Universidad deValladolid Escuela de Doctorado Universidad de Valladolid

PHD PROGRAMME IN INDUSTRIAL ENGINEERING

DOCTORAL THESIS:

DEVELOPMENT OF MODELING AND CONTROL
STRATEGIES IN MICROALGAE-BACTERIA
PHOTOBIOREACTORS FOR WASTEWATER

TREATMENT

Submitted by Irina Bausa Ortiz in fulfillment of the
requirements for the PhD degree by the Universidad de
Valladolid

Supervised by:
Dr. César de Prada Moraga
Dr. Radl Munoz Torre
Dra. Smaranda Podar Cristea






Agradecimientos

A mis directores de tesis César de Prada, Raul Mufioz y Smaranda Podar, por su
inestimable guia y ensefianzas durante todo el proceso. Infinitamente agradecida a César
por su dedicacion y apoyo constantes. Muchas gracias a Raul por su compromiso y guia

en cada detalle para obtener mejores resultados experimentales.

A todos los miembros del Departamento de Ingenieria de Sistemas y Automatica,
especialmente a los del grupo de investigacion “Control y Supervision de Procesos”,
muchas gracias por su calida acogida y continuo respaldo durante todo el camino. Muchas
gracias a todos los profesores del grupo y a los colaboradores externos, por su orientacién
y sus valiosas contribuciones. Gracias especialmente a Gloria y César, por guiarnos a
todos durante este camino. Muchas gracias a todos los técnicos, especialmente a Teresa
Alvarez, por su inmediata disposicion a ayudar en todo momento. A Erika Oliveira,
muchas gracias por todo el apoyo prestado y las ideas aportadas. A Carlos, José Luis,

Cristian y Suni, muchas gracias por la acogida.

A los profesores, técnicos e investigadores del Departamento de Ingenieria Quimica y
Ambiental, gracias por estar siempre disponibles para aclarar dudas y aportar soluciones.
Quisiera agradecer a todos los investigadores del Instituto de Procesos Sostenibles,
especialmente a los del grupo de microalgas, por su inestimable ayuda y animos en todo
momento. Muchas gracias a Barbara Mufioz y Lara Méndez, por su paciencia y
dedicacion en el entrenamiento para el trabajo de laboratorio. Muchisimas gracias al
profesor Daniel Navia, de la Universidad Técnica Federico Santa Maria y a Béarbara
Mufioz, por la colaboracion en el montaje de la instalacion experimental. A Sara
Rodriguez, Nerea Rodriguez, Thalita, Frida, Patty, Marianela, Diego, Xochitl y Gulsum,
por su colaboracién durante los experimentos en el laboratorio. Muchas gracias a Andrés

Felipe, por su ayuda y valiosas contribuciones para la redaccion del primer articulo.

A mi familia, especialmente a mi madre, muchas gracias por el apoyo, comprension y

fuerzas. A mi tia, tios, primas y primos, por seguir de cerca con carifio todo el proceso.

A la familia que hemos construido durante el doctorado: Erika, Tomas, Dani, Alejandra,
Rogelio, Yury, Felipe y Sergio, muchas gracias por todos los buenos momentos

compartidos.



A todos mis amigos, por su carifio y animos en todo el camino: a los “jefes” Aniay Reinel,
Elaine, Rodolfo, Daily, Javier, Ernesto, César Ernesto, Pedro Fernandez, José A, Dalmay,
Ramon, Lily, Jorge y Marita; muchas gracias por tantos afios de amistad. Muchas gracias
a Alina 'y Fanny, por los consejos y compafiia.

A las mejores embajadoras de Brasil en Valladolid: Rafaella, Erika, Aline y Fabiana.

Gracias por su amistad y por ayudarme a hacer de esta ciudad mi casa.



