide the oxygen (O2) required by heterotrophic bacteria to oxidize 

the organic matter present in the influent wastewater. Concurrently, heterotrophic bacteria 

provide carbon dioxide (CO2) for photosynthetic activity, thereby completing the cycle. 

Furthermore, the oxygen produced by microalgae can be utilized by nitrifying bacteria to 

oxidize ammonium to nitrate (nitrification process), once again consuming CO2 as a 

carbon source. This in situ photosynthetic oxygen supply has the potential to reduce 

carbon dioxide emissions from organic matter oxidation and to significantly decrease the 

costs associated with mechanical aeration in activated sludge systems. Furthermore, 

photosynthetic aeration limits the risks for pollutant volatilization and pathogen release 

under mechanical aeration. 
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Domestic and industrial wastewaters, as well as anaerobic digestion effluents, which are 

characterized by high carbon (C), nitrogen (N), and phosphorus (P) concentrations, 

require treatment before discharge into natural water bodies. Consequently, the capacity 

of microalgae to simultaneously remove carbon, nitrogen, and phosphorus via 

assimilation confers another notable advantage over conventional aerobic activated 

sludge or anaerobic digestion techniques in terms of enhanced nutrient recovery. 

Moreover, microalgae can enhance the removal of heavy metals and the aerobic 

degradation of hazardous contaminants (Muñoz and Guieysse, 2006). 

Notwithstanding the fact that microalgae cultivated with wastewaters is not suitable for 

feed and food applications, the harvested microalgae biomass possesses potential for 

further utilization in the production of biofertilizers, biofuels, and other bioproducts. This 

renders the technology an attractive alternative for cost-effective wastewater treatment 

and nutrient management (Muñoz and Guieysse, 2006; Alcántara, García-Encina and 

Muñoz, 2013; Stiles et al., 2018). Furthermore, the utilization of microalgae 

biotechnology for the capture of carbon dioxide from industrial plants is anticipated to 

emerge as a globally significant and economically viable environmental technology. 

Despite the previously mentioned benefits, several challenges must be addressed to 

capitalize on the primary benefits of incorporating microalgae in wastewater treatment. 

The dynamic interactions between microalgae and bacteria are subject to temporal 

fluctuations due to the daily variations in environmental variables, such as solar radiation 

and temperature, as well as operational variables, including hydraulic retention time 

(HRT), nutrient concentrations, and the organic load present in the influent wastewater. 

The ability to maintain an effective algal activity at low temperatures and low light levels 

during winter months also poses a significant challenge. 

Although these systems have been studied for many years, only recently, these 

technologies are being improved to align with industry demands. These developments 

encompass a reduction in hydraulic retention time and accomplishing the effluent water 

quality regulation, among other notable improvements. In the context of large-scale 

microalgae-bacteria systems, novel techniques from biotechnology and control 

engineering must be employed to ensure the robustness, durability, and optimization of 

these processes. 

From an engineering perspective, production processes in the field of biotechnology 

cannot be modeled and controlled in the same manner as other types of industrial 



4 
 

processes. Significant adaptation is necessary to leverage the knowledge, modeling, and 

control techniques commonly utilized in process control. Microalgae-based wastewater 

treatment exhibits nonlinear and complex dynamics, hallmarks of biotechnological 

processes, and also encompasses persistent non-stationary regime behavior, the influence 

of fluctuating perturbations, and substantial feedback from the population level to the 

cellular level through light attenuation. 

In order to confront the manifold challenges associated with the design, operation, and 

control of wastewater treatment systems based on microalgae-bacteria consortia, new 

mathematical models must be developed. Correspondingly, control strategies, state- 

estimation techniques, and process optimization techniques must be revisited and adapted 

to the context of multiple perturbations and evolving environmental conditions that affect 

these processes. 

This Chapter revises the state of the art in modeling, parameter and state estimation, 

control, and optimization techniques in microalgae-based wastewater treatment 

processes. By identifying the aspects that need improvement in the automatic control of 

microalgae-based wastewater treatment processes, this review has set the stage for the 

thesis. This review provides a comprehensive overview of the field and is the cornerstone 

for establishing the research's motivation and goals.  

 

1.1.  State of the art in modeling, control, and optimization of microalgae-bacteria 

based wastewater treatment 

This section presents a review of the current state of the art regarding the modeling, 

parameter and state estimation, control, and optimization of microalgae-bacteria 

processes and microalgae cultivation processes. Concerning modeling, this section 

presents a comprehensive review of research works conducted in the field, encompassing 

detailed mechanistic models described using nonlinear differential equations and more 

simplified linear and nonlinear models. In the same vein, the problem of parameter 

estimation was also revisited. This review also discusses a variety of works dealing with 

the problem of state estimation in microalgae-based processes, where plenty of research 

has been conducted, on the contrary of state estimation in wastewater treatment processes 

based on microalgae-bacteria consortia, with few case studies reported in the literature. 

Furthermore, a review of diverse control and optimization approaches in the microalgae 

cultivation field is presented, with a particular focus on advanced control strategies. 
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1.1.1.  Modeling of microalgae-bacteria interactions in wastewater treatment 

processes 

The use of mechanistic bacterial mathematical models to describe conventional 

wastewater treatment systems is a widely accepted practice. Some of these models, such 

as the Activated Sludge Models (ASMs) (Henze et al., 2000), have been successfully 

developed, validated, and applied. On the other hand, mathematical models for 

microalgae growth have evolved from early steady-state formulations considering a 

single factor (e.g., nitrogen, carbon, phosphorus, light intensity) (Novak and Brune, 1985; 

Eilers and Peeters, 1988; Martinez et al., 1997; Aslan and Kapdan, 2006) to more 

complicated dynamic models that consider multiple substrates or physical factors 

limitations following a structure according to Droop's or Monod kinetics (Solimeno et al., 

2015; Solimeno, Acien and García, 2017). However, mechanistic models that describe 

the internal complexity of the interactions between microalgae and bacteria in wastewater 

treatment systems (microalgae-bacteria models) are still being developed and tested 

(Solimeno and García, 2017). 

In the last decades, the use of microalgae for wastewater treatment has promoted the 

development of mathematical models as a valuable tool to predict, control and optimize 

wastewater treatment systems based on microalgae-bacteria consortia. The integration of 

microalgae and bacteria processes in a model is not trivial: these models should be able 

to integrate the physical, chemical and biological phenomena occurring in these systems. 

These phenomena occur on different time scales and are strongly interdependent (García 

et al., 2006). The reactions of microalgae and bacteria change with time due to the daily 

variation of environmental variables. Furthermore, microalgae can promote or inhibit 

bacterial growth in these systems and vice versa (Marsollier et al., 2004; Awuah, 2007; 

Ruiz-Marin, Mendoza-Espinosa and Stephenson, 2010). 

The River Water Quality Model 1 (RWQM1) (Reichert et al., 2001), developed by the 

International Water Association (IWA) Task Group on River Water Quality Modeling, 

was a milestone in the modeling of microalgae and bacteria interactions. This mechanistic 

model included the growth of microalgae and bacteria (heterotrophs and nitrifiers) on 

nitrogen (ammonium and nitrate) and phosphorus (orthophosphate). The model also 

assumes the presence of consumers (feeding on algae, heterotrophic and autotrophic 

organisms, and biodegradable organic matter). This model is compatible with the existing 

activated sludge models (ASM1, ASM2, and ASM3) (Henze et al., 2000). The model 
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contained equations for the formulation of biochemical transformation processes for a 

river water model that attempts to include the essential processes for C, O, N and P 

cycling in a river under aerobic or anoxic conditions. The model is based on the main 

elementary composition of organisms (C, H, N, O, and P) and the stoichiometry of 

biochemical conversion processes instead of only using chemical oxygen demand, as it is 

a common practice in wastewater treatment. The model includes all variables of ASM 

series models, considering 26 processes and 24 components (9 particulate and 15 soluble 

components). The kinetic expressions of RWQM1 are based on switching functions of 

nutrient availability, light, and temperature (Monod function, Lambert and Beer's Law, 

and Arrhenius equations, respectively). This model has been implemented in different 

simulation platforms to simulate practical cases studies. Most model components and 

equations of the RWQM1 have been used or adapted in subsequent models for 

microalgae-bacteria processes.  

The RWQM1 has significantly influenced subsequent research in the field of microalgae-

bacteria interactions. For instance, a modification of the RWQM1 was proposed by 

(Broekhuizen et al., 2012) to simulate water quality characteristics in two pilot-scale 

HRAPs. The model introduced important structural changes such as the introduction of 

explicit dissolved inorganic carbon limitation, the representation of the form in which 

nitrate concentration influences algal growth, and the adoption of a differential/algebraic 

equation formulation for the acid/base reactions.  

Sah et al. (Sah et al., 2011) developed a mechanistic model to simulate wastewater 

treatment in a secondary facultative pond using a 3D hydrodynamic model coupled to an 

ASM-type biochemical model. The mathematical equations representing different 

aerobic and anoxic biochemical transformations by bacteria in the pond were based on 

the Activated Sludge Model 2 (Gujer et al., 1995). Anaerobic process equations were 

selected from the Constructed Wetland Model No. 1 (CWM1) (Langergraber et al., 2009), 

and the equation for algal growth was derived from RWQM1 (Reichert et al., 2001). 

Monod-type rate equations described the nutrient and light limitation on growth. Light 

attenuation and temperature dependency are based on Lambert Beer’s Law and the 

Arrhenius-type equation, respectively. This model uses the same notation and structure 

of the ASM series and considers 19 processes and 18 components (nine particulate and 

nine soluble). One distinguishing characteristic of this model is that it considers five 
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functional groups of bacteria (heterotrophic, nitrifying, fermenting, sulfate-reducing, and 

sulfide-oxidizing bacteria).  

Most previously referred models do not combine the overall biochemical processes 

involved in microalgae-bacteria systems and the simultaneous effects of light intensity, 

temperature, pH, or the effect of high dissolved oxygen concentration on biomass growth 

(Solimeno and García, 2017). To address these limitations, the dynamic model 

BIO_ALGAE (Solimeno et al., 2017a) was developed, integrating crucial biokinetic, 

chemical, and physical processes of microalgae and bacteria in wastewater treatment 

systems. Microalgae processes are described using the previous model developed by the 

authors (Solimeno et al., 2015), inspired by the RWQM1 (Reichert et al., 2001). The 

modeling of bacteria processes is inspired in the modified ASM3 model (Iacopozzi et al., 

2007). The most relevant feature of the model was the inclusion of carbon limitation on 

the growth of microalgae and the growth of autotrophic bacteria. Light attenuation, 

photorespiration, temperature and pH dependence, and the transfer of gases to the 

atmosphere are also included in the model. This model uses the standard nomenclature of 

the IWA models and considers 19 components (6 particulate and 13 dissolved). The 

model was calibrated and validated in two identical pilot HRAPs treating real wastewater 

(Solimeno et al., 2017a) and in a pilot HRAP during two different seasons (summer and 

winter) and operating at different HRT (Solimeno and García, 2019). 

A second version of this model, the model BIO_ALGAE 2 (Solimeno, Gómez-Serrano 

and Acién, 2019a) was proposed to overcome some limitations of the BIO_ALGAE 

model (Solimeno et al., 2017a), including new sub-models that consider the variation of 

microalgae and bacteria performance as a function of culture conditions prevailing in 

microalgae cultures (pH, temperature, dissolved oxygen). The model BIO_ALGAE 2 

uses a cardinal temperature sub-model to describe microalgae growth dependence instead 

of the normal distribution of the thermic photosynthetic factor used in the model 

BIO_ALGAE (Solimeno et al., 2015). The cardinal temperature sub-model is also used 

to replace the Arrhenius equation of the thermal factor, which describes the temperature 

dependence of nitrifying bacteria in previous model formulations (Reichert et al., 2001; 

Langergraber et al., 2009; Sah et al., 2011; Solimeno, Acien and García, 2017). A cardinal 

pH sub-model was included to represent the inhibitory effects on the growth response of 

microalgae and bacteria at high pH. The cardinal pH sub-model is based on the cardinal 

temperature model presented in (Bernard and Rémond, 2012). Both temperature and pH 
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cardinal sub-models use the maximum, optimum, and minimum values to represent the 

influence of temperature and pH on microalgae and bacteria growth. The model was 

calibrated using data from a laboratory reactor fed with real wastewater, and the effect of 

CO2 injection and the influence of wastewater composition on treatment performance was 

investigated through practical case studies (Solimeno, Gómez-Serrano and Acién, 2019a). 

The microalgae-bacteria consortia (ABACO) model (Sánchez‐Zurano et al., 2021) for 

wastewater treatment includes the most relevant features of microalgae, such as light 

dependence, endogenous respiration, and growth and nutrient consumption as a function 

of nutrient availability (mainly inorganic carbon). The model also includes the most 

relevant factors influencing the activity of heterotrophic and nitrifying bacteria. The 

model equations are inspired in the BIO_ALGAE model (Solimeno et al., 2017a). 

Contrary to the BIO_ALGAE model, the ABACO model considers the influence of 

nutrient concentration (CO2, N-NH4+, N–NO3−, P–PO42− and biodegradable soluble 

organic matter) in both microalgal and bacterial growth, and in the coefficient yields. The 

model was calibrated and validated with experimental data from duplicate laboratory-

scale photobioreactors using pig slurry as a nutrient source.  

The ALBA model (Casagli et al., 2021) shares some common choices with the above-

cited algae-bacteria models, particularly with the ones simulating outdoor environments 

(Broekhuizen et al., 2012) and the BIO_ALGAE 2 model (Solimeno, Gómez-Serrano and 

Acién, 2019a). The model is based on mass balances of COD, C, N, P, H, and O. It 

describes growth and interactions among algae, heterotrophic and nitrifying bacteria, and 

other relevant chemical/physical processes. One of the most innovative characteristics of 

this model is the philosophy of biological kinetics based on Liebig's minimum law (De 

Baar, 1994), which assumes that the most limiting nutrient drives the growth kinetics. In 

addition, the pH sub-model includes a detailed chemical speciation described by an 

algebraic system. The model also includes the evaporation process and its effect on 

dissolved and suspended compounds. The model was calibrated and successfully 

validated using an original data set recorded from an outdoor demonstrative raceway pond 

treating synthetic wastewater for fifteen months (Casagli et al., 2021).  

Most of the models mentioned above describing raceway photobioreactors consider 

complete mixing in the entire reactor, thus evaluating the cultures' performance as a 

function of the average value of culture parameters such as light availability, pH, and 

nutrient concentration. However, raceway reactors are plug-flow reactors exposed to 
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changing solar light, thus culture conditions change on time and space inside the reactor. 

Consequently, dynamic models that account for the temporal-spatial distribution of 

culture parameters are essential for detailed simulation of this type of reactor. In this 

sense, a dynamic model of microalgae production in raceway reactors was developed 

(Fernández, Acién, et al., 2016) based on a previously reported model for tubular reactors 

(Fernández et al., 2012; Fernández, Acién, Berenguel and Guzmán, 2014). The model 

includes mass balances, transport phenomena, thermodynamic relationships, and 

biological phenomena taking place in the reactor, thus based on fundamental principles 

instead of empirical equations. Mass balances are applied to each reactor section to model 

the raceway reactor. Thus, partial differential equations (PDEs) are used to cope with 

plug-flow behavior in some parts of the reactor, while ordinary differential equations 

(ODEs) are used to describe the stirred tank sections of the reactor as sump and paddle to 

reduce the computational effort in simulating the model. In this model, the biological 

model for microalgae previously reported by (Costache et al., 2013) and the engineering 

characterization of the raceway reactor used in previous works (Mendoza, Granados, de 

Godos, Acién, Molina, Banks, et al., 2013; Mendoza, Granados, de Godos, Acién, 

Molina, Heaven, et al., 2013; de Godos, Mendoza, et al., 2014) were used to describe this 

bioprocess's biological and engineering aspects, respectively. The model was calibrated 

and validated with experimental data from a 100 m2 pilot-scale raceway reactor 

(Fernández, Acién, et al., 2016).  

Mechanistic models, such as those previously referred to, provide a thorough 

understanding of the different phenomena that occur in photobioreactors, leading to the 

creation of simulators that can be used for process simulation, prediction purposes, or as 

a tool for optimizing and designing photobioreactors. These models are also a powerful 

tool for applying advanced control strategies, where an appropriate optimization of the 

whole system is performed in an upper layer. On the other hand, dynamic nonlinear first 

principles-based models are challenging to obtain due to the necessity of previous 

knowledge about the system and the large number of experimental tests needed to 

calibrate their parameters.  

In addition to mechanistic models, reduced models for control purposes have been 

developed and applied in many photobioreactor configurations. These models assume 

certain system dynamics simplifications to reduce the computational complexity 
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associated with designing and applying control algorithms in nonlinear systems (Guzmán, 

Acién and Berenguel, 2021). 

With the aim to obtain a trade-off between model complexity and performance, Fernández 

et al. (Fernández, Acién, Berenguel, Guzmán, et al., 2014) developed a simplified model 

that would include the main non-linear dynamics of tubular photobioreactors. This model 

represented a simplified version of the model presented in (Fernández, Acién, Berenguel 

and Guzmán, 2014) and can be used for advanced control purposes and as a tool for the 

design and operation optimization of photobioreactors. The model consisted of fluid-

dynamic and mass transfer processes and biological phenomena, all of which are based 

on chemical, physical, and biological principles. In addition, the model considered the 

physical characteristics of the photobioreactor. The model was calibrated and validated 

using a large number of experimental results from a pilot-scale tubular photobioreactor 

under different solar and culture conditions. This model was used to develop hierarchical 

control algorithms (Fernández, Berenguel, et al., 2016), reporting a significant reduction 

in the computation time. 

As previously mentioned, microalgae-bacteria processes are complex systems, often 

described using numerous variables, parameters, and equations. From a control 

perspective, simplified models are preferred for designing control strategies for low-level 

feedback control loops. To this end, intermediate and low-complexity models have been 

developed to capture the dynamics of certain variables in microalgae photobioreactors, 

such as pH models. Based on the fact the pH of the culture media strongly influences the 

photosynthesis rate and, consequently, the microalgae biomass production, many studies 

have focused on developing pH models for control purposes (Fernández et al., 2010; 

Pawlowski et al., 2019). 

In this sense, the pH NARMAX (Nonlinear AutoRegressive Moving Average model with 

eXogenous inputs) model of 18th order presented in (Fernández, Acién, Berenguel, 

Guzmán, et al., 2014) was able to describe the main non-linearities of this variable. This 

model considered the effects of radiation and CO2 injection over pH dynamics and was 

validated with real data and compared with first principles-based models. The main 

drawback of this model was the complexity due to the high order of the parameters 

obtained. On this context, Pawlowski et al. (Pawlowski et al., 2019) presented another 

model for pH dynamics, looking for a trade-off between model accuracy and complexity. 

The Wiener model presented in this work combined linear and nonlinear dynamics. A 
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first-order linear term was used to represent the main dynamics of pH, while a third-order 

nonlinear polynomial term was used to represent the nonlinear component. In this work, 

the model was used in a model-based control approach that allows decoupling the linear 

and nonlinear terms, making designing control algorithms easy.  

Despite the nonlinear nature of variables involved in microalgae processes, linear models 

have also been used to represent particular dynamics in photobioreactors around specific 

operation points. For instance, Berenguel et al. (Berenguel et al., 2004) used a linear 

model to describe the pH dynamics related to the CO2 injection input and solar radiation 

through two transfer functions in the Laplace domain. This linear model was used in an 

on-off model predictive control (MPC) to control pH and minimize CO2 losses in a 

microalgal tubular photobioreactor. This simplified model was successfully validated in 

both open and closed photobioreactors (Fernández et al., 2010; Fernández, Acién, 

Berenguel, Guzmán, et al., 2014; Pawlowski et al., 2015). 

Table 1.1 and Table 1.2 provide a concise overview of the main characteristics and 

applications of the aforementioned models. As illustrated in Table 1.1, mechanistic 

microalgae-bacteria models have been predominantly utilized to simulate the dynamics 

of diverse components under varying operational conditions. These models function as a 

predictive tool, allowing for the estimation of the relative proportions of microalgae and 

bacteria within the system. Conversely, in the domain of microalgae cultivation for high-

value product production, significant advancements have been made in the development 

of specific models for control purposes, as illustrated in Table 1.2. The current state of 

the art in microalgae-bacteria processes modeling encompasses a range of models with 

successful applications under various photobioreactor configurations and operational 

conditions. However, the selection of an appropriate model structure for a given 

application or intended use (prediction, estimation, control, and optimization) remains a 

challenging task, as does the calibration of models due to the number of implicated 

parameters, the prevalence of nonlinear dynamics, and potential identifiability issues 

between model parameters. 
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Table 1.1. List of mechanistic microalgae-bacteria models and main applications. 

Model and 
Intended use 

Model type/ 
Distinctive characteristics 

Model applications Process/ 
Reactor type/ 
Culture media 

• RWQM1 (Reichert et al., 2001) 
River water quality and wastewater 
treatment modeling.  
Simulation. 

Mechanistic/ 
Complex model with several 
parameters. 

Assessment of the impact of wastewater 
effluents and combined sewer overflows 
(Borchardt and Reichert, 2001). 

River Lahn (Germany) 
 

Simplifications of RWQM1 to study oxygen 
and nitrogen conversion processes (Reichert, 
2001). 

River Glatt (Switzerland) 

• Modification of the RWQM1 by (Broekhuizen et al., 2012) 

Modeling and simulation of 
HRAPs (overcoming the 
limitations of RWQM1 in modeling 
HRAPs). 

Mechanistic/ 
Complex model with several 
parameters. 

Simulate microalgae-bacteria interactions in 
HRAPs. Long term validation.  

Wastewater treatment/  
Pilot-scale HRAPs/ 
Domestic wastewater 

• Sah et al. (Sah et al., 2011) 

Wastewater treatment modeling 
and simulation in secondary 
facultative ponds. 

Mechanistic/ 
Combines a 3D hydrodynamic 
with a mechanistic water quality 
model. 

Evaluate the effect of wind and the addition 
of baffles on water flow patterns, pond 
temperature profiles and treatment efficiency. 
No validation with real data. 

Wastewater treatment/  
Secondary facultative 
pond/ 
Domestic wastewater 
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• BIO_ALGAE (Solimeno et al., 2017a) and BIO_ALGAE 2 (Solimeno, Gómez-Serrano and Acién, 2019a) 

Modeling and simulation of 
microalgae-bacteria systems. 

Mechanistic/ 
Includes carbon-limited 
microalgae and autotrophic 
bacteria growth, light attenuation, 
photorespiration, temperature and 
pH dependency. 

Simulate microalgae-bacteria interactions. 
Predict the microalgae and bacteria 
proportions in the system. Model calibration 
and validation (Solimeno et al., 2017a). 
Long-term validation (Solimeno and García, 
2019). 

Wastewater treatment/  
Pilot-scale HRAPs/ 
Municipal wastewater 

Predict the microalgae and bacteria 
proportions in the reactor, estimate daily 
biomass production. Predict the removal 
efficiency (Solimeno, Gómez-Serrano and 
Acién, 2019a). 

Wastewater treatment/  
Cylindrical-type stirred 
tank reactors (lab-scale)/ 
Municipal wastewater. 
Centrate and manure 
wastewater. 

• ABACO (Sánchez‐Zurano et al., 2021) 

Wastewater treatment modeling 
and simulation.  

Mechanistic/ 
Includes the most relevant features 
of microalgae and bacteria growth. 
Model calibration using genetic 
algorithms. 

Simulate the dynamics of different 
components in the system. Predict the relative 
proportion of microalgae and bacteria in the 
system. Model calibration and validation.  

Wastewater treatment/ 
Laboratory-scale 
photobioreactors/  
Pig slurry 

• ALBA (Casagli et al., 2021)  

Wastewater treatment modeling 
and simulation. 

Mechanistic/ 
Includes the most relevant 
features of microalgae and 
bacteria growth. Biological 
kinetics based on Liebig's 
minimum law. 

Simulate the dynamics of different 
components in the system under different 
scenarios. Long-term validation. 

Wastewater treatment/ 
Outdoor pilot-scale 
HRAP/ 
Synthetic municipal 
wastewater 
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Table 1.2. List of microalgae models intended for control and optimization. 

Model and 
Intended use 

Model type/ 
Distinctive characteristics 

Model applications Process/ 
Reactor type/ 
Culture media 

• Dynamic model of microalgae production in tubular (Fernández et al., 2012; Fernández, Acién, Berenguel and Guzmán, 2014) and raceway 
photobioreactors (Fernández, Acién, et al., 2016) 

Simulation of the effects of 
different designs and/or 
operational conditions into the 
performance of the system. 
Optimization of design and 
operation of photobioreactors. 
Analysis and design of 
advanced control strategies. 

Mechanistic/ 
The model integrates biological 
and engineering aspects: in 
addition to biological 
phenomena, it also considers 
fluid dynamics and mass 
transfer. 

Predicting the evolution of the main 
variables of the system. Determine the 
values of characteristic parameters. 
Model calibration and validation 
 

Microalgae production/ 
Pilot-scale tubular photobioreactor 
(Fernández et al., 2012)/ 
Outdoor industrial tubular 
photobioreactor (Fernández, Acién, 
Berenguel and Guzmán, 2014)/ 
Mann and Myers medium using 
agricultural fertilizers. 

Predicting the evolution of the main 
variables of the system. Determine the 
influence of design parameters in the 
performance of the system. Model 
calibration and validation (Fernández, 
Acién, et al., 2016). 

Microalgae production/ 
Pilot-scale HRAP/ 
Arnon medium using fertilizers  
 

• Dynamic lumped parameter model for microalgal production in tubular photobioreactors (Fernández, Acién, Berenguel, Guzmán, et al., 2014)  

Advanced control purposes and 
as a tool for the design and 
operation optimization of 
photobioreactors. 

Simplified model/ 
Based on fundamental 
principles, maintaining the main 
physical characteristics and 
non-linear dynamics. 

Development of hierarchical control 
algorithms (Fernández, Berenguel, et 
al., 2016), reporting a significant 
reduction in the computation time. 

Microalgae production/ 
Pilot-scale tubular photobioreactor/ 
Mann and Myers medium using 
agricultural fertilizers. 
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• Reduced models for pH control  

pH control minimizing CO2 
losses 

Linear model/ 
Model of the pH evolution based 
on changes in CO2 injection and 
in solar radiation (Berenguel et 
al., 2004). 

Development of a branch-and-
bound on–off model-based 
predictive control strategy. 
Application in a real 
photobioreactor (Berenguel et al., 
2004) 

Microalgae production/ 
Tubular photobioreactor/ 
N.S* 

Designing of a PI control and a 
feedforward compensator to achieve 
desired regulation properties. 
Comparison of these control strategies 
with ON/OFF regulation (Fernández et 
al., 2010). 

Microalgae production/ 
Tubular photobioreactor/ 
Filtered sterilized culture medium 

pH control in raceway 
photobioreactors 

Wiener model/ 
Model intended to trade-off 
between model accuracy and 
complexity. It combines linear 
and nonlinear dynamics. 

Development of a model-based control 
approach that allows to decouple the 
linear and nonlinear terms. Control 
scheme based on a PID controller and a 
robust filter (Pawlowski et al., 2019). 

Microalgae production/ 
Raceway photobioreactor/ 
N.S* 

*N.S. (Not specified) 
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1.1.2. Parameter estimation in microalgae-bacteria processes 

The development of a model is an iterative procedure, which can be roughly divided into 

multiple steps: preliminary analysis, model fitting, and model validation. During the 

preliminary analysis stage, initial experiments are executed to determine the relation 

between the process inputs and measurement data. These relations are typically described 

by dynamic, deterministic models expressed as differential and algebraic equations 

(DAEs) with a set of parameters that characterize the kinetics of the key processes and 

chemical reactions. In addition to finding the correct equations to describe process 

phenomena, new experiments are required to generate measurement data. Utilizing the 

experimental data, a set of model parameters is found which minimizes the difference 

between the measured data and the predicted model response. The validation of the model 

is based on the accuracy of its predictions and the precision of its parameters. 

The accuracy of parameter estimation (and, consequently, of the mechanistic model) is 

significantly influenced by the availability of experimental data. However, it is 

challenging to obtain a sufficient amount of data, particularly for bioprocesses. This is 

primarily because cultivation experiments are generally costly and time-consuming, and 

the measures of the key states of the cultivation are predominantly from analytic 

procedures, which are significantly scarcer than those measures provided from online 

sensors. 

In order to effectively model microalgae-bacteria interactions and enhance the precision 

of identified parameters, a meticulous experimental design is imperative to provide data 

of substantial informative content for the model calibration stage. In many cases, a single 

experiment is insufficient to estimate the model parameters adequately, and thus the 

procedure of experiment design, experiment execution, and parameter estimation must be 

repeated. The experiment design must take into account the limitations on process 

facilities and the rate of information acquisition, which may be limited by the 

experimental budget. When monitoring a microalgae-bacteria process, a number of 

system outputs (typically flow rates, temperature, pH, and dissolved oxygen) are 

measured continuously, while other responses (typically concentration measurements) 

can only be acquired by discrete sampling at a significantly reduced sampling frequency. 

These experimental data are essential both to assess the formal validity of the model and 

to estimate the model parameters that allow the model to match the process response over 

the selected range of operating conditions.  



17 
 

In the context of microalgae-bacteria processes, particularly in outdoor facilities, the final 

experimentation time is of paramount importance. This is because it is essential to record 

sufficient experimental data to support parameter estimation and model validation. These 

data must capture both rapid dynamics, occurring within hours, and slow dynamics, 

occurring over days or even months, within the culture.  

The extant literature provides numerous examples of parameter estimation in microalgae 

and microalgae-bacteria processes, employing a variety of approaches. Irrespective of the 

parameter estimation approach used (manual trial and error adjustment of parameters, 

optimization), another important aspect is related to the proper selection of the parameters 

to be estimated within the entire set of model parameters. This is especially salient in the 

context of mechanistic models, which are frequently employed to describe microalgae-

bacteria interactions and are characterized by an elevated number of parameters. In this 

sense, different approaches have also been used to determine those parameters with the 

greatest impact on model outputs that should be estimated.  

Parameter estimation via optimization was used to estimate the parameter values of the 

simplified model developed by Fernández et al. (Fernández, Acién, Berenguel, Guzmán, 

et al., 2014) for tubular microalgae photobioreactors. The estimation of parameters was 

achieved using a computer program developed in the MATLAB® environment, 

employing experimental data of the dissolved oxygen and pH of the culture registered for 

a period of three months. In the validation stage, a distinct dataset, not employed for 

identification purposes, was utilized to account for both bias and variance errors in the 

identification procedure. The experimental data for parameter estimation and model 

validation were recorded under different solar and culture stage conditions. 

In the research conducted by Solimeno et al. (Solimeno et al., 2015), the Morris's 

uncertainty method was applied to the screening of parameters with a greater influence 

on the simulation response. The model for microalgae growth was calibrated using a 

manual trial-and-error procedure to adjust the values of the maximum specific growth 

rate of microalgae and the mass transfer coefficients. The calibration was conducted by 

comparing simulated and experimental data from a microalgae culture. Details of the 

application of the Morris method of elementary effects to perform a global sensitivity 

analysis were illustrated in (Solimeno, Samsó and García, 2016) using the same initial 

conditions, parameter values, and geometry as in the previous work of the authors 

(Solimeno et al., 2015). Furthermore, uncertainty parameters derived from a prior 

https://www.sciencedirect.com/topics/engineering/morris-method
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sensitivity analysis (Solimeno, Samsó and García, 2016) were calibrated for two different 

tubular photobioreactors (Solimeno, Acien and García, 2017), thereby substantiating the 

impact of these parameters on model outputs across diverse photobioreactor 

configurations and operational conditions.  

In the same way, a Morris sensitivity analysis was conducted to evaluate the parameters 

that predominantly influenced the simulation response of the BIO_ALGAE model in 

duplicated microalgae-bacteria pilot raceway ponds (Solimeno et al., 2017a). The 

microalgae and heterotrophic bacteria parameters, as well as the mass transfer 

coefficients, were calibrated in order to fit the model outputs with the experimental data. 

Given the pivotal role of mass transfer coefficients over model response, these parameters 

were also calibrated in a pilot microalgae-bacteria photobioreactor (Solimeno, Gómez-

Serrano and Acién, 2019a). 

The sensitivity analysis was also employed in the research conducted by Casagli et al. 

(Casagli et al., 2021) to ascertain the most sensitive parameters of the ALBA model. The 

sensitivity analysis was carried out using the AQUASIM toolboxes (Reichert, 1994) and 

accounting for the environmental conditions that define each season pattern. 

Consequently, the parameters to be calibrated are the most sensitive ones in every season 

investigated. Parameter values were obtained via optimization using a cost function which 

minimizes the sum of square errors between simulated and experimental data weighted 

by standard deviations. The model was calibrated and successfully validated using an 

original data set recorded from an outdoor demonstrative raceway pond treating synthetic 

wastewater for fifteen months. Model calibration was performed using a data set from 

autumn and winter (29 days), while model validity was assessed using the data from the 

monitoring campaign which were not used during calibration (414 days). The model 

exhibited a remarkable capacity to accurately replicate the experimental data trend across 

all seasons, employing a unique set of parameters. This finding serves to substantiate the 

robustness of the model and the precision of the parameter estimation procedure utilized. 

Parameter estimation using genetic algorithms was carried out in laboratory-scale 

microalgae-bacteria photobioreactors fed with pig slurry (Sánchez‐Zurano et al., 2021). 

The use of genetic algorithms for calibration proved to be a valuable and reliable approach 

for the estimation of uncertain parameters. In this study, genetic algorithms were 

employed to minimize a cost function, which quantifies the discrepancy between the 

model output and the actual output of the system by modifying the parameter values 
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within predefined limits. This calibration procedure facilitated the estimation of the 

values of 17 model parameters of the ABACO model. In addition to parameter estimation, 

the genetic algorithm method was also employed to determine the initial percentage of 

each species in the photobioreactor. The calibration process using genetic algorithms was 

implemented in MATLAB® software using the Genetic Algorithm Optimization 

Toolbox. This calibration procedure offers a straightforward and efficient approach to 

adjusting the model parameters, facilitating recalibration with different scenarios, such as 

different strains and culture media, with minimal effort. 

Table 1.3 provides a synopsis of different approaches used for model calibration. 

Furthermore, Table 1.3 provides a comprehensive overview of the key parameters 

estimated in microalgae and microalgae-bacteria models. Despite the extensive research 

conducted on the growth rates of various microorganisms, the growth of microalgae and 

bacteria in wastewater is characterized by significant variability in model parameters. 

This variability is influenced by the composition of the wastewater. Moreover, 

microalgae-bacteria-based wastewater treatment systems comprise a consortium of 

diverse microalgae and bacteria strains, with fluctuating proportions of microorganisms 

over time. Furthermore, HRAPs are vulnerable to contamination, which can result in 

alterations in microbial population dynamics. Additionally, the identification of each 

microorganism strain present in the culture to ascertain its specific biokinetic parameters 

is a resource-intensive and often unfeasible task. This underscores the predominant 

approach in extant literature, which involves the estimation of biokinetic parameters for 

each microorganism group, as opposed to distinguishing between the parameter 

estimation for each individual strain. This underscores the necessity of model parameter 

estimation for each specific situation. Model calibration through a trial-and-error 

approach can yield satisfactory results when a limited number of parameters and model 

outputs is considered. Conversely, when the objective is to estimate multiple parameters 

and adjust a comprehensive set of outputs, optimization-based methods should be used. 
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Table 1.3. Parameter estimation approaches in microalgae and microalgae-bacteria processes 

Model (Reference) Parameter estimation approach/ Details Main calibrated or estimated parameters  

Dynamic lumped parameter model 
for microalgal production 
(Fernández, Acién, Berenguel, 
Guzmán, et al., 2014). 

Using optimization. 
The optimization problem was solved using a 
sequential quadratic programming (SQP) 
method.  

Light availability in each part of the photobioreactor and 
the extinction coefficient.  
Maximum photosynthesis rate, form parameters, 
respiration rate. 
Volumetric gas-liquid coefficients for the bubble column 
and the external loop. 

Mechanistic model to simulate 
microalgae growth (Solimeno et 
al., 2015; Solimeno, Samsó and 
García, 2016). 

 
Using manual trial-and-error procedure for 
calibration. 
The Morris's uncertainty method was applied to 
determine the parameters with a greater influence 
on the simulation response (Solimeno et al., 
2015, 2017a; Solimeno, Samsó and García, 
2016). 
 

The maximum specific growth rate of microalgae. 
Mass transfer coefficients for oxygen, carbon dioxide, and 
ammonia. 

Mechanistic model to simulate 
microalgae growth (Solimeno, 
Acien and García, 2017). 

The maximum specific growth rate of microalgae. 
Mass transfer coefficients for oxygen and carbon dioxide 

BIO_ALGAE (Solimeno et al., 
2017a) 

The maximum specific growth rate of microalgae.  
The maximum growth and decay rate of heterotrophic 
bacteria. 
Mass transfer coefficients for oxygen, carbon dioxide, and 
ammonia. 

BIO_ALGAE 2 (Solimeno, 
Gómez-Serrano and Acién, 
2019a) 

Mass transfer coefficients for oxygen, carbon dioxide, and 
ammonia. 
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ALBA (Casagli et al., 2021) Using optimization. 
Sensitivity analysis was employed to ascertain 
the most sensitive parameters of the model.  

The maximum specific growth rate of microalgae, 
ammonium oxidizing bacteria, and nitrite oxidizing 
bacteria. 
Light optimal value for growth and light extinction 
coefficient. Mass transfer coefficient. 
Coefficients for temperature correction for hydrolysis and 
ammonification. 
Cardinal temperature values for microalgae, heterotrophic 
bacteria, and nitrifying bacteria. 
Cardinal pH values for microalgae, heterotrophic bacteria, 
and nitrifying bacteria. 

ABACO (Sánchez‐Zurano et 
al., 2021) 

Using optimization. 
Parameter estimation was carried out using genetic 
algorithms. 

The maximum specific growth rate of microalgae, 
heterotrophic bacteria, and nitrifying bacteria. 
Maximum and minimum microalgae endogenous 
respiration rate. 
Microalgae consumption rate of ammonium, nitrate, and 
phosphate. Heterotrophic bacteria consumption rate of 
ammonium and phosphate. Nitrifying bacteria 
consumption rate of ammonium and phosphate. 
Biodegradable soluble organic matter (BSOM) generation 
rate from microalgae, heterotrophic bacteria, and nitrifying 
bacteria. 
BSOM consumption rate from heterotrophic bacteria. 
Nitrate generation rate from nitrifying bacteria 
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1.1.3.  State estimation in microalgae processes 

Advanced control strategies have emerged as promising instruments to enhance the 

performance of microalgae production systems, particularly within the context of large-

scale cultivation plants (Tebbani, Lopes and Becerra Celis, 2015). The implementation 

of state feedback control laws and model-based control techniques, such as MPC, 

necessitates complete online information of the system. However, in practical scenarios, 

only a subset of the states or key variables of microalgae-bacteria processes can be 

measured online due to the necessity for more reliable measuring devices or the high cost 

of on-line sensors (Mohd Ali et al., 2015). 

The basic hardware instrumentation in microalgae-bacteria-based wastewater treatment 

plants typically provides online measurements of temperature, pH, dissolved oxygen, and 

flow rate. However, this is not the case for other component concentrations (biomass, 

substrates, and metabolites), which are crucial for understanding the system state. Despite 

of the significant progress in the field, many current hardware sensors for concentration 

measurement still exhibit significant drawbacks, including expensive probes, discrete-

time measurements, and offline solutions, among others. Consequently, state estimators 

(often termed software sensors) emerge as a promising alternative to determine the non-

measurable states and concurrently reduce the utilization of costly sensors. 

State estimators typically use a dynamical model of the process, knowledge about the 

applied inputs, and the availability of hardware sensors to measure some state 

components to estimate unmeasured state variables. Their application is crucial, as they 

help preventing process disruptions, shutdowns, and the severe consequences of process 

failures (Mohd Ali et al., 2015). The diversity of state estimation techniques arising from 

intrinsic differences in chemical process systems underscores the importance of selecting 

the proper technique for design and implementation in specific applications. 

The seminal contributions of Luenberger (Luenberger, 1964, 1966, 1967, 1971) and 

Kalman (Kalman, 1960; Kalman and Bucy, 1961) in the 1960s laid the foundation for the 

development of state observers and Kalman Filter (KF)-based estimators. However, over 

the years, research in the design of state estimators has become increasingly popular yet 

challenging due to the requirements of high accuracy, low cost, and good prediction 

performances. 

In the case of linear systems, the standard solutions are the Kalman filter and the 

Luenberger observer. Today, many estimators are simply modifications and extended 
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versions of the classical Luenberger observer and Kalman filter. However, in the context 

of bioprocesses, the estimator design problem is particularly challenging. In addition to 

the scarcity of online measurements, additional challenges are presented by considerable 

nonlinearities in the cultivation and the consequent modeling complexity. In recent years, 

multiple observers and estimators applied to estimate state variables in biochemical 

processes have emerged (Haverbeke et al., 2008; Bogaerts and Coutinho, 2014; Araujo 

Pimentel et al., 2015; Dewasme et al., 2015; Moreno and Alvarez, 2015; Yoo et al., 2015; 

Yin, Decardi-Nelson and Liu, 2018; Tuveri et al., 2023).  

In the context of microalgae processes, a range of observers and state estimators have 

been employed. Therefore, distinguishing between these approaches is imperative to 

facilitate a comprehensive understanding. Fundamentally, the observer design (as the case 

of Luenberger-based observers) is predicated on perfect knowledge of system parameters. 

Considering a bioprocess described by the continuous-time nonlinear system in state-

space form in equations (1.1) - (1.2): 

𝐱̇𝐱 = 𝐹𝐹(𝐱𝐱,𝐮𝐮) ≔ 𝑓𝑓(𝐱𝐱) + 𝑔𝑔(𝐱𝐱)𝐮𝐮 (1.1) 

𝐲𝐲 = ℎ(𝐱𝐱) (1.2) 

where the state vector is 𝐱𝐱 = [𝑥𝑥1 ,⋯ , 𝑥𝑥𝑛𝑛]𝑇𝑇 ∈ ℝ𝑛𝑛, the output vector is 𝐲𝐲 =

[𝑦𝑦1 ,⋯ , 𝑦𝑦𝑞𝑞]𝑇𝑇 ∈ ℝ𝑞𝑞, and the input vector is 𝐮𝐮 = [𝑢𝑢1 ,⋯ , 𝑢𝑢𝑚𝑚]𝑇𝑇 ∈ ℝ𝑚𝑚. 𝐹𝐹(𝐱𝐱,𝐮𝐮) is a 

nonlinear function with respect to 𝑥𝑥 and 𝑢𝑢. The function 𝑓𝑓(∙),𝑔𝑔(∙) and ℎ(∙) are matrices 

of dimension 𝑛𝑛 × 1, 𝑛𝑛 × 𝑚𝑚, and 𝑞𝑞 × 1, respectively. 