Summary

English

Population growth and industrialization have resulted into a substantial increase in
wastewater production, thereby establishing water purification as a primary concern on a
global scale. In this context, microalgae-bacteria based wastewater treatment has emerged
as a solution for wastewater treatment and nutrient recovery at a low-energy demand. The
increasing number of microalgae-based applications demands the development of model-
based information and decision support systems that can deal with their complex

behavior.

From an engineering perspective, production processes in the field of biotechnology
cannot be modeled and controlled in the same manner as other types of industrial
processes. Significant adaptation is necessary to leverage the knowledge, modeling, and
control techniques commonly utilized in process control. Microalgae-based wastewater
treatment exhibits nonlinear and complex dynamics, hallmarks of biotechnological
processes, and also encompasses persistent non-stationary regime behavior and influence
of fluctuating perturbations. In order to confront the manifold challenges associated with
the design, operation, and control of wastewater treatment systems based on microalgae-
bacteria consortia, new mathematical models must be developed. Correspondingly,
control strategies, state- estimation techniques, and process optimization techniques must
be revisited and adapted to the context of multiple perturbations and evolving

environmental conditions that affect these processes.
Objectives

The present thesis focuses on the proposal of models and estimation methods in novel
facilities for wastewater treatment using microalgae and bacteria, as well as the proposal
of state estimation and model-based control strategies for these facilities. To this end, the
modeling of anoxic-aerobic photobioreactor configurations is proposed, as well as a
library of components that allows the reuse of models across diverse applications. The

objective of the present study is to estimate states, parameters, and uncertainties in a



microalgae-bacteria wastewater treatment plant, thereby facilitating the design and

implementation of an online economic model predictive controller.
Methodology

In order to address the objectives of the thesis, the methodology employed has entailed
the study of a variety of models that take into account the interactions between microalgae
and bacteria in wastewater treatment. This study facilitates the selection of models for
adequate representation of a microalgae-bacteria based wastewater treatment plant, as
well as for the subsequent utilization of the model in the design of model-based control
strategies. The modeling of a two-stage (anoxic-aerobic) wastewater treatment plant with
biomass recycling was conducted and validated with real data from two lab-scale facilities
under different operational conditions. Sensitivity analysis was conducted in both cases
to ascertain the most influential parameters. Subsequently, parameter estimation was
conducted via dynamic optimization, leveraging a robust objective function to address
the uncertainties stemming from unreliable measurements. The model library of
components was designed using the EcosimPro|PROOSIS® software and contains a
variety of components for wastewater treatment. This library facilitates reuse of models
and the connectivity of components. A novel approach for parameter estimation is

presented and tested in a microalgae-bacteria photobioreactor.

The challenges associated with the monitoring and control of industrial-scale wastewater
treatment plants were examined. This study enables the identification of the primary
limitations associated with the processes of monitoring and control. Among these
limitations is the necessity of accessing online information regarding the status of the
system, a requirement that poses a significant challenge in the context of biological
processes. This challenge arises from the need for more reliable measuring devices or the
high cost of on-line sensors. Subsequently, the Moving Horizon Estimation (MHE)
technique was employed to estimate the states, parameters, and uncertainties in a
simulation of a real-scale wastewater treatment plant. The online estimation of the system
state facilitates the implementation of an economic Model Predictive Controller (eMPC),
considering the microalgae biomass as a valuable product.



Results and Conclusions

Existing models in the literature were adapted to represent novel configurations of
anoxic—aerobic algal-bacterial photobioreactors for wastewater treatment. Simulation
results revealed the model's versatility in photobioreactors with one or two stages,
including sedimentation and biomass recirculation. At the same time, the simulation
results for two different plants confirmed the model's capability to reproduce the
experimental data, even in the treatment of high-strength wastewaters. Parameter
estimation allowed the determination of the values of the most influential parameters of
the microalgae—bacteria process. In the same line, parameter estimation in the settler
allows the estimation of the main parameters related to settleability properties, which are
not well-established in microalgae—bacteria processes. The simulation results closely
match the experimental data, further validating the accuracy of the model and its potential
for further application in the system operation, control, and monitoring.

The methodology for parameter estimation, when multiple outputs and parameters are
involved in the optimization problem, was tested in a photobioreactor for wastewater
treatment. This approach prevents convergence issues and facilitates a more optimal
alignment between the experimental and simulated data.

The library of model components for a microalgae-bacteria wastewater treatment plant
was developed. The components developed can be reutilized for multiple simulations and

allow the easy interconnection between plant components.

The MHE technique was applied to a microalgae-based wastewater treatment process.
The focus was on estimating multiple states and parameters concurrently in order to
evaluate effluent water quality. This study employed an estimation model incorporating
multiple states and parameters with a significant structural mismatch between the
estimation model and the actual plant. Multi-rate measurements obtained from online
measurements and analytical procedures enhanced the estimator's performance.
Simulation results confirmed MHE's efficacy in the online estimation of pertinent

microalgae-based wastewater treatment process variables.

The MHE provided an estimation of the system’s states, parameters, and uncertainties,
which were then used in the model of an economic predictive controller for an industrial
wastewater treatment plant. The controller is designed to maximize biomass production

despite process uncertainties.



Espariol

El crecimiento demogréfico y la industrializacién han provocado un aumento sustancial
de la produccion de aguas residuales, lo que ha convertido la purificacién del agua en una
preocupacion fundamental a escala mundial. En este contexto, el tratamiento de aguas
residuales basado en microalgas y bacterias se ha convertido en una solucion para el
tratamiento de aguas residuales y la recuperacion de nutrientes con un bajo consumo
energético. El creciente nimero de aplicaciones basadas en microalgas exige el desarrollo
de sistemas de informacion y apoyo a la toma de decisiones basados en modelos que

puedan hacer frente a su complejo comportamiento.

Desde el punto de vista de la ingenieria, los procesos de produccion en el campo de la
biotecnologia no pueden modelarse y controlarse de la misma manera que otros tipos de
procesos industriales. Es necesaria una adaptacion significativa para aprovechar los
conocimientos, la modelizacion y las técnicas de control que se utilizan habitualmente en
el control de procesos. El tratamiento de aguas residuales basado en microalgas presenta
una dindmica no lineal y compleja, comportamiento persistente en régimen no
estacionario y la influencia de perturbaciones fluctuantes. Para hacer frente a los multiples
retos asociados al disefio, funcionamiento y control de los sistemas de tratamiento de
aguas residuales basados en consorcios de microalgas y bacterias, es necesario desarrollar
nuevos modelos matematicos. En consecuencia, las estrategias de control, las técnicas de
estimacion de estados y las técnicas de optimizacion de procesos deben revisarse y
adaptarse al contexto de maultiples perturbaciones y condiciones ambientales cambiantes

que afectan a estos procesos.
Objetivos

La presente tesis se centra en la propuesta de modelos y métodos de estimacion en
instalaciones novedosas para el tratamiento de aguas residuales mediante microalgas y
bacterias, asi como en la propuesta de estrategias de estimacién de estados y control
basado en modelo para dichas instalaciones. Con este fin, se propone el modelado de
configuraciones de fotobiorreactores andxicos-aerobicos, asi como una biblioteca de
componentes que permite la reutilizacion de modelos en diversas aplicaciones. El

objetivo del presente estudio es estimar los estados, los parametros y las incertidumbres



en una planta de tratamiento de aguas residuales con microalgas y bacterias, facilitando

asi el disefio y la implementacion de un controlador predictivo econémico en linea.
Metodologia