The Extended Luenberger observer (ELO) has been proposed for nonlinear processes as 

natural extension of Luenberger observer. The goal of the state observer is to provide an 

estimation of the unmeasured internal states of a given system by utilizing measured states 

from the process along with the implemented inputs. The extended Luenberger observer 

for the nonlinear system of equation (1.1) is:  

𝐱𝐱� = 𝐹𝐹(𝐱𝐱�,𝐮𝐮) + 𝐊𝐊(𝐲𝐲 − ℎ(𝐱𝐱�)) (1.3) 

where 𝐱𝐱� represents the estimated state vector, and the observer gain is denoted by 𝐊𝐊. It is 

observed from equation (1.3) that the first term is the process model, and the second term 

𝐊𝐊(𝐲𝐲 − ℎ(𝐱𝐱�)) is known as the output prediction error, which is considered as a correction 

term. 
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The goal of the ELO is to minimize the estimation error (𝐞𝐞 = 𝐱𝐱 − 𝐱𝐱�), in which the 

dynamic of the error is determined by equation (1.4): 

𝐞̇𝐞 = 𝐹𝐹(𝐱𝐱� + 𝒆𝒆,𝐮𝐮) − 𝐹𝐹(𝐱𝐱�,𝐮𝐮) − 𝐊𝐊(ℎ(𝐱𝐱� + 𝒆𝒆) − ℎ(𝐱𝐱�)) (1.4) 

As shown in equation (1.4), the problem is to determine in which conditions 𝒆𝒆 can decay 

to zero. Therefore, it is important to design 𝐊𝐊 to achieve this goal. 

As mentioned above, the observer formulation assumes perfect knowledge of the system 

parameters, a condition that is far from being met in microalgae-based processes, where 

uncertainties in model parameters and noise are common. In such cases, the use of an 

estimator design based on probability distributions and mathematical inference of the 

system is preferable.  

The Extended Kalman Filter (EKF) is a simple and widely used estimator for nonlinear 

systems because the estimation of unknown variables is not limited to state estimation, 

but also includes the estimation of unknown parameters and noise in the formulation. The 

model of equations (1.1) - (1.2) has been restructured to the form of equations (1.5) - (1.6) 

to be represented in discrete time (where 𝑘𝑘 represents the actual time instant) in order to 

formulate the EKF algorithm: 

𝑥𝑥𝑘𝑘 = 𝑓𝑓�𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑠𝑠𝑘𝑘� + 𝑤𝑤𝑘𝑘−1 (1.5)  

𝑦𝑦𝑘𝑘 = ℎ�𝑥𝑥𝑘𝑘,𝑢𝑢𝑚𝑚𝑘𝑘� + 𝑣𝑣𝑘𝑘 (1.6) 

where 𝐱𝐱 is the state vector of the model, 𝑓𝑓 is the nonlinear state transition function, and ℎ 

is a function that relates the state vector with the measurable outputs of the model. 

Functions 𝑓𝑓 and ℎ have input arguments denoted as 𝑢𝑢𝑠𝑠 and 𝑢𝑢𝑚𝑚, respectively. These 

arguments can be the process inputs for function 𝑓𝑓, for example. Process noise (𝑤𝑤) and 

measurement noise (𝑣𝑣) are assumed to be zero-mean white noises, with no correlation 

and with covariance matrices 𝑄𝑄 and 𝑅𝑅, respectively: 

𝑤𝑤𝑘𝑘~(0,𝑄𝑄) (1.7) 

𝑣𝑣𝑘𝑘~(0,𝑄𝑄) (1.8) 

The recursive Kalman filter algorithm consists of two steps: correction (a priori 

estimation) and prediction (a posteriori estimation). In the correction step, the predicted 

state vector is updated with the available information from the measurable variables of 

the process. In the prediction step, estimation for the states is generated based on the 

previous values of the state vector. 
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The designed state estimator initially performs (in each cycle) the correction step because 

measurable variables are always available from the beginning. In the initialization step 

given by equations (1.9) and (1.10), the state estimator is initialized based on a first value 

for the state vector (𝐱𝐱𝟎𝟎). The predicted state vector and state estimation covariance are 

denoted as 𝐱𝐱� and 𝐏𝐏, respectively. 

𝐱𝐱�0|−1 = 𝐸𝐸(𝑥𝑥0) (1.9) 

𝐏𝐏0|−1 = 𝐸𝐸 ��𝑥𝑥0 − 𝑥𝑥�0|−1��𝑥𝑥0 − 𝑥𝑥�0|−1�
𝑇𝑇� (1.10) 

In the correction step, given by equations (1.11) - (1.13), the predicted state vector is 

corrected using real output measurement data (𝐲𝐲), the Kalman gain (𝐊𝐊) is computed, and 

state estimation covariance is updated.  

𝐱𝐱�𝑘𝑘|𝑘𝑘 = 𝐱𝐱�𝑘𝑘|𝑘𝑘−1 + 𝐊𝐊𝑘𝑘 �𝐲𝐲𝑘𝑘 − ℎ�𝐱𝐱�𝑘𝑘|𝑘𝑘−1,𝑢𝑢𝑚𝑚𝑘𝑘�� (1.11) 

𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘|𝑘𝑘−1𝐂𝐂𝑘𝑘𝑇𝑇�𝐂𝐂𝑘𝑘𝐏𝐏𝑘𝑘|𝑘𝑘−1𝐂𝐂𝑘𝑘𝑇𝑇 + 𝐒𝐒𝑘𝑘𝐑𝐑𝑘𝑘|𝑘𝑘−1𝐒𝐒𝑘𝑘𝑇𝑇�
−1

 (1.12) 

𝐏𝐏𝑘𝑘|𝑘𝑘 = 𝐏𝐏𝑘𝑘|𝑘𝑘−1 − 𝐊𝐊𝑘𝑘𝐂𝐂𝑘𝑘𝐏𝐏𝑘𝑘|𝑘𝑘−1 (1.13) 

where the Jacobians 𝐂𝐂 and 𝐒𝐒 are defined in equations (1.14) - (1.15): 

𝑪𝑪𝑘𝑘 =
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝑥𝑥�𝑘𝑘|𝑘𝑘−1

 
 

(1.14) 

𝐒𝐒𝑘𝑘 =
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝑥𝑥�𝑘𝑘|𝑘𝑘−1

 
(1.15) 

In the prediction step, the future state vector and the state estimation covariance are 

predicted according to equations (1.16) and (1.17): 

𝑥𝑥�𝑘𝑘+1|𝑘𝑘 = 𝑓𝑓�𝑥𝑥�𝑘𝑘|𝑘𝑘,𝑢𝑢𝑠𝑠𝑘𝑘� (1.16) 

𝑃𝑃𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘𝐴𝐴𝑘𝑘𝑇𝑇 + 𝐺𝐺𝑘𝑘𝑄𝑄𝐺𝐺𝑘𝑘𝑇𝑇 (1.17) 

where the Jacobians for the state transition function are defined in equations (1.18) and 

(1.19): 

𝐴𝐴𝑘𝑘 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥�𝑘𝑘|𝑘𝑘

 
(1.18) 
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𝐺𝐺𝑘𝑘 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑥𝑥�𝑘𝑘|𝑘𝑘

 
(1.19) 

Kalman filter-based estimators are the most applied estimators in microalgae cultivation 

(Su, Li and Xu, 2003; Tebbani, Lopes and Becerra Celis, 2015; García-Mañas et al., 

2019), mainly in processes using real data. The current state of the art regarding KF-based 

estimators in microalgae processes includes various reports of estimators applied together 

with control and optimization techniques due to the necessity of the entire state vector for 

system monitoring and control (Tebbani, Lopes and Becerra Celis, 2015; Yoo et al., 2016; 

García-Mañas et al., 2019). These applications have mainly focused on estimating 

biomass concentration because the online monitoring of biomass concentration is a 

crucial aspect of photobioreactor operation to optimize its performance (García-Mañas et 

al., 2019), while using online measurements remains challenging today.  

Of the nonlinear filtering methods, the EKF method has received most attention due to 

its relative simplicity and demonstrated effectiveness in handling some nonlinear 

systems. An Extended Kalman Filter was used in a lab-scale photobioreactor (Li, Xu and 

Su, 2003) to estimate a photobioreactor's biomass density, dissolved oxygen 

concentration, and average light intensity based on incident light information and online 

dissolved oxygen measurement.  

The EKF was also employed to estimate the biomass concentration in a bubble column 

photobioreactor with a total culture volume of 9.6 L (Tebbani, Lopes and Becerra Celis, 

2015). On-line measurements of dissolved carbon dioxide, pH, and incident light intensity 

were used for the estimation. The estimation was conducted to propose a control strategy 

to regulate biomass concentration in a photobioreactor. The efficacy of this approach was 

validated with experimental data.  

To account for discrete-time measurements with different sampling rates, a continuous-

discrete EKF was proposed (Jerono, Schaum and Meurer, 2018) and tested with 

experimental data for the growth of Haematococcus pluvialis in a lab-scale 

photobioreactor. This study addressed the problem of state estimation with biased optical 

measurements. The EKF developed estimated the biomass and nitrate concentrations 

based on offline nitrate and optical density measurements, and biased online optical 

density measurements. 

In the research conducted by Tebbani et al, an Unscented Kalman filter (UKF) 

methodology was proposed to estimate the biomass, carbon dioxide, and oxygen 
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concentrations in the liquid phase of a torus photobioreactor (Tebbani, Titica, et al., 

2013). Online measurements of CO2 and O2 molar fractions in the output gas, pH, 

temperature, and input and output flow rates were used for the estimation. 

Unlike previous research conducted in lab-scale photobioreactors, García Mañas and co-

workers developed a state estimator using the EKF algorithm to estimate the biomass 

concentration in an outdoor industrial raceway photobioreactor (García-Mañas et al., 

2019). The state estimator was based on a dynamic model for microalgae production for 

this type of photobioreactor (Fernández, Acién, et al., 2016). In this work, the EKF 

accurately estimated the biomass concentration using the available experimental 

measurements of dissolved oxygen, pH, gas injections, and solar radiation. The low 

estimation times obtained confirmed the potentialities of the state estimation techniques 

in automatic process control. 

In addition to the prevalent utilization of KF-based estimators, alternative design 

methodologies have been employed in the context of microalgae cultivation, 

predominantly within the scope of simulations. The Filtered High Gain Observer (FHGO) 

was used to estimate the biomass and carbon dioxide concentrations, assuming measures 

of the average light intensity (Farza et al., 2019). The FHGO was first designed by 

assuming continuous measurements of the system outputs, and then redesigned to account 

for the sampling period of these outputs. The comparison of the obtained estimates with 

estimates provided by a Standard High Gain Observer (SHGO) demonstrated the filtering 

capabilities of the proposed FHGO (Farza et al., 2019). 

The nonlinear integral high-gain observer (NL-PI) was also used to estimate the substrate 

concentration in a wastewater treatment photobioreactor (Rodríguez-Mata et al., 2011). 

This estimator proved to be able to cancel the dynamical disturbances due to parameter 

changes.  

Besides the previously works mainly focused on estimating biomass concentration in 

microalgae cultures, state estimation techniques have also been applied to estimating 

specific components of the microalgal biomass. Microalgal biomass is a valuable source 

of lipids, proteins, carbohydrates, pigments, and vitamins. These components are 

intracellular and can be separated and upgraded into various products in the biofuel, food, 

fodder, cosmetic, and pharmaceutical industries. Efficient medium- and large-scale 

microalgal cultivations require online monitoring methods to control these processes. The 

online monitoring of these components in these processes is complicated due to their 
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intracellular nature. For this reason, online sensors measuring these biological 

components are yet in an early developmental stage. The reviews presented by Havlik et 

al. (Havlik et al., 2022) and Porras et al. (Porras Reyes, Havlik and Beutel, 2024) 

discussed the current state of the art and future outlook in the design and use of software 

sensors in the monitoring of biological parameters, primarily concentrations of 

intracellular components.  

Kalman filter-based estimators have been extensively applied to bioprocesses, often 

yielding satisfactory results, provided that linear approximation remains valid, the signal 

has low noise, and constraints are negligible. Another approach for nonlinear systems that 

has gained popularity over the past two decades among researchers and industrial 

practitioners of MPC is the Moving Horizon Estimation (MHE) approach (Rawlings and 

Bakshi, 2006; Rawlings, 2014; Alessandri and Battistelli, 2020). This approach 

formulates the state estimation problem as an optimization problem over a moving time 

window, akin to the MPC formulation. The strategy of MHE has been demonstrated to 

exhibit numerous advantages over other nonlinear state estimation techniques. It has the 

capacity to incorporate a priori process knowledge by including constraints on the 

estimated states and disturbances. Furthermore, its performance is frequently superior 

because nonlinear model equations can be used directly without the necessity of 

linearization. A salient benefit of this approach is its capacity to generate both filtered and 

smoothed estimates of states within the same window. A notable benefit of the MHE 

formulation is its ability to estimate states and parameters in a concurrent manner, as well 

as modeling inaccuracies. 

The aforementioned confirms MHE as a more powerful (but complicated) estimation 

method, with certain applications in bioprocesses (Raïssi, Ramdani and Candau, 2005; 

Tebbani, Le Brusquet, et al., 2013; Elsheikh et al., 2021), including the state estimation 

in conventional wastewater treatment plants (Arnold and Dietze, 2001; Busch et al., 2013; 

Yin, Decardi-Nelson and Liu, 2018).  

As illustrated in Table 1.4, a compendium of state estimators and observers has been 

applied in the context of microalgae processes. A thorough examination of this review 

discloses a prevailing emphasis on Kalman Filter-based estimators. Conversely, the 

application of MHE is restricted to a limited number of research works (Abdollahi and 

Dubljevic, 2012). The inherent nonlinear characteristics of microalgae-based wastewater 

treatment processes, coupled with the operational constraints associated with these 
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processes, underscore the viability of MHE as a solution to the state estimation problem 

in this context. This assertion is further supported by previous experience in applying 

MHE to other biological and conventional wastewater treatment processes. However, a 

review of the literature reveals that MHE has not yet been applied for state estimation in 

microalgae-based wastewater treatment processes. 
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Table 1.4. State estimators and observers applied in microalgae processes 

Observer/ 
estimator  

Available measurements States/parameters estimated Application 
Process/ Reactor type (Reference) 

EKF Local irradiance (using a quantum 
sensor). 

Biomass concentration and microalgae 
specific growth rate. Phosphate and 
dissolved oxygen concentrations. 

Dunaliella salina culture in a 3 L stirred tank microalgal 
photobioreactor (Su, Li and Xu, 2003). 

EKF Incident light information and 
online dissolved oxygen 
measurement. 

Biomass density, microalgae specific 
growth rate, photosynthetic efficiency, 
and average light intensity in the 
photobioreactor 

Dunaliella salina culture in a 3 L stirred tank microalgal 
photobioreactor (Li, Xu and Su, 2003). 

NL-PI Biomass. Substrate concentration. Simulation study considering a batch culture of 
Spirulina maxima for the pollutant removal in a 
wastewater treatment photobioreactor (Rodríguez-
Mata et al., 2011) 

MHE Biomass, glucose, and lipid 
content. 

Nitrogen concentration Simulation study considering the heterotrophic growth 
and lipid production of Auxenochlorella protothecoides 
in a fed-batch bioreactor (Abdollahi and Dubljevic, 
2012). 

UKF Online measurements of CO2 and 
O2 molar fractions in the output 
gas (provided by a mass 
spectrometer). 

Biomass concentration, carbon dioxide 
and oxygen concentrations in the liquid 
phase. 

Chlamydomonas reinhardtii culture in a 1.5 L torus 
photobioreactor (Tebbani, Titica, et al., 2013). 

Interval 
observer 

pH and dissolved CO2 
concentration. 

Biomass concentration. Chlorella vulgaris culture in a laboratory-scale bubble 
column photobioreactor (9.6 L) (Tebbani et al., 2014). 

EKF Online measurements of pH, incident 
light intensity and dissolved carbon 
dioxide concentration. 

Biomass concentration. Porphyridium purpureum culture in a 9.6 L bubble 
column photobioreactor (Tebbani, Lopes and Becerra 
Celis, 2015). 
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UKF Biomass and glucose data. Lipid concentration. Chlorella protothecoides culture in a 3 L 
photobioreactor (Yoo et al., 2016). 

EKF Online and offline optical density 
measurements, offline nitrate 
measurements. 

Biomass and nitrate concentration. Haematococcus pluvialis culture in a 2 L 
photobioreactor (Jerono, Schaum and Meurer, 2018). 

FHGO Average light intensity irradiated over 
the photobioreactor. 

Biomass concentration and dissolved 
carbon dioxide concentration. 

Simulation study (Farza et al., 2019). 

EKF Online measurements of pH and 
dissolved oxygen concentration. 

Biomass concentration Scenedesmus almeriensis culture in an outdoor 
industrial raceway photobioreactor (García-Mañas et 
al., 2019). 
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1.1.4. Control and optimization of microalgae-bacteria processes 

The literature is rich with a diverse array of control strategies for operating 

photobioreactors, whether they are closed photobioreactors designed to produce high-

added-value products or raceway reactors used for wastewater treatment.  

Regardless of the photobioreactor configuration and the process goal, the pH of the 

culture media must be controlled through the injection of carbon dioxide. This is because 

pH significantly influences the photosynthesis rate and the speciation of CO2 and NH3, 

directly affecting biomass productivity. Several research works have proposed a variety 

of strategies for pH control, ranging from ON/OFF control and conventional Proportional 

Integral (PI) controllers to advanced control strategies (Guzmán, Acién and Berenguel, 

2021). 

Classic PI controllers with feedforward scheme were developed based on simplified 

linear models for pH control in tubular (Fernández et al., 2010) and vertical flat panel 

(Buehner et al., 2009) photobioreactors. A Filtered Smith Predictor (FSP) strategy (which 

includes a PI controller), was proposed to tackle the problem of pH control in processes 

with significant time delay due to pH sensor location (Romero-García et al., 2012). The 

PI controller was also employed for the pH control in both raceway and thin-layer 

photobioreactors for wastewater treatment (Rodríguez-Torres et al., 2021), thereby 

demonstrating the enhancement of system performance in comparison to the ON/OFF 

control strategy regarding to CO2 consumption. 

The supply of carbon dioxide represents a significant cost in microalgae production 

processes, particularly pronounced in cultures in tubular photobioreactors. Here, pH 

control is achieved by injecting pure carbon dioxide, a process that can account for up to 

30% of the overall microalgae production cost (Acién et al., 2012). Several control 

strategies have been developed to regulate pH and minimize CO2 losses in different 

photobioreactor configurations to address this. MPC strategies have been applied to 

accomplish this goal, ranging from MPC using linear models (Berenguel et al., 2004; 

Hoyo et al., 2019) to event-based Generalized Predictive Controllers (GPC) (Pawlowski, 

Fernández, et al., 2014; Pawlowski, Mendoza, et al., 2014). A learning-based model 

predictive control strategy (LBMPC) for pH control in raceway photobioreactors was also 

developed to deal with model uncertainties (Pataro et al., 2023). The validity of the 

strategy was confirmed through experimental validation using freshwater and wastewater 

culture media. A comparison was made between the strategy and the conventional 
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nominal MPC approach. The results demonstrated the superior performance of LBMPC 

in comparison to the conventional MPC strategy. 

Literature also encompasses the utilization of alternative strategies for pH regulation in 

different photobioreactor configurations, including the sliding mode control (SMC) (de 

Andrade et al., 2016), the event-based PI control (Rodríguez-Miranda et al., 2019, 2020), 

the robust control (Hoyo et al., 2022), and the linear active disturbance rejection control 

(Carreño-Zagarra et al., 2019). The application of parameter adaptation techniques has 

also been employed in the context of pH control in raceway reactors (Caparroz et al., 

2023). In this final work, the utilization of regression tree models for the purpose of 

predicting pH enables the adjustment of the PI controller parameters according to the 

model selected in the regression tree. 

The dissolved oxygen concentration is another variable that significantly influences the 

microalgae photosynthesis rate. High concentrations of dissolved oxygen in the cultures 

pose a severe inhibition of microalgae growth, necessitating the use of aeration or stirring 

mechanisms as a solution. However, the application of the aeration mechanism can lead 

to a deterioration in CO2 assimilation (for pH control), thereby complicating the control 

task. To overcome this issue, a selective event-based control approach was proposed for 

simultaneous control of the pH of the culture media and the dissolved oxygen 

concentration (Pawlowski et al., 2015, 2017). The application of a selective event-based 

scheme allowed for improved biomass productivity since the controlled variables were 

kept within limits for an optimal photosynthesis rate. Moreover, this control scheme 

allowed for effective CO2 utilization and energy minimization for the aeration system. 

The event-based control system configurations were evaluated in both tubular and 

raceway photobioreactors by Pawlowski and coworkers (Pawlowski et al., 2017). 

Furthermore, the impact of different pH and dissolved oxygen control strategies on the 

efficacy of pilot-scale microalgae production were appraised for two distinct culture 

media: one comprising clean water plus fertilizers and the other comprising wastewater 

(Nordio et al., 2023). This investigation yielded invaluable insights into the substantial 

phenomena that ensue when a consortium of multiple biological groups is present. 

A novel control scheme approach for the dissolved oxygen concentration was proposed 

using a PI controller and a variable mass transfer coefficient (Barceló-Villalobos et al., 

2022). The proposed control algorithm permits the implementation of variable air-gas 

injections, thereby enhancing biomass productivity while reducing injection costs. 
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The monitoring and control of biomass concentration in photobioreactors is of paramount 

importance for two reasons. Firstly, the biomass yield should be optimized in order to 

maximize economic profit. Secondly, high biomass concentrations within the reactor 

affect the penetration of solar radiation into the culture, which in turn affects the growth 

of microalgae. In order to achieve this objective, a number of control strategies have been 

proposed in the literature at both simulation and laboratory scales (Mailleret, Gouzé and 

Bernard, 2005; Ifrim et al., 2013; Tebbani, Lopes and Becerra Celis, 2015). Moreover, 

some of the proposed strategies simultaneously consider pH control of the culture media 

(Ifrim et al., 2013; Tebbani, Lopes and Becerra Celis, 2015). Therefore, the most suitable 

approach involves the use of advanced control strategies, which will facilitate achieving 

optimal biomass production while maintaining the desired operational conditions and 

minimizing resource utilization. 

The research conducted by Tebbani et al. (Tebbani et al., 2014) proposed the application 

of a nonlinear model predictive control (NMPC) strategy for maximizing the carbon 

dioxide fixation rate of the green microalga Chlorella vulgaris (by maximizing the 

biomass productivity). The optimization problem was solved using control vector 

parameterization (CVP) techniques and an interval observer was developed to estimate 

the biomass concentration based on online dissolved CO2 measurements. The approach 

presented in this study was validated experimentally, confirming the advantages of 

advanced control strategies in microalgae cultivation control and optimization.  

Additionally, optimal and near-optimal strategies were developed with the objective of 

maximizing biomass production in outdoor tubular photobioreactors (Gustavo. A. de 

Andrade et al., 2016). The optimization system calculates the culture medium flow rate 

with the objective of optimizing biomass production over the course of one day. Given 

the outdoor conditions, the approach considered the influence of sunlight, day/night 

phases, and the auto-shading effect, all of which influence the biological activity within 

the reactor. The results of the proposed strategies were validated in simulation and with 

experimental data.  

To maximize the biomass productivity of the microalgae Scenedesmus AMDD, a model-

based approach was proposed in a continuously operated photobioreactor (McGinn et al., 

2017). In the proposed approach, a simple mathematical model was utilized to solve the 

real-time optimization (RTO) problem, and then the optimal solution was implemented 

via flow control based on real-time cell density estimations. The proposed approach 
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demonstrated an improvement of 70% compared to the same photobioreactor operated as 

a turbidostat. 

The problem of biomass growth control was also addressed from a hierarchical 

perspective, employing a receding horizon strategy (Fernández, Berenguel, et al., 2016). 

The hierarchical control strategy for microalgal production in a tubular photobioreactor 

was composed of two layers. The lower layer is responsible for tracking the pH set-point 

through the use of a PI controller in conjunction with a feed-forward compensator. The 

upper layer of the control scheme calculates optimal pH set-points based on an economic 

model predictive control (eMPC) approach. The objective of the proposed control scheme 

was to maximize profits, which were computed as the difference between the incomes 

obtained from the final production sale and the associated production costs (including the 

environmental impact of the exhausted CO2 losses). This hierarchical control architecture 

demonstrated improvements with respect to a static reference tracking used in this kind 

of system in terms of cost savings. 

Table 1.5 and Table 1.6 provide a synopsis of the control and optimization strategies, 

respectively, that have been implemented in the context of microalgae production and 

microalgae-based wastewater treatment. A thorough examination of the data presented in 

these tables suggests a more widespread implementation of control strategies in 

microalgae production systems. The principal objective of the control strategies 

implemented within microalgae-bacteria photobioreactors was directed toward regulating 

specific variables, such as pH or biomass concentration, to maintain the desired 

operational conditions, while disregarding the monitoring of other process variables. 

Nevertheless, the mounting global concern over ensuring effluent quality and the 

numerous perturbations that affect wastewater treatment processes require the 

development of control and optimization approaches capable of maintaining operational 

conditions while achieving the stipulated discharge limits set by legislation. 

Moreover, a considerable proportion of the control and optimization strategies 

documented in the extant literature for such processes assume a perfect model, an 

assumption that is not realistic in the context of microalgae-bacteria processes. 

Additionally, the paucity of online measures of many pertinent variables entails a high 

degree of complexity in the design and implementation of control and optimization 

strategies. In this regard, the development of strategies that consider model uncertainties 

is imperative to propose adequate formulations for microalgae-bacteria processes. 
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Table 1.5. Control strategies applied in microalgae and microalgae-bacteria processes 

Control strategies Controlled variables Application 
Process/ Reactor type (Reference) 

PI
D

 a
nd

 P
ID

-b
as

ed
 st

ra
te

gi
es

 

 
PI+feed-forward controller 

 
pH  

Nannochloropsis oculata culture in a vertical flat panel photobioreactor (644 L) (Buehner 
et al., 2009). 
Scenedemus almeriensis culture in a tubular photobioreactor (2600 L) (Fernández et al., 
2010). 

FSP strategy pH Scenedemus almeriensis culture in an industrial tubular photobioreactor (3 m3) (Romero-
García et al., 2012). 

Robust PI control with linear 
active disturbance rejection 

pH Microalgae culture in a raceway reactor (20 m3) (Carreño-Zagarra et al., 2019). 

Event-based PI control pH Simulation study of the Scenedesmus almeriensis culture in a raceway reactor (20 m3) 
(Rodríguez-Miranda et al., 2019). 
Golenkinia culture in a raceway reactor (10 m3) (Rodríguez-Miranda et al., 2020). 

PI pH Raceway (1m3) and thin-layer (0.45m3) reactors for wastewater treatment (Rodríguez-
Torres et al., 2021). 

Robust PID control pH Scenedesmus almeriensis culture in a raceway reactor (Hoyo et al., 2022). 
PI Dissolved oxygen 

concentration 
Scenedesmus almeriensis culture in an industrial raceway photobioreactor (80 m2) (Barceló-
Villalobos et al., 2022). 

PI control with parameter 
adaptation 

pH Simulation study of a raceway reactor treating freshwater (Caparroz et al., 2023). 

M
PC

 

Event-based GPC pH Microalgae culture in a raceway reactor (20 m3) (Pawlowski, Mendoza, et al., 2014). 
Scenedesmus almeriensis culture in a tubular photobioreactor (2600 L) (Pawlowski, 
Fernández, et al., 2014). 

MPC using linear models pH Microalgae culture in a raceway reactor (20 m3) (Hoyo et al., 2019). 
LBMPC pH Two raceway reactors (20 m3): one operated with freshwater plus fertilizers and the other 

one with wastewater as the nutrient source (Pataro et al., 2023).  
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gi
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SMC pH Scenedesmus almeriensis culture in a tubular photobioreactor (2600 L) (de Andrade et al., 
2016). 

Selective event-based 
control approach. 

pH and dissolved 
oxygen concentration 

Microalgae culture in a raceway reactor (20 m3) (Pawlowski et al., 2015). 

Selective event-based 
control approach.  
Simultaneous control 
strategy using ON/OFF 
control. 

pH and dissolved 
oxygen concentration 

Two pilot-scale raceway reactors (80 m2): one operated with freshwater plus fertilizers 
and the other with wastewater as the nutrient source (Nordio et al., 2023).  
 

Nonlinear output feedback 
controller. 

Biomass 
concentration 

Simulation study for Dunaliella tertiolecta growth in a chemostat (Mailleret, Gouzé and 
Bernard, 2005). 

Nonlinear multivariable 
control, based on the exact 
feedback linearization 
technique. 

pH and biomass 
concentration 

Chlamydomonas reinhardtii culture on a laboratory torus photobioreactor (1.5 L) (Ifrim et 
al., 2013). 

Nonlinear control strategy 
(based on state feedback 
linearizing control law + PI 
controller). 

pH and biomass 
concentration 

Porphyridium purpureum culture in a laboratory-scale bubble column photobioreactor (9.6 
L) (Tebbani, Lopes and Becerra Celis, 2015)  
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Table 1.6. Optimization strategies applied in microalgae and microalgae-bacteria processes 

Strategies  Optimization objective 
 

Application 
Process/ Reactor type (Reference) 

NMPC Maximize CO2 bio-
fixation. 

Chlorella vulgaris culture in a laboratory-scale bubble column photobioreactor (9.6 L) 
(Tebbani et al., 2014). 

Optimal and near-optimal strategy Maximize biomass 
production 

Simulation and experimental study of the Scenedesmus almeriensis culture in a tubular 
photobioreactor (2600 L) (Gustavo. A. de Andrade et al., 2016) 

RTO Maximize biomass 
production 

Scenedesmus AMDD culture in a continuous flow photobioreactor (300 L) (McGinn et 
al., 2017). 

Hierarchical control strategy: 
PI+feedforward and eMPC 

Maximize profits. Scenedemus almeriensis culture in a tubular photobioreactor (2600 L) (Fernández, 
Berenguel, et al., 2016). 
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1.2.  Motivation and Objectives 

The development of accurate models and control strategies has been identified as a 

promising approach to enhance the control and optimization of industrial microalgae 

production processes. However, this task is inherently challenging, particularly in the 

context of wastewater treatment plants, where the intricate interactions between 

microalgae and bacteria, in addition to the variable weather conditions and dynamics of 

the inlet flow/composition of the wastewater, adds complexity to the process operation. 

While numerous models have been developed and validated for conventional microalgae-

based wastewater treatment plants (even over the long term) and for different microalgae 

photobioreactor configurations producing high-value products, the modeling of other 

novel microalgae-bacteria photobioreactor configurations has not been conducted to date. 

Furthermore, parameter estimation applied to innovative wastewater treatment processes 

with microalgae remains an open research topic, with many challenges to address. 

In a different line of research, the extant literature on developing state estimators for 

microalgae-bacteria processes is scarce, with most research being limited to simulations 

or laboratory settings. In addition, the development of state estimators in these processes 

is primarily based on linearized approximations, simple models, and low noise values, 

providing estimations of a limited number of states. However, these assumptions are not 

realistic in the context of these complex bioprocesses. This underscores the imperative 

need for state estimators that employ a more realistic depiction of the process, while 

concurrently accounting for the inherent process constraints in the pivotal parameters and 

state variables.  

Similarly, in the context of control and optimization strategies, many applications 

continue to refer to the control of a limited number of variables (predominantly in small-

scale facilities or closed photobioreactors for the production of high-value biomass), 

without considering the behavior of certain relevant process variables, which are key to 

evaluate the effluent water quality. Concurrently, the development of control and 

optimization strategies that encompass the numerous perturbations impacting these 

processes and the inherent model uncertainties remains an active research domain. 

Within this framework, the motivation of this thesis relies on modeling innovative 

configurations for microalgae-bacteria-based wastewater treatment plants, as well as 

contributing to the state estimation and control of industrial microalgae-based wastewater 

treatment plants considering model uncertainties. 
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The general objective of this thesis is to contribute to the modeling, control, and 

optimization of algal-bacterial based wastewater treatment plants.  

To accomplish this aim, the following specific goals will be considered: 

• Developing and validating dynamics models of microalgae-bacteria based 

wastewater treatment plants, with special emphasis in anoxic-aerobic 

photobioreactor configurations, in which modeling has yet to be conducted to 

date.  

• Adapting parametrization methods that facilitate the fitting of the model to 

wastewater treatment processes. 

• Developing model libraries of components using the software PROOSIS® to 

facilitate the reuse of models across diverse applications. 

• Designing a state estimator using the Moving Horizon Estimation approach to 

estimate non-measure variables in microalga-bacteria processes with model 

uncertainties and perturbations. Nonlinear model and process constraints are 

considered in the estimator design. 

• Developing an economic MPC controller for process control and optimization 

considering process variability and model uncertainties. 

• Validating the proposed approaches in a lab-scale plant. 

 

1.3.  Structure of the thesis 

Following this Chapter one that revised the state-of-the-art in the topic, the thesis is 

organized into seven chapters as follows: 

Chapter 2 delineates the methodological framework employed in this thesis for the 

modeling, state estimation, and control strategy design. 

Chapter 3 presents the modeling of microalgae bacteria processes with biomass recycling. 

This chapter includes a model of anoxic-aerobic algal-bacterial photobioreactor 

configurations treating domestic wastewater and digestates. Additionally, a library of 

diverse model components for a wastewater treatment plant is also presented. 

Chapter 4 presents the parameter estimation applied to two case studies of anoxic-aerobic 

algal-bacterial photobioreactors. The chapter presents a methodology for parameter 

estimation in biological processes involving multiple outputs and parameters in the 

optimization problem.  
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Chapter 5 is devoted to the problem of estimating non-measured variables in microalgae-

bacteria processes. The Moving Horizon Estimator approach is presented to estimate the 

non-measurable variables in an industrial wastewater treatment plant involving different 

sampling times for the output variables.  

Chapter 6 is devoted to developing an economic MPC controller for an industrial 

wastewater treatment plant. The controller is designed to maintain the limits of nutrient 

concentration in the plant's effluent while maximizing biomass production in spite of the 

uncertainties that are present in the process. 

Chapter 7 compiles the thesis conclusions and outlook perspectives.  

 

1.4. Contributions 
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- Bausa-Ortiz, I., Muñoz, R., Torres-Franco, A. F., Cristea, S. P., and Prada, C. 
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carbon and nutrient removal. Algal Research, Vol. 86, March 2025, Ref. 103917, 

ISSN 2211-9264. DOI: 10.1016/j.algal.2025.103917, 

https://doi.org/10.1016/j.algal.2025.103917 

- Bausa-Ortiz, I., Oliveira-Silva, E., Muñoz, R., Cristea, S. P., and de Prada, C. 
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https://doi.org/10.1016/j.algal.2025.104338. 

 

Book chapters: 

- Bausa, I., Muñoz, R., Podar, S., and de Prada, C. “Modeling and simulation of 
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- Bausa-Ortiz, I., Muñoz, R., Cristea, S. P., and Prada, C. “Parameter estimation 
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2. Integrated methodology: experimental research, 

modeling, and validation for advanced control strategies 

synthesis 

The development and application of dynamic models constitutes the methodological 

framework employed in this doctoral thesis. Mathematical models can facilitate a more 

profound comprehension of process behavior and function as a decision-support 

instrument. In a similar vein, model-based controllers have been demonstrated to be a 

suitable instrument for the operation of complex processes. The core challenge addressed 

is the precise characterization of system dynamics, a prerequisite for the subsequent 

formal controller synthesis and comprehensive performance evaluation. This chapter 

delineates the process, which commences with the analytical derivation or system 

identification of a high-fidelity dynamic model. This establishes the foundational element 

upon which all subsequent experimental validation, calibration, and large-scale 

simulation studies are built. 

 

  



46 
 

2.1. Analytical system modeling and simulation 

The foundational approach to system representation in this research involved the critical 

analysis of extant dynamic models from the specialized literature (as was detailed in the 

comprehensive revision of Section 1.1.1). The present study focused on the examination 

of models that effectively capture the intricate biological and chemical interactions 

between microalgae and bacteria within wastewater treatment processes. The objective 

of this study was twofold: first, to select a model that provides an adequate representation 

of the microalgae-bacteria wastewater treatment plant dynamics for system understanding 

and prediction; and second, to establish a robust platform for the subsequent design and 

evaluation of model-based control strategies.  

The selection process prioritized mechanistic models of intermediate complexity. This 

choice is fundamentally justified by two core considerations in control engineering: 

- Physical relevance: These models are explicitly formulated based on physical and 

chemical laws, including mass balances, kinetic rates, and energy transfers. 

Consequently, any change in the model's parameters possesses a direct physical 

or biological interpretation, which is crucial for system analysis, calibration, and 

ensuring the robustness of the control synthesis.  

- Computational efficiency: In contrast to highly complex, high-order models that 

frequently demand exorbitant computational resources, models of intermediate 

complexity offer a better trade-off. These models maintain essential non-linear 

dynamics necessary for realistic control design while maintaining sufficient 

computational speed for real-time simulation and eventual implementation in 

control hardware.  

Conversely, simplified, low-order representations, such as classical transfer functions or 

local linear state-space models, were deemed unsuitable for the present study. This 

exclusion is fundamentally methodological, as these reduced models possess inherent 

limitations. Specifically, they fail to adequately capture the pronounced non-linearities, 

the multivariable dynamics, and the operational constraints that fundamentally 

characterize biological wastewater treatment systems. Indeed, models lacking this 

complexity are insufficient for the synthesis of advanced control strategies (such as 

MPC), which require high-fidelity dynamic predictions and accurate modeling of the 

entire operating envelope to ensure stability and optimal performance.  
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This study adapted mechanistic models previously documented in the specialized 

literature to accurately represent the microalgae-bacteria interactions specific to the case 

studies evaluated in this research. The model that was selected was confirmed to 

adequately capture the dynamics of a microalgae-bacteria-based wastewater treatment 

plant. This choice ensures the model's suitability as a high-fidelity platform for the 

subsequent design and evaluation of advanced model-based control strategies. 

As a fundamental element of the modeling strategy employed in this thesis, a reusable 

object-oriented model library of components was developed. This library has been 

developed to facilitate the easy reuse of validated models and the flexible connectivity of 

different process components. The library contains a variety of validated components 

relevant to wastewater treatment. It enables the rapid simulation of various WWTP 

configurations under a wide range of operational conditions.  

The library was constructed on the principles of object-oriented programming (OOP), and 

its implementation involved the utilization of the specialized simulation software 

EcosimPro|PROOSIS®. The OOP structure ensures that components can be easily 

interconnected and managed, promoting modularity and potentially lowering the entry 

barrier for users without deep knowledge on modeling and simulation fundamentals. This 

structured approach significantly enhances the reproducibility and scalability of the 

modeling efforts presented herein. A thorough exposition of the library development and 

components is furnished in Chapter 3, Section 3.2. 

 

2.2. Methods for model calibration and validation 

The rigorous calibration and subsequent validation of mathematical models constitute an 

essential step in the modeling of complex biological processes. The inherent complexity 

and dynamic nature of biological systems, such as the microalgae and bacteria-based 

wastewater treatment systems studied here, necessitate empirical investigation involving 

intensive, high-time-consuming experimentation to reliably establish operational 

fundamentals across a comprehensive range of conditions. The development of a high-

fidelity model thus provides a critical analytical advantage.  

Leveraging a validated model enables the efficient simulation of novel configurations, 

such as the anoxic-aerobic system studied in this thesis, to assess the influence of varying 

operational conditions and inlet nutrient concentrations. This methodology effectively 
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minimizes the time and cost dedicated to physical experimentation, enabling the rapid 

and systematic evaluation of the global performance and nutrient removal efficiency of 

the system under scenarios that would be impractical or prohibitively expensive to test in 

a physical laboratory environment.  

In this research, a systemic analysis and validation were conducted across two 

fundamentally distinct operational scales, which required the implementation of 

differentiated methodological approaches: 

- Pilot-plant scale (empirical validation): This scale served as the primary source of 

empirical data. The model was rigorously calibrated and validated against real 

experimental data obtained from the physical pilot facility. The primary objective 

of this step was to ensure the predictive fidelity of the model parameters and 

structure under controlled conditions. This approach validates the model's 

capacity to accurately replicate the system dynamics prior to scaling. The 

application of this approach is delineated in Chapter 4. 

- Industrial scale (simulated validation and scalability assessment): In light of the 

paucity of data from an industrial-scale facility, the industrial scenario was 

assessed entirely through the use of high-fidelity simulation. In this context, the 

model—already validated at the pilot scale—was used to conduct scalability 

assessment and evaluate the performance of the designed control strategies under 

the complex, real-world constraints and operational demands of a large-scale 

plant. 

 

2.2.1. Methods using experimental data 

To address the modeling objective related to the anoxic-aerobic configurations, 

previously generated data from experimental campaigns developed at the Institute of 

Sustainable Processes at the University of Valladolid were utilized. These datasets 

correspond to two distinct anoxic-aerobic algal-bacterial photobioreactor configurations 

operating under a variety of operational conditions while treating domestic synthetic 

wastewater and synthetic food waste digestate. 

To ensure the predictive accuracy of the selected model, a rigorous, multi-step calibration 

and validation process was conducted using the PROOSIS® simulation software:  
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a) Sensitivity Analysis. Due to the high dimensionality and large number of 

parameters that mechanistic microalgae-bacteria models frequently exhibit, an 

initial sensitivity analysis was conducted. This step was essential to determine the 

minimum set of parameters with the greatest influence on system outputs, 

focusing subsequent efforts on those parameters with the highest identifiability. 

b) Parameter estimation of model biokinetic parameters and mass transfer 

coefficients. The optimal values for the selected biokinetic parameters and mass 

transfer coefficients within the reactors were determined through dynamic 

optimization. This estimation was performed using a robust objective function 

designed to minimize the impact of uncertainties from unreliable or noisy 

experimental measurements. 

c) Parameter estimation of settling velocity parameters. The values of parameters 

characterizing the settling process were determined using a robust objective 

function. Additionally, modeling the settling velocity equation required fitting 

parameters using a sigmoid function to accurately represent the non-linear 

sedimentation behavior. 

d) Cross-validation and goodness-of-fit. The final stage of this phase involved the 

cross-validation of the fully calibrated model. The simulated dynamics were 

directly compared with independent experimental data sets from anoxic-aerobic 

facilities. The results were graphically presented to demonstrate the model's 

effective range of validity and goodness-of-fit. 

e) Metrics of model performance: To objectively quantify the model's quality of 

adjustment to the experimental data, two performance indices were used: the 

Mean Absolute Error (MAE) and the Mean Absolute Relative Error (MARE). 