Para abordar los objetivos de la tesis, la metodologia empleada ha consistido en el estudio
de diversos modelos que tienen en cuenta las interacciones entre microalgas y bacterias
en el tratamiento de aguas residuales. Este estudio facilita la seleccion de modelos para
la representacion adecuada de una planta de tratamiento de aguas residuales basada en
microalgas y bacterias, asi como para la posterior utilizacion del modelo en el disefio de
estrategias de control basadas en modelos. Se llevd a cabo el modelado de una planta de
tratamiento de aguas residuales de dos etapas (andxica-aerobica) con reciclaje de biomasa
y se validdé con datos reales de dos instalaciones a escala de laboratorio en diferentes
condiciones de operacion. Se realiz6 un anélisis de sensibilidad en ambos casos para
determinar los parametros mas influyentes. Posteriormente, se llevé a cabo la estimacion
de parametros mediante optimizacion dindmica utilizando una funcion objetivo robusta
para abordar las incertidumbres derivadas de mediciones poco fiables. Se disefid una
biblioteca de modelos de componentes utilizando el software EcosimPro|PROOSIS® ,
esta biblioteca contiene una variedad de componentes utilizados en las plantas de
tratamiento de aguas residuales con microalgas y bacterias. Esta biblioteca facilita la
reutilizacion del modelo y la conectividad de los componentes. Ademas, se presentd y se
probd un enfoque novedoso para la estimacion de pardmetros en un fotobiorreactor de

microalgas y bacterias.

Se examinaron los retos y limitaciones asociados con la supervision y el control de plantas
de tratamiento de aguas residuales a escala industrial. Entre las principales limitaciones
encontradas, se encuentra la necesidad de acceder a informacion en linea sobre el estado
del proceso, un requisito que plantea un reto importante en el contexto de los procesos
bioldgicos. Este reto surge de la necesidad de disponer de dispositivos de medicién méas
fiables o del elevado coste de los sensores en linea. Para superar esta limitacion, se emple6
la técnica de estimacion de horizonte movil para estimar los estados, los parametros y las
incertidumbres en una simulacion de una planta de tratamiento de aguas residuales a
escala industrial. La estimacion en linea de los estados del proceso permitié la
implementacién de un controlador predictivo econdémico, considerando la biomasa de

microalgas como un producto valioso.



Resultados y conclusiones

Los modelos existentes en la bibliografia se adaptaron para representar nuevas
configuraciones de fotobiorreactores anoxicos-aerobicos de algas y bacterias para el
tratamiento de aguas residuales. Los resultados de las simulaciones realizadas revelaron
la versatilidad del modelo en fotobiorreactores de una o dos etapas, incluyendo
sedimentacion y recirculacién de biomasa. Al mismo tiempo, los resultados de simulacién
para dos plantas diferentes confirmaron la capacidad del modelo para reproducir los datos
experimentales, incluso en el tratamiento de aguas residuales de alta concentracion. Se
realizo la estimacion de parametros del modelo, la cual permitié determinar los valores
de los parametros mas influyentes del proceso de microalgas-bacterias. De igual manera,
la estimacion de parametros en el sedimentador permitié estimar los principales
parametros relacionados con las propiedades de sedimentacion, que no estan bien
establecidos en los procesos de microalgas-bacterias. Los resultados de simulacion del
modelo coinciden con los datos experimentales, lo que valida la precision del modelo y

su potencial para su futura aplicacion en la operacion, control y supervision del sistema.

Se desarrollé una metodologia para la estimacion de pardmetros cuando hay mdaltiples
salidas y parametros involucrados en el problema de optimizacién, la misma se probé en
un fotobiorreactor para el tratamiento de aguas residuales. Este enfoque evita problemas
de convergencia y facilita una alineacion mas 6ptima entre los datos experimentales y los

simulados.

Se desarroll6 una biblioteca de componentes del modelo para una planta de tratamiento
de aguas residuales con microalgas y bacterias. Los componentes desarrollados pueden
reutilizarse para maltiples simulaciones y permiten una facil interconexion entre los

componentes de la planta.

Se aplicd la técnica MHE a un proceso de tratamiento de aguas residuales basado en
microalgas. La aplicacion de esta técnica permitio la estimacion simultanea de maultiples
estados y parametros con el fin de evaluar la calidad del agua efluente. En este estudio se
empled un modelo de estimacion que incorporaba multiples estados y parametros con un
desajuste estructural significativo entre el modelo usado para la estimacion y la planta
real. Se utilizaron medidas con diferente periodo de muestreo, obtenidas a partir de
mediciones en linea y procedimientos analiticos, las cuales mejoraron el rendimiento del

estimador. Los resultados de la simulacion confirmaron la eficacia de MHE en la



estimacion en linea de variables pertinentes del proceso de tratamiento de aguas

residuales basado en microalgas.

El MHE proporciono los valores estimados de los estados, pardmetros e incertidumbres
del sistema, que luego se utilizaron en el modelo del controlador predictivo econémico
para una planta de tratamiento de aguas residuales industriales. EI controlador se disefio
con el objetivo de maximizar la produccion de biomasa a pesar de las incertidumbres del

proceso.
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Nomenclature:

ABACO: microAlgae-BActeria COnsortia model
ASMs: Activated Sludge Models

BOD: Biological Oxygen Demand

BSOM: Biodegradable soluble organic matter

C: Carbon

COa2: Carbon dioxide

COD: Chemical Oxygen Demand

CVP: Control Vector Parameterization

CWML1.: Constructed Wetland Model No. 1
DAEs: Differential and Algebraic Equations

DO: Dissolved Oxygen concentration

EKF: Extended Kalman Filter

ELO: Extended Luenberger Observer

eMPC: economic Model Predictive Control
FHGO: Filtered High Gain Observer

FSP: Filtered Smith Predictor

GPC: Generalized Predictive Controllers
HRAPs: High-Rate Algal Ponds

HRT: Hydraulic Retention Time

IC: Inorganic carbon

IDAS: Implicit Differential-Algebraic solver with Sensitivity capabilities
IWA: International Water Association

KF: Kalman Filter

LBMPC: Learning-Based Model Predictive Control
LS: Least squares

M-estimators: Maximum Likelihood Estimators
MHE: Moving Horizon Estimation

MPC: Model Predictive Control



N: Nitrogen

N-NH4*: Nitrogen in the form of ammonium
N-NOs™: Nitrogen in the form of nitrate
N-NO2": Nitrogen in the form of nitrite
NARMAX: Nonlinear AutoRegressive Moving Average model with eXogenous inputs
NLP: Nonlinear programming

NMPC: Nonlinear Model Predictive Control
O2: Oxygen

ODEs: Ordinary Differential Equations

OOP: Object-oriented programming

OCP: Optimal control problem

P: Phosphorus

PAR: Photosynthetically Active Radiation
PDEs: Partial Differential Equations

PI controllers: Proportional Integral controllers
PID controllers: Proportional - Integral - Derivative controllers
PPFD: Photosynthetic Photon Flux Density
P—PO4*": Phosphorus in the form of phosphate
PWM: Plant-Wide Model

RTO: Real-Time Optimization

RWQML1: River Water Quality Model 1
SFWD: Synthetic Food Waste Digestate
SHGO: Standard High Gain Observer

SMC: Sliding Mode Control

SNOPT: Sparse Nonlinear OPTimizer

SQP: Sequential Quadratic Programming
SRT: Sludge Retention Time

STOs: Super Twisting Observers

SWW: Synthetic wastewater



TOC: Total Organic Carbon
TN: Total Nitrogen

TSS: Total Suspended Solids
UKF: Unscented Kalman Filter
VSS: Volatile Suspended Solids
WLS: Weighted least squares
WW: Wastewater

WWTPs: Wastewater Treatment Plants
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1. Introduction to microalgae-bacteria based wastewater
treatment processes

One of the greatest challenges facing humanity today is the availability of water resources
suitable for direct human consumption. At the same time, population growth and
industrialization have led to a significant increase in wastewater production. As a result,

water purification is currently a primary concern on a global scale.