These metrics provided quantitative proof of the model's predictive accuracy 

across the observed variables. 

The application of the aforementioned process for model calibration and validation in an 

anoxic-aerobic algal-bacteria photobioreactor configuration treating different dilutions of 

digestate is detailed in Chapter 4, Section 4.1. 

In light of the challenges associated with parameter estimation in complex biological 

processes, this thesis proposes a novel methodological approach for parameter estimation. 

This approach is designed to address the challenges posed by the presence of multiple 

variables and parameters in optimization problems. This novel methodology was 
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successfully applied and tested using real experimental data from the microalgae-bacteria 

photobioreactor of an anoxic-aerobic configuration treating domestic synthetic 

wastewater in Chapter 4, Section 4.2. 

 

2.2.2. Methods using model simulation 

The predictive capacity of the calibrated model (established via experimental data, 

Chapters 3 and 4) enables its use for comprehensive system analysis and control design. 

In accordance with the methodological objective of optimizing research resources by 

minimizing the reliance on costly and time-consuming physical experimentation, model 

simulations were employed to achieve objectives that are impractical or unachievable 

through pilot-plant testing. These simulations were specifically designed to assess 

scalability and to exhaustively evaluate control strategies under diverse operational 

scenarios. 

This methodological step is crucial for two main reasons: 

- Exploration of the operating envelope: Simulations allow for the systematic study 

of the system's operation across a substantially broader spectrum of operational 

conditions and under extreme perturbation events that are not economically or 

safely viable to replicate in the physical pilot plant. 

- Control strategy design and validation: The validated dynamic model provides the 

necessary analytical platform for the synthesis, tuning, and closed-loop testing of 

the advanced control strategies proposed in this thesis (Chapter 6), prior to any 

potential physical implementation. 

The decision to evaluate state estimation techniques and control strategies through high-

fidelity simulation of an industrial-scale plant (Chapters 5 and 6), as opposed to 

depending exclusively on the physical pilot facility, is a fundamental methodological 

necessity driven by the inherent differences between the scales and the objectives of 

advanced control design. The industrial plant model, state estimation technique, and 

model-based control strategy were developed within the MATLAB® software 

environment. 

The simulation of the industrial environment enables the rigorous exploration of critical 

factors that are either absent or significantly mitigated at the pilot scale, providing a 

stringent testbed for both the controller and the state estimator: 
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- Pronounced non-linearities: Industrial systems often exhibit more pronounced 

non-linear dynamics (e.g., in settling, reaction kinetics) due to their larger 

operational volumes and flow rates. These complex effects, which are typically 

less evident at laboratory scale, are crucial for challenging the convergence and 

stability of non-linear state estimation algorithms or for testing the performance 

of the subsequent non-linear control algorithms. 

- Wider operational and perturbation ranges: Simulation enables the testing of 

wider ranges of system input loads and the introduction of larger, more realistic 

magnitude of disturbances that characterize real-world municipal wastewater 

treatment plants. It is imperative to assess the robustness of the estimator under 

these conditions, particularly with regard to its resilience against high 

measurement uncertainty and noise propagation. 

- Influence of external and coupling conditions: The industrial-scale model allows 

for the assessment of the pronounced influence of external conditions (e.g., 

realistic, large-scale diurnal and seasonal temperature/radiation fluctuations) and 

the inter-component coupling effects (e.g., recycling streams and settler 

dynamics) that dominate the overall system behavior at full scale.  

- Economic and safety constraints: Critically, testing advanced control strategies 

under extreme conditions, large disturbances, or complex failure scenarios on a 

physical industrial plant is often prohibitively expensive, time-consuming, and 

potentially unsafe. A simulation environment provides a risk-free platform for 

thorough robustness analysis and optimization. 

Thus, industrial-scale simulation is a vital bridge for transferring the technology of the 

proposed state estimation and control strategies, ensuring their robustness, stability, and 

viability before costly physical implementation. 

 

Simulation conditions 

To ensure the representativeness and robustness of the industrial-scale evaluations of both 

control and state estimation strategies, the simulation environment was configured using 

calibrated parameters and real input data. Key system inputs were driven by real time-

series data to accurately capture the stochastic and dynamic nature of operational 

wastewater treatment plants: 
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- Urban wastewater influent load: Industrial-scale plant simulations were based on 

real-time series data of urban wastewater influent quality. This data was sourced 

from representative municipal wastewater, allowing for evaluation under the 

typical diurnal fluctuations inherent to real-world operation. 

- Environmental conditions: The dynamic effects on microalgae growth and reactor 

temperature were modeled using real meteorological data. Specifically, typical 

data on solar radiation and ambient temperature from a suitable geographical 

location were used to accurately reflect the influence of external conditions on 

biological dynamics. 

- Model parameters and scaling: The dynamic models for the reactors and settlers 

were scaled up to typical industrial dimensions. Typical biokinetic and mass 

transfer parameters for HRAPs were used to ensure that the fundamental kinetic 

and biological behavior of the simulated system corresponded directly with prior 

experimental evidence. 

 

Scenarios for robustness analysis and state estimation evaluation 

• Model-plant mismatch setup 

A fundamental aspect of this simulation methodology was the introduction of a deliberate 

model-plant mismatch to accurately emulate the real conditions encountered in industrial 

control applications. This setup involved utilizing two distinct dynamic models within the 

closed-loop simulation: 

- Plant model: The full, high-fidelity, validated mechanistic model (developed in 

Chapter 3) was employed to represent the true dynamic behavior of the industrial 

plant. 

- Controller/Estimator model: A simplified version of the full model was embedded 

within the state estimator and the controller. This model utilized a distinct set of 

fixed parameters and a reduced number of states to represent the unavoidable 

modeling errors, simplifications, and uncertainties characteristic of real-time 

operational models. The details and simplifications performed in the reduced 

model can be found in Chapter 5, Section 5.4.  



53 
 

This rigorous approach ensures that the performance and stability of the designed control 

and estimation techniques are tested against realistic structural and parametric 

uncertainties, verifying their true robustness. 

 

• Simulation of measurement noise and uncertainty evaluation 

To further enhance the realism of the evaluation, the industrial simulation environment 

incorporated stochastic noise into the measurements, accurately mimicking the 

uncertainty and measurement quality issues found in real instrumentation and analytical 

measurement procedures. 

- Measurement noise: Additive noise was introduced to both the simulated 

analytical and online measurements. This noise component effectively models the 

combined effects of high-frequency uncertainty, calibration errors, signal drift, 

and process-related fluctuations present in real-world sensors and analytical 

procedures. 

- Uncertainty evaluation: Testing the state estimator under this noisy environment 

is critical, as the performance and convergence of non-linear observers are highly 

sensitive to measurement noise propagation and the effects of model 

simplifications. This rigorous evaluation confirms the estimator’s capability to 

provide reliable state estimations in realistic operational context. 

 

2.3. State estimator design and tuning methodology 

The methodology for the state estimator design was structured around two principal 

aspects: the selection of the most pertinent state estimation technique for the system's 

non-linear dynamics, and the rigorous tuning of its parameters to ensure operational 

robustness. 

 

• Selection of the estimation technique 

To effectively address the non-linear nature of the biological system and, critically, the 

necessity of incorporating state and measurement constraints, the Moving Horizon 

Estimator was selected. The MHE was selected due to its methodological advantages over 

linear or extended Kalman filters in this particular context: 
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- Explicit constraint handling: The MHE explicitly incorporates operational 

constraints directly into its optimization formulation, a crucial aspect for ensuring 

the safety and physical significance of state estimation. 

- Global optimization: By utilizing an objective function that minimizes the 

estimation error over a receding time horizon, the MHE provides a more robust 

and consistent state estimation, particularly in systems characterized by slow, non-

linear dynamics such as WWTPs. 

- Embedded model: The MHE utilizes a simplified version of the complete dynamic 

plant model. This approach offers a realistic simulation of the model-plant 

mismatch condition, verifying the estimator's ability to converge despite structural 

and parametric uncertainties. 

 

• MHE tuning and configuration 

The performance of the MHE is critically dependent on the adjustment of its weighting 

parameters and the correct inclusion of constraints: 

- Covariance matrices: 

o Process noise covariance matrix: This matrix weights the noise affecting 

the model dynamics. The weights were tuned to reflect the level of 

uncertainty inherent in the reduced model and the unmeasured 

disturbances of the WWTP. 

o Measurement noise covariance matrix: The weights were directly adjusted 

based on the variance of the stochastic noise introduced into the 

simulations. Proper tuning of this matrix is essential for balancing the 

estimator's confidence in the measurements versus its confidence in the 

model predictions. 

- Estimation constraints: Constraints were included in the MHE's optimization 

problem to ensure that the estimated state variables remain within their known 

physical and operational bounds. 

- Horizon: The estimation horizon was chosen as a compromise between estimation 

accuracy and computational feasibility. 

This design and tuning process ensures that the MHE is not only theoretically suitable for 

the system but has also been configured to operate robustly under industrial conditions of 
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uncertainty and constraint. The specific tuning parameters are delineated in Chapter 5, 

section 5.5.1. 

 

2.4. Economic model predictive control design and tuning methodology 

The eMPC was designed to optimize the economic performance of the wastewater 

treatment plant, using biomass productivity as the primary economic driver. 

 

• Optimization problem formulation and tuning 

The eMPC is formulated as an online optimization problem that is solved at every 

sampling instant. Its distinctive feature is the definition of an economic objective 

function. The tuning of the eMPC was an iterative process focused on achieving a robust 

balance between economic maximization and the maintenance of stringent quality 

constraints.  

- Economic term: This dominant term is defined to maximize biomass productivity. 

- Control effort term: This penalizes excessive changes in the manipulated 

variables. 

- Prediction and control horizons: These horizons were selected based on the slow 

dynamics of the biological system. 

- Embedded model: The eMPC utilizes the reduced dynamic model of the plant (the 

same version used in the MHE, Section 5.4) to predict the future behavior of the 

system over the prediction horizon. The employment of this reduced model is 

critical to ensure real-time computational feasibility. 

- Operational and quality constraints: The optimization must be subjected to 

equality and inequality constraints, which are vital for real-world application: 

o Biomass constraints: Strict biomass constraints within the reactor, in the 

effluent flow and in the wastage flow. 

o Actuator constraints: Physical limits were imposed on the manipulated 

control variables. 

This methodology ensures that the eMPC operates as a robust hierarchical control system, 

striving for economic optimization within a framework of strict safety and regulatory 

adherence. 
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2.5. Laboratory-scale plant for wastewater treatment 

In this thesis, a laboratory-scale plant for wastewater treatment was designed to allow the 

validation of modeling, estimation, and control strategies. This plant is located at the 

University of Valladolid's Institute of Sustainable Processes in Spain.  

 

2.5.1. Pilot plant description 

The laboratory-scale wastewater treatment plant developed in this thesis comprised two 

independently operated microalgae-bacteria photobioreactors. The photobioreactors are 

identical 3.85 L cylindrical PVC (polyvinylchloride) plastic tanks with a total working 

volume of 3.2 L. The photobioreactors are illuminated by an array of LED strip lights 

(Philips 150 W-0.7 A, Spain) placed 0.44 m above the surface of the photobioreactors. 

The photobioreactors are subjected to constant agitation through the use of magnetic 

stirring plates (LBX instruments S20, Spain). To ensure a suitable temperature range for 

microalgae cultivation, a cooling system is employed, utilizing hoses surrounding the 

photobioreactors to circulate water from a thermal bath (Fisher Scientific, Spain). Both 

reactors are fed with synthetic wastewater, which is supplied to the reactors using 

HYGIAFLEX HF-SK-HandyPump peristaltic flow pumps. Fig. 2.1 presents a schematic 

representation of the laboratory-scale plant. 

 

 

Fig. 2.1. Schematic representation of the laboratory-scale plant (Ruíz Guirola, 2023) 
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• Operational conditions  

The reactors were inoculated with a consortium of microalgae and bacteria from the 

photosynthetic wastewater treatment plants of Almeria, Spain. The microalgae strains 

present in the inoculum were Dictyosphaerium sp., Scenedesmus sp., Nitzschia sp. and 

Pseudanabaena sp., with Dictyosphaerium sp. predominating. 

Both reactors are fed with synthetic wastewater, which is maintained at a constant 

temperature of 4 °C before feeding to prevent degradation. To ensure controlled operating 

conditions, synthetic wastewater was employed to simulate the physicochemical 

characteristics and composition of medium-load urban wastewater. The composition of 

the wastewater utilized is delineated in Table 2.1. The utilization of synthetic wastewater 

in this laboratory-scale facility offers several advantages, including the ability to regulate 

the characteristics and composition of the water, facilitate the comparison and evaluation 

of treatment technologies, eliminate the risk of hazardous contaminants, and reduce the 

cost of treating and managing real water. Furthermore, it enables the modeling of various 

scenarios, thereby reducing the impact of perturbations resulting from heterogeneous 

wastewater composition. 

 

Table 2.1. Synthetic wastewater composition 

Component Concentration [units] 

Glucose anhydrous 625 mg/L 

Meat Extract 137.5 mg/L 

Peptone from casein 200 mg/L 

NaHCO3 1375 mg/L 

NaCl 8.75 mg/L 

CaCl2·H2O  5 mg/L 

MgSO4·7H2O 2.5 mg/L 

K2·HPO4 140 mg/L 

CH4N2O (urea) 37.5 mg/L 

CuCl2·2H2O 0.625 mg/L 
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The temperature and pH of the culture medium varying between 24-27 ºC and 8-9.8, 

respectively, throughout the experimental process. In order to guarantee a narrow range 

of temperatures, the cooling systems circulates water at 24 ºC from a thermal bath. The 

photobioreactors are illuminated with LED panels, and the radiation provided by these 

panels at each time of the day emulates the sunlight cycle. The Arduino Leonardo 

controller transmits the appropriate voltage levels to the LED panels, corresponding to 

the radiation values for the various hours of the day. The sunlight cycle programmed in 

the Arduino for this experimentation corresponds to the summer radiation conditions in 

Castilla y León, with a maximum intensity of 1495 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇/𝑚𝑚2𝑠𝑠 over the surface of the 

photobioreactors. The LED panels ensure sufficient illumination, thereby promoting 

optimal growth and development of the microalgae.  

 

• Online data acquisition and automatic operation system 

The experimental system is designed for the collection of online data concerning the pH 

level, the temperature, and the dissolved oxygen concentration. To this end, tree probes 

(Vernier®) were positioned within each reactor to obtain precise measurements of the 

internal conditions. Each probe is connected to a data acquisition (DAQ) board (LabQuest 

Mini, Model 2, Vernier®), which is connected to the computer via USB ports. This 

interface enables the real-time transfer of data from the probes to the computer. A 

Supervisory Control and Data Acquisition (SCADA) system was developed to address 

the necessity for efficient data visualization, storage and processing, as well as the 

autonomous operation of the system. This system utilizes LabVIEW 2021 software 

(National Instruments, NI). 

The SCADA system has been developed for the purpose of facilitating the acquisition of 

measurement values at user-defined intervals. Throughout the experiment, the daily data 

are stored in an Excel file. 

The implementation of the SCADA system facilitates the regulation of synthetic 

wastewater flow to both photobioreactors, with each pump functioning independently. 

This configuration is guaranteed to provide the necessary synthetic wastewater to each 

reactor, thereby ensuring the achievement of the desired hydraulic retention time value. 

The control of the pumps for the SCADA system is performed using the Input/Output 

device USB-1408FS-Plus (Measurement Computing Corporation). Fig. 2.2 represents the 
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instrumentation used to facilitate the exchange of information between the plant and the 

SCADA system. 

The SCADA is composed of four windows. The first is the main window, which displays 

the fundamental operational conditions of the system. The second and third windows 

provide detailed information regarding each reactor operation. The fourth window is the 

settings window, which allows the user to configure the flow particularities for each 

reactor. Details of the SCADA operation are provided in Appendix 4. 

 

 

Fig. 2.2. Instrumentation of the laboratory-scale wastewater treatment plant 

 

 

2.6. Conclusions 

The methodological framework established herein ensures the viability, robustness, and 

industrial applicability of the contributions presented in this thesis. The strategy, 

grounded in a model-centric and hybrid approach, commenced with the establishment of 

a high-fidelity predictive platform through the calibration of the dynamic model against 

pilot-plant experimental data. The aforementioned model, which has been proven to be 
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valid, serves as a foundation for the estimation and evaluation of control strategies. The 

simulation environment was configured to prioritize realism, incorporating both real-

world time-series data and a deliberate model-plant mismatch to assess the performance 

of algorithms in the face of inevitable uncertainties. The methodology culminates in the 

design and tuning of advanced control components: the Moving Horizon Estimator, 

selected for its constraint-handling and robustness to non-linearities, and the Economic 

Model Predictive Controller, formulated to optimize high-level objectives while strictly 

adhering to operational and regulatory constraints. This comprehensive approach 

provides the validated and rigorous foundation necessary for the successful synthesis and 

technology transfer of the proposed control and estimation strategies. 
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3. Modeling of anoxic-aerobic algal-bacterial processes 

This chapter is devoted to the modeling of an anoxic-aerobic algal-bacterial 

photobioreactor configuration. The utilization of anoxic-aerobic algal-bacterial systems 

has emerged as a highly efficient alternative for the removal of nutrients from wastewater 

with low carbon to nutrient ratio (de Godos, Vargas, et al., 2014; Alcántara et al., 2015; 

García et al., 2017; Dhaouefi et al., 2018). However, these systems are still in an 

embryonic stage, and further research must be conducted before being implemented in a 

larger scale. As part of the experimental stage, anoxic-aerobic microalgae-bacteria 

systems require a series of experiments to evaluate their performance and nutrient 

removal efficiencies under various operational conditions and treating different types of 

wastewater. In this regard, mathematical modeling applied to this novel photobioreactor 

configuration is a useful tool for predicting and understanding the processes occurring in 

each plant element, allowing the simulation of a broad range of experimental and 

operational conditions in a relatively short period of time. 
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3.1. Description of the anoxic-aerobic microalgae-bacteria photobioreactor 

configuration 

The lab-scale plant was configured as a two-stage anoxic-aerobic system, engineered with 

biomass settling and recirculation, as illustrated in Fig. 3.1. The facility was designed 

with the objective of promoting nitrogen removal via denitrification and the development 

of a rapidly settling algal-bacterial population. The design was based on the hypothesis 

that algal-bacterial photobioreactors for wastewater treatment can support the oxidation 

of NH4
+ into NO2

− NO3
−⁄ , which can then be easily removed through denitrification (using 

the organic matter present in wastewater) under pre-anoxic conditions via internal 

recycling of the photobioreactor broth (de Godos, Vargas, et al., 2014). 

The aerobic tank (open photobioreactor) was illuminated by LED lamps, whereas the 

anoxic reactor consisted of a gas-tight tank maintained in the dark. Synthetic wastewater 

(SWW) was fed to the anoxic tank and continuously overflowed by gravity into the 

aerobic photobioreactor. The algal-bacterial broth was recycled from the photobioreactor 

to the anoxic tank in order to provide the NO2
− and NO3

− (generated in the photobioreactor 

via biological nitrification) required for denitrification. An Imhoff cone, interconnected 

to the outlet of the photobioreactor, functioned as a settler, wherein the algal-bacterial 

biomass settled and was recycled from the bottom of the settler into the anoxic tank. 

Biomass was daily wasted from the bottom of the secondary settler to maintain the value 

of the sludge retention time (SRT). 

 

 

Fig. 3.1. Schematic of the anoxic-aerobic algal-bacterial photobioreactor configuration 
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3.1.1. Photobioreactor and anoxic unit modeling 

The BIO_ALGAE2 model (Solimeno, Gómez-Serrano and Acién, 2019a) (with some 

minor modifications) was used to represent the biochemical reactions and processes in 

both anoxic and aerobic reactors. The BIO_ALGAE2 model uses the standard 

nomenclature of the IWA models and considers 19 components - 6 particulate and 13 

dissolved - as variables involved in the physical, chemical, and biokinetic processes. 

These components are listed in Table 3.1 and described in detail in (Solimeno et al., 

2017a), along with their main roles in the processes and their interactions with other 

components. 

The process rates of the model and the factors equations representing the processes 

occurring in the anoxic and aerobic reactors are described in Table 3.2 and Table 3.3, 

respectively. Appendix 1 contains the matrix of stoichiometric parameters (Table A1.1), 

the values of the parameters (Table A1.2), the fractions of carbon, hydrogen, oxygen, and 

nitrogen in microalgae and bacterial biomass (Table A1.3), and a summary of the 

mathematical expressions of the stoichiometric coefficients (Table A1.4). 

Model modifications considered in the present work (Table 3.2) were related to the 

radiation factor (used in equations describing the microalgae growth (𝜌𝜌1 and 𝜌𝜌2)) and the 

addition of one factor in the equation representing the aerobic growth of heterotrophic 

bacteria on dissolved nitrate (𝜌𝜌6) to indicate that when ammonium (or ammonia) and 

nitrate are both present, ammonium is generally preferred. Differences in a few 

stoichiometric parameters were also considered (Table A1.1). 

  



64 
 

Table 3.1. Dissolved and particulate components in the BIO_ALGAE2 model 

 Component [units] Description 

Particulate 
components  

XALG [mgCOD/L] Microalgae biomass 

XH [mgCOD/L] Heterotrophic bacteria 

XAOB [mgCOD/L] Ammonium oxidizing bacteria 

XNOB [mgCOD/L] Nitrite oxidizing bacteria 

XS [mgCOD/L] Slowly biodegradable particulate organic matter 

XI [mgCOD/L] Inert particulate organic matter 

Dissolved 
components 

SNH4 [mgN-NH4/L] Ammonium nitrogen 

SNH3 [mgN-NH3/L] Ammonia nitrogen 

SNO3 [mgN-NO3/L] Nitrate nitrogen 

SNO2 [mgN-NO2/L] Nitrite nitrogen 

SPO4 [mgP-PO4/L] Phosphate phosphorus 

SO2 [mgO2/L] Dissolved oxygen 

SCO2 [mgC-CO2/L] Dissolved carbon dioxide 

SHCO3 [mgC-HCO3/L] Bicarbonate 

SCO3 [mgC-CO3/L] Carbonate 

SH [mgH/L] Hydrogen ions 

SOH [mgH-OH/L] Hydroxide ions 

SS [mgCOD/L] Readily biodegradable soluble organic matter 

SI [mgCOD/L] Inert soluble organic matter 
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Table 3.2. Process rates of the model 

Processes Process rate [M L-3 T-1] 

Microalgae (𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴) processes 

Growth on 𝑆𝑆𝑁𝑁𝑁𝑁 𝜌𝜌1 = 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝐼𝐼 ∙ 𝑓𝑓𝐷𝐷𝐷𝐷 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙
𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3

𝐾𝐾𝐶𝐶,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3 + 𝑆𝑆𝐶𝐶𝐶𝐶22
𝐼𝐼𝐶𝐶𝐶𝐶2,𝐴𝐴𝐴𝐴𝐴𝐴

∙
𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4

𝐾𝐾𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴  

Growth on 𝑆𝑆𝑁𝑁𝑁𝑁3 𝜌𝜌2 = 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝐼𝐼 ∙ 𝑓𝑓𝐷𝐷𝐷𝐷 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙
𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3

𝐾𝐾𝐶𝐶,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3 + 𝑆𝑆𝐶𝐶𝐶𝐶22
𝐼𝐼𝐶𝐶𝐶𝐶2,𝐴𝐴𝐴𝐴𝐴𝐴

∙
𝑆𝑆𝑁𝑁𝑁𝑁3

𝐾𝐾𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑁𝑁𝑁𝑁3
∙

𝐾𝐾𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴

𝐾𝐾𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴  

Endogenous 
respiration 𝜌𝜌3 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙

𝑆𝑆𝑂𝑂2
𝐾𝐾𝑂𝑂2,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑂𝑂2

∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 

Decay 𝜌𝜌4 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴  

Heterotrophic bacteria (𝑋𝑋𝐻𝐻)  (aerobic and denitrifying activity) 

Aerobic growth on 𝑆𝑆𝑁𝑁𝑁𝑁 𝜌𝜌5 = 𝜇𝜇𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙
𝑆𝑆𝑆𝑆

𝐾𝐾𝑆𝑆,𝐻𝐻 + 𝑆𝑆𝑆𝑆
∙

𝑆𝑆𝑂𝑂2
𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2

∙
𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4

𝐾𝐾𝑁𝑁,𝐻𝐻 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐻𝐻 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐻𝐻 

Aerobic growth on 
𝑆𝑆𝑁𝑁𝑁𝑁3 𝜌𝜌6 = 𝜇𝜇𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙

𝑆𝑆𝑆𝑆
𝐾𝐾𝑆𝑆,𝐻𝐻 + 𝑆𝑆𝑆𝑆

∙
𝑆𝑆𝑂𝑂2

𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2
∙

𝑆𝑆𝑁𝑁𝑁𝑁3
𝐾𝐾𝑁𝑁,𝐻𝐻 + 𝑆𝑆𝑁𝑁𝑁𝑁3

∙
𝐾𝐾𝑁𝑁,𝐻𝐻

𝐾𝐾𝑁𝑁,𝐻𝐻 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐻𝐻 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐻𝐻 

Anoxic growth on 
𝑆𝑆𝑁𝑁𝑁𝑁2 (denitrification 
on 𝑆𝑆𝑁𝑁𝑁𝑁2) 

𝜌𝜌7 = 𝜇𝜇𝐻𝐻 ∙ 𝜂𝜂𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙
𝑆𝑆𝑆𝑆

𝐾𝐾𝑆𝑆,𝐻𝐻 + 𝑆𝑆𝑆𝑆
∙

𝐾𝐾𝑂𝑂2,𝐻𝐻

𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2
∙

𝑆𝑆𝑁𝑁𝑁𝑁2
𝐾𝐾𝑁𝑁𝑁𝑁2,𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑁𝑁𝑁𝑁2

∙
𝑆𝑆𝑃𝑃𝑃𝑃4

𝐾𝐾𝑃𝑃,𝐻𝐻 + 𝑆𝑆𝑃𝑃𝑃𝑃4
∙ 𝑋𝑋𝐻𝐻 

Anoxic growth on 
𝑆𝑆𝑁𝑁𝑁𝑁3 (denitrification 
on 𝑆𝑆𝑁𝑁𝑁𝑁3) 

𝜌𝜌8 = 𝜇𝜇𝐻𝐻 ∙ 𝜂𝜂𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙
𝑆𝑆𝑆𝑆

𝐾𝐾𝑆𝑆,𝐻𝐻 + 𝑆𝑆𝑆𝑆
∙

𝐾𝐾𝑂𝑂2,𝐻𝐻

𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2
∙

𝑆𝑆𝑁𝑁𝑁𝑁3
𝐾𝐾𝑁𝑁𝑁𝑁3,𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑁𝑁𝑁𝑁3

∙
𝑆𝑆𝑃𝑃𝑃𝑃4

𝐾𝐾𝑃𝑃,𝐻𝐻 + 𝑆𝑆𝑃𝑃𝑂𝑂4
∙ 𝑋𝑋𝐻𝐻 
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Aerobic endogenous 
respiration 𝜌𝜌9 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙

𝑆𝑆𝑂𝑂2
𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2

∙ 𝑋𝑋𝐻𝐻 

Anoxic endogenous 
respiration 𝜌𝜌10 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻 ∙ 𝜂𝜂𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙

𝐾𝐾𝑂𝑂2,𝐻𝐻

𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2
∙

𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁2
𝐾𝐾𝑁𝑁𝑁𝑁3,𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑁𝑁𝑁𝑁2 + 𝑆𝑆𝑁𝑁𝑁𝑁3

∙ 𝑋𝑋𝐻𝐻 

Decay 𝜌𝜌11 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙ 𝑋𝑋𝐻𝐻 

Autotrophic bacteria (𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁  ) (nitrifying activity) 

Growth of 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 𝜌𝜌12 = 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝑁𝑁 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝑁𝑁 ∙
𝑆𝑆𝑂𝑂2

𝐾𝐾𝑂𝑂2,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑂𝑂2
∙

𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
𝐾𝐾𝑁𝑁𝑁𝑁4,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4

∙
𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3

𝐾𝐾𝐶𝐶,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 

Growth of 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 𝜌𝜌13 = 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑓𝑓𝑇𝑇𝑁𝑁 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝑁𝑁 ∙
𝑆𝑆𝑂𝑂2

𝐾𝐾𝑂𝑂2,𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑂𝑂2
∙

𝐾𝐾𝐼𝐼,𝑁𝑁𝑁𝑁4
𝐾𝐾𝐼𝐼,𝑁𝑁𝑁𝑁4 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4

∙
𝑆𝑆𝑁𝑁𝑁𝑁2

𝐾𝐾𝑁𝑁𝑁𝑁2,𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑁𝑁𝑁𝑁2
∙

𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3
𝐾𝐾𝐶𝐶,𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3

∙
𝑆𝑆𝑃𝑃𝑂𝑂4

𝐾𝐾𝑃𝑃,𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑃𝑃𝑃𝑃4
∙ 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 

Endogenous 
respiration of 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 𝜌𝜌14 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝑁𝑁 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝑁𝑁 ∙

𝑆𝑆𝑂𝑂2
𝐾𝐾𝑂𝑂2,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑂𝑂2

∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 

Endogenous 
respiration of 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 𝜌𝜌15 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑓𝑓𝑇𝑇𝑁𝑁 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝑁𝑁 ∙

𝑆𝑆𝑂𝑂2
𝐾𝐾𝑂𝑂2,𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑂𝑂2

∙ 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 

Decay of 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 𝜌𝜌16 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝑁𝑁 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝑁𝑁 ∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 

Decay of 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 𝜌𝜌17 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑓𝑓𝑇𝑇𝑁𝑁 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝑁𝑁 ∙ 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 

Hydrolysis, Chemical equilibrium and Transfer of gases 

Aerobic hydrolysis 
𝜌𝜌18 = 𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻 ∙

𝑋𝑋𝑆𝑆 𝑋𝑋𝐻𝐻⁄
𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻 + (𝑋𝑋𝑆𝑆 𝑋𝑋𝐻𝐻⁄ ) ∙ 𝑋𝑋𝐻𝐻 

Chemical equilibrium 
𝐶𝐶𝐶𝐶2 ↔ 𝐻𝐻𝐻𝐻𝐻𝐻3− 

𝜌𝜌19 = 𝑘𝑘𝑒𝑒𝑒𝑒,1 ∙ �𝑆𝑆𝐶𝐶𝐶𝐶2 − 𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3 𝐾𝐾𝑒𝑒𝑒𝑒,1⁄ � 

Chemical equilibrium 
𝐻𝐻𝐻𝐻𝐻𝐻3− ↔ 𝐶𝐶𝐶𝐶32− 

𝜌𝜌20 = 𝑘𝑘𝑒𝑒𝑒𝑒,2 ∙ �𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3 − 𝑆𝑆𝐻𝐻𝑆𝑆𝐶𝐶𝐶𝐶3 𝐾𝐾𝑒𝑒𝑒𝑒,2⁄ � 
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Chemical equilibrium 
𝑁𝑁𝑁𝑁4+ ↔ 𝑁𝑁𝑁𝑁3 

𝜌𝜌21 = 𝑘𝑘𝑒𝑒𝑒𝑒,3 ∙ �𝑆𝑆𝑁𝑁𝑁𝑁4 − 𝑆𝑆𝐻𝐻𝑆𝑆𝑁𝑁𝑁𝑁3 𝐾𝐾𝑒𝑒𝑒𝑒,3⁄ � 

Chemical equilibrium 
𝐻𝐻+ ↔ 𝑂𝑂𝑂𝑂− 

𝜌𝜌22 = 𝑘𝑘𝑒𝑒𝑒𝑒,𝑤𝑤 ∙ �1 − 𝑆𝑆𝐻𝐻𝑆𝑆𝑂𝑂𝑂𝑂 𝐾𝐾𝑒𝑒𝑒𝑒,𝑤𝑤⁄ � 

𝑆𝑆𝑂𝑂2 transfer to the 
atmosphere 

𝜌𝜌23 = 𝐾𝐾𝑙𝑙𝑙𝑙,𝑂𝑂2 ∙ �𝑆𝑆𝑂𝑂2𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑆𝑆𝑂𝑂2� 

𝑆𝑆𝐶𝐶𝐶𝐶2 transfer to the 
atmosphere 

𝜌𝜌24 = 𝐾𝐾𝑙𝑙𝑙𝑙,𝐶𝐶𝐶𝐶2 ∙ �𝑆𝑆𝐶𝐶𝐶𝐶2𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑆𝑆𝐶𝐶𝐶𝐶2� 

𝑆𝑆𝑁𝑁𝑁𝑁3 transfer to the 
atmosphere 

𝜌𝜌25 = 𝐾𝐾𝑙𝑙𝑙𝑙,𝑁𝑁𝑁𝑁3 ∙ (−𝑆𝑆𝑁𝑁𝑁𝑁3) 

 

  



68 
 

Table 3.3. Factors and submodels 

Model factor Submodel 

Photosynthetic factories model (Eileers and Peeters) (Eilers and Peeters, 1988) 

 

 

 

 

𝑓𝑓𝐼𝐼 = 𝑥𝑥2 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= −𝛼𝛼 ∙ 𝐼𝐼 ∙ 𝑥𝑥1 + 𝛾𝛾 ∙ 𝑥𝑥2 + 𝛿𝛿 ∙ 𝑥𝑥3 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

= 𝛼𝛼 ∙ 𝐼𝐼 ∙ 𝑥𝑥1 − 𝛾𝛾 ∙ 𝑥𝑥2 − 𝛽𝛽 ∙ 𝐼𝐼 ∙ 𝑥𝑥2 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

= 𝛽𝛽 ∙ 𝐼𝐼 ∙ 𝑥𝑥2 − 𝛿𝛿 ∙ 𝑥𝑥3 

𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 = 1 

where: 𝐼𝐼 = 𝐼𝐼𝑎𝑎𝑎𝑎  

The average light intensity (𝐼𝐼𝑎𝑎𝑎𝑎) was described using 

Lambert-Beer’s Law:  

𝐼𝐼𝑎𝑎𝑎𝑎 = 𝐼𝐼0�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝑖𝑖∙𝑇𝑇𝑇𝑇𝑇𝑇∙𝑑𝑑)�
𝐾𝐾𝑖𝑖∙𝑇𝑇𝑇𝑇𝑇𝑇∙𝑑𝑑

  

where: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑋𝑋𝐻𝐻 + 𝑋𝑋𝐼𝐼 + 𝑋𝑋𝑆𝑆 + 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁  

𝑥𝑥1: Microalgae in open state (ready to capture a photon). 

𝑥𝑥2: Microalgae in activated state (microalgae can go back to open state or 

can capture another photon). 

𝑥𝑥3: Microalgae in inhibited state (ready to turn back to the open state. 

𝛼𝛼: Rate of activation [(𝜇𝜇𝜇𝜇 𝑚𝑚−2)−1] 

𝛾𝛾: Rate constant of production [𝑠𝑠−1] 

𝛽𝛽: Rate constant of inhibition [(𝜇𝜇𝜇𝜇 𝑚𝑚−2)−1] 

𝛿𝛿: Rate of recovery [𝑠𝑠−1] 

𝐼𝐼𝑎𝑎𝑎𝑎: Average light intensity [𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝑚𝑚−2𝑠𝑠−1] 

𝐼𝐼0: Incident light intensity [𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝑚𝑚−2𝑠𝑠−1] 

𝐾𝐾𝑖𝑖: Extinction coefficient for particulate biomass [𝑚𝑚2𝑔𝑔−1] 

𝑇𝑇𝑇𝑇𝑇𝑇: Particulate components [𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚−3] 

𝑑𝑑: Photobioreactor depth [𝑚𝑚] 
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Photorespiration model 

𝑓𝑓𝐷𝐷𝐷𝐷 

𝑓𝑓𝐷𝐷𝐷𝐷 =

⎩
⎪
⎨

⎪
⎧

1 − 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�
𝐾𝐾𝑃𝑃𝑃𝑃 ∙

𝑆𝑆𝑂𝑂2
𝜏𝜏 ∙ 𝑆𝑆𝑂𝑂2𝑆𝑆𝑆𝑆𝑆𝑆

1 − 𝑆𝑆𝑂𝑂2
𝜏𝜏 ∙ 𝑆𝑆𝑂𝑂2𝑆𝑆𝑆𝑆𝑆𝑆

� ,

0, 𝑆𝑆𝑂𝑂2 > 𝜏𝜏 ∙ 𝑆𝑆𝑂𝑂2𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑂𝑂2 ≤ 𝜏𝜏 ∙ 𝑆𝑆𝑂𝑂2𝑆𝑆𝑆𝑆𝑆𝑆 

𝑆𝑆𝑂𝑂2𝑆𝑆𝑆𝑆𝑆𝑆: Saturation concentration of oxygen in the air [𝑔𝑔𝑂𝑂2 𝑚𝑚−3] 

𝐾𝐾𝑃𝑃𝑃𝑃: Photorespiration inhibition constant 

𝜏𝜏: Coefficient of excess dissolved oxygen 

 

pH model 

𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖 𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖

=
�𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚��𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚�

2

�𝑝𝑝𝑝𝑝𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚���𝑝𝑝𝑝𝑝𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚��𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜� − �𝑝𝑝𝑝𝑝𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚��𝑝𝑝𝑝𝑝𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑝𝑝𝑝𝑝𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 2𝑝𝑝𝑝𝑝��
 

𝑖𝑖: Refers to the i-th species of 

microorganism considered in 

the model (microalgae, 

heterotrophic bacteria, and 

nitrifying bacteria) 

Temperature model 

𝑓𝑓𝑇𝑇𝑖𝑖 
𝑓𝑓𝑇𝑇𝑖𝑖 =

�𝑇𝑇 − 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚��𝑇𝑇 − 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚�
2

�𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚���𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚��𝑇𝑇 − 𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜� − �𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚��𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 2𝑇𝑇��
 

𝑖𝑖: Refers to microalgae and 

nitrifying bacteria) 

𝑓𝑓𝑇𝑇𝐻𝐻  𝑓𝑓𝑇𝑇𝐻𝐻 = 𝜃𝜃𝑇𝑇−𝑇𝑇𝐻𝐻,𝑜𝑜𝑜𝑜𝑜𝑜  𝑇𝑇𝐻𝐻,𝑜𝑜𝑜𝑜𝑜𝑜: Optimal temperature 

for heterotrophic bacteria [℃]  

𝜃𝜃: Temperature coefficient  
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Table 3.4 summarizes the main reactions related to the activity of the microorganisms in 

each reactor. Since the anoxic tank is maintained under dark conditions, the growth of 

microalgae is not considered in this reactor. Similarly, due to the occurrence of anoxic 

conditions, the growth of autotrophic bacteria and the aerobic growth of heterotrophic 

bacteria are not considered in the anoxic reactor. Reactions related to chemical 

equilibrium were assumed to occur in the photobioreactor and the anoxic reactor, while 

the transfer of gases was considered to occur only in the photobioreactor since the anoxic 

reactor was a closed unit. Evaporation was also considered in the mass balance 

expressions in the photobioreactor. 
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Table 3.4. Processes considered in each compartment of the anoxic-aerobic algal-

bacterial photobioreactor 

 Process Anoxic Reactor Aerobic Reactor 
Microalgae 
processes 

Growth on SNH4 Not Considered Considered 

Growth on SNO3 Not Considered Considered 
Endogenous respiration Considered Considered 
Decay Considered Considered 

Heterotrophic 
bacteria 
processes 

Aerobic growth on SNH4 Not Considered Considered 
Aerobic growth on SNO3 Not Considered Considered 
Anoxic growth on SNO2 
(denitrification on SNO2) 

Considered Considered 

Anoxic growth on SNO3 
(denitrification on SNO3) 

Considered Considered 

Aerobic endogenous respiration Not Considered Considered 
Anoxic endogenous respiration Considered Considered 
Decay Considered Considered 

Autotrophic 
bacteria 
processes 
 
 
 

Growth of XAOB Not Considered Considered 

Growth of XNOB Not Considered Considered 

Endogenous respiration of XAOB Considered Considered 

Endogenous respiration of XNOB Considered Considered 

Decay of XAOB Considered Considered 

Decay of XNOB Considered Considered 

Hydrolysis Hydrolysis Considered Considered 

Chemical 
equilibrium  

Chemical equilibrium 
 𝐶𝐶𝐶𝐶2 ↔ 𝐻𝐻𝐻𝐻𝐻𝐻3− 

Considered Considered 

Chemical equilibrium 

 𝐻𝐻𝐻𝐻𝐻𝐻3− ↔ 𝐶𝐶𝐶𝐶32− 

Considered Considered 

Chemical equilibrium 
 𝑁𝑁𝑁𝑁4+ ↔ 𝑁𝑁𝑁𝑁3 

Considered Considered 

Chemical equilibrium 
 𝐻𝐻+ ↔ 𝑂𝑂𝑂𝑂− 

Considered Considered 

Transfer of 
gases 

𝑆𝑆𝑂𝑂2 transfer to the atmosphere Not Considered Considered 
𝑆𝑆𝐶𝐶𝐶𝐶2 transfer to the atmosphere Not Considered Considered 
𝑆𝑆𝑁𝑁𝑁𝑁3 transfer to the atmosphere Not Considered Considered 
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3.1.2. Settler modeling 

The settler was described using the mass balance expressions of the model of Takács et 

al. (Takács, Patryioand and Nolasco, 1991). The model is a multilayer dynamic model of 

clarification and thickening processes based on the concept of solids flux and mass 

balance around each layer of a one-dimensional settler. This model can simulate the solids 

profile throughout the settling column, including the underflow and effluent suspended 

solids concentrations under steady-state and dynamic conditions.  

The model of Tákacs et al. (Takács, Patryioand and Nolasco, 1991) assumes that no 

biological reactions take place in the settler. The model considers the settler as a set of 

layers, so that the gravitational flow of solids depends on the concentration of sludge in 

the settler. Two important assumptions are also made in this model: 

(1) incoming particles are instantaneously and uniformly distributed over the entire cross-

sectional area of the settler layer,  

(2) the model equations only consider flow in the vertical direction.  