Wastewater contains a wealth of organic and inorganic nutrients that, if discharged
untreated, can cause ecosystem imbalances due to excessive biological and chemical
oxygen demands (BOD and COD, respectively). In addition, the presence of high
concentrations of nutrients such as dissolved nitrogen and phosphorus can lead to
eutrophication of water bodies, resulting in environmental problems such as oxygen
depletion and unpleasant malodorous emissions to the air. Eutrophication also promotes
the growth of unwanted microbes that threaten other aquatic life and degrade the quality

of drinking water.

The traditional three-stage treatment process for wastewater treatment at wastewater
treatment plants (WWTPs) includes primary solids removal, secondary biodegradable
organic matter removal, and tertiary nutrient removal (Fig. 1.1). In primary treatment,
wastewater enters large sedimentation tanks where suspended solids settle to the bottom.
This process helps removing about 60% of the suspended solid waste present in the
wastewater. During secondary treatment, the remaining organic matter is broken down
by microorganisms in an oxygen-rich environment, eliminating up to 90% of pollutants
through this biological treatment. Tertiary treatment is designed to remove any remaining
contaminants, pathogens, and nutrients from wastewater. Several advanced techniques

are used in tertiary treatment, which are WWTPs specific.

In WWTPs, secondary and tertiary treatment face significant challenges associated with
high costs, energy-intensive treatment, and difficulties in the simultaneous removal of
nitrogen and phosphorus. In fact, the mechanical aeration required for organic matter
degradation in activated sludge systems can account for 45-60% of the total operating
costs in conventional WWTPs (Chae and Kang, 2013). In addition to these challenges,
today's wastewater treatment systems must deal with increasing demands for higher water
quality and the presence of new chemical products and emerging contaminants in

wastewater.
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Fig. 1.1. Simplified schematic of the wastewater treatment process (Water Service
Corporation, 2024)

Microalgae and bacteria-based wastewater treatment systems in high-rate algal ponds
(HRAPs) were proposed in the late 1950s as an alternative for secondary or tertiary
wastewater treatment (Oswald and Gotaas, 1957). In these treatment systems, microalgae
grow using inorganic carbon as a carbon source and light as an energy source. During this
process, microalgae provide the oxygen (O2) required by heterotrophic bacteria to oxidize
the organic matter present in the influent wastewater. Concurrently, heterotrophic bacteria
provide carbon dioxide (CO2) for photosynthetic activity, thereby completing the cycle.
Furthermore, the oxygen produced by microalgae can be utilized by nitrifying bacteria to
oxidize ammonium to nitrate (nitrification process), once again consuming CO:2 as a
carbon source. This in situ photosynthetic oxygen supply has the potential to reduce
carbon dioxide emissions from organic matter oxidation and to significantly decrease the
costs associated with mechanical aeration in activated sludge systems. Furthermore,
photosynthetic aeration limits the risks for pollutant volatilization and pathogen release

under mechanical aeration.



Domestic and industrial wastewaters, as well as anaerobic digestion effluents, which are
characterized by high carbon (C), nitrogen (N), and phosphorus (P) concentrations,
require treatment before discharge into natural water bodies. Consequently, the capacity
of microalgae to simultaneously remove carbon, nitrogen, and phosphorus via
assimilation confers another notable advantage over conventional aerobic activated
sludge or anaerobic digestion techniques in terms of enhanced nutrient recovery.
Moreover, microalgae can enhance the removal of heavy metals and the aerobic
degradation of hazardous contaminants (Mufioz and Guieysse, 2006).