The basic principle of this model is based on the mass balance of the suspended solids in 

each layer. The flux of solids in each layer (𝐽𝐽) depends on the concentration of solids (𝑋𝑋) 

in the layer and the velocity of the solids (𝑣𝑣) as given in equation (3.1). The solids flux 

due to the bulk motion of the liquid can be upward or downward depending on the 

position of the layer with respect to the feed point. 

𝐽𝐽 = 𝑣𝑣(𝑋𝑋)𝑋𝑋 (3.1) 

Five different groups of layers are described with the Tákacs model, depending on their 

position relative to the feed point: the top layer, the layers above the feed point, the feed 

layer, the layers below the feed point, and the bottom layer. 

Considering the settler divided into n layers, layer 1 is the top layer and m is the feed 

layer. The state equations describing the concentrations in each layer are represented by 

the expressions (3.2)-(3.6): 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

=
1
ℎ
�𝐽𝐽𝑢𝑢𝑢𝑢,2 − 𝐽𝐽𝑢𝑢𝑢𝑢,1 − 𝐽𝐽𝑠𝑠,1� 

(3.2) 

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

=
1
ℎ
�𝐽𝐽𝑢𝑢𝑢𝑢,𝑖𝑖+1 − 𝐽𝐽𝑢𝑢𝑢𝑢,𝑖𝑖 + 𝐽𝐽𝑠𝑠,𝑖𝑖−1 − 𝐽𝐽𝑠𝑠,1�                2 ≤ 𝑖𝑖 < 𝑚𝑚 

(3.3) 
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𝑑𝑑𝑥𝑥𝑚𝑚
𝑑𝑑𝑑𝑑

=
1
ℎ �
𝑄𝑄𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖
𝐴𝐴

−𝐽𝐽𝑢𝑢𝑢𝑢,𝑚𝑚 − 𝐽𝐽𝑑𝑑𝑑𝑑,𝑚𝑚 + 𝐽𝐽𝑠𝑠,𝑚𝑚−1 − 𝐽𝐽𝑠𝑠,𝑚𝑚�   
(3.4) 

𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑

=
1
ℎ
�𝐽𝐽𝑑𝑑𝑑𝑑,𝑗𝑗−1 − 𝐽𝐽𝑑𝑑𝑑𝑑,𝑗𝑗 + 𝐽𝐽𝑠𝑠,𝑗𝑗−1 − 𝐽𝐽𝑠𝑠,𝑗𝑗�                𝑚𝑚 < 𝑗𝑗 < 𝑛𝑛 

(3.5) 

𝑑𝑑𝑥𝑥𝑛𝑛
𝑑𝑑𝑑𝑑

=
1
ℎ
�𝐽𝐽𝑑𝑑𝑑𝑑,𝑛𝑛−1 − 𝐽𝐽𝑑𝑑𝑑𝑑,𝑛𝑛 + 𝐽𝐽𝑠𝑠,𝑛𝑛−1� 

(3.6) 

where A represents the surface area of the settler, Qin and Xin represent the influent flow 

rate, and the influent suspended solids concentration to the settler, respectively. 

Expressions (3.7) and (3.8) describe the upward (Jup) and downward (Jdn) solids flux due 

to the bulk motion of the liquid, respectively. Qef is the treated effluent flow rate and Qout 

is the sum of the recycle and wastage flow rates.  

𝐽𝐽𝑢𝑢𝑢𝑢,𝑖𝑖 =
𝑄𝑄𝑒𝑒𝑒𝑒𝑋𝑋𝑖𝑖
𝐴𝐴

              2 ≤ 𝑖𝑖 ≤ 𝑚𝑚 
(3.7) 

𝐽𝐽𝑑𝑑𝑑𝑑,𝑗𝑗 =
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑋𝑋𝑗𝑗
𝐴𝐴

              𝑚𝑚 ≤ 𝑗𝑗 ≤ 𝑛𝑛 
(3.8) 

In each layer the solids flux due to gravity settling is determined using (3.9): 

𝐽𝐽𝑠𝑠,𝑘𝑘 = min�𝑉𝑉𝑠𝑠,𝑘𝑘𝑋𝑋𝑘𝑘 ,𝑉𝑉𝑠𝑠,𝑘𝑘+1𝑋𝑋𝑘𝑘+1�             1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1 (3.9) 

The generalized settling velocity (3.10) is described using the double-exponential model 

proposed by Takács and co-workers (Takács, Patryioand and Nolasco, 1991). This model 

is valid for both: thickening and clarified zone. 

𝑉𝑉𝑠𝑠,𝑘𝑘 = 𝑉𝑉0𝑒𝑒−𝑟𝑟ℎ(𝑋𝑋𝑘𝑘−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑉𝑉0𝑒𝑒−𝑟𝑟𝑝𝑝(𝑋𝑋𝑘𝑘−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)     1 ≤ 𝑘𝑘 ≤ 𝑛𝑛    0 ≤ 𝑉𝑉𝑠𝑠 ≤ 𝑉𝑉0′      (3.10) 

where:  

𝑉𝑉𝑠𝑠,𝑘𝑘: Settling velocity of the solids particles in the layer 𝑘𝑘 [dm/d] 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚: Minimum attainable suspended solids concentration in the effluent [mg/L] 

𝑉𝑉0: Maximum theoretical settling velocity [dm/d] 

𝑉𝑉0′: Maximum practical settling velocity [dm/d] 

𝑟𝑟ℎ: Settling parameter associated with the hindered settling component of settling 

velocity equation [L/mg] 

𝑟𝑟𝑝𝑝: Settling parameter associated with the low concentration and slowly settling 

component of the suspension [L/mg] 
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This work considers a 10-layer settler of equal volume and assumes that no biological 

reactions occur in the settler. The model considers only biomass dynamics to predict the 

biomass concentration in each layer of the settler. Thus, to estimate the concentration of 

components in the settler (and in the external recirculation and effluent streams), this 

assumption implies: 

• the concentration of the dissolved components in the settler is assumed to be the 

same as in the photobioreactor, and 

• the percentage of each component of the biomass in the settler is assumed to be 

exactly the same as in the photobioreactor. 

 

3.2.  Library for microalgae-bacteria wastewater treatment modeling 

This section presents the development of a library of components for the simulation of 

wastewater treatment plants based on microalgae-bacteria consortia using the dynamic 

programming environment EcosimPro|PROOSIS® (EA Internacional, 2024). 

As mentioned in the previous chapter, several models have been proposed in the last two 

decades to represent microalgae-bacteria interactions (Reichert et al., 2001; Solimeno et 

al., 2017a; Solimeno, Gómez-Serrano and Acién, 2019a; Casagli et al., 2021; Sánchez‐

Zurano et al., 2021). For the simulation of these models, different programming tools 

have been used, such as MATLAB®, COMSOL Multiphysics®, AQUASIM, among 

others. 

Using these models requires a broad understanding of the variables and equations that 

describe the dynamics of the process, as well as mathematical and programming skills 

that make them difficult to use for students and staff unfamiliar with all the elements of 

the models. In most cases, this makes adding new process units or modifying existing 

ones too complex for anyone outside the programming team. 

The main tools that make models accessible to non-experts users are graphical 

environments and model libraries, especially those based on object-oriented 

programming, also known as structured programming. On the one hand, the former 

allows the user to handle models intuitively (for example, by using icons to represent a 

particular process). On the other hand, OOP facilitates software updates, teamwork, or 

the creation of graphical environments through features such as model reuse, inheritance, 

encapsulation, or abstraction. OOP allows the user to utilize a component without the 
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understanding of the implementation details of the model. The user's knowledge is limited 

to the component's intended purpose, inputs, and outputs. Object-oriented modeling 

facilitates the reuse of previously developed models and also encourages the creation of 

parameterizable component libraries with broad applicability across a variety of 

simulation projects. 

The use of object-oriented programming and library development to simulate industrial 

processes is a common practice, as evidenced by numerous studies (Vilas et al., 2008; 

Mazaeda et al., 2011; Palacin et al., 2011). In the context of wastewater treatment systems 

based on microalgae-bacteria consortia, a comparable methodology has only been 

proposed through the plant-wide model (PWM) for the description of microalgal 

processes in wastewater treatment plant simulations (Tejido-Núñez, 2020). 

 

3.2.1. Library development using EcosimPro|PROOSIS® 

EcosimPro|PROOSIS ® is a modeling and simulation tool for multidisciplinary systems. 

Based on algebraic differential equations and discrete events, it allows the modeling of a 

wide range of systems, including control, thermal, hydraulic, and mechanical systems. 

PROOSIS® allows the creation of physical system models based on object-oriented 

concepts similar to those used in programming languages such as C++ and Java. Using 

PROOSIS's proprietary modeling language (EL), the data and dynamic behavior of the 

system can be encapsulated in reusable components that provide a well-defined public 

interface while hiding the intricacies of their internal implementation. PROOSIS® allows 

the construction of more complex components by integrating basic components. It also 

allows the definition of a component as an extension or specialization of another basic 

component through inheritance mechanisms. The object-oriented modeling technology 

of PROOSIS® facilitates the creation of sophisticated dynamic models through the 

interconnection of components, thereby promoting a highly productive methodology of 

reusing parameterizable components that have already been tested. Furthermore, the open 

source code of the libraries allows for the integration of additional components not 

included in the existing functionality. The following are basic concepts that are involved 

in a simulation using PROOSIS®:  
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• Component: Represents a model of a physical object that incorporates variables, 

differential algebraic equations, topology, and discrete behavior. (Examples of 

components included in the software: pump, valve, and pipe).  

• Ports: These define the connection points of a component with other components, 

allowing for the exchange of materials, energy, or information. Different ports are 

required for each discipline, for example, electrical, hydraulic, and chemical 

systems. 

• Experiment: This refers to the process of defining how the model is going to be 

used in the simulation. 

• Library: This includes all the library's components, ports, and global variables.  

 

The library developed was called ALG_BACT_WWTP. This library includes the 

essential components that allow the modeling of a simple wastewater treatment plant: 

ports, sources and sinks, reactors, and settler. These components are shown in Fig. 3.2. 

 

 

Fig. 3.2. Components of the library ALG_BACT_WWTP. 

 

The definition of a special data type that will be used for all library components is 

essential to library design. The PROOSIS® software offers a variety of language 
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resources that facilitate a more concise definition. These resources are based on arrays 

and a specialized data type (ENUM), which is particularly useful for defining elements 

of a specific type, such as chemical species or microorganisms present in wastewater 

(WW). In the ALG_BACT_WWTP library, a data type (WW_components), is defined to 

include the potential elements present in wastewater. The enumeration of these elements 

was previously established in Table 3.1. 

The components developed in the library ALG_BACT_WWTP are described below: 

• Port_liquid: This port is used to connect the different elements of the WWTP. 

• Source_WW: Wastewater source. Wastewater inlet to the facility. In this 

component, only the dissolved elements of Table 3.1 are considered. The user 

should assign a value to each dissolved component (depending on the wastewater 

concentration used in the simulation). 

• Sink_WW: Wastewater sink. Wastewater or biomass outlet. The facility's output 

streams may contain both dissolved and particulate components.  

• REACTOR_ALG_BACT: Algal-bacterial photobioreactor. This component 

encapsulates the differential equations described in Table 3.2. It can be used to 

describe different photobioreactor configurations. The user should define the 

photobioreactor type, size, and the incident radiation surface. By defect, 

REACTOR_ALG_BACT has three inputs and two outputs that can be used to 

connect different components in configurations with two or more stages. The user 

can modify the initial concentration of components and model parameters in a 

simple way. 

• SETTLER: This component encapsulates the equations of the model of Takács et 

al. (Takács, Patryioand and Nolasco, 1991) (Section 3.1.2). The number of layers 

considered in the model and the physical dimensions of the settler can be 

modified. The component has one input and two outputs (for the clarified effluent 

and settled biomass).  

Using the advantages of the OOP, more components could be included in the library 

ALG_BACT_WWTP, thereby enhancing its functionality. In a similar manner, 

components from other PROOSIS® libraries (e.g., tanks, valves, pumps, pipes, or 

controllers) could be added to simulate a WWTP. Components of the PROOSIS® 
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standard libraries, including HYDRAULIC, CONTROL, and PORTS, can be utilized by 

adding these libraries to the workspace and subsequently interconnecting the graphical 

symbols of the components according to the user's preference. The construction of a 

model of a microalgae-bacteria wastewater treatment plant can be achieved through the 

integration of its distinct components, akin to the physical world, and the subsequent 

allocation of values to the various parameters and boundary conditions that govern the 

plant's operation. 

As illustrated in Fig. 3.3, a model for simulating a microalgae-bacteria wastewater 

treatment plant is presented, utilizing the components of the ALG_BACT_WWTP 

library. The anoxic-aerobic configuration described in Section 3.1 is represented by the 

components of the developed library. To specify the characteristics of the plant and 

operating conditions, the user can easily modify the component parameters and names by 

clicking on each component. This process is illustrated in the edition window of the 

photobioreactor represented in Fig. 3.4. This library empowers users to execute a diverse 

array of simulations, manipulating biological or operational parameters, without 

necessitating a comprehensive understanding of biological modeling principles. 

 

 
Fig. 3.3. Wastewater treatment plant with biomass recirculation using components of the 

library ALG_BACT_WWTP. 
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Fig. 3.4. Edition window of the component REACTOR_ALG_BACT. 

 

3.3.  Conclusions 

In this chapter, the established models from the extant literature were adapted to represent 

novel configurations of anoxic-aerobic algal-bacterial photobioreactors for wastewater 

treatment. The proposed models allow for the simulation of anoxic-aerobic configurations 

with biomass recirculation under a range of operational conditions. A library of model 

components for microalgae and bacteria-based wastewater treatment plants was 

developed. The components developed can be reused for multiple simulations and allow 

for easy interconnection between plant components.  
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4. Parameter estimation in microalgae-bacteria processes 

This chapter presents the parameter estimation for the anoxic-aerobic configuration 

described in Chapter 3. Parameter estimation, defined as the process of aligning a 

specified mathematical model with observed data, poses significant challenges in the 

context of bioprocesses. This complexity arises from the intricate nature of the model 

parameters, which are often characterized by high dimensionality. Consequently, a 

sensitivity analysis is conducted in the present study to ascertain the subset of parameters 

that exert the most significant influence on the system outputs. Subsequently, parameter 

estimation through optimization is performed to determine the optimal values of the 

model parameters. Finally, model validation is performed using the previously obtained 

model parameters. Fig. 4.1 provides a synopsis of the modeling and parameter estimation 

process employed in this thesis. The modeling, sensitivity analysis, parameter estimation, 

and model validation were conducted using the software PROOSIS®. 

 

 

Fig. 4.1. Schematic of the modeling and parameter estimation process. 
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In the estimation of parameters, two approaches have been employed: the first involves 

the simultaneous determination of all parameters pertinent to the optimization problem 

(Section 4.1), while the second involves the division of the optimization problem into 

subproblems of increasing complexity (Section 4.2). This second approach enables the 

presentation of a methodology for parameter estimation that could be used in a variety of 

biological processes when multiple model outputs and parameters are involved in the 

optimization problem.  

The initial approach to parameter estimation was evaluated in an anoxic-aerobic algal-

bacterial photobioreactor configuration that treated synthetic food waste digestate 

(SFWD). The methodology of the subsequent approach was implemented in a comparable 

facility that treated synthetic domestic wastewater. 

  



82 
 
 

4.1. Parameter estimation in anoxic-aerobic algal bacterial system 

The data utilized in this section to adjust the model of the anoxic-aerobic reactor 

configuration were collected by researchers from the Institute of Sustainable Processes at 

the University of Valladolid (Spain) from July to December of 2019. The experimental 

setup was operated with the objective of evaluating the performance of this 

photobioreactor configuration in the treatment of wastewater with high carbon and 

nitrogen loads.  

The laboratory-scale plant utilized in the present study (Fig. 3.1) comprised an open 

photobioreactor with a working volume of 9.15 L. The photobioreactor was illuminated 

for 12 hours daily by LED lamps (1314±12 µE/m2s). The anoxic reactor consisted of a 

gas-tight tank with a total working volume of 2.85 L maintained in the dark. The SFWD 

was fed to the anoxic tank at 1.2 L/d, continuously overflowing by gravity into the aerobic 

photobioreactor. The algal-bacterial broth was recycled at a rate of 2.4 L/d from the 

photobioreactor to the anoxic tank. The Imhoff cone, with a volume of 1 L, was utilized 

as a settler. The algal-bacterial biomass that accumulated at the bottom of the settler was 

subsequently transferred into the anoxic tank at a rate of 0.6 L/d. The system was operated 

continuously at a hydraulic retention time of 10 days and a temperature of 27 ± 2 ºC. 

Biomass was wasted from the bottom of the secondary settler to maintain the solids 

retention time at 18 d.  

The experimental configuration was operated for 138 days under step changes in SFWD 

load. During the initial stage (Stage I), the anoxic-aerobic system was supplied with 25% 

diluted SFWD. Subsequently, SFWD load was augmented to 50% (Stage II), and finally, 

to 100% during the final stage of operation (Stage III). The details of SFWD composition, 

experimental setup, operational conditions, and the ensuing results can be found in the 

study by (Torres-Franco et al., 2021).  

The data utilized for model calibration and validation were the results obtained for the 

composition of the influent SFWD, anoxic tank, photobioreactor, settled biomass, and 

effluent (Torres-Franco et al., 2021). The recorded variables included the pH, the 

concentration of dissolved oxygen (DO), dissolved total organic carbon (TOC), inorganic 

carbon (IC), dissolved N species (total nitrogen (TN), N-NH4
+, N-NO2

−, N-NO3
−), 

dissolved phosphate (P-PO4
3−), and biomass concentration, expressed as the total 

suspended solids (TSS) concentration. The measurement of DO and pH was conducted 
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on a daily basis, while the characterization of other variables occurred on a biweekly 

basis. 

Similar to previous research in anoxic-aerobic systems (Alcántara et al., 2015; Torres-

Franco et al., 2021), the model was built over the assumption that significant removals of 

N-NH4
+, IC, and P-PO4

3−, were mainly attributed to the contribution of the microbiology 

in the photobioreactor. In accordance with the aforementioned rationale, this study has 

considered eight key output variables in the reactors: TSS and TOC concentration in the 

photobioreactor and anoxic reactor; and dissolved oxygen, IC, N-NH4
+ and P-PO4

3− in the 

photobioreactor. In the settler, the TSS concentration in the effluent and the biomass 

wastage stream were considered output variables to adjust in the optimization problem. 

Table 4.1 summarized the output variables considered in the model. 

Model simulation considers the processes occurring in the anoxic and aerobic reactors 

described in Table 3.4. As previously referred, biomass concentration in both reactors and 

settler was measured twice a week using standard procedures to determine the 

concentration of TSS and Volatile Suspended Solids (VSS). In the model used in this 

study, the concentrations of particulate components are expressed in terms of the 

Chemical Oxygen Demand. Results from COD tests developed in (Torres-Franco et al., 

2021) were used here to obtain the ratio VSS/COD used in the model. In the simulation, 

the average value of the experimental ratio gTSS/gCOD used was 1.28. 

Equations (4.1) and (4.2) related the state model variables described in Table 3.1 and the 

measured variables (Table 4.1). 

𝑇𝑇𝑇𝑇𝑇𝑇[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿−1] = 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑋𝑋𝐻𝐻 + 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑋𝑋𝐼𝐼 + 𝑋𝑋𝑆𝑆 (4.1)  

𝑇𝑇𝑇𝑇𝑇𝑇[𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿−1] = 𝑖𝑖𝐶𝐶,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑖𝑖𝐶𝐶,𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 (4.2) 

Where 𝑖𝑖𝐶𝐶,𝑆𝑆𝑆𝑆 and 𝑖𝑖𝐶𝐶,𝑆𝑆𝑆𝑆 are the fraction of carbon in the readily biodegradable soluble 

organic matter (𝑆𝑆𝑠𝑠) and in the inert soluble organic matter (𝑆𝑆𝐼𝐼), respectively, which 

accounted for: 

𝑖𝑖𝐶𝐶,𝑆𝑆𝑆𝑆 = 0.318 𝑔𝑔𝑔𝑔 ∙ 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 −1 
 

𝑖𝑖𝐶𝐶,𝑆𝑆𝑆𝑆 = 0.327𝑔𝑔𝑔𝑔 ∙ 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 −1 
 

  



84 
 
 

Table 4.1. Output variables considered in the model 

Output variable 

[units] 

Description Sampling 
frequency 

TSS anoxic [mgTSS/L] Total suspended solids 
concentration in the anoxic reactor 

Twice a week 

TOC anoxic [mgC/L] Total organic carbon concentration 
in the anoxic reactor 

Twice a week 

TSS photobioreactor [mgTSS/L] Total suspended solids 
concentration in the photobioreactor 

Twice a week 

TOC photobioreactor [mgC/L] Total organic carbon concentration 
in the photobioreactor 

Twice a week 

IC photobioreactor [mgC/L] Inorganic carbon concentration in 
the photobioreactor 

Twice a week 

SO2 photobioreactor [mgO2/L] Dissolved oxygen concentration in 
the photobioreactor 

Daily 

SNH4 [mgN-NH4/L] Dissolved ammonium concentration 
in the photobioreactor 

Twice a week 

SPO4 [mgP-PO4/L] Dissolved phosphate concentration 
in the photobioreactor 

Twice a week 

TSS effluent [mgTSS/L] Total suspended solids 
concentration in the effluent flow 

Twice a week 

TSS wastage [mgTSS/L] Total suspended solids 
concentration in the wastage flow 

Twice a week 

 

 

4.1.1. Sensitivity analysis 

Parameter estimation in the anoxic-aerobic system poses a significant challenge due to 

the extensive number of model parameters involved, as evidenced by the data presented 

in Table A1.2 of Appendix 1. Previous to parameter estimation, a sensitivity analysis is 

needed to identify the parameters with the most significant impact on the model. Equation 

(4.3) describes the sensitivity functions �𝑠𝑠𝑖𝑖,𝑗𝑗� from the i-output of the model concerning 

the j-parameter �𝑝𝑝𝑗𝑗�: 
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𝑠𝑠𝑖𝑖,𝑗𝑗 =
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑝𝑝𝑗𝑗

 
(4.3) 

In order to compare the values of the sensitivities, scale factors (Eq. (4.4)) should be used 

to normalize them: 

𝑠̅𝑠𝑖𝑖,𝑗𝑗 =
𝑝𝑝𝑗𝑗
𝑦𝑦�𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑝𝑝𝑗𝑗

 
(4.4) 

Here, 𝑠̅𝑠𝑖𝑖,𝑗𝑗 denotes the scaled sensitivity, and 𝑦𝑦�𝑖𝑖 represents the average value of the 

experimental output.  

Then, the norm of column j of the output sensitivity matrix (4.5) provides a measure of 

the importance of the parameter pj in the value of the model outputs (𝑦𝑦𝑖𝑖). This allows to 

compare the influence of each parameter in the process response and decide which ones 

need to be accurately estimated and which ones can be assigned a reasonable value 

without significantly affecting the output. 

�

𝑠𝑠11 𝑠𝑠12 ⋯ 𝑠𝑠1𝑑𝑑
𝑠𝑠21 𝑠𝑠22 ⋯ 𝑠𝑠2𝑑𝑑
⋮
𝑠𝑠𝑚𝑚1

⋮ 
𝑠𝑠𝑚𝑚1

⋯
⋯

⋮
𝑠𝑠𝑚𝑚𝑚𝑚

� 

 

(4.5) 

Given the dynamic model described by Equation (4.6), 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑝𝑝)           y(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝑝𝑝) (4.6) 

The sensitivities (4.3) can be computed by differentiating the model represented by Eq. 

(4.6), then, integrating in parallel the so-called extended model, equations (4.7) and (4.8) 

are obtained: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
(4.7) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
(4.8) 

Sensitivity analyses were conducted for reactors and the settler using the software 

PROOSIS® with IDAS. The name IDAS stands for Implicit Differential-Algebraic solver 

with Sensitivity capabilities (Hindmarsh et al., 2005). Some model parameters are well-

established in the literature, but others are strongly related to the operational conditions 

and microorganism strains used in the study. Thus, the sensitivity analysis was carried 
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out considering a subset of all the model parameters to determine those significantly 

influencing the model outputs for this specific study case, providing crucial insights into 

the system's behavior. 

The sensitivity analysis took into account a subset of 11 parameters: the maximum 

specific growth rate of microalgae (µALG), heterotrophic bacteria (µH), and nitrifying 

bacteria (µAOB and µNOB); the decay rate of microalgae (kdeath,ALG), heterotrophic bacteria 

(kdeath,H), and nitrifying bacteria (kdeath,AOB and kdeath,NOB); and the mass transfer 

coefficients for oxygen (Kla,O2), carbon dioxide (Kla,CO2), and ammonia (Kla,NH3). The 

scaled sensitivity matrix for the study case is represented by Eq. (4.9): 

𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴
𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴

𝜇𝜇𝐻𝐻
𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐻𝐻

𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴
𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴

𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁
𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑁𝑁

𝐾𝐾𝑙𝑙𝑙𝑙,𝑂𝑂2

𝐾𝐾𝑙𝑙𝑙𝑙,𝐶𝐶𝐶𝐶2

𝐾𝐾𝑙𝑙𝑙𝑙,𝑁𝑁𝑁𝑁3

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝ℎ𝑜𝑜𝑜𝑜.  𝑆𝑆𝑁𝑁𝑁𝑁4 𝑆𝑆𝑂𝑂2 𝑆𝑆𝑃𝑃𝑃𝑃4 𝑆𝑆𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝ℎ𝑜𝑜𝑜𝑜. 𝑇𝑇𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.482 −7.934 0.459 −1.244 −0.791 0.001 0.208 −0.057

−0.065 1.561 −0.119 0.188 0.108 0.004 −0.033 0.027 

−0.005 −0.534 0.086 0.201 −0.100 −0.328 0.009 −3.556

0.255 −0.220 −0.086 0.194 −0.008 0.207 0.141 1.963

0.043 −1.463 −0.030 −0.007 −0.001 0.007 0.007 0.018 

−0.006 0.628 0.014 0.011 0.011 −0.002 −0.002 −0.005 

0.023 0.643 −0.081 −0.018 −0.019 0.002 0.009 0.016

−0.004 −0.014 0.022 0.006 0.006 −0.000 −0.002 −0.003

−0.002 −0.065 0.030 0.000 0.002 −0.001 −0.001 −0.001

−0.000 0.000 0.000 0.000 −0.042 −0.000 −0.000 −0.000

0.004 −0.694 −0.016 −0.006 −0.007 0.002 0.002 0.003 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

 

 

(4.9) 

The results of the sensitivity analysis for both reactors revealed that the model outputs are 

particularly sensitive to 7 of the 11 parameters assessed. These include the maximum 

specific growth rates of microalgae and heterotrophic bacteria, the decay rates of 

microalgae and heterotrophic bacteria, and the mass transfer coefficients for oxygen, 

carbon dioxide, and ammonia. Graphical representations of the sensitivity analysis for 

these significant parameters are presented in Fig. 4.2 and Fig. 4.3. 

Fig. 4.2A showcases the scaled sensitivity (Eq. (4.4)) for the dissolved ammonium (𝑆𝑆𝑁𝑁𝑁𝑁4) 

in the photobioreactor. The graphical results highlight the significant sensitivity of the 

dissolved ammonium to the microalgae's maximum specific growth rate (blue line) and 

the mass transfer coefficient for ammonia (purple line). These results show the high 

inverse effect of the maximum specific growth rate of microalgae over the dissolved 

ammonium: an increase in µALG implies a decrease in 𝑆𝑆𝑁𝑁𝑁𝑁4 in the photobioreactor due to 

the fact that microalgae are the primary consumers of dissolved ammonium. On the 
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contrary, an increase in the microalgae decay rate (red line) mediates an increase in 𝑆𝑆𝑁𝑁𝑁𝑁4. 

In this facility, the mass transfer coefficient for ammonia significantly affects 𝑆𝑆𝑁𝑁𝑁𝑁4 in the 

photobioreactor since ammonium is in equilibrium with ammonia. Dissolved ammonium 

is also affected (to a lower extent) by the parameters relative to the activity of 

heterotrophic bacteria since they consume ammonium during aerobic growth.  

Fig. 4.2B shows the scaled sensitivity for the dissolved phosphate concentration (𝑆𝑆𝑃𝑃𝑃𝑃4) in 

the photobioreactor. The results indicate that in this photobioreactor, the dissolved 

phosphate concentration is mainly affected by microalgae's maximum specific growth 

rate: an increase in µALG (blue line) promotes a significant reduction in the dissolved 

phosphate concentration. Because heterotrophic bacteria assimilate phosphate during 

growth, 𝑆𝑆𝑃𝑃𝑃𝑃4 is also sensitive to the decay rate of these microorganisms (yellow line). In 

a lower extent, the dissolved phosphate concentration is affected by the microalgae decay 

rate (red line) and heterotrophic bacteria growth rate (gray line). 

Fig. 4.2C shows the results of the graphical sensitivity analysis over the inorganic carbon 

in the photobioreactor. These results indicate that inorganic carbon is especially sensitive 

to the parameters concerning microalgae activity, especially to the maximum specific 

growth rate. Microalgae growth consumes inorganic carbon (in the form of CO2 and 

HCO3), promoting a decrease in IC concentration, and microalgae death contributes to an 

increase in the dissolved IC in the photobioreactor. In addition, inorganic carbon is 

significantly affected by heterotrophic bacteria decay rate: an increase in kdeath,H promotes 

a decrease in the CO2 release to the culture medium as a result of heterotrophic bacteria 

respiration. 

Fig. 4.2D represents the sensitivity results for the concentration of dissolved total organic 

carbon. The parameters related to heterotrophic bacteria growth and decay rates are the 

most influential over TOC concentration: an increase in the maximum specific growth 

rate of heterotrophic bacteria promotes a decrease in the dissolved TOC as result of a 

significant assimilation of TOC into the heterotrophic biomass. On the contrary, an 

increase in the decay rate of heterotrophic bacteria implies a decrease in the assimilation 

of TOC by heterotrophic microorganisms (and, consequently, an increase in dissolved 

TOC in the photobioreactor). 

With microalgae dominating the microbial population (50% of the inoculum 

corresponded to microalgae biomass (Torres-Franco et al., 2021)), the maximum specific 
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growth rate of microalgae was the parameter with the most substantial influence over the 

concentrations of NH4
+, PO4

3−, and IC in the photobioreactor, as confirmed in Fig. 4.2A, 

Fig. 4.2B, and Fig. 4.2C, respectively. Similarly, the maximum specific growth rate of 

heterotrophic bacteria was the most influential parameter over the dissolved TOC, as 

evidenced in Fig. 4.2D. The differences in the values of graphical sensitivities observed 

during the period shown in Fig. 4.2 are the result of the stabilization of microbial 

populations in the photobioreactor.  

 

Fig. 4.2. Scaled sensitivities of the dissolved ammonium concentration (A), dissolved 

phosphate concentration (B), dissolved inorganic carbon concentration (C) and dissolved 

total organic carbon concentration (D) in the photobioreactor. 

 

The scaled sensitivity over the dissolved oxygen concentration (𝑆𝑆𝑂𝑂2) is represented in Fig. 

4.3A. It can be noted that the parameter with the most significant impact is the maximum 

specific growth rate of microalgae (blue line) as a result photosynthetic oxygen 

production. The decay rate of the microalgae (red line) also influences the dissolved 

oxygen concentration. Heterotrophic bacteria consume oxygen for organic matter 

assimilation, which explains that parameters related to heterotrophic bacteria activity also 

influence 𝑆𝑆𝑂𝑂2. The mass transfer coefficient for oxygen is another parameter that affects 

the dissolved oxygen concentration. 

-3

-2

-1

0

1

0 2 4 6 8 10

Se
ns

iti
vi

ty
 -

Time (d)

A

𝑆𝑆 𝑁𝑁
𝑁𝑁
4

-1.5

-0.5

0.5

0 2 4 6 8 10

Se
ns

iti
vi

ty
 -

Time (d)

B

𝑆𝑆 𝑃𝑃
𝑃𝑃 4

-1

-0.5

0

0.5

0 2 4 6 8 10

Se
ns

iti
vi

ty
 -

IC

Time (d)

C

-0.6

-0.4

-0.2

0

0.2

0 2 4 6 8 10

Se
ns

iti
vi

ty
 -T

OC

Time (d)

D

µ_ALG k_death,ALG
µ_H k_death,H
Kla,O2 Kla,CO2
Kla,NH3



89 
 
 

Fig. 4.3B represents the scaled sensitivity of the total suspended solids concentration in 

the photobioreactor. Sensitivities of the parameters (without scaled, Eq. (4.3)) over 

microalgae concentration (XALG) and heterotrophic bacteria concentration (XH) are 

presented in Fig. 4.3C and Fig. 4.3D, respectively. Biomass concentration was considered 

equivalent to the sum of all particulate components in the model (microalgae biomass, 

bacteria biomass, inert particulate organic matter, and slowly biodegradable particulate 

organic matter). Biomass concentration is affected mainly by the maximum specific 

growth rate of microalgae (blue line). In addition, the inactivation growth rates of 

microalgae (red line) and heterotrophic bacteria (yellow line) influence the biomass 

concentration (due to the decrease in these populations and the formation of particulate 

organic matter from microalgae and bacteria decay). The effect of parameters represented 

over microalgae and heterotrophic bacteria biomass represented in Fig. 4.3C and Fig. 

4.3D evidences the critical role of normalization in sensitivity analysis for a correct 

interpretation of the results. 

 

Fig. 4.3. Scaled sensitivity of the dissolved oxygen concentration (A) and for the total 

suspended solids concentration (B) in the photobioreactor. Unscaled sensitivity of 

microalgae biomass (C) and heterotrophic bacteria biomass concentration (D) in the 

photobioreactor. 
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Regarding the settler, the model parameters of the settling velocity equation (3.10) in the 

model of Takács et al. (Takács, Patryioand and Nolasco, 1991) are typically obtained 

using nonlinear dynamic optimization. Fig. 4.4 represents the sensitivity analysis for the 

parameters of the settling velocity equation over the TSS concentration in the effluent and 

wastage flow of the settler. Fig. 4.4A confirms the influence over the biomass 

concentration in the effluent flow of the parameter related to the minimum attainable 

suspended solids concentration in the effluent (Xmin – blue line), the parameter associated 

with the low concentration of solids (rp – gray line), and the maximum theoretical settling 

velocity (V0 – yellow line). Fig. 4.4B represents the scaled sensitivity of TSS 

concentration in the wastage flow. This variable is affected by the maximum theoretical 

settling velocity and the settling parameters associated with the low solids concentration 

zone (rp) and the hindered zone (rh – red line). Fig. 4.4C and Fig. 4.4D represent the 

unscaled sensitivity for the biomass concentration in the effluent and wastage flow in the 

settler, respectively. Considerable scale differences between both analyzed output 

variables confirm the critical role of graphical and analytical sensitivity analysis (with 

and without normalization) as a previous stage in the calibration or parameter estimation 

process. This process ensures the precision and reliability of the results, enhancing the 

confidence in them. 

The sensitivity analysis results in Fig. 4.2 to Fig. 4.4 provide valuable insights into the 

magnitude in which each selected parameter influences model outputs. These results 

underscore the importance of sensitivity analysis for each photobioreactor configuration, 

inoculum characteristics, and operational values.  
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Fig. 4.4. Scaled sensitivity of the TSS concentration in the effluent (A) and in the wastage 

flow (B) in the settler. Unscaled sensitivity for biomass concentration in the effluent (C) 

and wastage flow (D). 

 

4.1.2. Parameter estimation 

The sequential approach to solving a parameter estimation problem in terms of 

optimization considers that for each value of the vector of parameters θ (decision 

variables), the model predicts the system’s response y�(t, θ) in each experiment over time 

t. For this purpose, a set of data samples from the inputs u(t) and outputs y(t) of the process 

are selected. The exact sequence of process inputs u(t) applied to the process is also used 

in the model, and both outputs y(t) from the process and y�(t, θ) from the simulation are 

compared at every sampling time t. At each t, the prediction error (𝒚𝒚�(𝑡𝑡,𝜽𝜽) − 𝒚𝒚(𝑡𝑡)) 

indicates model goodness, and the parameterization procedure looks for the set of model 

parameters θ that minimizes a cost function of the prediction errors. The parameter 

estimation problem can be formulated as a dynamic optimization problem, which can be 

solved, for instance, through a nonlinear programming (NLP) software using a control 

vector parameterization technique and a proper procedure for computing the cost 

function, following the architecture of Fig. 4.5. This work uses the SNOPT algorithm 
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(Gill, Murray and Saunders, 2005), a well-known sequential quadratic programming code 

for nonlinear optimization within the PROOSIS® dynamic simulation environment. The 

selected integration method was IDAS.  

 

Fig. 4.5. Estimator in sequential optimization. 

 

Although there are several methods for obtaining the statistically coherent value of 

variables and estimating the parameters of the mathematical model based on available 

data, the weighted least squares (WLS) method is used most frequently. The estimator 

WLS described by Eq. (4.10) consists of the squared difference between the measurement 

𝑦𝑦 and the model prediction 𝑦𝑦�. The differences are scaled with their respective standard 

deviation 𝜎𝜎 to account for varying dimensions of the model. This method assumes that 

measurement errors follow the Normal distribution model. The assumption of Normal 

distribution can be severely violated if one or more gross errors, which are not easy to 

detect, are present in the measured data set. Even when the majority of the data conforms 

to a Normal distribution, such anomalies can lead in poor or deviated estimates (de 

Menezes et al., 2021).  

𝐽𝐽𝐿𝐿𝐿𝐿 =
1
2

[((𝒚𝒚�  − 𝒚𝒚) 𝜎𝜎)⁄ )2 ] (4.10) 

In order to avoid this problem, a robust estimator can be used instead. Robust estimation 

can be understood as “insensitivity to large deviations from idealized hypotheses” for 

which the estimator is optimized (Huber and Ronchetti, 2009). To define the concept of 

robust estimation, a set of observations {𝑦𝑦1,⋯ ,𝑦𝑦𝑛𝑛 } drawn from some distribution ℎ(𝑥𝑥) 

must be considered. This set will be used to estimate some parameters 𝜃𝜃, where 𝜃𝜃�𝑛𝑛 is the 

estimate. The sampling distribution of this estimate is noted as 𝜑𝜑�𝜃𝜃�𝑛𝑛, ℎ� and depends 
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upon ℎ(𝑥𝑥). However, ℎ(𝑥𝑥) is not typically known; instead, an approximated model 𝑓𝑓(𝑥𝑥) 

is available. Roughly speaking, 𝜃𝜃�𝑛𝑛 is robust if it scarcely depends upon the difference 

between ℎ(𝑥𝑥) and 𝑓𝑓(𝑥𝑥), i.e. we expect 𝜑𝜑�𝜃𝜃�𝑛𝑛,ℎ� and 𝜑𝜑�𝜃𝜃�𝑛𝑛, 𝑓𝑓� to be close together. 

More precisely, 𝜃𝜃�𝑛𝑛 is considered robust with respect to distribution 𝑓𝑓 (and to ℎ) if  

𝑑𝑑(ℎ,𝑓𝑓) < 𝜂𝜂 ==> 𝑑𝑑�𝜑𝜑�𝜃𝜃�𝑛𝑛,ℎ�,𝜑𝜑�𝜃𝜃�𝑛𝑛,𝑓𝑓�� < 𝜖𝜖 (4.11) 

For small positive 𝜖𝜖 and η, and 𝑑𝑑(ℎ,𝑓𝑓) defines the distance between the distributions ℎ 

and 𝑓𝑓, associated with the measures of the plant and the outputs on the simulation model 

(Rey, 1983).  

Robust statistics provides methods that emulate conventional statistical ones but are less 

affected by spurious values or other deviations from the reference statistical distribution 

model. Among the robust estimators, M-estimators (the generalization of the Maximum 

Likelihood Estimator) have been successfully applied to several problems in the chemical 

process industry. The review presented in (de Menezes et al., 2021), which analyzed 50 

estimators (48 robust estimators), shows that the Contaminated Normal (quasi-robust), 

Welsch, Hampel, Fair, Lorentzian, Correntropy, and Cauchy M-estimators were the most 

used for regression analysis in chemical engineering problems. 

The Fair function is a convex estimator with continuous first and second order derivatives. 

It is defined by Equation (4.12), where 𝑐𝑐 ∈ ℝ+ is a user-defined fitting parameter to tune 

the slope for large residues. 

𝐽𝐽𝐹𝐹𝐹𝐹 = 𝑐𝑐2 �
�𝑦𝑦�  − 𝑦𝑦

𝜎𝜎 �

𝑐𝑐
− 𝑙𝑙𝑙𝑙�1 +

�𝑦𝑦�  − 𝑦𝑦
𝜎𝜎 �

𝑐𝑐 �� 

(4.12) 

M-estimators are robust because of their intrinsic mathematical structure, which renders 

the estimation less sensitive to spurious deviations (Rey, 1983; Huber and Ronchetti, 

2009; Huber, 2011). These estimators, which use cost functions different from least 

squares (LS) or WLS, tend to value most of the data around the mean and ignore the 

influence of spurious values (usually located far from the mean) simultaneously. This 

performance is represented in Fig. 4.6, which compare the fair estimator (4.12) and the 

LS estimator (4.10), evidencing the influence of scaled error over the estimator function. 
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Thus, an accurate regression can be performed using robust estimators even if nothing is 

known a priori about outliers or the structure of gross errors.  

 

Fig. 4.6. Comparison of Least squares and Fair function (c=3) estimators. 

 

In the present work, the Fair function estimator was used as a robust objective function 𝐽𝐽 

for parameter estimation. This robust estimator was employed to address the uncertainties 

stemming from unreliable measurements, which may be attributable to various sources:  

• Many analytical procedures used to obtain the data are based on the use of external 

standards for calibration or data comparison. These solutions are subject to human 

errors during preparation 

• Human errors in sample preparation and analysis can play a significant role in the 

accuracy of the experimental data obtained through analytical methods. For 

instance, errors in sample dilution preparation, non-homogeneous mixing, or 

sample degradation can lead to inaccurate results. 

• The incorrect use of calibration curves: methods used to determine the 

concentration of dissolved NH4
+, NO2

−, NO3
−, and PO4

3− use external calibration 

curves. The accuracy of the measurement largely depends on the expertise of the 

person analyzing the sample. 

• The methods used to determine biomass concentration (TSS and VSS) can be 

significantly influenced by human errors in sample collection, such as non-

homogeneous mixing of the sample and the presence of flocculated biomass. 

Additionally, procedure errors like filter obstruction, irregular oven and muffle 
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temperatures, and violations of recommended drying times can also affect these 

measurements. Incorrect preservation of the samples (that can result in sample 

degradation and changes in the properties due to light and high-temperature 

exposition). 

• The use of non-updated calibration curves in equipment. 

 

The resulting dynamic optimization problem is formulated using Eq. (4.13): 

𝑚𝑚𝑚𝑚𝑚𝑚
𝛉𝛉�
𝐽𝐽�𝜃𝜃�,𝜃𝜃� = �𝑐𝑐2 �

�𝜀𝜀𝑗𝑗�
𝑐𝑐
− 𝑙𝑙𝑙𝑙 �1 +

�𝜀𝜀𝑗𝑗�
𝑐𝑐
��

𝑗𝑗∈𝑀𝑀

 
(4.13) 

Subject to constraints imposed by the model in Equation (4.14) and the upper and lower 

limits on the values of the parameters described by Equations (4.15), states (4.16), and 

outputs (4.17), 

𝑑𝑑𝐱𝐱(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐟𝐟(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡),𝛉𝛉, 𝑡𝑡)              𝐲𝐲�(𝑡𝑡) = 𝐠𝐠(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡),𝛉𝛉, 𝑡𝑡) 
(4.14) 

𝛉𝛉 ≤ 𝛉𝛉� ≤ 𝛉𝛉� (4.15) 

𝐱𝐱 ≤ 𝐱𝐱� ≤ 𝐱𝐱� (4.16) 

𝐲𝐲 ≤ 𝐲𝐲� ≤ 𝐲𝐲� (4.17) 

where εj= �𝒚𝒚��𝑡𝑡𝑗𝑗 , θ�� - y(tj)� 𝜎𝜎m�  is the error between available process measurements 

𝒚𝒚�𝑡𝑡𝑗𝑗� and their estimated values 𝒚𝒚��𝑡𝑡𝑗𝑗 , θ�� limited between user-defined minimum and 

maximum values (Eq. (4.15) - (4.17)). Besides robust properties, the simplicity of tuning 

(just one tuning parameter) is another remarkable advantage of the Fair estimator. In the 

present work, all simulations were carried out using a value of c=2.9 in the tuning 

parameter of the cost function (4.13). 

To comprehensively capture the dynamics of the anoxic-aerobic photobioreactor 

configuration treating different dilutions of digestate within the model, the data from 138 

days of operation (Torres-Franco et al., 2021) were divided into two datasets. The first 

dataset was devoted to parameter estimation in the reactors and the settler, and the second 

was utilized for model validation. Specifically, data from stage II and 25 days of stage III 

(50% and 100% digestate, respectively) were used for parameter estimation. Validation 
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was then conducted using data from the first stage (25% digestate – 40 days of operation) 

and days 116 to 138 from stage III (undiluted digestate – 22 days of operation).  

Several decisions were made to improve the solution of parameter estimation, taking into 

account the specific experimental conditions:  

1- Experimental data were obtained under illumination cycles of 12 h ON/12 h OFF 

(Torres-Franco et al., 2021) (considered in daily fraction with illumination 

between 2 am (0.083 d) and 2 pm (0.583 d)). Because of this, the time step used 

for the simulations was 0.1 d. Using superior time steps could result in an accuracy 

loss for the simulation of day/night cycles (and their influence over the model 

state variables). 

2- The values of some variables vary significantly between day and night in the 

photobioreactor. Because samples were always drawn during illuminated periods, 

output data interpolation may result in non-representative data values of the 

internal dynamics in the photobioreactor. Therefore, only the recorded data at the 

exact time were considered in the cost function. 

3- Since the values of experimental data broadly differ from stage I to stage III, 

different limits on state and output variables (Eq. (4.16) and Eq. (4.17)), were 

considered in the optimization problem for each simulation stage. 

 

The initial concentration of the components in the reactors and the settler used to conduct 

the model simulation are shown in Table A2.1 and Table A2.2, respectively, in Appendix 

2. 

Table 4.2 shows the limits for the decision variables (Eq. (4.15)) and the initial values of 

parameters needed for parameter estimation via optimization in the anoxic and aerobic 

reactors. These values were established from a comprehensive review of similar studies 

reported in the literature (Solimeno et al., 2017a; Solimeno, Gómez-Serrano and Acién, 

2019a; Casagli et al., 2021; Bausa et al., 2022).  

Table 4.3 shows the values of the decision variables for both bioreactors estimated in this 

study via optimization (4.13). All parameter values obtained are within the ranges 

reported in the literature for similar systems (Solimeno et al., 2017a; Solimeno, Gómez-

Serrano and Acién, 2019a; Casagli et al., 2021; Bausa et al., 2022). Parameter estimation 

was an essential aspect of this study since it provided the maximum specific growth and 
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decay rates of the biomass, as well as information about parameters that strongly 

depended on photobioreactor size, shape, and stirring (like the mass transfer coefficients). 

The adequate calibration of these parameters provides insights into the system model that 

will be helpful in using the model for prediction and control purposes. 

 

Table 4.2. Initial values and limits for decision variables in the anoxic and aerobic 

photobioreactor 

Parameter 

[units] 

Description Initial 

value 

Limits for 

optimization 

μALG [d-1] Maximum specific growth rate of microalgae  1.5 0.4 – 4  

kdeath,ALG [d-1] Decay rate of microalgae 0.1 0.05-0.21 

µH [d-1] Maximum specific growth rate of 

heterotrophic bacteria 

4 1-6 

kdeath,H [d-1] Decay rate of heterotrophic bacteria  0.6 0.12-0.9 

Kla, O2 [d-1] Mass transfer coefficient for oxygen 1 0.3-30 

Kla, CO2 [d-1] Mass transfer coefficient for carbon dioxide 1 0.3-30 

Kla, NH3 [d-1] Mass transfer coefficient for ammonia 0.8 0.3-30 

 

Table 4.3. Values of estimated parameters in anoxic and aerobic reactor 

Parameter Value [units] 

μALG 0.70 d-1 

μH 2.50 d-1 

kdeath,ALG 0.05 d-1 

kdeath,H 0.80 d-1 

Kla, O2 0.5 d-1 

Kla, CO2 2.17 d-1 

Kla, NH3 0.5 d-1 
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The settling properties of microalgae biomass (and consequently, the models to predict 

them) are nowadays an open-research field. Settling parameters in microalgae processes 

are widely dependent on the settler size, shape, and the structure of the microbial 

population. Therefore, those parameters should be determined for each specific 

configuration.  

During the treatment of undiluted digestate, an increase in the TSS concentration in the 

effluent and a decrease in the average TSS concentration in the wastage stream were 

reported (Torres-Franco et al., 2021) as a consequence of a reduction of the settling 

efficiency (promoted by the decline in the biomass entering the settler from the 

photobioreactor). The research conducted in (Torres-Franco et al., 2021), when analyzing 

the microalgae populations, reported the dominance of C. vulgaris, Tetradesmus 

obliquus, and Cryptomonas sp. during stages I and II, while the dominant algal strains 

during stage III where Chlorella vulgaris and Pseudoanabaena sp. Similarly, 

considerable differences in total microalgae densities per liter and per gram of VSS, as 

well as in the total microalgae biovolume during stage III, were reported (Torres-Franco 

et al., 2021). Therefore, the high differences noted for the TSS concentration in the 

effluent and wastage flow during stage III were attributed to the reduction of the settling 

efficiency, differences in microalgae densities, and the different populations of 

microorganisms prevailing in this operational stage (consequently, these substantial 

changes in biomass characteristics imply different settling velocities and different values 

in the parameters related to biomass concentration). The previous assumption underscores 

the importance of estimating parameters in such a way that may be able to describe stages 

with remarkable differences in biomass composition. For this purpose, a sigmoid function 

(Fig. 4.7) was used to represent the variation of parameter values during the experiment. 

According to the sigmoid function, each parameter 𝜃𝜃�𝑖𝑖 �𝜃𝜃�𝑖𝑖 = 𝑉𝑉0, 𝑟𝑟ℎ,𝑟𝑟𝑝𝑝� varying between 

two values (𝜃𝜃�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐾𝐾𝑖𝑖+𝜃𝜃�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚). Then, instead of estimating the parameter values of the 

settling velocity equation (𝑉𝑉0 , 𝑟𝑟ℎ, 𝑟𝑟𝑝𝑝), the optimization problem estimates the values of 

the parameters of the sigmoid function (𝜃𝜃�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝐾𝐾𝑖𝑖, and 𝑡𝑡𝑐𝑐) in Eq. (4.18) - (4.20), where 𝑡𝑡 

represents the current simulation time, and 𝑡𝑡𝑐𝑐 is the time where a significant change in 

biomass properties was considered.  

For parameter estimation in the settler, the limits in the parameter related to the maximum 

settling velocity were selected according to values reported in the literature for microalgae 
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systems or microalgae-bacteria consortia systems (Smith and Davis, 2013; Passos et al., 

2017; Parakh et al., 2020). The ranges of the other parameters in the settling velocity 

equation were selected similar to those reported for activated sludge processes (Takács, 

Patryioand and Nolasco, 1991). These values are shown in Table 4.4.  

 

Fig. 4.7. Sigmoid function used to adjust the parameters of the settling velocity equation. 

 

𝑉𝑉0 = 𝐾𝐾𝑉𝑉0 ∙
1

1 + 𝑒𝑒(𝑡𝑡−𝑡𝑡𝑐𝑐) + 𝑉𝑉0𝑚𝑚𝑚𝑚𝑚𝑚 (4.18) 

𝑟𝑟ℎ = 𝐾𝐾𝑟𝑟ℎ ∙
1

1 + 𝑒𝑒(𝑡𝑡−𝑡𝑡𝑐𝑐) + 𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑚𝑚 (4.19) 

𝑟𝑟𝑝𝑝 = 𝐾𝐾𝑟𝑟𝑝𝑝 ∙
1

1 + 𝑒𝑒(𝑡𝑡−𝑡𝑡𝑐𝑐) + 𝑟𝑟𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
 (4.20) 

 

Parameter estimation in the settler was conducted, considering that a biomass 

composition change during the treatment of undiluted digestate (stage III). Data from 

stage II were used to determine the model parameters during the treatment of diluted 

digestate, while data from stage I were used for model validation using these parameter 

values. Data from stage III were used for parameter estimation (the first half of the data) 

and validation (the rest) during undiluted digestate treatment. The results of parameter 

estimation in the settler obtained via optimization in this study are shown in Table 4.5. 
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Table 4.4. Initial values and limits for decision variables in the settler 

Parameter [units] 

Description 

Parameter of 
the sigmoid 

function 

Initial 
value 

Limits for 
optimization 

Xmin [mg/L] - Minimum attainable 
suspended solids concentration in the 
effluent. 

- 40 30 – 80 

V0 [dm/d] - Maximum theoretical settling 
velocity (Eq. (4.18)). 

𝐾𝐾𝑉𝑉0  3 2 – 20 

𝑉𝑉0𝑚𝑚𝑚𝑚𝑚𝑚 1 0.1 – 10 

rh [L/mg] - Settling parameter associated 
with the hindered settling component of 
settling velocity equation (Eq. (4.19)). 

𝐾𝐾𝑟𝑟ℎ 1·10-06  2·10-08 – 1·10-04 

𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑚𝑚  4·10-09 5·10-12 – 1·10-04 

rp [L/mg] - Settling parameter associated 
with the low concentration and slowly 
settling component of the suspension (Eq. 
(4.20)). 

𝐾𝐾𝑟𝑟𝑝𝑝  5·10-03 1·10-04 – 2·10-02 

𝑟𝑟𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 2.5·10-04 1·10-04 – 2·10-02 

𝑡𝑡𝑐𝑐 [d] - The time when a significant 
change in the dominant populations 
occurred (Eq. (4.18) - (4.20)) 

- 85 82 – 95 

 

Table 4.5. Values of estimated parameters in the settler 

Parameter  Parameter of the  

sigmoid function 

Value [units] 

Xmin - 50 mg/L 

V0 𝐾𝐾𝑉𝑉0 

𝑉𝑉0𝑚𝑚𝑚𝑚𝑚𝑚 

5.040 dm/d 

2.097 dm/d 

rh 𝐾𝐾𝑟𝑟ℎ 

𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑚𝑚 

4.33·10-05 L/mg 

7.89·10-10 L/mg 

rp 𝐾𝐾𝑟𝑟𝑝𝑝 

𝑟𝑟𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 

2.93·10-04 L/mg  

8.71·10-04 L/mg 

𝑡𝑡𝑐𝑐 - 88.9 d 
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4.1.3.  Model validation results 

Two performance indexes were used to quantify the quality of the model adjustment to 

the experimental data: the mean absolute error (Eq. (4.21)) and the mean absolute relative 

error (Eq. (4.22)). Both criteria quantify the difference between model predictions and 

experimental data, and the MARE criteria normalize the error according to the magnitude 

of the measured variable. For both criteria, the closer the value to zero, the better the 

model performance. These values were computed for the complete experimental period 

(including the data set used for parameter estimation and model validation). The factor φ 

(φ = 0.1) in the denominator of Equation (4.22) is included to avoid division by zero in 

the case of experimental data 𝑦𝑦𝑖𝑖 = 0.  

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
∙�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 
(4.21) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
∙�

|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑦𝑦𝑖𝑖 + 𝜑𝜑

𝑛𝑛

𝑖𝑖=1

 
(4.22) 

 

Fig. 4.8A, Fig. 4.8B, and Fig. 4.8C show simulation results and experimental 

measurements for 𝑆𝑆𝑁𝑁𝑁𝑁4, 𝑆𝑆𝑃𝑃𝑃𝑃4, and dissolved inorganic carbon in the photobioreactor, 

respectively. In Fig. 4.8, the white area indicates the data set used for parameter 

estimation, and blue shadow areas contain the data sets used for model validation. 

Ammonium and phosphate assimilation was mainly attributed to the biological processes 

occurring in the photobioreactor (Torres-Franco et al., 2021), which mediated high 

removal efficiencies of both nutrients during the treatment of diluted digestate, as 

confirmed during model validation. The model also reproduced the trend of increasing 

ammonium concentration and phosphate concentration observed in the photobioreactor 

during the treatment of undiluted digestate. The MARE values (Table 4.6) computed for 

ammonium concentration in the photobioreactor (below 0.72 for stages II and III) confirm 

the model's prediction capability. The model performance for phosphate, which was also 

quantified with the previously referred metrics, exhibits low MARE values for stages II 

and III (below 0.16 for both cases). The high values of MARE during the first stage for 

ammonium and phosphate were caused by the normalization of this metric due to zero-

close values reported experimentally for this stage. This error could be acceptable, taking 
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into account that low values of MAE were obtained during this stage (and due to possible 

inaccuracies of the experimental methods for low concentrations of dissolved nutrients). 

As reported by (Torres-Franco et al., 2021), high values of IC in the influent enhanced 

the activity of both microalgae and nitrifying bacteria. An intensive autotrophic activity 

demanded a high consumption of inorganic carbon in the photobioreactor, mainly during 

the first two operational stages (treating 25% and 50% diluted digestate, respectively). 

Thus, the model accurately reproduced the dynamic behavior of IC concentration in the 

photobioreactor during the experiment. This was confirmed with the low values of MARE 

(Table 4.6) reported for all experimental period (below 0.23). 
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Fig. 4.8. Time course of the concentrations of dissolved ammonium (A), dissolved 

phosphate (B), and dissolved inorganic carbon (C) in the photobioreactor. The white area 

indicates the data set used for parameter estimation, and blue shadow areas contain the 

data sets used for model validation. 
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Results for parameter estimation and validation for the concentration of TOC in the 

anoxic reactor and the photobioreactor are presented in Fig. 4.9A and Fig. 4.9B, 

respectively. The model reproduced the high removal efficiencies of TOC in both 

reactors, as reported by (Torres-Franco et al., 2021) for diluted digestate. The model also 

reproduced the decrease in TOC removal efficiency during the treatment of undiluted 

digestate. The MARE values (Table 4.6) during the three operational stages (values below 

0.5 for both reactors) confirmed the model's capability to reproduce the total organic 

carbon concentration evolution in both reactors. 

 

 

Fig. 4.9. Time course of the total organic carbon concentration in anoxic reactor (A) and 

in the photobioreactor (B). The white area indicates the data set used for parameter 

estimation, and blue shadow areas contain the data sets used for model validation. 
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The results in Fig. 4.8 and Fig. 4.9 showed that the model can effectively predict nitrogen, 

phosphorus, and carbon removal efficiencies. The validation results, which were 

performed using data corresponding to digestate dilutions different from those used in 

parameter estimation, confirm the model's prediction capability under different 

operational conditions. The validation results suggest that the calibrated model, which 

boasts broad applicability, may be employed to simulate a wide range of operational 

conditions with minimal resources and time consumption. 

The estimation of dissolved oxygen is of paramount importance in the calibration of any 

biological model. In the photobioreactor, the dissolved oxygen concentration is the result 

of the photosynthetic activity of microalgae and bacteria's heterotrophic and nitrifying 

activity. As illustrated in Fig. 4.10A, the simulation results for the dissolved oxygen 

concentration in the photobioreactor are presented alongside the recorded experimental 

data. Although the dissolved oxygen concentration was recorded once a day during the 

experiment, the model simulation reveals daily variations in the dissolved oxygen 

concentration due to the effect of incident radiation (Fig. 4.10). This figure contains part 

of the data set that was used for model validation. As previously mentioned, the intense 

autotrophic activity observed during the treatment of 25% diluted digestate resulted in 

elevated dissolved oxygen concentrations during the illuminated periods within the initial 

40 days of experimentation. Furthermore, the elevated heterotrophic activity within the 

photobioreactor throughout the experimental period resulted in a decline in dissolved 

oxygen levels during the dark phases for the three distinct operational stages. As (Torres-

Franco et al., 2021) have demonstrated, significant reductions in the maximum dissolved 

oxygen values during illuminated periods were reported in stages II and III. These 

reductions were confirmed through model simulation. 

As demonstrated by the trend of simulated variables, the daily fluctuations in dissolved 

oxygen concentration due to the occurrence of light/dark periods have practical 

implications for the daily trends of other variables in the photobioreactor. These changes 

during the diurnal cycle in the assimilation of ammonium, phosphates, inorganic carbon, 

and total organic carbon (Fig. 4.8A, Fig. 4.8B, Fig. 4.8C, and Fig. 4.9B, respectively) 

provide valuable insights for the practical model application to operate and monitor the 

performance and environmental parameters prevailing in the anoxic-aerobic 

configuration. Concerning the dissolved oxygen results, during the first stage, low values 
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of MARE were obtained (below 0.5), confirming the model's prediction capability. 

Instead, high values of MARE were reported for stages II and III, mainly due to high 

standard deviations reported for the experimental data during stage II and to zero-close 

experimental values during stage III. Instead, low values of the MAE were reported 

during the complete period (Table 4.6). The quantitative analysis of this variable may be 

confusing because both the metrics used were calculated considering the average of all 

the data for the period. In this case, experimental data may vary significantly depending 

on the hour of the day, affecting the average value.  

 

Fig. 4.10. Time course of the dissolved oxygen concentration in the photobioreactor 

during the experiment (A) (the white area contains the data set used for parameter 

estimation, and blue shadow areas indicate the data sets used for model validation). The 

blue rectangle delimited area shows the time course of the dissolved oxygen concentration 

during 20 days of data used for model validation (B). 
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Fig. 4.11represents the biomass concentration in both reactors and the settler. Fig. 4.11A 

and Fig. 4.11B show the simulation results and experimental measurements for the 

concentration of TSS in the anoxic reactor and in the photobioreactor, respectively. The 

model replicated the observed decline in TSS concentration during stage III in both 

reactors (Torres-Franco et al., 2021). In summary, the model demonstrated a satisfactory 

degree of efficacy in replicating the dynamic behavior of biomass concentration. Small 

changes in the TSS concentration in the photobioreactor due to daily variations in light 

irradiation were observed, fundamentally due to microalgae activity as the dominant 

group of the consortia. Consequently, the increase in microalgae growth during the day 

led to an increase in the TSS concentration, while microalgae death at night resulted in a 

decrease in the TSS concentration. The model's capacity to reproduce biomass dynamics 

is confirmed by the low values of the MARE (below 0.35) reported for both reactors 

during the experimental time (Table 4.6). 

Fig. 4.11C and Fig. 4.11D represent the total suspended solids concentration in the 

effluent and biomass wastage stream, respectively. An increase in the TSS concentration 

in the effluent was reported during the treatment of undiluted digestate. This increase was 

likely due to a decrease in the settling efficiency, different dominant populations of 

microalgae, and differences in microalgae densities (as referred to by the authors of 

(Torres-Franco et al., 2021)), which presumably affects the sedimentation capability of 

the biomass. The model reproduces the trend of increasing TSS concentration in the 

effluent during stage III. The low MARE values reported for the effluent biomass 

concentration confirm the match between experimental and simulated data (Table 4.6). 

In the wastage flow, low values of the MARE (below 0.22) were reported during the 

treatment of undiluted digestate (Table 4.6), which confirms the model prediction 

capability. The high standard deviation reported for the experimental data during stage 

III in the wastage flow (4742 ± 2529) suggests the presence of flocculated biomass, which 

could be a source of gross error during the analytical procedure to quantify the biomass 

concentration. High experimental data dispersion in the TSS concentration in the waste 

flow makes it difficult for the model to fit during the treatment of undiluted digestate.  

The model validation results (Fig. 4.8 - Fig. 4.11) have allowed the evaluation of the 

model's qualitative responses to input changes and the confirmation of its validity over 

long periods under changing conditions. 
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Fig. 4.11. Time course of the total suspended solids concentration in anoxic reactor (A) 

and in the photobioreactor (B). TSS concentration in the effluent (C) and wastage flow 

(D) of the settler. White area indicates the data sets used for parameter estimation, and 

blue shadow areas contain the data sets used for model validation. 

0

1000

2000

3000

0 20 40 60 80 100 120 140

TS
S 

(m
gT

SS
/L

)

Time (d)

A
TSS_anoxic_exp
TSS_anoxic_sim

0

1000

2000

3000

0 20 40 60 80 100 120 140

TS
S 

(m
gT

SS
/L

)

Time (d)

B
TSS_aerobic_exp
TSS_aerobic_sim

0
200
400
600
800

1000

0 20 40 60 80 100 120 140

TS
S 

(m
gT

SS
/L

)

Time (d)

C
TSS_effluent_exp
TSS_effluent_sim

0

4000

8000

12000

16000

0 20 40 60 80 100 120 140

TS
S 

(m
gT

SS
/L

)

Time (d)

D
TSS_wastage_exp
TSS_wastage_sim



109 
 
 

Table 4.6 summarizes the computed criteria for the measured variables in each 

operational stage. Results for the MARE criteria (close to zero in most cases) confirm the 

model's capability to reproduce the experimental data. The MARE criteria generally 

constitute a reliable indicator of the model's goodness. However, the MARE value 

increases for small values of measured variables. 

In this research, the model simulation results are of the utmost importance due to the 

absence of online measurements for fast-dynamic variables, such as dissolved oxygen. 

The utilization of model simulation facilitates the acquisition of invaluable insights into 

process behavior, thereby enabling a comprehensive analysis of the dynamic behavior of 

various variables throughout the day, as opposed to merely at the time of sample 

collection. 

Simulation results revealed the model's versatility in photobioreactors with one or two 

stages, including sedimentation and biomass recirculation. The model's proficiency in 

replicating both rapid and slow dynamics further reinforces its potential application to 

various biological processes, such as biogas upgrading processes with microalgae and the 

simultaneous treatment of digestates. 
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Table 4.6. Model evaluation for the three stages of experimentation 

Mean absolute error 

 Stage I Stage II Stage III 

S_NH4 - Photobioreactor  1.3877 1.5671 44.3109 

S_PO4 - Photobioreactor  2.7609 1.1039 5.3482 

IC - Photobioreactor  26.6770 42.2906 23.1514 

TOC - Anoxic Reactor  8.7098 21.6805 76.3308 

TOC - Photobioreactor 9.3972 17.6676 39.2998 

S_O2 - Photobioreactor 3.4216 1.1678 0.3025 

TSS - Anoxic Reactor 383.2931 348.3835 181.2617 

TSS - Photobioreactor 167.9968 393.1145 196.3628 

TSS - Effluent 20.9246 58.0595 108.3349 

TSS - Wastage 1153.0377 1779.9657 2370.5445 

Mean absolute relative error 

S_NH4 - Photobioreactor  1.2013 0.7172 0.5138 

S_PO4 - Photobioreactor 14.5448 0.1055 0.1560 

IC - Photobioreactor 0.2270 0.2274 0.0514 

TOC - Anoxic Reactor 0.2641 0.4943 0.3594 

TOC - Photobioreactor 0.3459 0.4781 0.3524 

S_O2 - Photobioreactor 0.4867 0.9884 2.1065 

TSS - Anoxic Reactor 0.3145 0.3454 0.1598 

TSS - Photobioreactor 0.1304 0.2625 0.0847 

TSS - Effluent 0.2798 0.5922 0.4039 

TSS - Wastage 0.1943 0.2138 1.2124 

 

 



111 
 
 

4.2.  Methodology for parameter estimation in microalgae-bacteria based 

wastewater treatment 

This section presents an approach for parameter estimation when dealing with multiple 

outputs and parameters in the optimization problem (Fig. 4.12). 

 

 

Fig. 4.12. Graphical representation of the parameter estimation process 

 

The proposed approach is designed to solve a series of increasingly complex optimization 

problems, thereby gradually estimating process parameters and avoiding convergence 

issues. This approach offers an alternative to handling large optimization problems in 

parameter estimation, a common challenge in microalgae-bacteria processes. Parameter 

estimation via dynamic optimization is realized in each optimization step to fit simulated 

outputs to experimental data. The idea is to formulate one easier parameter estimation 

problem involving a subset of system outputs and parameters, replace the other output 

variables with their experimental values, and then use these estimated values as a starting 

point for the next step of the optimization problem. The selection of subsets is performed 

based on sensitivity analysis and connectivity.  

This approach is illustrated in Fig. 4.13, which shows the division of the total number of 

output variables to adjust (Fig. 4.12) into subsets. One subset is maintained as output 

variables to fit, while the other is used as input data (see first step in Fig. 4.13). Due to 

the common discrete nature of samples in biological processes, the subset used as input 

data is usually interpolated. This approach reduces the computational complexity by 
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decreasing the number of outputs variables to adjust, and consequently, the number of 

state variables in the model (as each output variable frequently involves one or more 

model states). In general, the total number of parameters to estimate in each step is also 

reduced, as it is possible that there are parameters only appearing in those equations that 

were substituted by experimental data. In the first step of this methodological approach, 

an initial guess of parameter values is derived from a comprehensive review of pertinent 

literature. 

In the subsequent steps, additional outputs to adjust are incorporated (and, consequently, 

the number of model differential equations increases). Subsequently, the vector of 

parameters obtained in the preceding step is utilized as the initial estimate. This procedure 

is repeated until all the system outputs and parameters are included in the optimization 

problem. 
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Fig. 4.13. Graphical representation of the methodology for parameter estimation 
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4.2.1.  Case study 

The proposed methodology is tested in an anoxic–aerobic algal–bacterial photobioreactor 

configuration with biomass recycling devoted to wastewater treatment located in the 

facilities of the Institute of Sustainable Processes at the University of Valladolid. The data 

utilized in this section were collected from May 2014 to July of 2014. The experimental 

setup is described in (Alcántara et al., 2015). The laboratory-scale plant corresponds to 

the scheme of the anoxic-aerobic configuration depicted in Fig. 3.1, with different 

dimensions and operational values than those referred to in the study case developed in 

Section 4.1. The facility has been engineered to treat synthetic (domestic) wastewater. 

The photobioreactor was composed of an enclosed jacketed 3.5 L glass tank with a total 

working volume of 2.7 L continuously illuminated by LED lamps. The anoxic reactor 

consisted of a gas-tight 1 L polyvinyl chloride tank with a total working volume of 0.9 L, 

which was maintained in the dark. Synthetic wastewater was fed to the anoxic tank and 

continuously overflowed by gravity into the aerobic photobioreactor. The algal–bacterial 

broth was continuously recycled from the photobioreactor to the anoxic tank. An Imhoff 

cone, with a volume of 1 L and interconnected to the outlet of the photobioreactor was 

used as a settler. The algal–bacterial biomass settled was recycled from the bottom of the 

settler into the anoxic tank and wasted 3 days a week to control the algal–bacterial sludge 

retention time. In (Alcántara et al., 2015), a detailed description of the system, 

microorganisms and culture conditions, experimental design, and analytic procedures is 

provided. 

The design of the experimentation was conducted based on the hypothesis that algal–

bacterial photobioreactors for wastewater treatment can support the oxidation of 

ammonium (N-NH4
+) into NO2

- /NO3
- , which can then be easily removed through 

denitrification (using the organic matter present in SWW) under anoxic conditions via 

internal recycling of the photobioreactor broth into the anoxic tank (de Godos, Vargas, et 

al., 2014). Liquid samples of 100 mL were drawn three times a week from the SWW 

storage tank, anoxic tank, aerobic tank, wastage, and clarified effluent to monitor the 

concentration of dissolved TOC, dissolved IC, dissolved N species (total nitrogen, N-

NH4
+, N-NO2

−, and N-NO3
−) and biomass concentration, expressed as TSS. The DO, 

temperature and pH of the cultivation broth in both tanks were in situ recorded every day. 
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In (Alcántara, et al., 2015), the influence of the HRT, intensity and regime of light supply, 

and dissolved oxygen concentration in the photobioreactor were analyzed in five-stage 

experimentation.  

 

4.2.2. Parameter estimation approach applied to the case study 

The present study utilized data corresponding to one experimentation stage, with the 

system operating at an HRT of 4 days (HRT = 1 d in the anoxic reactor, HRT = 3 d in the 

photobioreactor) and under continuous illumination in the photobioreactor. Table 4.7 

summarizes the photobioreactor output variables considered in the objective function. 

 

Table 4.7. Output variables considered in the photobioreactor 

Output variable 

[units] 

Description Sampling 
frequency 

TSS photobioreactor [mgTSS/L] Total suspended solids 
concentration in the photobioreactor 

Three times a 
week 

TOC photobioreactor [mgC/L] Total organic carbon concentration 
in the photobioreactor 

Three times a 
week 

IC photobioreactor [mgC/L] Inorganic carbon concentration in 
the photobioreactor 

Three times a 
week 

SO2 photobioreactor [mgO2/L] Dissolved oxygen concentration in 
the photobioreactor 

Daily 

SNH4 [mgN-NH4/L] Dissolved ammonium concentration 
in the photobioreactor 

Three times a 
week 

 

The photobioreactor has been described using the model BIO_ALGAE 2 (Solimeno, 

Gómez-Serrano and Acién, 2019a) with the modifications described in section 3.1.1. The 

modeling, sensitivity analysis, and simulation were carried out using the dynamic 

simulation software PROOSIS® (EA International, 2022). 

Similarly to the previous case study, model outputs are especially sensitive to the 

maximum specific growth rate of microalgae (µALG) and heterotrophic bacteria (µH); the 

decay rate of microalgae (kdeath,ALG) and heterotrophic bacteria (kdeath,H); and the gas-liquid 

mass transfer coefficients for ammonia (Kla,NH3), oxygen (Kla,O2), and carbon dioxide 
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(Kla,CO2). The results of sensitivity analysis are also used here as a guide to determine the 

best selection of subsets of model outputs to consider. In addition, prior knowledge of 

system dynamics should be considered. 

The estimation of parameters has been executed in accordance with the approach 

delineated in Section 4.2 and Fig. 4.13. In this particular case study, a four-step 

optimization sequence was employed, as illustrated in Fig. 4.14. 

 

 

Fig. 4.14. Stages of the optimization problem in the photobioreactor 

 

In the first step of the parameter estimation approach, two model outputs were considered 

for alignment with the experimental data: TSS concentration and DO concentration. The 

TSS concentration is associated with numerous model processes, and its value is 

contingent on the concentration of all particulate components in the photobioreactor. 

Furthermore, DO concentration plays a pivotal role in numerous processes pertaining to 

microalgae and bacteria activity. These outputs are contingent upon the maximum 

specific growth rate of microalgae and the decay rate of microalgae and heterotrophic 

bacteria. This assertion is substantiated by the graphical sensitivity analysis results 

presented in Fig. 4.3A and Fig. 4.3B. The selection of this pair of model outputs was 

based on the effect in the same direction provided by the most influential model 

parameters. An increase in the microalgae growth rate and in the inactivation growth rate 

of heterotrophic bacteria has been shown to promote an increase in both the DO 

concentration in the photobioreactor and in the TSS concentration in the photobioreactor. 

Conversely, an increase in the inactivation constant of microalgae has been shown to 

result in a decrease in both the DO and TSS concentrations, as evidenced by the findings 

presented in Fig. 4.3A and Fig. 4.3B. The analogous effects of the parameters on the 
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designated outputs preclude convergence issues and prevents that the parameters do not 

exceed the limits imposed in the formulation of the optimization problem. 

Inorganic carbon is incorporated as a model output in the second step of the optimization 

process. Microalgae employ carbon dioxide as a carbon source for growth. As anticipated, 

µALG has been identified as the parameter exerting the most substantial influence on IC 

concentration. It is noteworthy that inorganic carbon is also influenced by the decay rate 

of microalgae and heterotrophic bacteria, as evidenced by the findings presented in Fig. 

4.2A. The incorporation of inorganic carbon as a model output in the second stage of the 

parameter estimation process is predicated on the established correlation between IC and 

the model outputs that have been previously selected. 

In the third step of the methodology, the total organic carbon concentration is also 

considered as a model output to be fitted. In microalgae-bacteria processes, heterotrophic 

bacteria oxidize the organic matter present in the wastewater. Consequently, TOC 

concentration is predominantly influenced by the maximum specific growth rate and the 

decay rate of heterotrophic bacteria, as illustrated in Fig. 4.2D.  

In the final step, the dissolved ammonium concentration is incorporated as model output. 

As demonstrated in the graphical sensitivity analysis results provided in Fig. 4.2A, the 

ammonium concentration is mainly affected by µALG, kdeath,ALG, and Kla,NH3. 

The initial values for parameter estimation in Step 1 and the ranges of the decision 

variables for optimization were selected from a comprehensive literature review. These 

values are reported in Table 4.8. The parameter estimation results are provided in Table 

4.9.  
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Table 4.8. Initial values and limits for decision variables in the photobioreactor 

Parameter 

[units] 

Description Initial 

value 

Limits for 

optimization 

μALG [d-1] Maximum specific growth rate of microalgae  1.5 0.4 – 4  

kdeath,ALG [d-1] Decay rate of microalgae 0.1 0.05-0.21 

µH [d-1] Maximum specific growth rate of heterotrophic bacteria 4 1-6 

kdeath,H [d-1] Decay rate of heterotrophic bacteria  0.6 0.12-0.9 

Kla,O2 [d-1] Mass transfer coefficient for oxygen 1 0.3-30 

Kla,CO2 [d-1] Mass transfer coefficient for carbon dioxide 1 0.3-30 

Kla,NH3 [d-1] Mass transfer coefficient for ammonia 0.8 0.3-30 

 

 

Table 4.9. Values of estimated parameters in the photobioreactor 

Parameter 

[units] 

Value 

Step 1 Step 2 Step 3 Step 4 

μALG [d-1] 1.627 0.990 1.062 1.062 

kdeath,ALG [d-1] 1.656 1.000 1.210 1.211 

μH [d-1] 0.101 0.050 0.050 0.050 

kdeath,H [d-1] 0.895 0.900 0.900 0.900 

Kla,O2 [d-1] 13.081 4.000 4.000 4.000 

Kla,CO2 [d-1] - 3.666 3.666 3.666 

Kla,NH3 [d-1] - - - 3.920 

 

4.2.3.  Validation results 

The data utilized in this study corresponded to 47 days of experimentation. These data 

were employed for parameter estimation and model validation. In each stage of the 

parameter estimation methodology, data from the initial 30 days were utilized for 

parameter estimation. Model validation was performed using data from days 30 to 47. 
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The simulation results of the Stage 4 of the applied methodology are presented in Fig. 

4.15 and Fig. 4.16. As illustrated in Table 4.10, the model fit in the photobioreactor was 

evaluated using the MAE and MARE criteria (Eq. (4.21) and (4.22), respectively). 

The simulation results for the TSS concentration in the photobioreactor are presented in 

Fig. 4.15A. As previously referenced, the experimental data were recorded under constant 

HRT and illumination in the photobioreactor. Consequently, variations in the biomass 

concentration in the photobioreactor (with an experimental standard deviation of 299.78 

mgTSS/L) can be attributed primarily to changes in microbial populations and possible 

errors in the sample drawing. The simulated average values of biomass concentration in 

the photobioreactor demonstrate a high degree of correlation with the experimental 

results, as evidenced by the low values of MAE and MARE obtained (Table 4.10).  

As illustrated in Fig. 4.15B, the simulation results depict the dissolved oxygen 

concentration within the photobioreactor. The model effectively reproduces the dynamic 

behavior of this variable, as confirmed by the low values of MARE reported (lower to 

0.3) during the experimental period. 

The simulation results of the total organic carbon concentration, inorganic carbon 

concentration, and ammonium concentration in the photobioreactor are presented in Fig. 

4.16A, Fig. 4.16B, and Fig. 4.16C, respectively. The assimilation of TOC by 

heterotrophic bacteria has been observed to increase since the initial time of 

experimentation (day 0). This trend has been replicated by the model, as evidenced by 

Fig. 4.16A and the low values of MARE reported in Table 4.10. In a comparable manner, 

the assimilation of IC and dissolved ammonium by microalgae has been observed to 

increase during the experiment. This trend is illustrated in Fig. 4.16B and Fig. 4.16C, 

which demonstrate the model's capacity to replicate this trend. The low values of MARE 

reported for these variables confirms the model's effectiveness in reproducing the 

dynamic behavior of the different measured variables. The proposed optimization 

approach is designed to avert probable convergence issues and may facilitate a more 

optimal alignment between the experimental and simulated data. 
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Fig. 4.15. Time course of the total suspended solids concentration (A) and dissolved 

oxygen concentration in the photobioreactor (B). The white area indicates the data set 

used for parameter estimation, and blue shadow area contains the data set employed for 

model validation. 

1000

2000

3000

4000

0.00 10.00 20.00 30.00 40.00 50.00

TS
S 

(m
gT

SS
/L

)

Time (d)

A

TSS_exp
TSS_sim

0

10

20

30

40

0 10 20 30 40 50Di
ss

ol
ve

d 
ox

yg
en

 (m
gO

2/
L)

Time (d)

B

S_O2_exp
S_O2_sim



121 
 
 

 

 

Fig. 4.16. Time course of the dissolved total organic carbon concentration (A), dissolved 

inorganic carbon concentration (B), and dissolved ammonium concentration in the 

photobioreactor (C). The white area indicates the data set used for parameter estimation, 

and blue shadow area contains the data set employed for model validation.  
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Table 4.10. Model evaluation in the photobioreactor 

 Mean absolute error Mean absolute relative 

error 

TSS - Photobioreactor 245.0805 0.0928 

S_O2 - Photobioreactor 5.0598 0.2544 

TOC - Photobioreactor 10.1155 0.4058 

IC - Photobioreactor 8.1515 1.0105 

S_NH4 - Photobioreactor 4.5492 0.1105 

 

4.3. Conclusions 

This chapter presented the dynamic simulation results of anoxic-aerobic algal-bacterial 

photobioreactor configurations. The simulation results for two distinct plants confirmed 

the model's capability to replicate the experimental data in photobioreactors comprising 

one or two stages, including sedimentation and biomass recirculation, while treating 

domestic or high-strength wastewaters. Parameter estimation was instrumental in 

ascertaining the most influential parameters of the microalgae–bacteria process. In a 

similar vein, parameter estimation in the settler facilitated the estimation of the primary 

parameters associated with settleability properties, which are not well-established in 

microalgae–bacteria processes.  

The methodology for parameter estimation was tested in a photobioreactor for wastewater 

treatment when multiple outputs and parameters were involved in the optimization 

problem. This approach has been demonstrated to prevent convergence issues and 

facilitate a more optimal alignment between the experimental and simulated data. 
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5. Moving horizon estimation in microalgae-bacteria based 

wastewater treatment 

This chapter expounds on the application of the MHE technique in an industrial 

microalgae-bacteria based wastewater treatment plant. The inherent nonlinear 

characteristics of microalgae-based wastewater treatment processes, coupled with the 

operational constraints associated with these processes, underscore the viability of MHE 

as a solution to the state estimation problem in this context. The objective of the MHE 

technique's implementation was to facilitate online estimation of effluent water quality 

and other pertinent variables associated with plant operation. This research considers the 

availability of online and analytical measurements, which poses the challenge of multi-

rate measurement management. In this chapter, a complex model was employed to 

represent the hypothetical wastewater treatment plant, while a reduced model with 

additive noise in the measured outputs and parameter mismatch was utilized for the 

estimation. The state and parameter estimation was conducted. Furthermore, the MHE 

technique was employed for the estimation of model uncertainties, output noise, and the 

inlet wastewater concentration. The results of the estimation are presented via simulation, 

demonstrating the potentialities of the MHE technique for the online estimation of 

multiple states and parameters, even in the presence of model uncertainties and parameter 

mismatch. The implementation of online state estimation would facilitate the subsequent 

integration of control and optimization strategies within the plant, contingent upon the 

actual values of the states. 
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5.1. Moving Horizon estimation 

MHE is a powerful tool for state estimation in dynamic systems, transforming the 

problem into an optimization problem. This approach entails the identification of values 

for states and parameters that result in a minimization of the discrepancy between 

measured and model-predicted outputs over a sliding window of past data. Additionally, 

MHE effectively incorporates unmeasured disturbances and other inaccuracies within this 

finite sequence of past measurements. Furthermore, the admissible ranges of the different 

variables involved must be considered. 

Unlike filter-based approaches for nonlinear systems such as the Extended Kalman Filter 

(EKF), MHE offers greater flexibility in handling constraints and system nonlinearities. 

The ability to incorporate additional constraints on estimated variables allows for 

enforcing physical limitations, integrating valuable information about the system’s 

characteristics (such as ensuring concentrations remain positive or molar fractions stay 

within the [0,1] range). These constraints not only improve the physical realism of the 

estimates but also enhance the efficiency of the optimization solver by reducing the search 

space. As a result, estimation errors decrease, as more information is utilized in the 

optimization process. 

It is important to acknowledge that nonlinear optimization with constraints increases 

computational complexity. However, with recent advancements in computing power and 

improved nonlinear solvers, MHE has become more practical, allowing solutions to be 

obtained within a reasonable timeframe. In highly nonlinear systems, such as biological 

processes, MHE typically outperforms EKF, which relies on the assumption that the 

system behaves linearly during updates, a condition that may not always hold. 

Another key advantage of MHE is its versatility in scenarios where plant measurements 

are available at different frequencies (e.g. measurements from plant transmitters and from 

the lab). Traditional state estimation methods often assume that all relevant states can be 

observed from high-frequency measurements, but this is not always the case. Some states 

may only be inferred from less frequent measurements, making multi-rate measurements 

essential. By incorporating slower measurements into the estimation process, MHE 

improves both the quality of state estimates and the overall observability of the system, 

addressing potential information gaps. 
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The MHE dynamic optimization problem can be defined as problem (5.1) to (5.7) below 

and Fig. 5.1. The problem is solved at regular time intervals or sampling times 𝑘𝑘. At 

current time 𝑘𝑘, the estimation considers a past horizon 𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘�, where 𝑛𝑛𝑒𝑒 

represents the number of past sampling time included in the estimation. Within this 

horizon, the inputs 𝒖𝒖𝑘𝑘−𝑖𝑖 to the process over the intervals [𝑡𝑡𝑘𝑘−𝑖𝑖 , 𝑡𝑡𝑘𝑘−𝑖𝑖+1], and the process 

measurements collected at 𝑡𝑡𝑘𝑘−𝑖𝑖, denoted as 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑖𝑖, are known for 𝑖𝑖 = 1, … ,𝑛𝑛𝑒𝑒. The past 

horizon of the MHE is illustrated in Fig. 5.1. 

 

Fig. 5.1. Past values of the MHE estimation 

 

The decision variables in this problem include the state values at the beginning of the 

sliding window of past data �𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒�, and the past unmeasured system disturbances, 

unknown parameters, or system noise accounting for modeling errors (and unknown 

dynamics) (𝒘𝒘𝑘𝑘−i). The objective (5.1) is to minimize discrepancies between the model-

predicted outputs (𝒚𝒚𝑘𝑘) and the measured values �𝒚𝒚𝑃𝑃,𝑘𝑘�, while also considering the 

deviation between the newly estimated past initial state 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒 and the state estimated 
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from the previous MHE execution at time 𝑡𝑡 − 𝑛𝑛𝑒𝑒 �𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒�, as well as maintaining 

consistency or minimizing the past disturbances (or parameters 𝜽𝜽𝑘𝑘−𝑖𝑖) and 𝒘𝒘𝑘𝑘−𝑖𝑖. Then, 

the trajectory of the state variables up to time 𝑘𝑘 �𝑥𝑥𝑘𝑘−𝑛𝑛𝑒𝑒 , … , 𝑥𝑥𝑘𝑘� is estimated using the 

process model. The name moving horizon estimation is derived from this problem 

formulation: at each sampling time 𝑡𝑡𝑘𝑘, a new measurement 𝒚𝒚𝑃𝑃,𝑘𝑘 enters the horizon, while 

the oldest measurement 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑛𝑛𝑒𝑒−1 is discarded from the estimation window. 

The weighting matrices 𝑸𝑸𝑦𝑦,𝑸𝑸𝑥𝑥 and 𝑸𝑸𝑤𝑤 regulate the influence of each term on the cost 

function. The optimization problem is subjected to the dynamic system model (5.2) and 

(5.3), as well as the operational and physical constraints defined in (5.4). The problem 

also incorporates inequality constraints (5.5) to restrict disturbances to the permissible 

range. The incorporation of additional constraints in the values of the states (5.6) and 

parameters (5.7) could enhance the estimation performance. This is a dynamic 

optimization problem that can be solved either with a sequential approach involving a 

dynamic simulator and a non-linear optimizer or directly with a non-linear solver after 

full discretization. 

min
𝑥𝑥𝑘𝑘−𝑛𝑛𝑛𝑛𝑤𝑤𝑘𝑘−𝑖𝑖𝜃𝜃𝑘𝑘−𝑖𝑖

𝑖𝑖=1,…,𝑛𝑛𝑒𝑒

 ��𝑦𝑦𝑘𝑘−𝑖𝑖 − 𝑦𝑦𝑃𝑃,𝑘𝑘−𝑖𝑖�𝑸𝑸𝒚𝒚
2 +  �𝑥𝑥𝑘𝑘−𝑛𝑛𝑒𝑒 − 𝑥𝑥�𝑘𝑘−𝑛𝑛𝑒𝑒�𝑸𝑸𝒙𝒙

2
𝑛𝑛𝑒𝑒−1

𝑖𝑖=0

+�‖𝑤𝑤𝑘𝑘−𝑖𝑖‖𝑸𝑸𝒘𝒘
2

𝑛𝑛𝑒𝑒

𝑖𝑖=1

 (5.1) 

𝑠𝑠. 𝑡𝑡.         𝑓𝑓(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒘𝒘,𝜽𝜽) = 0, ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� , 𝑥𝑥�𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒� = 𝑥𝑥𝑘𝑘−𝑛𝑛𝑒𝑒 (5.2) 

ℎ(𝒙𝒙,𝒖𝒖,𝒚𝒚,𝒘𝒘,𝜽𝜽) = 0,     ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� (5.3) 

    𝑔𝑔(𝒖𝒖,𝒚𝒚) ≤ 0,     ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� (5.4) 

𝒘𝒘𝑳𝑳 ≤ 𝑤𝑤𝑘𝑘−𝑖𝑖 ≤ 𝒘𝒘𝑼𝑼, 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒 (5.5) 

𝒙𝒙𝑳𝑳 ≤ 𝑥𝑥𝑘𝑘−𝑖𝑖 ≤ 𝒙𝒙𝑼𝑼, 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒 (5.6) 

𝜽𝜽𝑳𝑳 ≤ 𝜃𝜃𝑘𝑘−𝑖𝑖 ≤ 𝜽𝜽𝑼𝑼, 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒 (5.7) 

 

The solution of a problem (5.1) - (5.7) gives 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ , 𝒘𝒘𝑘𝑘−𝑖𝑖

∗ , and 𝜽𝜽𝑘𝑘−𝑖𝑖∗ , 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒. Then, 

this solution can be used to estimate the initial value of the model state at time 𝑡𝑡𝑘𝑘 (𝒙𝒙�𝑘𝑘). 

To obtain 𝒙𝒙�𝑘𝑘 the model equations must be integrated over 𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� starting from 
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𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ , using the estimated disturbances 𝒘𝒘𝑘𝑘−𝑖𝑖

∗  and parameters 𝜽𝜽𝑘𝑘−𝑖𝑖∗ , 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒, and 

applying 𝒖𝒖𝑘𝑘−𝑖𝑖  

𝑓𝑓(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒘𝒘∗,𝜽𝜽∗) = 0, ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� , 𝒙𝒙�𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒� = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗  (5.8) 

 

State estimation employing the MHE technique is also beneficial in scenarios where plant 

measurements are not available at the same frequency. This situation is illustrated in Fig. 

5.2, where the measurements of outputs 𝑦𝑦1 and 𝑦𝑦2 (represented with circles), are available 

with a sampling period greater than the sampling period of the measurements of the output 

𝑦𝑦3. The prevailing state estimation methodologies typically utilize solely the rapid 

measurements (𝑦𝑦3𝑃𝑃,𝑘𝑘 in Fig. 5.2), operating under the assumption that all states of interest 

are observable from them. However, this assumption does not always hold true, and there 

exist instances where states cannot be observed from the rapid measurements alone. 

Consequently, the utilization of measurements obtained at varying rates has the potential 

to enhance the observability properties of the system. Therefore, it is recommended to 

use methodologies capable of managing multi-rate measurements, with the objective of 

leveraging the slower measurements to enhance the quality of state estimates or their 

observability.  

 

Fig. 5.2. Scenario considering a plant with multi-rate measurements 

 

5.2. Plant description 

This study considers a hypothetical wastewater treatment plant for a population of 

approximately 5,000 inhabitants, treating an average flow rate of 875 m3/d. The system 
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consists of two parallel HRAPs, each with an area of 10,208 m2, designed in the typical 

form of raceways with two channels and two reversals (452m long and 22.6 m wide). The 

HRAPs have a depth of 0.3 m and operate at a hydraulic retention time of 7 days. Two 

settlers, each with a total working volume of 293.75 m3, are connected to the output of 

each HRAP. The algal-bacterial biomass settled is recirculated to the HRAP to enhance 

nutrient assimilation and biomass settling ability. It is hypothesized that the algal-

bacterial WWTP is preceded by a pre-treatment stage with primary sedimentation to 

remove the solid fraction of the wastewater. The schematic representation of the plant is 

depicted in Fig. 5.3, and the average composition of the inlet domestic wastewater is listed 

in Table 5.1. The values for wastewater composition were obtained from the typical 

domestic wastewater concentrations reported in (Henze et al., 2000; Metcalf & Eddy Inc., 

2003). 

 

 

Fig. 5.3. Schematic of the hypothetical WWTP 

 

The algal bacterial broth is composed of a consortium of microalgae and bacteria. The 

microalgae consortia consist of different strains utilized for wastewater treatment. The 

bacterial groups encompass heterotrophic bacteria and autotrophic bacteria (ammonium-

oxidizing bacteria and nitrite-oxidizing bacteria). It is hypothesized that HRAPs are 

inoculated with 2.5 gVSS/L of microalgae consortia and 2.5 gVSS/L of activated sludge. 

The particulate components' relative proportions in the sludge are assumed based on those 
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proposed in the Activated Sludge Model 2 (ASM2) (Henze et al., 2000). The 

concentration of particulate components in the inoculum is summarized in Table 5.2. 

 

Table 5.1. Average inlet wastewater composition 

Component Description Concentration Units 

SNH4 Ammonium nitrogen 45 mgN-NH4 L-1 

SNH3 Ammonia nitrogen 0.15 mgN-NH3 L-1 

SNO3 Nitrate nitrogen 0 mgN-NO3 L-1 

SNO2 Nitrite nitrogen 0 mgN-NO2 L-1 

SCO2 Dissolved carbon dioxide 9.15 mgC-CO2 L-1 

SHCO3 Bicarbonate 290 mgC-HCO3 L-1 

SCO3 Carbonate 0.85 mgC-CO3 L-1 

SPO4 Phosphate phosphorus 8 mgP-PO4 L-1 

SO2 Dissolved oxygen 0 mgO2 L-1 

SH Hydrogen ions 0.000010 mgH L-1 

SOH Hydroxide ions 0.017008 mgH-OH L-1 

SS Readily biodegradable soluble 
organic matter 

100 mgCOD L-1 

SI Inert soluble organic matter 40 mgCOD L-1 
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Table 5.2. Inoculum composition 

Component Description Value Units 

XALG Microalgae biomass 3550 mgCOD L-1 

XH Heterotrophic bacteria 592.85 mgCOD L-1 

XAOB Ammonium oxidizing bacteria 3.55 mgCOD L-1 

XNOB Nitrite oxidizing bacteria 1.775 mgCOD L-1 

XS Slowly biodegradable particulate 

organic matter 

2463.7 mgCOD L-1 

XI Inert particulate organic matter 493.45 mgCOD L-1 

 

Fig. 5.4 illustrates the daily variations in inflow and inlet wastewater concentrations for 

all components, as well as temperature and solar radiation. The inlet wastewater flow rate 

(Fig. 5.4A) exhibits a trend consistent with the domestic wastewater flow data presented 

in (Metcalf & Eddy Inc., 2003). The inlet concentration for each wastewater component 

is represented by the trend described in Fig. 5.4B, in which the average wastewater 

concentration for each component is described in Table 5.1. The temperature and 

Photosynthetic Photon Flux Density (PPFD) values were evaluated in the context of 

summer conditions, as illustrated in Fig. 5.4C and Fig. 5.4D, respectively.  
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Fig. 5.4. Daily variation profiles of the inlet wastewater flow rate (A), inlet concentration 

(B), temperature (C), and photosynthetic photon flux density (D).  

 

This study considers the availability of online pH, temperature, and dissolved oxygen 

measurements, with a sample period of 1.2 hours. It is further assumed that daily 

measurements of dissolved total organic carbon, dissolved ammonium, dissolved 

phosphate, and biomass concentration in the effluent are available for quality water 

monitoring. Additionally, the daily availability of measurements of biomass 

concentration in the HRAP and in the wastage flow rate is also assumed. The biomass 

concentration is quantified in terms of the TSS concentration. It is hypothesized that the 

measurements of dissolved components are drawn from the HRAP, and that the 

concentration of dissolved components in the effluent is equal to that of the HRAP. The 

specific measurements and their respective sampling frequencies are summarized in 

Table 5.3. 
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Table 5.3. Measured variables in the plant 

Measured variable 

[units] 

Description Type of 
measurement 

Sampling 
frequency 

[samples/day] 

SO2 [mgO2/L] Dissolved oxygen Online 20 

pH pH in the HRAP Online 20 

T [ºC] Temperature in the HRAP Online 20 

TOC [mgC/L] Total organic carbon Analytics 1 

SNH4 [mgN-NH4/L] Dissolved ammonium Analytics 1 

SPO4 [mgP-PO4/L] Dissolved phosphate Analytics 1 

TSSHRAP [mgTSS/L] Total suspended solids 
concentration in the HRAP 

Analytics 1 

TSSeffluent [mgTSS/L] Total suspended solids 
concentration in the effluent 
flow 

Analytics 1 

TSSwastage [mgTSS/L] Total suspended solids 
concentration in the wastage 
flow 

Analytics 1 

 

 

5.3. Plant model 

In this study, a detailed plant model was employed to simulate the dynamics occurring in 

the HRAP system with biomass recirculation. This sophisticated model was employed 

“in lieu” of the actual plant, and the measured variables are indeed the outputs of the 

detailed model. 

 

5.3.1. HRAP model 

The present study used the model BIO_ALGAE 2 (Solimeno, Gómez-Serrano and Acién, 

2019a) (with minor modifications as outlined in Section 3.1.1) to represent the 

biochemical reactions and processes occurring within the HRAP. The model has 

previously undergone validation in HRAPs and other photobioreactor configurations 

under a range of operational conditions (Solimeno et al., 2017a; Solimeno and García, 

2019; Solimeno, Gómez-Serrano and Acién, 2019a; Bausa et al., 2022). Details of the 
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process rates of the model and factors equations used to represent the processes occurring 

in the HRAP are summarized in Table 3.2 and Table 3.3, respectively. The matrix of 

stoichiometric parameters, the values of the parameters, and the fractions of carbon, 

hydrogen, oxygen, and nitrogen in microalgae and bacteria biomass are described in 

Appendix 1. This appendix also includes a summary of the mathematical expressions of 

the stoichiometric coefficients. To simulate the processes occurring in the HRAP, 22 state 

variables were utilized, including 19 state variables corresponding to model components 

and 3 state variables corresponding to the photosynthesis model. 

In the BIO_ALGAE model, the compositions of the particulate components are expressed 

in terms of COD. Therefore, it is necessary to perform the transformation from mgCOD/L 

to mgTSS/L to make a comparison with the considered measured data. The COD/TSS 

relationships (5.9) and (5.10) were used to perform this adjustment. The relationships 

between state model variables and measured variables are represented by equations (4.1) 

and (4.2). 

1𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 1.42𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (5.9) 

1𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.85𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (5.10) 
  

5.3.2. Settler model  

The settler was described using the mass-balance expressions of the Takács model 

(Takács, Patryioand and Nolasco, 1991). The Takács model is a multi-layer dynamic 

model typically used for the clarification and thickening processes. In this work, a 10-

layer settler was considered (this implies that 10 states were used to settler modeling). A 

comprehensive description of settler model used in this work can be found in Section 

3.1.2. 

 

5.4. Reduced model for state estimation 

To create a more realistic framework for the application of the MHE technique, the 

detailed model previously referenced was used to simulate the "real plant," while a 

reduced model was employed for estimation with MHE. Given that this research was 

conducted within a simulation framework, the utilization of a reduced model in the 
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estimation process enables the consideration of potential model uncertainties that 

invariably arise in practical applications. Furthermore, employing a lower-complexity 

model for estimation facilitates the reduction of estimation time, a critical factor in 

addressing nonlinear optimization problems. 

The estimation developed in the present research is intended for further use in monitoring 

and controlling the quality of effluent water in a WWTP with microalgae and bacteria 

using the MPC strategy. The utilization of the state estimator in the context of effluent 

water quality monitoring can serve as a valuable instrument for enhancing the operational 

efficiency of the plant. By offering pertinent real-time information regarding the process's 

status, the state estimator can reduce the necessity for conducting analytical 

measurements, thereby facilitating more efficient management of the process. Similarly, 

the implementation of all real-time control and optimization strategies demands the 

knowledge of the actual state of the process.  

The implementation of a control strategy within the WWTP should ensure compliance 

with the prevailing legislation (Directive 1/271/CEE for EU states) (Unión Europea, 

1991; Real Decreto 509/1996, de 15 de marzo, 1996). This directive establishes minimum 

requirements for the collection, treatment, and discharge of urban wastewater and 

wastewater from specific industrial sectors within the European Union. According to the 

directive, the evaluation of the quality of the treated wastewater discharged from urban 

WWTPs is to be based on the concentration of COD, TSS, total nitrogen, and total 

phosphorus in the effluent water. Therefore, components not directly associated with 

these variables are not necessarily subject to estimation by the MHE. Subsequently, the 

reduced model encompasses the estimation of the following variables: 

• Biomass concentration (in the effluent flow, within the HRAP, and in the wastage 

flow). It is imperative to precisely monitor the TSS concentration in the effluent, 

as this is a critical factor in ensuring the desired quality of the water. Concurrently, 

the attainment of optimal biomass values within the HRAP is imperative to ensure 

sufficient wastewater treatment. The TSS concentration in the wastage flow is 

also estimated because in a system with recirculation, this value affects the TSS 

concentration in the HRAP. The biomass concentration is contingent upon the 

particulate components of the model, as delineated in Equation (4.1). Of the 

biomass components, the concentration of nitrifying bacteria (XAOB and XNOB) 
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was not incorporated into the reduced model. This was due to the fact that 

nitrifying bacteria, despite their acknowledged role in wastewater treatment, 

exhibited considerably lower concentrations compared to the other particulate 

components present in the HRAP.  

• The ammonium concentration. Due to the main role of the ammonium over the 

microalgae growth and its influence in the total nitrogen concentration that should 

be guaranteed in the effluent wastewater. In the context of this particular study, 

the concentrations of nitrites and nitrates are significantly lower in comparison 

with other nitrogen species, such as ammonium. Consequently, the concentration 

of these variables was not considered in the reduced model. The legislation 

establishing limits for components concentrations stipulated values for total 

nitrogen, rather than for nitrites and nitrates.  

• The phosphate concentration. Due to their influence over microalgae and bacteria 

growth. Additionally, the monitoring of phosphate concentrations is crucial for the 

overall assessment of total phosphorus in effluent wastewater. 

• The dissolved oxygen concentration is a critical factor in achieving a 

comprehensive understanding of the primary processes within the HRAP. The 

availability of reliable online SO2 measurements, as well as the relation of the 

dissolved oxygen with the main process variables, allows for the design and 

implementation of state estimators based on dissolved oxygen measures. 

• The TOC concentration, defined by Equation (4.2) is directly related with the 

COD. Evaluating the COD is imperative to ensure efficient wastewater treatment. 

The components of the inorganic carbon (SCO2, SHCO3, and SCO3) are not estimated by the 

reduced model because the focus of this study is on estimating those components 

regulated by the legislation that should be analyzed prior to the discharge. Consequently, 

the concentration of inorganic carbon is not regarded as a limiting factor in the discharge 

of effluent water. 

In order to simplify the reduced model (and consequently improve the estimation time of 

the MHE), the concentration of SH and SOH was not calculated. In the reduced model, the 

pH of the culture medium is regarded as a known measured input.  
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The reduced model encompasses 10 processes, which are described in Table 5.4. 

Furthermore, the objective of minimizing the estimation time was pursued by calculating 

the factors of the photosynthesis model directly using the relations described in Table 5.5, 

as opposed to the system of differential equations utilized in the model of the plant (Table 

3.3). 

Summarizing, the reduced model of the HRAP included 10 state variables, as it was not 

necessary to estimate all components of the system for operation. A comprehensive 

summary of the state variables considered in both the real plant and MHE model is 

provided in Table 5.6. The settler model used for estimation, similarly with the one used 

for plant simulation, encompasses also 10 state variables.  

A synopsis of the processes encompassed in the plant and the reduced model is 

summarized in Table 5.7. The analysis of Table 5.6 and Table 5.7 reveals the substantial 

structural disparities between the plant and the reduced model for the HRAP, as evidenced 

by the number of states and equations involved. Additionally, disparities in the values of 

some parameters were considered in plant and model (Table 5.8). The values of the 

parameters in the plant were selected based on the values previously reported in the 

literature for microalgae-bacteria raceway reactors (Solimeno et al., 2017b; Casagli et al., 

2021). 

 



137 
 
 

Table 5.4. Process rates of the reduced model 

Processes Process rate [M L-3 T-1] 

Microalgae (𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴) processes 

Growth on 𝑆𝑆𝑁𝑁𝑁𝑁 𝜌𝜌1 = 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝐼𝐼 ∙ 𝑓𝑓𝐷𝐷𝐷𝐷 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙
𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3

𝐾𝐾𝐶𝐶,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻3 + 𝑆𝑆𝐶𝐶𝐶𝐶22
𝐼𝐼𝐶𝐶𝐶𝐶2,𝐴𝐴𝐴𝐴𝐴𝐴

∙
𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4

𝐾𝐾𝑁𝑁,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴  

Endogenous respiration 𝜌𝜌2 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙
𝑆𝑆𝑂𝑂2

𝐾𝐾𝑂𝑂2,𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑂𝑂2
∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 

Decay 𝜌𝜌3 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴  

Heterotrophic bacteria (𝑋𝑋𝐻𝐻) (aerobic activity) 

Aerobic growth on 𝑆𝑆𝑁𝑁𝑁𝑁 𝜌𝜌4 = 𝜇𝜇𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙
𝑆𝑆𝑆𝑆

𝐾𝐾𝑆𝑆,𝐻𝐻 + 𝑆𝑆𝑆𝑆
∙

𝑆𝑆𝑂𝑂2
𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2

∙
𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4

𝐾𝐾𝑁𝑁,𝐻𝐻 + 𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝑆𝑆𝑁𝑁𝑁𝑁4
∙

𝑆𝑆𝑃𝑃𝑃𝑃4
𝐾𝐾𝑃𝑃,𝐻𝐻 + 𝑆𝑆𝑃𝑃𝑃𝑃4

∙ 𝑋𝑋𝐻𝐻 

Aerobic endogenous respiration 𝜌𝜌5 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙
𝑆𝑆𝑂𝑂2

𝐾𝐾𝑂𝑂2,𝐻𝐻 + 𝑆𝑆𝑂𝑂2
∙ 𝑋𝑋𝐻𝐻 

Decay 𝜌𝜌6 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐻𝐻 ∙ 𝑓𝑓𝑇𝑇𝐻𝐻 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻 ∙ 𝑋𝑋𝐻𝐻 

Hydrolysis, Chemical equilibrium and Transfer of gases 

Aerobic hydrolysis 
𝜌𝜌7 = 𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻 ∙

𝑋𝑋𝑆𝑆 𝑋𝑋𝐻𝐻⁄
𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻 + (𝑋𝑋𝑆𝑆 𝑋𝑋𝐻𝐻⁄ ) ∙ 𝑋𝑋𝐻𝐻 

Chemical equilibrium 𝑁𝑁𝑁𝑁4+ ↔ 𝑁𝑁𝑁𝑁3 𝜌𝜌8 = 𝑘𝑘𝑒𝑒𝑒𝑒,3 ∙ �𝑆𝑆𝑁𝑁𝑁𝑁4 − 𝑆𝑆𝐻𝐻𝑆𝑆𝑁𝑁𝑁𝑁3 𝐾𝐾𝑒𝑒𝑒𝑒,3⁄ � 

𝑆𝑆𝑂𝑂2 transfer to the atmosphere 𝜌𝜌9 = 𝐾𝐾𝑙𝑙𝑙𝑙,𝑂𝑂2 ∙ �𝑆𝑆𝑂𝑂2𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑆𝑆𝑂𝑂2� 

𝑆𝑆𝑁𝑁𝑁𝑁3 transfer to the atmosphere 𝜌𝜌10 = 𝐾𝐾𝑙𝑙𝑙𝑙,𝑁𝑁𝑁𝑁3 ∙ (−𝑆𝑆𝑁𝑁𝑁𝑁3) 
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Table 5.5. Photosynthesis model used in the reduced model 

Photosynthetic factories model (Eileers and Peeters) (Eilers and Peeters, 1988) 

 

 

 

 

𝑓𝑓𝐼𝐼 = 𝑥𝑥2 

The photosynthetic factories model is described by the system of differential 
equations described in Table 3.3. In outdoor conditions, variations in 
irradiance during the daily solar cycle are very slow with respect to the 
dynamics of photosynthesis (Eilers and Peeters, 1988; Camacho Rubio et al., 
1999; Solimeno et al., 2015). In these conditions 𝑥𝑥1 and 𝑥𝑥2 are close to 
equilibrium in less than a second (Solimeno et al., 2015). Assuming this 
condition, the solution to the system of differential equations is: 

𝑥𝑥1 = 𝛾𝛾𝛾𝛾+𝛽𝛽𝛽𝛽𝛽𝛽
𝛼𝛼𝛼𝛼𝐼𝐼2+(𝛼𝛼+𝛽𝛽)𝛿𝛿𝛿𝛿+𝛾𝛾𝛾𝛾

                                       

𝑥𝑥2 = 𝛼𝛼𝛼𝛼𝛼𝛼
𝛼𝛼𝛼𝛼𝐼𝐼2+(𝛼𝛼+𝛽𝛽)𝛿𝛿𝛿𝛿+𝛾𝛾𝛾𝛾

                                       

𝑥𝑥3 = 𝛼𝛼𝛼𝛼𝐼𝐼2

𝛼𝛼𝛼𝛼𝐼𝐼2+(𝛼𝛼+𝛽𝛽)𝛿𝛿𝛿𝛿+𝛾𝛾𝛾𝛾
                                       

where: 

𝐼𝐼 = 𝐼𝐼𝑎𝑎𝑎𝑎      

The average light intensity (𝐼𝐼𝑎𝑎𝑎𝑎) was described using Lambert-Beer’s Law:                            

𝐼𝐼𝑎𝑎𝑎𝑎 = 𝐼𝐼0�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝑖𝑖∙𝑇𝑇𝑇𝑇𝑇𝑇∙𝑑𝑑)�
𝐾𝐾𝑖𝑖∙𝑇𝑇𝑇𝑇𝑇𝑇∙𝑑𝑑

  

where: 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑋𝑋𝐻𝐻 + 𝑋𝑋𝐼𝐼 + 𝑋𝑋𝑆𝑆  

𝑥𝑥1: Microalgae in open state (ready to capture a photon). 

𝑥𝑥2: Microalgae in activated state (microalgae can go back to 
open state or can capture another photon). 

𝑥𝑥3: Microalgae in inhibited state (ready to turn back to the 
open state. 

𝛼𝛼: Rate of activation [(𝜇𝜇𝜇𝜇 𝑚𝑚−2)−1] 

𝛾𝛾: Rate constant of production [𝑠𝑠−1] 

𝛽𝛽: Rate constant of inhibition [(𝜇𝜇𝜇𝜇 𝑚𝑚−2)−1] 

𝛿𝛿: Rate of recovery [𝑠𝑠−1] 

 

𝐼𝐼𝑎𝑎𝑎𝑎: Average light intensity [𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝑚𝑚−2𝑠𝑠−1] 

𝐼𝐼0: Incident light intensity [𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝑚𝑚−2𝑠𝑠−1] 

𝐾𝐾𝑖𝑖: Extinction coefficient for particulate biomass [𝑚𝑚2𝑔𝑔−1] 

𝑇𝑇𝑇𝑇𝑇𝑇: Particulate components [𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚−3] 

𝑑𝑑: Photobioreactor depth [𝑚𝑚] 
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Table 5.6. State variables considered in the plant and in the reduced model 

 State variables Output or 
measured 

variable affected 
 Considered in 

the plant [units] 
Estimated by the reduced model 

(Yes/No) / Additional comment 

H
R

A
P 

m
od

el
 

XALG [mgCOD/L] Yes TSS 
XH [mgCOD/L] Yes  
XAOB [mgCOD/L] No  

XNOB [mgCOD/L] No  
XS [mgCOD/L] Yes  
XI [mgCOD/L] Yes  
SNH4 [mgN-NH4/L] Yes SNH4 
SNH3 [mgN-NH3/L] Yes  
SNO3 [mgN-NO3/L] No  

SNO2 [mgN-NO2/L] No  
SPO4 [mgP-PO4/L] Yes SPO4 
SO2 [mgO2/L] Yes SO2 
SCO2 [mgC-CO2/L] No  
SHCO3 [mgC-HCO3/L] No  
SCO3 [mgC-CO3/L] No  
SH [mgH/L] No/ 

Used as model input in the reduced 
model 

pH 
SOH [mgH-OH/L]  

SS [mgCOD/L] Yes TOC 
SI [mgCOD/L] Yes  

Ph
ot

os
yn

th
es

is
 

m
od

el
 

 
X1 

No/ 
Calculated directly, instead as a 
state variable 

 

X2  
X3  

Se
tt

le
r 

m
od

el
 

TSSeffluent Yes TSSeffluent 
TSS2 Yes  
TSS3 Yes  
TSS4 Yes  
TSS5 Yes  
TSS6 Yes  
TSS7 Yes  
TSS8 Yes  
TSS9 Yes  
TSSwastage Yes TSSwastage 
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Table 5.7. Processes considered in the plant and the model 

 Process Plant Model 

Microalgae 
processes 

Growth on SNH4 Considered Considered 

Growth on SNO3 Considered Not Considered 

Endogenous respiration Considered Considered 

Decay Considered Considered 

Heterotrophic 
bacteria 
processes 

Aerobic growth on SNH4 Considered Considered 

Aerobic growth on SNO3 Considered Not Considered 

Anoxic growth on SNO2 

(denitrification on SNO2) 

Considered Not Considered 

Anoxic growth on SNO3 

(denitrification on SNO3) 

Considered Not Considered 

Aerobic endogenous respiration Considered Considered 

Anoxic endogenous respiration Considered Not Considered 

Decay Considered Considered 

Autotrophic 
bacteria 
processes 

 

 

 

Growth of XAOB Considered Not Considered 

Growth of XNOB Considered Not Considered 

Endogenous respiration of XAOB Considered Not Considered 

Endogenous respiration of XNOB Considered Not Considered 

Decay of XAOB Considered Not Considered 

Decay of XNOB Considered Not Considered 

Hydrolysis Hydrolysis Considered Considered 

Chemical 
equilibrium  

Chemical equilibrium              𝐶𝐶𝐶𝐶2 ↔
𝐻𝐻𝐻𝐻𝐻𝐻3− 

Considered Not Considered 

Chemical equilibrium          𝐻𝐻𝐻𝐻𝐻𝐻3− ↔
𝐶𝐶𝐶𝐶32− 

Considered Not Considered 

Chemical equilibrium            𝑁𝑁𝑁𝑁4+ ↔
𝑁𝑁𝑁𝑁3 

Considered Considered 

Chemical equilibrium               𝐻𝐻+ ↔
𝑂𝑂𝑂𝑂− 

Considered Not Considered 

Transfer of 
gases 

𝑆𝑆𝑂𝑂2 transfer to the atmosphere Considered Considered 

𝑆𝑆𝐶𝐶𝐶𝐶2 transfer to the atmosphere Considered Not Considered 

𝑆𝑆𝑁𝑁𝑁𝑁3 transfer to the atmosphere Considered Considered 
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Table 5.8. Values of parameters in plant and model 

Parameter [units] Description Plant Model 

µALG [d-1] Maximum specific growth 
rate of microalgae 

2.5 3.5 

µH [d-1] Maximum specific growth 
rate of heterotrophic bacteria 

5.8 5.5 

Kla, O2 [d-1] Mass transfer coefficient for 
oxygen 

10 9 

 

The simulated differences between the plant and the reduced model starting from the 

initial inoculation time of the plant are illustrated in Fig. 5.5 to Fig. 5.9 for a period of 60 

days operating under the conditions illustrated in Fig. 5.4. The initial values of the states 

set in the plant and model simulation are described in Table A3.1 and Table A3.2 of the 

Appendix 3. The differences in the concentration of particulate components in the HRAP 

are shown in Fig. 5.5. The biomass concentration into the raceway reactors, in the effluent 

flow, and in the wastage flow for the plant and the reduced model are illustrated in Fig. 

5.6. The effect of daily variations over the biomass due to operational and environmental 

variables is visible in both the plant and model trend. The concentration of the dissolved 

components in the HRAP is illustrated in Fig. 5.7, where the ammonium and phosphate 

assimilation by microalgae (Fig. 5.7A and Fig. 5.7B, respectively) was highly affected by 

day/night cycles, as well as the TOC assimilation by heterotrophic bacteria (Fig. 5.7C). 

Concomitantly, substantial variations in the dissolved oxygen concentration within the 

HRAP, attributable to diurnal fluctuations in irradiation, are evident in both the plant and 

in the reduced model (Fig. 5.8). States of the photosynthesis model are represented in Fig. 

5.9 for the plant and the reduced model. The analysis of Fig. 5.5 to Fig. 5.9 reveals that 

the reduced model effectively replicates the trend of the primary variables involved in 

wastewater treatment. This findings validated its use as a prediction model in the MHE 

approach. Conversely, the discrepancies in the behavior of the reduced model in 

comparison to the plant depicted in Fig. 5.5 to Fig. 5.9 can be attributed to two primary 

factors: structural mismatches (summarized in Table 5.6 and Table 5.7) and parameter 

mismatches (detailed in Table 5.8). 
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Fig. 5.5. Plant and reduced model differences in the biomass composition in the HRAP: 

microalgae biomass (A), heterotrophic bacteria (B), slowly biodegradable particulate 

organic matter (C), and inert particulate organic matter (D). 

 

Fig. 5.6. Plant and reduced model differences in biomass concentration: TSS 

concentration in the HRAP (A), TSS concentration in the effluent flow (B), and TSS 

concentration in the wastage flow (C). 
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Fig. 5.7. Plant and reduced model differences in the dissolved ammonium concentration 

(A), the dissolved phosphate concentration (B), and the dissolved total organic carbon 

concentration (C) in the HRAP. 

 

Fig. 5.8. Plant and reduced model differences in the dissolved oxygen concentration in 

the HRAP. 
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Fig. 5.9. Plant and reduced model differences in photosynthesis model. 

 

5.5. State estimation using MHE in a microalgae-bacteria wastewater treatment 

plant 

MHE was designed to furnish the values of the unmeasured states for prospective 

implementations of model predictive control algorithms and optimization strategies to 

enhance system performance. These unmeasured states offer critical information about 

the system, which is essential for the effective implementation of feedback control 

strategies. The application of MHE to microalgae-based wastewater treatment systems 

poses specific challenges, primarily due to i) the scarcity of online measurements, ii) the 

lack of perfect knowledge of the model structure, iii) uncertainties in the values of 

parameters and states, iv) the unavailability of direct methods to determine the fractions 

of particulate components in the biomass, v) the reliability of analytical measurements is 

highly dependent on human expertise, vi) the elapsed time from the moment the sample 

is taken to the moment the analytical procedure is completed.  

In the hypothetical microalgae-based WWTP studied in this work, multi-rate 

measurements are presented with the sampling frequency shown in Table 5.3. Online 

measurements of the high-rate dynamic variables (pH, temperature, and dissolved 

oxygen) could be available with a higher sampling time. However, the sampling time of 

1.2 hours was used considering the slow dynamics of these variables in a large treatment 
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plant and to avoid excessive computational time in the optimization. The estimator takes 

into account the availability of Photosynthetically Active Radiation (PAR), pH, 

temperature, and flow measurements. The schematic of the MHE applied to the case study 

is depicted in Fig. 5.10. 

 

Fig. 5.10. Schematic of MHE for the microalgae-based WWTP 

 

The structure of the state, output, and input vectors employed in the MHE formulation 

are described by equations (5.11) to (5.13):  

𝐱𝐱 = [𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 𝑋𝑋𝐻𝐻 𝑋𝑋𝑆𝑆 𝑋𝑋𝐼𝐼 𝑆𝑆𝑆𝑆 𝑆𝑆𝐼𝐼 𝑆𝑆𝑁𝑁𝑁𝑁4 𝑆𝑆𝑁𝑁𝑁𝑁3 𝑆𝑆𝑃𝑃𝑃𝑃4 𝑆𝑆𝑂𝑂2 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑇𝑇𝑇𝑇𝑇𝑇2 𝑇𝑇𝑇𝑇𝑇𝑇3 𝑇𝑇𝑇𝑇𝑇𝑇4 𝑇𝑇𝑇𝑇𝑇𝑇5 𝑇𝑇𝑇𝑇𝑇𝑇6 𝑇𝑇𝑇𝑇𝑇𝑇7 𝑇𝑇𝑇𝑇𝑇𝑇8 𝑇𝑇𝑇𝑇𝑇𝑇9 𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤]𝑇𝑇 

(5.11) 

𝐲𝐲𝑷𝑷 = [𝑇𝑇𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑇𝑇𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑁𝑁𝑁𝑁4 𝑆𝑆𝑃𝑃𝑃𝑃4 𝑆𝑆𝑂𝑂2 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ]𝑇𝑇 (5.12) 

𝐮𝐮 = [𝐼𝐼 𝑝𝑝𝑝𝑝 𝑇𝑇 𝑄𝑄𝑤𝑤𝑤𝑤 𝑄𝑄𝑟𝑟𝑟𝑟 𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤]𝑇𝑇 (5.13) 

The naming of the state variables to estimate (Eq. (5.11)) is detailed in Table 5.1, Table 

5.2, and Table A3.2 in Appendix 3. The measurement vector, as developed by Eq. (5.12), 

encompasses the variables enumerated in Table 5.3. In the MHE formulation, the vector 

of known inputs, defined by Eq. (5.13), includes the values of PAR (𝐼𝐼), pH (𝑝𝑝𝑝𝑝), and 
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temperature (𝑇𝑇) of the culture media, as well as the values of inlet wastewater flow 

(𝑄𝑄𝑤𝑤𝑤𝑤), recirculation flow (𝑄𝑄𝑟𝑟𝑟𝑟), and wastage flow �𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�.  

The MHE is intended to estimate the state vector values at each sampling time (𝐱𝐱), as 

well as the values of the unknown disturbances (𝐰𝐰) and measurement noises (𝐯𝐯) that 

minimize the cost function defined in Eq. (5.1). In order to obtain useful information for 

system operation and control, the values of the input wastewater concentration 𝐜𝐜𝒊𝒊 (Eq. 

(5.14)) and the values of relevant process parameters (vector 𝛉𝛉, Eq. (5.15)) are also 

decision variables in the optimization problem. Estimated parameters are instrumental in 

characterizing the microbial dynamics in the process. In this sense, the maximum specific 

growth rates of microalgae (µALG) and heterotrophic bacteria were estimated (µH), as well 

as the decay rate of microalgae (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐴𝐴𝐴𝐴𝐴𝐴) and heterotrophic bacteria (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐻𝐻). 

Concurrently, the estimation of the mass transfer coefficient of the dissolved oxygen was 

conducted (𝐾𝐾𝑙𝑙𝑙𝑙,𝑂𝑂2). These parameters were identified as the most relevant parameters to 

adjust in Section 4.1.1. 

𝐜𝐜𝒊𝒊 = [𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤 𝑆𝑆𝐼𝐼𝑤𝑤𝑤𝑤 𝑆𝑆𝑁𝑁𝑁𝑁4𝑤𝑤𝑤𝑤 𝑆𝑆𝑁𝑁𝑁𝑁3𝑤𝑤𝑤𝑤 𝑆𝑆𝑃𝑃𝑃𝑃4𝑤𝑤𝑤𝑤]𝑇𝑇 (5.14) 

𝛉𝛉 = [µALG 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐴𝐴𝐴𝐴𝐴𝐴 µH 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝐻𝐻  𝐾𝐾𝑙𝑙𝑙𝑙,𝑂𝑂2 ]𝑇𝑇 (5.15) 

Given the availability of multi-rate measurements, the execution time of the MHE is 

determined by the fastest measurements (dissolved oxygen measurements). It is assumed 

that analytical measurements are available daily at 0 a.m., implying that a full vector of 

output measurements is only available on a daily basis. Conversely, at each sampling time 

(1.2 hours), a new dissolved oxygen measurement is available. An overview of the 

availability of measurements is given in Table 5.3 . To address the challenge posed by 

multi-rate measurements in the context of MHE, two decisions were made: 

• The consideration of a past horizon, encompassing at least a full vector of output 

measurements (the estimation past horizon should be a minimum of 1 day). 

• The cost function incorporates only the available measurements at each sampling time. 

 

5.5.1. MHE coding and tuning 

The MHE was coded using MATLAB® software (MathWorks Inc., 2024), version 24.1, 

R2024a and the MPCTools (Risbeck and Rawlings, 2016). MPCTools is a control and 

https://sites.engineering.ucsb.edu/%7Ejbraw/software/mpctools/index.html
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estimation tool for linear and nonlinear dynamic models. Its provides an oriented interface 

to CasADi for Octave and MATLAB. MPCTools provides an interface to CasADi 

solvers, thereby facilitating the simulation of MPC controllers or MHE on any system of 

interest. Although CasADi is a more robust software, MPCTools allows code saving in 

the formulation of MHE or MPC problems (Risbeck and Rawlings, 2016). The estimation 

problem was addressed by employing the Ipopt (Interior Point Optimizer) solver, which 

is an open-source software package for large-scale nonlinear optimization. The model 

used for estimation was discretized using the Runge-Kutta method. The MHE simulations 

were carried out using the following computer hardware specifications: an 13th Gen 

Intel® Core™ i9-13900K processor (3.0 GHz), 128 GB of RAM memory, and a 500 GB 

hard-disk drive. 

In order to formulate MHE, it is necessary to provide the values of the weight matrices of 

the cost function, as defined by (5.1). It is imperative to note that 𝐐𝐐𝒙𝒙, 𝐐𝐐𝒘𝒘, and 𝐐𝐐𝒚𝒚 are 

positive definite matrices, with weighting and normalization factors. Given the imprecise 

nature of the initial guesses for the states, the diagonal elements of 𝐐𝐐𝒙𝒙 are set to a value 

of 0.5. Table 5.9 and Table 5.10 present the values of the diagonal elements of 𝐐𝐐𝒘𝒘 and 

𝐐𝐐𝒚𝒚, respectively. The tuning values of 𝐐𝐐𝒘𝒘 and 𝐐𝐐𝒚𝒚 were selected based on the standard 

deviation of the variables in order to normalize the different terms of the cost function. In 

the WWTP, considerable scale differences in the measured output variables, as well as in 

the estimated states, necessitated the normalization of these values. This procedure was 

implemented with the objective of ensuring that each output was accorded equal 

importance, as well as to guarantee the same importance in the modeling error for each 

estimated state. The weight values were selected to allocate greater importance to the 

discrepancies between the model and the measurements, indicating that the reliability of 

the measurements surpasses that of the model. The constraints on the variables involved 

in the optimization problem are summarized in Table 5.11 through Table 5.14. 

  

https://web.casadi.org/
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Table 5.9. Diagonal elements of the weight matrix 𝐐𝐐𝐰𝐰 

States Weight Units 

XALG   60  [mgCOD/L] 

XH   5  [mgCOD/L] 

XS   10  [mgCOD/L] 

XI   50  [mgCOD/L] 

SS   2  [mgCOD/L] 

SI   4  [mgCOD/L] 

SNH4   0.1  [mgN-NH4/L] 

SNH3   0.1  [mgN-NH3/L] 

SPO4   1  [mgP-PO4/L] 

SO2   2  [mgO2/L] 

TSSeffluent   5  [mgTSS/L] 

TSS2   10  [mgTSS/L] 

TSS3   10  [mgTSS/L] 

TSS4   10  [mgTSS/L] 

TSS5   10  [mgTSS/L] 

TSS6   20  [mgTSS/L] 

TSS7   50  [mgTSS/L] 

TSS8   50  [mgTSS/L] 

TSS9   50  [mgTSS/L] 

TSSwastage   300  [mgTSS/L] 

 

Table 5.10. Diagonal elements of the weight matrix 𝐐𝐐𝐲𝐲 

Output Weight Units 

TSSHRAP 100 [mgTSS/L] 

TOC 2 [mgC/L] 

SNH4 0.1 [mgN-NH4/L] 

SPO4  1 [mgP-PO4/L] 

SO2  2 [mgO2/L] 

TSSeffluent 5 [mgTSS/L] 

TSSwastage 300 [mgTSS/L] 
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Table 5.11. Upper and lower bounds on states and process noise 

 States Process noise 

Upper bound 
(𝒙𝒙𝑼𝑼) 

Lower bound 
(𝒙𝒙𝑳𝑳) 

Upper bound 
(𝒘𝒘𝑼𝑼) 

Lower bound 
(𝒘𝒘𝑳𝑳) 

XALG 800 400 500 -500 

XH 60 0 500 -500 

XS 150 40 500 -500 

XI 700 500 100 -100 

SS 25 5 10 -10 

SI 50 38 10 -10 

SNH4 1 0 0.05 -0.05 

SNH3 2 0 0.01 -0.01 

SPO4 13 0 2 -2 

SO2 32 0 2 -2 

TSSeffluent 60 0 30 -30 

TSS2 80 0 30 -30 

TSS3 90 0 30 -30 

TSS4 150 0 30 -30 

TSS5 500 0 30 -30 

TSS6 500 0 70 -70 

TSS7 1000 0 100 -100 

TSS8 1000 0 200 -200 

TSS9 1000 300 200 -200 

TSSwastage 8000 2000 5000 -5000 
 

Table 5.12. Upper and lower bounds on outputs noise 

Output Upper bound 
(𝒗𝒗𝑼𝑼) 

Lower bound 
(𝒗𝒗𝑳𝑳) 

TSSHRAP 100 -100 

TOC 5 -5 

SNH4 1 -1 

SPO4  3 -3 

SO2  4 -4 

TSSeffluent 15 -15 

TSSwastage 400 -400 
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Table 5.13. Upper and lower bounds on the inlet wastewater concentration 

Wastewater  
component  

Upper bound 
(𝐜𝐜𝒊𝒊𝐔𝐔) 

Lower bound 
(𝐜𝐜𝒊𝒊𝐋𝐋) 

Units 

𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤 135 45 [mgCOD/L] 

𝑆𝑆𝐼𝐼𝑤𝑤𝑤𝑤 55 18 [mgCOD/L] 

𝑆𝑆𝑁𝑁𝑁𝑁4𝑤𝑤𝑤𝑤 67 23 [mgN-NH4/L] 

𝑆𝑆𝑁𝑁𝑁𝑁3𝑤𝑤𝑤𝑤 0.20 0.07 [mgN-NH3/L] 

𝑆𝑆𝑃𝑃𝑃𝑃4𝑤𝑤𝑤𝑤 19 6 [mgP-PO4/L] 

 

Table 5.14. Upper and lower bounds in the estimated parameters 

Wastewater  
component  

Upper bound 
(𝛉𝛉𝐔𝐔) 

Lower bound 
(𝛉𝛉𝐋𝐋) 

Units 

µALG 1.5 4 [d-1] 

kdeath, ALG  0.045 0.15 [d-1] 

µH  3 6.5 [d-1] 

kdeath, H  0.6 1 [d-1] 

Kla, O2  7 13 [d-1] 

 

 

5.6. MHE simulation results 

The results of the MHE execution are presented considering the system operation under 

a periodic regime. The parameters used for the MHE simulation are enumerated in Table 

5.15. The estimation horizon of two days is regarded as sufficient in terms of data 

availability to support the calculation of an accurate estimation. In the context of the MHE 

application, it is imperative to align the sampling period with the dynamics of the 

variables to be estimated. The application under consideration in this research involves 

the estimation of variables related to water quality. The variables in question exhibit slow 

dynamics, thereby rendering lower sampling times unnecessary. Despite the fact that 

commercial sensors for dissolved oxygen measurement provide data with considerably 

lower sampling times than those employed in the present research, the sampling time used 

in this paper was selected considering that large estimation times are generally needed for 

nonlinear estimation with constraints. Moreover, in order to consider the possible 
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applications of the MPC control strategy in this process, it is essential that the sampling 

time be adequately long to encompass both the estimation time and the time required for 

executing the nonlinear constrained MPC controller. 

 

Table 5.15. MHE simulation parameters 

Parameter Description Value 

𝑛𝑛𝑒𝑒 Estimation horizon 2 d (40 samples) 

Delta  Sampling time 0.05 d 

 

Simulations were executed under the environmental conditions illustrated in Fig. 5.4. 

Additionally, to simulate possible measurement errors in sensors and analytical 

procedures, a measurement noise was introduced. This noise was generated using a 

MATLAB® function which returns a random scalar drawn from the standard normal 

distribution. For each output, the media of the noise value introduced corresponds to 5 % 

of the average output value. The simulation results for the MHE application during 10 

days (corresponding with 200 samples) are presented in Fig. 5.11 to Fig. 5.16, using initial 

information of past data corresponding to two previous days. In each sample, the MHE 

estimation was provided with an average value of 17.97 seconds (the higher estimation 

time being 37.49 seconds), which means that MHE can be used as the first step of 

advanced control or process dynamic optimization. 

The estimated values (blue line) for the dissolved oxygen concentration in the HRAP are 

illustrated in Fig. 5.11. The red line in the graph represents the actual values of the 

dissolved oxygen concentration, which include the noise in the measurements. As this 

study was conducted within a simulation framework, real-time plant values are available 

for continuous representation, with the purpose of illustrating the estimator fit. In real-

world scenarios, the measured values are only available at discrete time intervals, which 

are represented by crosses in the data. Error bars (purple bars) are included to illustrate 

the limits of uncertainty that were assumed in the measurements. The results demonstrate 

the accuracy of the prediction provided by the MHE, as well as estimator robustness, even 

considering noisy measurements.  
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Fig. 5.11. Measured and estimated values of the dissolved oxygen in the HRAP 

 

The estimated values for the biomass concentration in the HRAP, the biomass 

concentration in the effluent, and the biomass concentration in the wastage stream are 

illustrated in Fig. 5.12. As demonstrated in Fig. 5.12, the MHE effectively estimates the 

biomass concentration values for the entire simulation time by leveraging historical 

output values and dissolved oxygen measurements at each sampling time. The error bars 

represent the uncertainties in the measured values of the biomass. In such cases, where 

analytical procedures are employed to ascertain biomass values, low biomass values are 

deemed to be more susceptible to measurement uncertainties. The online estimation of 

biomass concentration is imperative for ensuring the optimal operation of 

photobioreactors taking early actions in response to the values of the estimated variables, 

without waiting for the lab analysis to arrive. Optimal biomass values in the HRAP are 

necessary to ensure the adequate wastewater depuration, and high biomass concentrations 

within the reactor affect the penetration of solar radiation into the culture, which in turn 

affects the growth of microalgae. In addition, the online monitoring of TSS concentration 

in the effluent is of a paramount importance in order to guarantee the desired water 

quality. Conversely, in scenarios where the primary objective is the harvesting of biomass 
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for the production of diverse bioproducts, it is essential to optimize biomass yield to 

ensure maximum economic profitability.  

The MHE has the capacity to predict the values of the various components of biomass 

(Fig. 5.13). Conventionally, the assessment of these values does not employ direct or 

standardized methodologies. Indeed, a salient benefit of the application of state estimators 

in such processes is that they enable the estimation of the concentrations of different 

biomass components without the necessity of employing complex analytical methods. 

 

Fig. 5.12. Measured and estimated values of the biomass concentration in the HRAP (A), 

in the effluent (B), and in the wastage stream (C). 
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Fig. 5.13. Estimated values of the biomass components: microalgae biomass 

concentration (A), heterotrophic bacteria concentration (B), slowly biodegradable 

particulate organic matter (C), and inert particulate organic matter (D). 

 

The measured and estimated values of the TOC in the effluent are presented in Fig. 5.14A. 

The online monitoring of the TOC concentration is imperative for the evaluation of 

effluent water quality. Fig. 5.14B and Fig. 5.14C illustrate the estimated values of readily 

biodegradable soluble organic matter and inert soluble organic matter, respectively, as 

components of the TOC.  

The quality of effluent water is also contingent upon the concentrations of dissolved 

ammonium and dissolved phosphate. The measured and estimated values of dissolved 

ammonium and dissolved phosphate concentration are illustrated in Fig. 5.15A and Fig. 

5.15B, respectively. As demonstrated in Fig. 5.15A, the estimate of the ammonium 

concentration in the effluent exhibits a slight overestimation relative to the actual value. 

This phenomenon can be attributed to the observation that the proliferation of microalgae 

and heterotrophic bacteria (the two predominant microorganisms groups in the HRAP) is 

exclusively associated with the utilization of ammonium. This association disregards the 

microalgae growth on SNO3, as well as the heterotrophic bacteria aerobic growth on nitrate 

and the heterotrophic bacteria anoxic growth on nitrite and nitrate (as summarized in 
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Table 5.7). This finding suggests that the reduced model attributes the observed growth 

exclusively to nitrogen species in the form of SNH4, which may lead to an overestimation 

of this component in the HRAP. In a similar fashion, the phosphate estimation (Fig. 

5.15B) exhibits a slight increase compared to the actual value of SPO4 concentration. This 

discrepancy can be attributed to the reduced model incorporating a smaller number of 

nutrients utilized by microalgae and bacteria for its growth, resulting in an overestimation 

of these components within the reduced model. Nevertheless, these discrepancies 

between the actual and estimated values are acceptable given the variation range of these 

components, as well as the potential inaccuracies in the analytical procedures employed 

to obtain the actual values of these variables. The validity of this assertion is supported 

by the results presented in Fig. 5.14 and Fig. 5.15. These figures demonstrate that the 

estimated values fall within the uncertainty limits that have been established in the 

measurement of these variables. 

The MHE approach assessed in this study effectively estimated the concentrations of 

particulate and soluble components in the WWTP, even when a limited number of 

samples are available. These results suggest that further enhancement of the application 

of control and optimization strategies in wastewater treatment plants is possible.  

 

Fig. 5.14. Measured and estimated values of the TOC (A). Estimated values of the readily 

biodegradable soluble organic matter (B) and inert soluble organic matter (C). 
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Fig. 5.15. Measured and estimated values of the dissolved ammonium concentration (A) 

and dissolved phosphate concentration (B). 

 

Despite the existence of analytical measurements on a daily basis, the employment of a 

state estimator offers insights into the progression of wastewater components throughout 

the entirety of the experimental period, a situation that has been previously observed in 

simulation results. State estimators serve as instrumental tools for the analysis of water 

quality over the course of a day. Leveraging this analysis, control actions can be 

implemented in a targeted and informed manner. As illustrated in Fig. 5.15, which depicts 

the time course of dissolved ammonium concentration, there is a demonstrable variation 

in the dynamics of dissolved ammonium over the course of a day. Specifically, higher 

values of ammonium are observed during nocturnal hours, which can be attributed to the 

assimilation of dissolved ammonium by microalgae during daylight hours. Given that the 

samples were hypothesized to be drawn during the night, these values are representative 

of a particular moment in the process dynamics evolution, which underscores the 

importance of continuous state estimation. 
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Parameter estimation is paramount for characterizing the kinetics of the key processes 

and chemical reactions, as well as the operational conditions in the HRAP. The results of 

parameter estimation for the parameters described by Eq. (5.15) are provided in Fig. 5.16. 

Fig. 5.16 shows that the estimated parameters exhibited a high degree of proximity to the 

"real values" of the parameters assumed in the plant. As demonstrated in Fig. 5.11 - Fig. 

5.15, the simulation results substantiate the validity of the selected parameter values for 

predicting the process's state evolution. In order to ensure the effective implementation 

of model-based control strategies within the WWTP, it is imperative to establish precise 

parameter estimations. 

 

Fig. 5.16. Measured and estimated values of the parameters in the HRAP. The circles 

represent the initial guess for parameter values that were utilized in the optimization 

problem. 
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In order to evaluate the robustness of the estimator under different operational conditions, 

variations in the incident light were considered during the final three days of the 

estimation process. As illustrated in Fig. 5.17, the radiation profile under consideration 

comprises seven days with uniform radiation conditions, analogous to those previously 

illustrated in Fig. 5.4D, and three days characterized by substantial cloud cover. The 

estimation results for this condition are illustrated in Fig. 5.18 to Fig. 5.20. The dissolved 

oxygen concentration in the HRAP under fluctuating solar radiation is depicted in Fig. 

5.18, where it is demonstrated that the available solar radiation during the last three days 

of operation affects the maximum values of dissolved oxygen concentration in the 

photobioreactor, owing to a decline in microalgae activity. The reliability of the estimator 

in reproducing the trend in the dissolved oxygen concentration is indicative of its 

effectiveness in a variety of environmental conditions and in the presence of noisy 

measurements. This reliability is indicative of the robustness of the estimator. 

 

Fig. 5.17. Profile of the photosynthetic photon flux density considered over the course of 

ten days of operation. 
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Fig. 5.18. Measured and estimated values of the dissolved oxygen in the HRAP under 

fluctuating solar radiation. 

 

Fig. 5.19 illustrates the measured and estimated values of biomass concentration under 

fluctuating solar radiation and also demonstrates the robust behavior of the estimator, 

effectively replicating the measured values of biomass concentration in the HRAP (Fig. 

5.19A), the effluent flow (Fig. 5.19B), and the wastage flow (Fig. 5.19C).  

The performance of the estimator in predicting the concentration of dissolved components 

in the HRAP under fluctuating solar radiation is illustrated in Fig. 5.20. Predicted values 

of the dissolved total organic carbon concentration (Fig. 5.20A), ammonium 

concentration (Fig. 5.20B), and phosphate concentration (Fig. 5.20C) demonstrate slight 

overestimation, as previously evidenced in simulation results. Nevertheless, the 

discrepancies observed in these estimations fall within the permissible uncertainty range 

(as indicated by the error bars), even in the presence of significant environmental 

variations and unreliable measurements. 

The simulation results demonstrate the efficacy of the MHE approach in online estimation 

of the most relevant variables of a wastewater treatment process, even in the presence of 

noisy measurements, model inaccuracies, varying environmental conditions, and multi-
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rate measurements. The MHE has the capacity to provide online estimation for measured 

variables and for variables that cannot be measured directly. The findings, in conjunction 

with the reduced estimation times observed, underscore the promise of state estimation 

leveraging the MHE technique in conjunction with control and optimization strategies 

within wastewater treatment facilities, particularly in the context of low dynamics that 

characterize wastewater treatment processes. 

 

 

Fig. 5.19. Measured and estimated values of the biomass concentration in the HRAP (A), 

in the effluent (B), and in the wastage stream (C) under fluctuating solar radiation. 
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Fig. 5.20. Measured and estimated values of the dissolved TOC concentration (A), 

dissolved ammonium concentration (B), and dissolved phosphate concentration (C) under 

fluctuating solar radiation. 

 

5.7. Conclusions 

This chapter proposes the utilization of the MHE technique for a microalgae-based 

wastewater treatment process, with a focus on the estimation of multiple states and 

parameters concurrently to evaluate the effluent water quality. The utilization of an 

estimation model characterized by multiple states and parameters, exhibiting a substantial 

structural mismatch with respect to the plant model, was contemplated. Multi-rate 

measurements obtained from online measurements and analytical procedures were used 

to enhance the performance of the estimator. The simulation results confirmed the 

efficacy and robustness of MHE in the online estimation of the most pertinent variables 
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in the microalgae-based wastewater treatment process. Furthermore, the simulation 

results demonstrated MHE's potential for future application in the development of control 

and optimization strategies, which requires the knowledge of system states and 

parameters.  
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6. Economic MPC in microalgae-bacteria wastewater 

treatment 

This Chapter expounds the development of an economic MPC for an industrial 

microalgae-bacteria based wastewater treatment plant with biomass harvesting. The 

eMPC has been developed with the objective of controlling the plant and optimizing 

biomass yield to ensure maximum profit from biomass sales as a bioestimulant. The 

predictive controller utilizes the estimated variables provided by the MHE algorithm in 

the model to predict the future evolution of the system and to calculate the future control 

actions. The sequence of future control actions is calculated using an optimization 

procedure that aims to minimize a cost function, while respecting the operational 

constraints. 
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6.1. Economic Model Predictive Control 

The optimal operation and control of dynamic systems and processes has been a subject 

of significant research for many years. One methodology for enhancing process 

performance while achieving operational targets and constraints is the online 

implementation of optimal control problem (OCP) solutions. In essence, the control 

actions for the manipulated inputs of a process are determined by formulating and solving 

a dynamic optimization problem online. This problem takes advantage of a dynamic 

process model while accounting for process constraints. The online resolution of complex 

dynamic optimization problems is becoming an increasingly viable option as a control 

scheme to improve the steady-state and dynamic performance of process operations. 

The process performance of a chemical or biological process typically refers to the 

process economics and encapsulates multiple objectives, including profitability, 

efficiency, variability, capacity, sustainability, and so forth. Conventionally, a 

hierarchical strategy for planning, scheduling, optimization, and control has been 

employed in the process industries. A block diagram illustrating the hierarchical strategy 

is presented in Fig. 6.1. While the block diagram offers a comprehensive overview of the 

primary components, it must be noted that it presents a simplified representation of the 

modern planning/scheduling, optimization, and control systems that are employed in the 

process industry. It is important to acknowledge that each layer of the block diagram may 

be comprised of numerous distributed and hierarchical computing units (Ellis, Durand 

and Christofides, 2014; Ellis, Liu and Christofides, 2021). 

The upper layer, designated as real-time optimization (RTO), is responsible for process 

optimization. Within the RTO layer, a metric quantifying the operating profit or operating 

cost is optimized with respect to an up-to-date and rigorous steady-state process model to 

ascertain the optimal process steady-state. The resultant computed steady state is then 

transmitted to the feedback process control systems, which consist of the supervisory 

control and regulatory control layers. The process control system utilizes manipulated 

inputs to regulate the process, thereby ensuring its operation at a steady state. The process 

control system must function in order to reject disturbances and, ideally, guide the 

trajectory of the process dynamics along an optimal path to the steady-state. 
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Fig. 6.1. Traditional paradigm in process industries for process optimization and control 

(Ellis, Durand and Christofides, 2014) 

 
The advanced or supervisory process control layer of Fig. 6.1 comprises control 

algorithms that are utilized to account for process constraints, coupling of process 

variables and processing units, and operating performance. In advanced process control, 

model predictive control employs a dynamic model of the process in an optimization 

problem to predict the future evolution of the process over a finite-time horizon and to 

determine the optimal input trajectory with respect to a performance index (Camacho and 

Bordons, 2007). The performance index is typically the sum of squared errors between 

output predictions and its desired set points. Furthermore, MPC possesses the capacity to 

address process constraints and multi-variable interactions that are inherent to the 

optimization problem. Consequently, it possesses the capacity to regulate constrained 

multiple-input multiple-output systems in an optimal manner.  

The regulatory control layer is composed of predominantly single-input, single-output 

control loops, such as PID control loops, which function to implement the control actions 

computed by the supervisory control layer. In essence, this layer ensures that the control 

actuators achieve the control action requested by the MPC layer.  
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Notice that RTO does not consider dynamics aspects in its formulation and it is executed 

typically every several hours when process reaches steady state, which limits its 

efficiency. In an effort to integrate economic process optimization and process control, 

as well as to realize the possible process performance improvement achieved by 

consistently dynamic, transient, or time-varying operation, economic MPC has been 

proposed. This approach, instead of minimizing the errors between output predictions and 

set points, incorporates a general cost function or economic performance index in its 

formulation. This cost function may be a direct or indirect reflection of the process 

economics and its optimization is computed at high frequency, every sampling time of 

the controller.  

Broadly, economic model predictive control can be characterized by the following 

optimization problem (Ellis, Durand and Christofides, 2014): 

min
𝑢𝑢∈𝑆𝑆(∆)

 ∫ ℓ𝑒𝑒�𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡)�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑘𝑘

dt 
(6.1) 

𝑠𝑠. 𝑡𝑡.        𝑥𝑥�̇(𝑡𝑡) =  𝑓𝑓(𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡), 0) (6.2) 

𝑥𝑥�(0) = 𝑥𝑥(𝑡𝑡𝑘𝑘) (6.3) 

    𝑔𝑔�𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡)� ≤ 0,     ∀𝑡𝑡 ∈ �0, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (6.4) 

where the decision variables of the optimization problem are the trajectories of the 

manipulated variables of the process (𝑢𝑢 ∈ 𝑆𝑆(∆)) over the prediction horizon, i.e., the time 

interval [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), and 𝑥𝑥� denotes the predicted state trajectory over the prediction 

horizon. The objective function ℓ𝑒𝑒 of Eq. (6.1) is the process economic cost function that 

the eMPC optimizes through dynamic operation of the process. ℓ𝑒𝑒(𝑥𝑥�,𝑢𝑢) is a direct or 

indirect reflection of the (instantaneous) process economics. A dynamic model, typically 

the nominal process model, is used as a constraint (6.2) and is initialized through a state 

measurement obtained at every sampling instant (6.3). In addition to the model constraints 

of Equations (6.2) - (6.4), process operation or economics-based constraints are often 

added. 
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6.2. Economic MPC formulation for a microalgae-bacteria based WWTP 

The present study considers a hypothetical microalgae-bacteria-based WWTP with the 

configuration illustrated in Fig. 5.3, operating under the conditions described in Section 

Fig. 5.2. In the preceding chapter, it was hypothesized that measurements obtained by 

analytical procedures are available on a daily basis, while online measurements are 

available at considerably higher sampling rates. In order to design a pertinent online 

eMPC strategy, it is imperative to combine model predictive control and state estimation 

using MHE. In each sample time, the MHE provides estimated values of the states, 

parameters and model uncertainties. These are used by the MPC model to calculate the 

sequence of future control actions. The aforementioned procedure is summarized in Fig. 

6.2. 

 

Fig. 6.2. Scheme combining state estimation and model predictive control 

 

The eMPC searches for the control moves ∆𝒖𝒖𝑘𝑘+𝑖𝑖 (𝑖𝑖 = 0,1,2, … ,𝑛𝑛𝑢𝑢 − 1) that minimize 

the cost function (6.5) subject to constraints (6.6) to (6.11) and the computations are 

repeating every sampling time, following a moving horizon policy. The process is 

represented by a continuous dynamic model (6.6) and (6.7), which is assumed to be 

continuously differentiable. In the formulation, 𝐱𝐱 ∈ ℝnx is used to represent the states, 

𝐮𝐮 ∈ ℝnu is used to represent the control actions, and 𝐲𝐲 ∈ ℝny  is used to represent 
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measured outputs. The estimation of the actual states (𝐱𝐱� ∈ ℝnx), disturbances (𝒗𝒗 ∈ ℝ𝑛𝑛𝑦𝑦 

and 𝒘𝒘 ∈ ℝ𝑛𝑛𝑥𝑥), and parameters (𝜽𝜽 ∈ ℝnp) is achieved by the MHE (Section 5.1). As the 

model is formulated in continuous time, 𝒖𝒖, and 𝒚𝒚 are functions of 𝑡𝑡. However, for the 

sake of simplicity, this dependence has been omitted in the present document. Utilizing a 

control vector parameterization approach, the control actions are permitted to change 

solely at regular time intervals ∆𝑡𝑡 = 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1. For the purposes of this study, 𝑘𝑘 denotes 

the current sampling time. The control actions 𝐮𝐮𝒌𝒌 ∈ ℝnu, computed and applied at time 

𝑡𝑡𝑘𝑘, are kept constant within each time interval [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1), as in Eq. (6.10). The current and 

future control moves, denoted as ∆𝒖𝒖𝑘𝑘+𝑖𝑖 , 𝑖𝑖 = 0, 1,2, … ,𝑛𝑛𝑢𝑢 − 1, defined in (6.11), are the 

decision variables of problem (6.5) - (6.12). The selection of the control horizon 𝑛𝑛𝑢𝑢 and 

other tuning parameters is governed by the usual rules of MPC. 

The model allows to compute predictions of the cost function and constraints over a future 

horizon from 𝑡𝑡𝑘𝑘 to the final prediction horizon 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 refers to the number of time 

instants from 𝑡𝑡𝑘𝑘 to reach 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

The control moves are computed every sampling time from the current time 𝑡𝑡𝑘𝑘 to a control 

horizon 𝑡𝑡𝑘𝑘+𝑛𝑛𝑢𝑢, after which, ∆𝒖𝒖𝑘𝑘+𝑖𝑖 = 0, but only the first control move ∆𝒖𝒖𝑘𝑘 is applied to 

the process. 

min
∆𝑢𝑢𝑘𝑘+1

𝑖𝑖=0,…,𝑛𝑛𝑢𝑢−1

� ℓ𝑒𝑒�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� +
𝑡𝑡=𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡=0
� ∆𝒖𝒖𝑘𝑘+𝑖𝑖𝑇𝑇 𝑸𝑸𝑢𝑢∆𝒖𝒖𝑘𝑘+𝑖𝑖

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

 (6.5) 

𝑠𝑠. 𝑡𝑡.         𝑓𝑓(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒘𝒘𝑘𝑘,𝒗𝒗𝑘𝑘,𝜽𝜽𝑘𝑘) = 𝟎𝟎,       ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�  (6.6) 

ℎ(𝒙𝒙,𝒖𝒖,𝒚𝒚,𝒘𝒘𝑘𝑘,𝒗𝒗𝑘𝑘 ,𝜽𝜽𝑘𝑘) = 𝟎𝟎,       ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�  (6.7) 

𝒖𝒖𝐿𝐿 ≤ 𝒖𝒖𝑘𝑘+𝑖𝑖 ≤ 𝒖𝒖𝑈𝑈,          𝑖𝑖 = 0, 1, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (6.8) 

𝒖𝒖𝑘𝑘+𝑖𝑖 = 𝒖𝒖𝑘𝑘+𝑖𝑖−1 + ∆𝒖𝒖𝑘𝑘+𝑖𝑖 ,       𝑖𝑖 = 0, 1, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (6.9) 

𝒖𝒖(𝑡𝑡) = 𝒖𝒖𝑘𝑘+𝑖𝑖,   𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘+𝑖𝑖 , 𝑡𝑡𝑘𝑘+𝑖𝑖+1]       𝑖𝑖 = 0, 1, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (6.10) 

∆𝒖𝒖𝑘𝑘+𝑖𝑖 = 0,         𝑖𝑖 = 𝑛𝑛𝑢𝑢, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (6.11) 

𝒙𝒙(𝑡𝑡𝑘𝑘) = 𝒙𝒙�𝑘𝑘 (6.12) 

 

The cost function (6.5) comprises two terms: 
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1. The first term ∫ ℓ𝑒𝑒�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)�𝑡𝑡=𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡=0 , corresponds to an economic objective 

computed with the value of the model variables and control actions. It is 

hypothesized that the value of ℓ𝑒𝑒 at any given time instant 𝑘𝑘 can be calculated 

from process measurements and control actions. 

2. The second term ∑ ∆𝒖𝒖𝑘𝑘+𝑖𝑖𝑇𝑇 𝑸𝑸𝑢𝑢∆𝒖𝒖𝑘𝑘+𝑖𝑖
𝑛𝑛𝑢𝑢−1
𝑖𝑖=0  penalizes changes in the manipulated 

variables. 𝑸𝑸𝑢𝑢 is a positive definite matrix, with weighting factors on the control 

moves (∆𝒖𝒖), which can be regarded as tuning factors for the purposes of 

normalization and stabilization, as in the current practice of MPC. 

The cost function is constrained by the model (6.6) - (6.7), and the inequality constraints 

(6.8). To solve (6.5) - (6.12), at each sampling time 𝑘𝑘, it is necessary to initialize the 

model states 𝒙𝒙(𝑡𝑡𝑘𝑘), disturbances, and parameters to the values of 𝒙𝒙�𝑘𝑘, 𝒘𝒘𝑘𝑘, 𝒗𝒗𝑘𝑘, and 𝜽𝜽𝑘𝑘, 

respectively. The following section presents the algorithm for solving the eMPC problem 

with estimations provided by the MHE. 

 

eMPC algorithm using MHE and multi-rate measurements 

i. Initialization 

1. Collect 𝑛𝑛𝑒𝑒 previous data of variables 𝒖𝒖𝑘𝑘−𝑖𝑖, 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑖𝑖, where i = 1, … ,𝑛𝑛𝑒𝑒. 

MHE algorithm: given 𝑸𝑸𝑥𝑥 ,𝑸𝑸𝑦𝑦 and 𝑸𝑸𝑤𝑤 

2. Initialize 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 

a. For measured states, consider 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒
𝑀𝑀 = 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑛𝑛𝑒𝑒

𝑆𝑆 , being 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒
𝑀𝑀  the 

subset of states that are measured, and 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑛𝑛𝑒𝑒
𝑆𝑆  the subset of 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑛𝑛𝑒𝑒 

containing the measured states in 𝑘𝑘 − 𝑛𝑛𝑒𝑒. 

b. For unmeasured states, use the values predicted by the model with 

𝒗𝒗𝑘𝑘−𝑖𝑖 = 0,𝒘𝒘𝑘𝑘−𝑖𝑖 = 0, and θ = 𝜽𝜽0, i = 1, … ,𝑛𝑛𝑒𝑒. Being 𝜽𝜽0 the initial 

guess for parameters.  

3. Solve the MHE problem (5.1) - (5.7) to find the past values of the states 

𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ , disturbances 𝒗𝒗𝑘𝑘−𝑖𝑖∗ ,𝒘𝒘𝑘𝑘−𝑖𝑖

∗ , inlet concentration values 𝒄𝒄𝒊𝒊𝑘𝑘−𝑖𝑖
∗ , and 

parameters 𝜽𝜽𝑘𝑘−𝑖𝑖∗ , i = 1, … ,𝑛𝑛𝑒𝑒. 



170 
 
 

4. Evaluate the estimated state 𝒙𝒙�𝑘𝑘 from 𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 to 𝑡𝑡𝑘𝑘. Estimate the values of 

the disturbances and parameters using 𝒗𝒗𝑘𝑘 = 𝑣𝑣𝑘𝑘−𝑖𝑖∗ , 𝒘𝒘𝑘𝑘 = 𝑤𝑤𝑘𝑘−𝑖𝑖∗  ,  𝒄𝒄𝒊𝒊𝑘𝑘 =

𝒄𝒄𝒊𝒊𝑘𝑘−𝑖𝑖
∗ , and 𝜽𝜽𝑘𝑘 = 𝜽𝜽𝑘𝑘−𝑖𝑖∗ . 

5. Update 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ . 

eMPC controller: 

6. Go to step 11. 

ii. For next iterations 

MHE algorithm: 

7. Collect 𝑛𝑛𝑒𝑒 previous data of variables 𝒖𝒖𝑘𝑘−𝑖𝑖, 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑖𝑖, where i = 1, … ,𝑛𝑛𝑒𝑒. 

8. Solve the MHE problem (5.1) - (5.7) to find the past values of the states 

𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ , disturbances 𝒗𝒗𝑘𝑘−𝑖𝑖∗ , 𝒘𝒘𝑘𝑘−𝑖𝑖

∗ , and parameters 𝜽𝜽𝑘𝑘−𝑖𝑖∗ , i = 1, … ,𝑛𝑛𝑒𝑒. 

9. Evaluate the estimated state 𝒙𝒙�𝑘𝑘 from 𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 to 𝑡𝑡𝑘𝑘. Estimate the values of 

the disturbances and parameters using 𝒗𝒗𝑘𝑘 = 𝒗𝒗𝑘𝑘−𝑖𝑖∗ , 𝒘𝒘𝑘𝑘 = 𝒘𝒘𝑘𝑘−𝑖𝑖
∗ , and 

𝜽𝜽𝑘𝑘 = 𝜽𝜽𝑘𝑘−𝑖𝑖∗ . 

10. Update 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ . 

eMPC controller:  

11. Solve problem (6.5) - (6.12) using 𝒙𝒙�𝑘𝑘, 𝒗𝒗𝑘𝑘, 𝒘𝒘𝑘𝑘, and 𝜽𝜽𝑘𝑘 from MHE. 

12. Apply ∆𝒖𝒖𝑘𝑘 to the process. 

13. Wait for the next sampling time and update 𝑘𝑘 = 𝑘𝑘 + 1. 

14. Go to step 7. 

 

6.2.1.  Case study  

The present study hypothesizes that the WWTP depicted in Fig. 5.3 treats wastewater 

from agricultural activities. Consequently, the harvested biomass could be utilized as a 

bioestimulant, representing a valuable product. In this facility, the wastage flow rate 

(𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤.) is regarded as the manipulated variable for this purpose. The same operating 

conditions, inlet flows, measured variables, and measurement noise of the plant described 

in Section 5.3 were considered. In a similar fashion, the reduced model contemplated in 

Section 5.4 was employed as a prediction model in the present case study.  
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The eMPC is intended to maximize the profit resulting from bioestimulant sales. 

Subsequently, the cost function is defined by Equation (6.13), in which 𝑝𝑝𝐵𝐵 is the price of 

the biomass. The terms 𝑛𝑛𝑝𝑝 and 𝑛𝑛𝑢𝑢 refer to the prediction horizon and the control horizon, 

respectively. The change in the control action (∆𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤.), as well as a weight that penalizes 

the control effort (𝑀𝑀𝑀𝑀), are also included in the cost function. The cost function is subject 

to the model described in Table 5.4 and the constraints defined in Eq. (6.14) - (6.18). The 

aforementioned constraints are associated with the biomass concentration in the various 

streams of the process. 

min
𝑄𝑄 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤.
𝑖𝑖→1…𝑛𝑛𝑢𝑢

 �−𝑝𝑝𝐵𝐵 � 𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤dt +
𝑡𝑡=𝑡𝑡𝑛𝑛𝑝𝑝

𝑡𝑡=0
� 𝑀𝑀𝑀𝑀 ∙ ∆𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤.𝑗𝑗

𝑛𝑛𝑢𝑢−1

𝑗𝑗=1

� (6.13) 

𝑠𝑠. 𝑡𝑡.        0.8
𝑘𝑘𝑘𝑘
𝑚𝑚3 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 1.2 𝑘𝑘𝑘𝑘/𝑚𝑚3 (6.14) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 0.06 𝑘𝑘𝑘𝑘/𝑚𝑚3 (6.15) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ≥ 2 𝑘𝑘𝑘𝑘/𝑚𝑚3 (6.16) 

0.5 𝑚𝑚3/𝑑𝑑 ≤ 𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. ≤ 60 𝑚𝑚3/𝑑𝑑 (6.17) 

0 𝑚𝑚3/𝑑𝑑 ≤ ∆𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. ≤ 4 𝑚𝑚3/𝑑𝑑 (6.18) 

 

The constraint (6.14) corresponding to the biomass concentration in the HRAP, it is 

intended to ensure sufficient microalgae biomass within the HRAP to facilitate effective 

wastewater treatment without affecting the light penetration into the HRAP. The objective 

of constraining the TSS concentration in the effluent (6.15) is to adhere to the limitations 

imposed by legislation concerning the permissible TSS concentration in the effluent flow. 

The biomass concentration in the wastage flow is also constrained (6.16) to achieve the 

concentration values necessary for the biomass to be sold as a bioestimulant. 

Additionally, constraints on the control action (6.17) and in the control effort are also 

considered (6.18). It is hypothesized that the biomass price is 𝑝𝑝𝐵𝐵 = 1€/𝑘𝑘𝑘𝑘. The 

parameters of the eMPC are summarized in Table 6.1.  

As was hypothesized in the preceding chapter, it was posited that the samples of biomass 

are available on a daily basis. In order to design a pertinent online eMPC strategy, it is 
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imperative to combine model predictive control and state estimation using MHE in order 

to estimate the biomass values at a higher frequency. The procedure used was illustrated 

in Fig. 6.2 and is described in the algorithm of Section 6.2.  

The simulation of the WWTP was formulated in continuous-time domain in MATLAB®. 

The MHE problem and the dynamic optimization problem in the economic controller were 

formulated using MPCTools. The controller was solved using the sequential quadratic 

algorithm, which is available in the fmincon NLP solver. It is hypothesized that the 

stabilization of the microbial population occurs at day 50 after the inoculation of the 

photobioreactors, thus marking the initiation of the optimization process. It is hypothesized 

that during the initial 50-day period, the system operates at a constant wastage flow rate of 

15 𝑚𝑚3/𝑑𝑑. The calculus of the control action was performed at 1.2-hour intervals (the 

sampling time for dissolved oxygen measurements). The mean elapsed time for the entire 

problem (MHE + controller) to be resolved at each sampling time was 38.54 seconds on a PC 

with the following hardware specifications: an 13th Gen Intel® Core™ i9-13900K processor 

(3.0 GHz), 128 GB of RAM memory, and a 500 GB hard-disk drive. 

 

Table 6.1. Parameters of the eMPC controller 

Parameter Description Value 

𝑛𝑛𝑝𝑝 Prediction horizon 10 d (200 samples) 

𝑛𝑛𝑢𝑢 Control horizon 2 d (40 samples) 

MS Weight in the control effort 100 

 

6.3. Simulation results 

The simulation results for the eMPC operation during fifteen days under the previously 

described conditions are provided in Fig. 6.3 through Fig. 6.5. It is important to note that, 

due to the influence of the solar cycle, the process is never in a steady state but rather 

follows a cyclical operation, as illustrated in Fig. 6.5. The eMPC slowly pushes the 

process towards the optimal operating conditions. Fig. 6.3 shows the evolution of the cost 

function, which indicates that the calculated profit is higher during the day due to 

microalgae growth.  
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Fig. 6.3. Calculated profit from biomass sold as a bioestimulant (eMPC) 

 

The control actions calculated for the eMPC are illustrated in Fig. 6.4. The biomass 

evolution in the HRAP, in the effluent flow, and in the wastage flow are represented in 

Fig. 6.5 (without considering the noise in the measurements). As demonstrated in Fig. 6.4 

and Fig. 6.5, the eMPC is able to satisfy the constraints imposed on the manipulated 

variable and the states, respectively. Transitory violations of constraints illustrated in the 

biomass concentration in the wastage flow are attributable to discrepancies between the 

prediction model used and the actual plant values. 

 

Fig. 6.4. Control actions applied to the WWTP 
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Fig. 6.5. Biomass evolution in the HRAP (A), the effluent flow (B), and in the wastage 

flow (C) 

 

As illustrated in Fig. 6.6, the estimated, measured, and actual dissolved oxygen 

concentration values are presented. The estimation performed by the MHE is used to 

calculate the future values of the plant states. The actual plant values (considering noise 

in the measurements) of the biomass concentration in the HRAP, the effluent, and in the 

wastage stream are illustrated in Fig. 6.7. The plant (noisy) values of the dissolved TOC 

concentration, dissolved ammonium concentration, and dissolved phosphate 

concentration in the HRAP are represented in Fig. 6.8. The low values of dissolved 

components in the effluent, as well as the low values of the TSS concentration in the 

effluent flow, indicate that an adequate wastewater treatment is obtained in a concurrent 

manner with maximizing the biomass production in the WWTP.  
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Fig. 6.6. Dissolved oxygen concentration in the HRAP 

 

 

Fig. 6.7. Biomass concentration in the HRAP (A), the effluent flow (B), and the wastage 

flow (C) 
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Fig. 6.8. Dissolved TOC concentration (A), dissolved ammonium concentration (B), and 

dissolved phosphate concentration (C) in the HRAP 

 

In order to facilitate a comparison of the WWTP operation at a constant wastage flow rate 

of 15 𝑚𝑚3/𝑑𝑑, the plant simulation was conducted over the course of 65 days of the system 

operation. The flow rate value under consideration enables the accomplishment of the 

constraints specified in (6.14) to (6.16), as illustrated in Fig. 6.9. The profit obtained 

during the period between days 50 and 65 is illustrated in Fig. 6.10. A comparison of Fig. 

6.3 and Fig. 6.10 demonstrates the merits of operating the WWTP according to an eMPC 

control strategy. 
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Fig. 6.9. Biomass evolution in the HRAP (A), the effluent flow (B), and in the wastage 

flow (C) under constant wastage flow rate 

 

Fig. 6.10. Calculated profit from biomass sold as a bioestimulant (constant wastage flow 

rate) 
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6.4. Conclusions 

This chapter proposes the utilization of an economic predictive controller for a 

microalgae-based wastewater treatment plant with biomass harvesting. The hypothetical 

wastewater treatment plant under consideration includes a sedimentation stage in order to 

concentrate the microalgae biomass. The eMPC was conceived with the objective of 

maximizing the financial gain derived from biomass sales, despite the inherent 

uncertainties associated with the process. The predictive controller leverages the 

estimated variables provided by the MHE algorithm in the model to predict the future 

evolution of the system and to calculate the future control actions. The findings revealed 

that the profits obtained under the eMPC operation strategy were superior to those 

obtained under constant operational values, thereby demonstrating the merits of 

employing optimization strategies in WWTPs. 
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7. Final conclusions and future work 

7.1. Final conclusions 

This thesis deals with the modeling of anoxic-aerobic photobioreactors configurations for 

microalgae-bacteria based wastewater treatment, as well as with the optimization of the 

operation of WWTPs by means of advanced control strategies. In order to address the 

challenge posed by the scarcity of online measurements in microalgae-based wastewater 

treatment plants, a moving horizon estimator has been proposed. The estimation provided 

by the MHE was utilized to implement an eMPC in a hypothetical industrial wastewater 

treatment plant with microalgae and bacteria. The following list enumerates the primary 

contributions: 

• The modeling of anoxic-aerobic algal-bacterial photobioreactor configurations 

with biomass recycling. A model was developed to simulate the continuous 

operation of the integrated system, encompassing all components of the plant, 

including the open photobioreactor, the enclosed anoxic reactor, and the secondary 

settler. This model enabled the simulation of the entire system, thereby providing 

a comprehensive representation of the plant's functionality. A sensitivity analysis 

was conducted to ascertain the most pertinent parameters of the model for 

estimation. Parameter estimation was conducted using a robust estimator in order 

to address the uncertainties imposed by unreliable measurements. The simulation 

results closely match with the experimental data, thereby further validating the 

model's accuracy and its capacity to assess the performance of anoxic-aerobic 

configurations under diverse scenarios. The results of the modelling and 

parameter estimation in an anoxic aerobic configuration treating different 

dilutions of digestate were presented in the paper: “Parameter estimation in 

anoxic aerobic algal-bacterial photobioreactor devoted to carbon and nutrient 

removal. Algal Research, Volume 86, March 2025, Ref. 103917. ISSN 2211-9264. 

https://doi.org/10.1016/j.algal.2025.103917.” 

- The development of a methodology for parameter estimation in biological 

systems. The proposed methodology addresses a series of optimization problems 

of escalating complexity, enabling the estimation of model parameters in a gradual 

manner while circumventing convergence issues. The proposed methodology has 

been applied to the problem of parameter estimation in an anoxic-aerobic algal 

https://doi.org/10.1016/j.algal.2025.103917
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bacterial photobioreactor configuration for domestic wastewater treatment. The 

methodology was presented in the contribution: “Parameter estimation approach 

applied to microalgae-bacteria photobioreactor, in: COMPUTER-AIDED 

CHEMICAL ENGINEERING, 52 - PROCEEDINGS OF THE 33rd European 

Symposium on Computer Aided Process Engineering (ESCAPE33), vol. 1, 

https://doi.org/10.1016/B978-0-443-15274-0.50115-3.” 

• The development of a library of components for the simulation of wastewater 

treatment plants based on microalgae-bacteria consortia. This library is composed 

of diverse components that can be interconnected, thereby enabling the simulation 

of various configurations of wastewater treatment plants with microalgae and 

bacteria. This contribution was presented in the congress communication: 

“Librería para sistemas de tratamiento de aguas residuales con microalgas y 

bacterias. XLIII Jornadas de Automática: libro de actas. 7-9 de septiembre de 

2022, Logroño, La Rioja, España, pp. 493-499. A Coruña: Universidade da 

Coruña, Servizo de Publicacións, 2022. XXI, 1075 p. ISBN: 978-84-9749-841-8. 

DOI: https://doi.org/10.17979/spudc.9788497498418.” 

• The implementation of algorithms for real-time estimation of unknown and 

unmeasured variables. A state estimator based on the MHE algorithm was 

proposed to estimate unmeasured states, parameters, and model uncertainties in 

cases when the measurements are not available at uniform time periods. The 

present study proposes the utilization of MHE technique for an industrial 

microalgae-based wastewater treatment process, with a focus on the estimation of 

multiple states and parameters concurrently to evaluate the effluent water quality. 

The simulation results demonstrate the efficacy of the MHE approach in online 

estimation of the most relevant variables of a wastewater treatment process, even 

in the presence of noisy measurements, model inaccuracies, varying 

environmental conditions, and multi-rate measurements. The main results 

obtained during this stage of the research were incorporated into the paper: 

“Moving horizon estimation in microalgae-bacteria based wastewater treatment 

using online and analytical multi-rate measurements. Algal Research, Volume 91, 

October 2025, Ref. 104338. ISSN 2211-9264. 

https://doi.org/10.1016/j.algal.2025.104338.” 

https://doi.org/10.1016/B978-0-443-15274-0.50115-3
https://doi.org/10.17979/spudc.9788497498418
https://doi.org/10.1016/j.algal.2025.104338
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• The design of an economic predictive controller for a microalgae-based 

wastewater treatment plant with biomass harvesting. The development of the 

eMPC was driven by the objective of optimizing biomass yield to ensure 

maximum profit from biomass sales as a bioestimulant. The predictive controller 

utilizes the estimated variables provided by the MHE algorithm in the model to 

predict the future evolution of the system and to calculate the future control 

actions. The sequence of future control actions is calculated using an optimization 

procedure that aims to minimize future errors with respect to the desired operating 

points of the plant, while respecting its operational constraints. 

• The design of a laboratory-scale microalgae-bacteria wastewater treatment plant 

with an SCADA system that allows the online monitoring of the process, and the 

implementation of state estimators and control strategies. 

These results substantiate the possibility of developing models capable of simulating a 

range of microalgae–bacteria-based WWTP configurations, as well as using these models 

to support decision-making in process operations. Likewise, the findings demonstrate that 

the application of appropriate modeling and optimization techniques enables the real-time 

estimation of unmeasurable variables, which is crucial for the effective operation and 

optimization of wastewater treatment plants. 

 

7.2. Future Work 

Future research on this topic will focus on: 

• Testing alternative discretization techniques, such as orthogonal collocation, in 

order to enhance computational performance while preserving solution accuracy 

and stability. 

• The application of the Modifier Adaptation algorithms to MPC control in 

wastewater treatment processes with microalgae and bacteria. Due to the daily 

and seasonal variability that occurs in systems based on microalgae and bacteria, 

in the future, we intend to incorporate Modifier Adaptation techniques into the 

eMPC that will allow the problem to be adapted to the changes caused by this 

variability, thereby ensuring that the optimal actions calculated are not affected by 

the use of an incorrect model. 
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• Testing proposed estimation algorithms and control strategies in a real wastewater 

treatment plant with microalgae and bacteria. 
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Appendices 

Appendix 1. Parameters used in the photobioreactor and anoxic reactor model 

Table A1.1. Matrix of stoichiometric parameters 
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ρ1 v1,1    v5,1   v8,1 v9,1 v10,1    v14,1      

ρ2   v3,2  v5,2   v8,2 v9,2 v10,2    v14,2      

ρ3 v1,3    v5,3   v8,3 v9,3 v10,3    v14,3      

ρ4 v1,4    v5,4   v8,4 v9,4 v10,4    v14,4 v15,4 v16,4    

ρ5 v1,5    v5,5   v8,5 v9,5 v10,5  v12,5     v17,5   

ρ6   v3,6  v5,6   v8,6 v9,6 v10,6  v12,6     v17,6   
ρ7    v4,7 v5,7   v8,7  v10,7  v12,7     v17,7   

ρ8   v3,8  v5,8   v8,8  v10,8  v12,8     v17,8   

ρ9 v1,9    v5,9   v8,9 v9,9 v10,9       v17,9   

ρ10 v1,10  v3,10 v4,10 v5,10   v8,10  v10,10       v17,10   

ρ11               v15,11 v16,11 v17,11   

ρ12 v1,12   v4,12 v5,12   v8,12 v9,12 v10,12        v18,12  

ρ13   v3,13 v4,13 v5,13   v8,13 v9,13 v10,13         v19,13 

ρ14 v1,14    v5,14   v8,14 v9,14 v10,14        v18,14  

ρ15 v1,15    v5,15   v8,15 v9,15 v10,15         v19,15 

ρ16               v15,16 v16,16  v18,16  

ρ17               v15,17 v16,17   v19,17 



 
 
 

ρ18 v1,18    v5,18   v8,18  v10,18  v12,18 v13,18  v15,18     

ρ19     v5,19 v6,19    v10,19          

ρ20      v6,20 v7,20   v10,20          

ρ21 v1,21 v2,21        v10,21          

ρ22          v10,22 v11,22         

ρ23         v9,23           

ρ24     v5,24               

ρ25  v2,25                  

 

 



 
 
 

Table A1.2. Values of biokinetic, chemical and physic parameters 

Parameters Description Value Unit Source 

Microalgae (XALG) 

μALG Maximum growth rate of 
XALG 0.7 d-1 Estimated  

kresp,ALG Endogenous respiration 
constant 0.1 d-1 (Reichert et al., 2001) 

kdeath,ALG Decay constant 0.05 d-1 Estimated 

KC,ALG Saturation constant of XALG 
on SCO2 4E-3 gC m-3 (Novak and Brune, 1985) 

ICO2,ALG Inhibition constant of XALG 
on SCO2 120 gC m-3 (Silva and Pirt, 1984) 

KN,ALG Saturation constant of XALG 
on nitrogen  0.1 gN m-3 (Reichert et al., 2001) 

KO2,ALG Saturation constant of XALG 
on SO2 0.2 gO2 m-3 (Reichert et al., 2001) 

KP,ALG Saturation constant of XALG 
for SHPO4 0.02 gP m-3 (Reichert et al., 2001) 

Heterotrophic bacteria (XH) 
μH Maximum growth rate of XH 2.5 d-1 Estimated 

ηH Anoxic reduction factor for 
XH 0.6 − (Gujer et al., 1999) 

kresp,H Endogenous respiration rate 
of XH 0.3 d-1 (Reichert et al., 2001) 

KO2,H Saturation constant of XH for 
SO2 0.2 gO2 m-3 (Reichert et al., 2001) 

KN,H Saturation constant of XH for 
SN 0.2 gN m-3 (Reichert et al., 2001) 

KS,H Saturation constant of XH for 
SS 20 

gCOD 
m-3 (Henze et al., 2000) 

KNO3,H,anox 
Saturation constant of XH for 
SNO3  0.5 gN m-3 (Reichert et al., 2001) 

KNO2,H,anox 
Saturation constant of XH for 
SNO2 0.2 gN m-3 (Reichert et al., 2001) 

KP,H Saturation constant of XH for 
SHPO4 0.02 gP m-3 (Reichert et al., 2001) 

kdeath,H Decay constant of XH 0.8 d-1 Estimated 
Autotrophic bacteria: ammonia oxidizing bacteria (XAOB) and nitrite oxidizing bacteria (XNOB) 

μAOB Maximum growth rate of 
XAOB 0.63 d-1 (Casagli et al., 2021) 

μNOB Maximum growth rate of 
XNOB 1.1 d-1 (Casagli et al., 2021) 

KO2,AOB/KO2,NOB Saturation constant of XAOB / 
XNOB for SO2 0.5 gO2 m-3 (Reichert et al., 2001) 

KNH4,AOB Saturation constant of XAOB 
on SNH4 0.5 gN m-3 (Reichert et al., 2001) 

KI,NH4 Ammonia inhibition constant 
of XNOB 5.0 gN m-3 (Henze et al., 2000) 



 
 
 

KNO2,NOB Saturation constant of XNOB 
for SNO2 0.5 gN m-3 (Henze et al., 2000) 

KC,AOB/KC,NOB Saturation constant of XAOB / 
XNOB for SHCO3  0.5 gC m-3 (Henze et al., 2000) 

KP,AOB/KP,NOB Saturation constant of XAOB / 
XNOB for SHPO4 0.02 gP m-3 (Reichert et al., 2001) 

kresp,AOB/kresp,NOB Endogenous respiration rate 
of XAOB /XNOB 0.05 d-1 (Reichert et al., 2001) 

kdeath,AOB Decay constant of XAOB 0.1 d-1 (Casagli et al., 2021) 
kdeath,NOB Decay constant of XNOB 0.08 d-1 (Casagli et al., 2021) 
Hydrolysis 

kHYD Hydrolysis rate constant 3.0 d-1 (Reichert et al., 2001) 

Photorespiration factor of microalgae 

KPR Inhibition constant of 
photorespiration 0.03 − 

(Solimeno, Samsó and 
García, 2016) 

τ 
Excess of SO2 coefficient 3.5 − 

(Fernández, Acién, 
Berenguel, Guzmán, et al., 
2014) 

SO2SAT 
SO2 air saturation  9.07 gO2 m-3 

(Fernández, Acién, 
Berenguel, Guzmán, et al., 
2014) 

Light factor of microalgae 

α Activation rate 
1.9E-
3 

(µE m-

2)-1 (Wu and Merchuk, 2001) 

β Inhibition rate 
5.7E-
7 

(µE m-

2)-1 (Wu and Merchuk, 2001) 
γ Production rate 0.14 s-1 (Wu and Merchuk, 2001) 

δ Recovery rate  
4.7E-
4 s-1 (Wu and Merchuk, 2001) 

KI 
Biomass extinction 
coefficient 0.07 m2 g-1 (Molina Grima et al., 1994) 

pH cardinal factor 

pHALG,max Maximum pH value for XALG 12.3 − 
(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHALG,min Minimum pH value for XALG 4 − 
(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHALG,opt Optimum pH value for XALG 8.8 − 
(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHH,max Maximum pH value for XH 11.2 − 
(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHH,min Minimum pH value for XH 2 − 
(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHH,opt Optimum pH value for XH 8.2 − 
(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHN,max 
Maximum pH value for XAOB 
and XNOB 11 − 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHN,min Minimum pH value for XAOB 
and XNOB 2 − 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

pHN,opt 
Optimum pH value for XAOB 
and XNOB 7 − Experimental 

 



 
 
 

Temperature cardinal factor 

TALG,max 
Maximum temperature value 
for XALG 46 °C 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

TALG,min Minimum temperature value 
for XALG 7 °C 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

TALG,opt Optimum temperature value 
for XALG 26 °C 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

TN,max 
Maximum temperature value 
for XAOB and XNOB 40 °C 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

TN,min 
Minimum temperature value 
for XAOB  
and XNOB 13 °C 

(Solimeno, Gómez-Serrano 
and Acién, 2019b) 

TN,opt 
Optimum temperature value 
for XAOB  
and XNOB 31 °C Experimental 

Heterotrophic bacteria thermal factor 

TH,opt 
Optimum temperature value 
for XH 20 °C (Reichert et al., 2001) 

θ Temperature coefficient for 
XH 1.07  (Von Sperling, 2007) 

Parameters Equations 

Chemical equilibrium  CO2  ↔ HCO3
− Keq,1 = 1017.843− 3404.71

273.15+T−0.032786(273.15+T) 

Chemical equilibrium  HCO3
−  ↔ CO3

2− Keq,2 = 109.494− 2902.39
273.15+T−0.02379(273.15+T) 

Chemical equilibrium  NH4
+  ↔ NH3  Keq,3 = 102.891− 2727

(273.15+T) 

Chemical equilibrium  H+ ↔ OH− Keq,w = 10−
4470.99
273.15+T+12.0875−0.01706(273.15+T) 

Kinetics parameters  

keq,1 Dissociation constant of CO2 ↔ HCO3
−. 100000 d-1 

(Reichert et al., 
2001) 

keq,2 Dissociation constant of HCO3
− ↔ CO3

2− 10000 d-1 
(Reichert et al., 
2001) 

keq,3 Dissociation constant of NH4
+ ↔ NH3 10000 d-1 

(Reichert et al., 
2001) 

keq,w Dissociation constant of H+ ↔ OH− 10000 g m-3 d-1 
(Reichert et al., 
2001) 

Transfer of gases to the atmosphere 
Kla,O2 Mass transfer coefficient for SO2 0.62 d-1 Estimated 
Kla,CO2 Mass transfer coefficient for SCO2 4.94 d-1 Estimated 
Kla,NH3 Mass transfer coefficient for SNH3 1 d-1 Estimated 

  



 
 
 

Table A1.3. Values of fractions of carbon, hydrogen, oxygen, and nitrogen in 

microalgae and bacteria biomass 

Parameters Description Value Unit Source 

Fractions of microalgal biomass (XALG) 
iC,ALG Fraction of carbon in microalgae 0.387 gC gCOD-1 (Reichert et al., 2001) 
iH,ALG Fraction of hydrogen in microalgae 0.075 gH gCOD-1 (Reichert et al., 2001) 
iO,ALG Fraction of oxygen in microalgae 0.269 gO2 gCOD-1 (Reichert et al., 2001) 
iN,ALG Fraction of nitrogen in microalgae 0.065 gN gCOD-1 (Reichert et al., 2001) 
iP,ALG Fraction of phosphorus in microalgae 0.01 gP gCOD-1 (Reichert et al., 2001) 
Fractions of bacteria biomass (XH, XAOB, XNOB) 
iC,BM Fraction of carbon in bacteria 0.323 gC gCOD-1 (Reichert et al., 2001) 
iH,BM Fraction of hydrogen in bacteria 0.060 gH gCOD-1 (Reichert et al., 2001) 
iO,BM Fraction of oxygen in bacteria 0.077 gO2 gCOD-1 (Reichert et al., 2001) 
iN,BM Fraction of nitrogen in bacteria 0.075 gN gCOD-1 (Reichert et al., 2001) 
iP,BM Fraction of phosphorus in bacteria 0.018 gP gCOD-1 (Reichert et al., 2001) 
Fractions of slowly biodegradable substrates (XS) 
iC,XS Fraction of carbon in XS 0.318 gC gCOD-1 (Reichert et al., 2001) 
iH,XS Fraction of hydrogen in XS 0.045 gH gCOD-1 (Reichert et al., 2001) 
iO,XS Fraction of oxygen in XS 0.077 gO2 gCOD-1 (Reichert et al., 2001) 
iN,XS Fraction of nitrogen in XS 0.034 gN gCOD-1 (Reichert et al., 2001) 
iP,XS Fraction of phosphorus in XS 0.005 gP gCOD-1 (Reichert et al., 2001) 
Fractions of inert particulate organics (XI) 
iC,XI Fraction of carbon in XI 0.327 gC gCOD-1 (Reichert et al., 2001) 
iH,XI Fraction of hydrogen in XI 0.037 gH gCOD-1 (Reichert et al., 2001) 

iO,XI Fraction of oxygen in XI 0.075 gO2 gCOD-1 
(Reichert et al., 
2001) 

iN,XI Fraction of nitrogen in XI 0.016 gN gCOD-1 (Reichert et al., 2001) 
iP,XI Fraction of phosphorus in XI 0.005 gP gCOD-1 (Reichert et al., 2001) 
Fractions of readily biodegradable substrates (SS) 
iC,SS Fraction of carbon in SS 0.318 gC gCOD-1 (Reichert et al., 2001) 
iH,SS Fraction of hydrogen in SS 0.045 gH gCOD-1 (Reichert et al., 2001) 
iO,SS Fraction of oxygen in SS 0.078 gO2 gCOD-1 (Reichert et al., 2001) 
iN,SS Fraction of nitrogen in SS 0.034 gN gCOD-1 (Reichert et al., 2001) 
iP,SS Fraction of phosphorus in SS 0.005 gP gCOD-1 (Reichert et al., 2001) 
Fractions of soluble inert organics (SI) 
iC,SI Fraction of carbon in SI 0.327 gC gCOD-1 (Reichert et al., 2001) 

iH,SI Fraction of hydrogen in SI 0.037 gH gCOD-1 
(Reichert et al., 
2001) 

iO,SI Fraction of oxygen in SI 0.075 gO2 gCOD-1 (Reichert et al., 2001) 
iN,SI Fraction of nitrogen in SI 0.016 gN gCOD-1 (Reichert et al., 2001) 



 
 
 

iP,SI Fraction of phosphorus in SI 0.005 gP gCOD-1 (Reichert et al., 2001) 
Fractions of inert produced by biomass degradation 

fALG Production of XI in endogenous 
respiration of XALG 0.1 

gCOD 
gCOD-1 (Sah et al., 2011) 

fXI 
Production of XI in endogenous 
respiration of XH 0.1 

gCOD 
gCOD-1 (Sah et al., 2011) 

fSI Production of SI in hydrolysis of XS 0 
gCOD 
gCOD-1 (Henze et al., 2000) 

Yield of biomass 

YALG Yield of XALG 0.62 
gCOD 
gCOD-1 (Reichert et al., 2001) 

YH Yield of XH on SO2  0.6 
gCOD 
gCOD-1 (Reichert et al., 2001) 

YH,NO3 Yield of XH on SNO3  0.5 
gCOD 
gCOD-1 (Reichert et al., 2001) 

YH,NO2 Yield of XH on SNO2  0.3 
gCOD 
gCOD-1 (Reichert et al., 2001) 

YAOB Yield of XAOB 0.13 
gCOD 
gCOD-1 (Reichert et al., 2001) 

YNOB Yield of XNOB 0.03 
gCOD 
gCOD-1 (Reichert et al., 2001) 

KHYD Hydrolysis saturation constant 1 
gCOD 
gCOD-1 (Reichert et al., 2001) 

  



 
 
 

Table A1.4. Mathematical expressions of the stoichiometric coefficients 

Stoichiometric coefficients Unit 

Growth of XALG on SNH4  

v1,1 = −iN,ALG gN gCOD-1 

v5,1 = −iC,ALG gC gCOD-1 

v8,1 = −iP,ALG gP gCOD-1 

v9,1 = 8iC,ALG 3⁄ + 8iH,ALG − iO,ALG − 12iN,ALG 7⁄ + 40iP,ALG 31⁄  gO2 gCOD-1 

v10,1 = iN,ALG 14⁄ − 2iP,ALG 31⁄  gH gCOD-1 

v14,1 = 1 gCOD gCOD-1 
Growth of XALG on SNO3 

v3,2 = −iN,ALG gN gCOD-1 

v5,2 = −iC,ALG gC gCOD-1 

v8,2 = −iP,ALG gP gCOD-1 

v9,2 = 8iC,ALG 3⁄ + 8iH,ALG − iO,ALG + 20iN,ALG 7⁄ + 40iP,ALG 31⁄  gO2 gCOD-1 

v10,2 = − iN,ALG 14⁄ − 2iP,ALG 31⁄  gH gCOD-1 

v14,2 = 1 gCOD gCOD-1 
Endogenous respiration of XALG 

v1,3 = iN,ALG − fALG iN,XI gN gCOD-1 

v5,3 = iC,ALG  − fALG iC,XI  gC gCOD-1 

v8,3 = iP,ALG  − fALG iP,XI gP gCOD-1 

v9,3 = �iO,ALG − fALG iO,XI� − 8�iH,ALG  − fALG iH,XI� − 8 3⁄ �iC,ALG − fALG iC,XI�  

            + 12 7⁄ �iN,ALG  − fALG iN,XI�  − 40 31⁄ �iP,ALG  − fALG iP,XI�  gO2 gCOD-1 

v10,3 = − 1 14⁄ �iN,ALG − fALG iN,XI� + 2 31⁄ �iP,ALG  − fALG iP,XI� gH gCOD-1 

v14,3 = −1 gCOD gCOD-1 
Decay of XALG 

v1,4 = iN,ALG − (1 − fALG)YALG iN,XS−fALGYALG iN,ALG gN gCOD-1 

v5,4 = iC,ALG − (1 − fALG)YALG iC,XS−fALGYALG iC,ALG gC gCOD-1 

v8,4 = iP,ALG − (1 − fALG)YALG iP,XS−fALGYALG iP,ALG gP gCOD-1 

v9,4 = �iO,ALG − fALG iO,XI� − 8�iH,ALG  − fALG iH,XI� − 8 3⁄ �iC,ALG − fALG iC,XI�  

            + 12 7⁄ �iN,ALG  − fALG iN,XI�  − 40 31⁄ �iP,ALG  − fALG iP,XI� gO2 gCOD-1 

v10,4 = −1 14⁄ �iN,ALG (1 − fALG)YALG iN,XS−fALGYALG iN,XI�  
              + 2 31⁄ �iP,ALG (1 − fALG)YALG iP,XS−fALGYALG iP,XI� gH gCOD-1 

v14,4 = −1 gCOD gCOD-1 

v15,4 = (1 − fALG)YALG gCOD gCOD-1 

v16,4 = fALGYALG gCOD gCOD-1 
Aerobic growth of XH on SNH4 



 
 
 

v1,5 = iN,SS/YH − iN,BM gN gCOD-1 

v5,5 = iC,SS/YH − iC,BM gC gCOD-1 

v8,5 = iP,SS/YH − iP,BM gP gCOD-1 

v9,5 = −(1 − YH)/ YH gO2 gCOD-1 

v10,5 = − 1 14⁄ �iN,SS YH⁄ − iN,BM� + 2 31⁄ �iP,SS YH⁄ − iP,BM� gH gCOD-1 

v12,5 = −1/YH gCOD gCOD-1 

v17,5 = 1 gCOD gCOD-1 
Aerobic growth of XH on SNO3 

v3,6 = iN,SS/YH − iN,BM gN gCOD-1 

v5,6 = iC,SS YH⁄ − iC,BM gC gCOD-1 

v8,6 = �iP,SS YH⁄ − iP,BM� gP gCOD-1 

v9,6 = −(1 − YH)/ YH gO2 gCOD-1 

v10,6 = − 1 14⁄ �iN,SS YH⁄ − iN,BM� + 2 31⁄ �iP,SS YH⁄ − iP,BM� gH gCOD-1 

v12,6 = − 1 YH⁄  gCOD gCOD-1 

v17,6 = 1 gCOD gCOD-1 
Anoxic growth of XH on SNO2 

v4,7 = −(1 − YH,NO2)/(1.71YH,NO2)  gN gCOD-1 

v5,7 = �iC,SS YH,NO2⁄ − iC,BM� gC gCOD-1 

v8,7 = �iP,SS YH,NO2⁄ − iP,BM� gP gCOD-1 

v10,7 = 1 24⁄ �iO,SS YH,NO2⁄ − iO,BM� − 1 3⁄ �iH,SS YH,NO2⁄ − iH,BM� 

          −1 9⁄ �iC,SS YH,NO2⁄ − iC,BM� + 1 93⁄ �iP,SS YH,NO2⁄ − iP,BM�               gH gCOD-1 

v12,7 = − 1 YH,NO2⁄  gCOD gCOD-1 

v17,7 = 1 gCOD gCOD-1 
Anoxic growth of XH on SNO3 

v3,8 = −(1 − YH,NO3)/(1.14YH,NO3)  gN gCOD-1 

v5,8 = �iC,SS YH,,NO3⁄ − iC,BM� gC gCOD-1 

v8,8 = �iP,SS YH,NO3⁄ − iP,BM� gP gCOD-1 

v10,8 = 1 14⁄ �iN,SS YH,NO3⁄ − iN,BM� + 2 31⁄ �iP,SS YH,NO3⁄ − iP,BM� gH gCOD-1 

v12,8 = − 1 YH,NO3⁄  gCOD gCOD-1 

v17,8 = 1 gCOD gCOD-1 
Aerobic endogenous respiration of XH 

v1,9 = iN,BM − fXI iN,XI gN gCOD-1 

v5,9 = iC,BM − fX1 iC,XI gC gCOD-1 

v8,9 = iP,BM − fX1 iP,XI gP gCOD-1 

v9,9 = −(1 − fX1)/2 gO2 gCOD-1 

v10,9 = − 1 14⁄ �iN,BM − fXI iN,XI� + 2 31⁄ �iP,BM − fXI iP,XI� gH gCOD-1 



 
 
 

v17,9 = −1 gCOD gCOD-1 
Anoxic endogenous respiration of XH 

v1,10 = iN,BM − fXI iN,XI gN gCOD-1 

v3,10 = (fXI − 1)/1.14 gN gCOD-1 

v4,10 = (1 − fXI)/1.14 gN gCOD-1 

v5,10 = iC,BM − fXIiC,XI gC gCOD-1 

v8,10 = iP,BM − fXIiP,XI gP gCOD-1 

v10,10 = 1 40⁄ �iO,BM − fXIiO,XI� − 1 5⁄ �iH,BM − fXIiH,XI�
− 1 15⁄ �iC,BM − fXIiC,XI� 

          + 1 35⁄ �iN,BM − fXIiN,XI�  − 1 31⁄ �iP,BM − fXIiP,XI�               gH gCOD-1 

v17,10 = −1 gCOD gCOD-1 
Decay of XH 

v15,11 = (1 − fXI)YH gCOD gCOD-1 

v16,11 = fXIYH gCOD gCOD-1 

v17,11 = −1 gCOD gCOD-1 
Growth of ammonia oxidizing bacteria (XAOB) 

v1,12 = −1 YAOB⁄ − iN,BM gN gCOD-1 

v4,12 = 1 YAOB⁄ − iN,BM gN gCOD-1 

v5,12 = −iC,BM gC gCOD-1 

v8,12 = −iP,BM gP gCOD-1 

v9,12 = (1 − 3.43 YAOB)⁄  gO2 gCOD-1 

v10,12 = 2 14YAOB⁄ − 1 14⁄ �iN,BM� − 2 31⁄ �iP,BM� gH gCOD-1 

v18,12 = 1 gCOD gCOD-1 
Growth of nitrite oxidizing bacteria (XNOB) 

v3,13 = 1 YNOB⁄ − iN,BM gN gCOD-1 

v4,13 = − 1 YNOB⁄  gN gCOD-1 

v5,13 = −iC,BM gC gCOD-1 

v8,13 = −iP,BM gP gCOD-1 

v9,13 = (1 − 1.14 YNOB⁄ ) gO2 gCOD-1 

v10,13 = − 1 14⁄ �iN,BM� − 2 31⁄ �iP,BM� gH gCOD-1 

v19,13 = 1 gCOD gCOD-1 
Endogenous respiration of XAOB 

v1,14 = iN,BM − fXI iN,XI gN gCOD-1 

v5,14 = iC,BM − fXIiC,XI gC gCOD-1 

v8,14 = iP,BM − fXIiP,XI gP gCOD-1 

v9,14 = −(1 − fXI) gO2 gCOD-1 



 
 
 

v10,14 = −1 14⁄ �iN,BM − fXI iN,XI� + 2 31⁄ �iP,BM − fXI iP,XI� gH gCOD-1 

v18,14 = −1 gCOD gCOD-1 
Endogenous respiration of XNOB 

v1,15 = iN,BM − fXI iN,XI gN gCOD-1 

v5,15 = iC,BM − fXIiC,XI gC gCOD-1 

v8,15 = iP,BM − fXIiP,XI gP gCOD-1 

v9,15 = −(1 − fXI) gO2 gCOD-1 

v10,15 = −1 14⁄ �iN,BM − fXI iN,XI� + 2 31⁄ �iP,BM − fXI iP,XI� gH gCOD-1 

v19,15 = −1 gCOD gCOD-1 
Decay of XAOB and XNOB 

v15,16 = (1 − fXI )YAOB gCOD gCOD-1 

v16,16 = fXIYAOB gCOD gCOD-1 

v18,16 = −1 gCOD gCOD-1 

v15,17 = (1 − fXI )YNOB gCOD gCOD-1 

v16,17 = fXIYNOB gCOD gCOD-1 

v19,17 = −1 gCOD gCOD-1 
Hydrolysis 

v1,18 = −(1 − fSI)iN,SS − fSIiN,SI + iN,XS gN gCOD-1 

v5,18 = iC,XS − (1 − fSI)YHYDiC,SS − fSIYHYDiC,SI gC gCOD-1 

v8,18 = iP,XS − (1 − fSI)YHYDiP,SS − fI,XSYHYDi
P,SI

 gP gCOD-1 

v10,18 = − 1 14⁄ �iN,XS − (1 − fSI)YHYDiN,SS − fSIYHYDiN,SI� 

                + 2 31⁄ �iP,XS − (1 − fSI)YHYDiP,SS − fSIYHYDiP,SI� gH gCOD-1 

v12,18 = (1 − fSI)YHYD gCOD gCOD-1 

v13,18 = (fSI)YHYD gCOD gCOD-1 

v15,18 = −1 gCOD gCOD-1 
Chemical equilibria 𝐂𝐂𝐎𝐎𝟐𝟐  ↔ 𝐇𝐇𝐇𝐇𝐎𝐎𝟑𝟑

− 

v5,19 = −1 gC gC-1 

v6,19 = 1 gC gC-1 

v10,19 = 1 12⁄  gH gC-1 

Chemical equilibria  𝐇𝐇𝐇𝐇𝐎𝐎𝟑𝟑
−  ↔ 𝐂𝐂𝐎𝐎𝟑𝟑

𝟐𝟐− 

v6,20 = −1 gC gC-1 

v7,20 = 1 gC gC-1 

v10,20 = 1 12⁄  gH gC-1 
Chemical equilibria 𝐍𝐍𝐇𝐇𝟒𝟒

+  ↔ 𝐍𝐍𝐇𝐇𝟑𝟑 

v1,21 = −1 gN gN-1 

v2,21 = 1 gN gN-1 



 
 
 

v10,21 = 1 14⁄  gH gN-1 

Chemical equilibria 𝐇𝐇+ ↔ 𝐎𝐎𝐇𝐇− 

v10,22 = 1 gH gH-1 

v11,22 = 1 gH gH-1 
Oxygen transfer to the atmosphere 

v9,23 = 1 − 

Carbon dioxide transfer to the atmosphere 

v5,24 = 1 − 

Ammonia transfer to the atmosphere 

v2,25 = 1 − 
  



 
 
 

Appendix 2. Initial values for simulation (Section 4.1.2) 

Table A2.1. Initial concentrations of components in the anoxic reactor and 

photobioreactor 

Component 
 

Description 
 

Value Units 

Photobioreactor Anoxic 
Reactor 

XALG Microalgae biomass 201.3 (1) 422.4 (1) mgTSS L-1 

XH Heterotrophic bacteria 68.25 (2) 143.22 (2) mgTSS L-1 

XAOB Ammonium oxidizing 
bacteria 

0.2 (3) 0.43 (3) mgTSS L-1 

XNOB Nitrite oxidizing bacteria 2.04 (3) 4.29 (3) mgTSS L-1 

XS Slowly biodegradable 
particulate organic matter 

283.64 (2) 595.17 (2) mgTSS L-1 

XI Inert soluble organic 
matter 

56.81 (2) 119.21 (2) mgTSS L-1 

SNH4 Ammonium nitrogen 2.09 18.1 mgN-NH4 L-1 

SNH3 Ammonia nitrogen 1 1 mgN-NH3 L-1 

SNO3 Nitrate nitrogen 0 0 mgN-NO3 L-1 

SNO2 Nitrite nitrogen 0.7 2.6 mgN-NO2 L-1 

SCO2 Dissolved carbon dioxide 1 2 mgC-CO2 L-1 

SHCO3 Bicarbonate 163.1 164 mgC-HCO3 L-1 

SCO3 Carbonate 9 1.4 mgC-CO3 L-1 

SPO4 Phosphate phosphorus 0 5.4 mgP-PO4 L-1 

SO2 Dissolved oxygen 1.48 0.09 mgO2 L-1 

SH Hydrogen ions 6.07e-07 2.47e-06 mgH L-1 

SOH Hydroxide ions 0.28 0.7e-01 mgH-OH L-1 

SS Readily biodegradable 
soluble organic matter 

8.74 (4) 39.07 (4) mgCOD L-1 

SI Inert soluble organic 
matter 

50 (4) 70 (4) mgCOD L-1 

Photosynthetic model  

State Description Value Units 

x1 Microalgae in open state  1 - 

x2 Microalgae in activated state  0 - 

x3 Microalgae in inhibited state  0 - 



 
 
 

(1) Both anoxic and aerobic reactor were inoculated with a microalgae- bacteria consortia in 

which the third part of the total biomass corresponding to microalgae biomass. 
(2) The composition of the activated sludge biomass (corresponding with 2/3 of the total 

biomass) was assumed composed of: 16.7% of XH, 13.7% of XI, and 69.05% of XS 

(considering the composition similar to the adopted by the ASM2). 
(3) Since the facility was a short set-up period (previous to data recorded), was assumed a 

nitrifying bacteria composition of 0.05% of XAOB and 0.5% of XNOB. 
(4) Values of SI and SS were estimated according to COD tests. 

 

Table A2.2. Initial values of biomass concentration in the settler 

Component Description Value Units 

TSSeffluent Total suspended solids concentration in the top layer  70 mgTSS L-1 

TSS2 Total suspended solids concentration in layer 2 80 mgTSS L-1 

TSS3 Total suspended solids concentration in layer 3  100 mgTSS L-1 

TSS4 Total suspended solids concentration in layer 4  130 mgTSS L-1 

TSS5 Total suspended solids concentration in layer 5 200 mgTSS L-1 

TSS6 Total suspended solids concentration in layer 6 600 mgTSS L-1 

TSS7 Total suspended solids concentration in layer 7 (feeding 
layer) 

700 mgTSS L-1 

TSS8 Total suspended solids concentration in layer 8 1200 mgTSS L-1 

TSS9 Total suspended solids concentration in layer 9 1700 mgTSS L-1 

TSSwastage Total suspended solids concentration in the bottom layer 2250 mgTSS L-1 

 

  



 
 
 

Appendix 3. Initial values for simulation (Section 5.4) 

Table A3.1. Initial concentrations of components in the HRAP 

Component Description Value Units 

XALG Microalgae biomass 3550 (1) mgTSS L-1 

XH Heterotrophic bacteria 592.85 (2) mgTSS L-1 

XAOB Ammonium oxidizing bacteria 3.55 (3) mgTSS L-1 

XNOB Nitrite oxidizing bacteria 1.775 (3) mgTSS L-1 

XS Slowly biodegradable particulate organic matter 2458.375 (2) mgTSS L-1 

XI Inert soluble organic matter 493.45 (2) mgTSS L-1 

SNH4 Ammonium nitrogen 8 mgN-NH4 L-1 

SNH3 Ammonia nitrogen 0.049 mgN-NH3 L-1 

SNO3 Nitrate nitrogen 0 mgN-NO3 L-1 

SNO2 Nitrite nitrogen 0 mgN-NO2 L-1 

SCO2 Dissolved carbon dioxide 7.1 mgC-CO2 L-1 

SHCO3 Bicarbonate 42 mgC-HCO3 L-1 

SCO3 Carbonate 0.9 mgC-CO3 L-1 

SPO4 Phosphate phosphorus 7 mgP-PO4 L-1 

SO2 Dissolved oxygen 10 mgO2 L-1 

SH Hydrogen ions 9.7375e-05 mgH L-1 

SOH Hydroxide ions 0.0018 mgH-OH L-1 

SS Readily biodegradable soluble organic matter 8 (4) mgCOD L-1 

SI Inert soluble organic matter 40 (4) mgCOD L-1 

Photosynthetic model 

x1 Microalgae in open state  1 - 

x2 Microalgae in activated state  0 - 

x3 Microalgae in inhibited state  0 - 

 
(1) The HRAP was considered inoculated with 2.5 gVSS/L of microalgae consortia.  
(2) The composition of the activated sludge biomass (corresponding with 2.5 gVSS/L 

of activated sludge.) was assumed composed of: 16.7% of XH, 13.9% of XI, and 

69.25% of XS (considering the composition similar to the adopted by the ASM2 

(Henze et al., 2000)). 
(3)  A nitrifier bacteria composition of 0.1% of XAOB and 0.05% of XNOB was 

assumed. 



 
 
 

(4) Values of SI and SS were estimated according to COD tests for similar wastewater 

composition. 

 

 

Table A3.2. Initial values of biomass concentration in the settler 

Component Description Value Units 

TSSeffluent Total suspended solids concentration in the top 
layer  

100 mgTSS L-

1 
TSS2 Total suspended solids concentration in layer 2 200 mgTSS L-

1 
TSS3 Total suspended solids concentration in layer 3  300 mgTSS L-

1 
TSS4 Total suspended solids concentration in layer 4  400 mgTSS L-

1 
TSS5 Total suspended solids concentration in layer 5 500 mgTSS L-

1 
TSS6 Total suspended solids concentration in layer 6 1000 mgTSS L-

1 
TSS7 Total suspended solids concentration in layer 7 

(feeding layer) 
2000 mgTSS L-

1 
TSS8 Total suspended solids concentration in layer 8 4000 mgTSS L-

1 
TSS9 Total suspended solids concentration in layer 9 6000 mgTSS L-

1 
TSSwastage Total suspended solids concentration in the bottom 

layer 
20000 mgTSS L-

1 



 
 
 

Appendix 4. SCADA for microalgae- bacteria WWTP 

The main window of the SCADA (Fig. A4.1) is comprised of two distinct segments. The 

left side of the interface contains the “Navigation pane” buttons (labeled “A”), which 

facilitate the navigation between the various windows of the SCADA system. Indicators 

labeled as “B” allow for the visualization of the control mode in which the system is 

operating, while the button labeled “C” is used to terminate the execution of the SCADA 

program. The right side of the main window (section labeled “D”) displays the real-time 

values of the measured variables, including pH, dissolved oxygen concentration, and 

temperature, as well as the input flow to each reactor. The section labeled "E" is intended 

to provide a visual indication of the pump's operational status, thereby communicating its 

current status as either active or deactivated. Furthermore, it enables the selection of the 

channel on which each pump is connected. In the section designated “F”, the selectors fs1 

and fs2 permit the cessation of data recording or the DAQ connection, respectively, for 

each reactor. Consequently, the status of data recording (indicators fi1) and the status of 

the connection of the LabQuest Mini devices for each reactor (indicators fi2) are indicated 

on the right side of the main window. Indicators fi2 facilitate the identification of 

connection failures in LabQuest Mini devices. The objective of the selectors fs1 is to 

enable uninterrupted system functionality and data visualization during probes calibration 

or cleaning tasks. In the event that the "calibration mode" (selectors fs1) is activated, all 

SCADA functions remain operational; only the data recording of variables in the Excel 

file is suspended until the "calibration mode" is deactivated. 

The window for each reactor (Fig. A4.2) also facilitates navigation between the various 

windows of the SCADA system, as well as the selection of "calibration mode" and 

"automatic control mode." The window also displays the operational values of the 

variables (pH, dissolved oxygen, temperature, and input flow). In the event that the 

"automatic control mode" is selected, it is imperative that the set point for the dissolved 

oxygen concentration be provided, in conjunction with the parameters for the PID 

controller. 

 



 
 
 

 

 

Fig. A4.1. Main window of the SCADA 

 

 

Fig. A4.2. Reactor 1 window 

 

The "Settings" window of the SCADA (Fig. A4.3) facilitates the configuration of 

operational parameters associated with the input flow to each photobioreactor. The values 



 
 
 

of the slope of the calibration curve, which must be obtained through experimental means, 

as well as the desired input flow rate, are to be provided. Due to the limited dimensions 

of the laboratory-scale plant, fixed input flows (and, consequently, the associated voltage 

values) were selected. To achieve the desired input flow values, a mathematical 

relationship was formulated, with the variable to be modified being the time of pump 

activation. 

 

 

Fig. A4.3. Settings window of the SCADA 
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