Notwithstanding the fact that microalgae cultivated with wastewaters is not suitable for
feed and food applications, the harvested microalgae biomass possesses potential for
further utilization in the production of biofertilizers, biofuels, and other bioproducts. This
renders the technology an attractive alternative for cost-effective wastewater treatment
and nutrient management (Mufioz and Guieysse, 2006; Alcantara, Garcia-Encina and
Mufioz, 2013; Stiles et al., 2018). Furthermore, the utilization of microalgae
biotechnology for the capture of carbon dioxide from industrial plants is anticipated to

emerge as a globally significant and economically viable environmental technology.

Despite the previously mentioned benefits, several challenges must be addressed to
capitalize on the primary benefits of incorporating microalgae in wastewater treatment.
The dynamic interactions between microalgae and bacteria are subject to temporal
fluctuations due to the daily variations in environmental variables, such as solar radiation
and temperature, as well as operational variables, including hydraulic retention time
(HRT), nutrient concentrations, and the organic load present in the influent wastewater.
The ability to maintain an effective algal activity at low temperatures and low light levels

during winter months also poses a significant challenge.

Although these systems have been studied for many years, only recently, these
technologies are being improved to align with industry demands. These developments
encompass a reduction in hydraulic retention time and accomplishing the effluent water
quality regulation, among other notable improvements. In the context of large-scale
microalgae-bacteria systems, novel techniques from biotechnology and control
engineering must be employed to ensure the robustness, durability, and optimization of

these processes.

From an engineering perspective, production processes in the field of biotechnology

cannot be modeled and controlled in the same manner as other types of industrial
3



processes. Significant adaptation is necessary to leverage the knowledge, modeling, and
control techniques commonly utilized in process control. Microalgae-based wastewater
treatment exhibits nonlinear and complex dynamics, hallmarks of biotechnological
processes, and also encompasses persistent non-stationary regime behavior, the influence
of fluctuating perturbations, and substantial feedback from the population level to the

cellular level through light attenuation.

In order to confront the manifold challenges associated with the design, operation, and
control of wastewater treatment systems based on microalgae-bacteria consortia, new
mathematical models must be developed. Correspondingly, control strategies, state-
estimation techniques, and process optimization techniques must be revisited and adapted
to the context of multiple perturbations and evolving environmental conditions that affect

these processes.

This Chapter revises the state of the art in modeling, parameter and state estimation,
control, and optimization techniques in microalgae-based wastewater treatment
processes. By identifying the aspects that need improvement in the automatic control of
microalgae-based wastewater treatment processes, this review has set the stage for the
thesis. This review provides a comprehensive overview of the field and is the cornerstone

for establishing the research's motivation and goals.

1.1.  State of the art in modeling, control, and optimization of microalgae-bacteria

based wastewater treatment

This section presents a review of the current state of the art regarding the modeling,
parameter and state estimation, control, and optimization of microalgae-bacteria
processes and microalgae cultivation processes. Concerning modeling, this section
presents a comprehensive review of research works conducted in the field, encompassing
detailed mechanistic models described using nonlinear differential equations and more
simplified linear and nonlinear models. In the same vein, the problem of parameter
estimation was also revisited. This review also discusses a variety of works dealing with
the problem of state estimation in microalgae-based processes, where plenty of research
has been conducted, on the contrary of state estimation in wastewater treatment processes
based on microalgae-bacteria consortia, with few case studies reported in the literature.
Furthermore, a review of diverse control and optimization approaches in the microalgae

cultivation field is presented, with a particular focus on advanced control strategies.



1.1.1. Modeling of microalgae-bacteria interactions in wastewater treatment

processes

The use of mechanistic bacterial mathematical models to describe conventional
wastewater treatment systems is a widely accepted practice. Some of these models, such
as the Activated Sludge Models (ASMs) (Henze et al., 2000), have been successfully
developed, validated, and applied. On the other hand, mathematical models for
microalgae growth have evolved from early steady-state formulations considering a
single factor (e.g., nitrogen, carbon, phosphorus, light intensity) (Novak and Brune, 1985;
Eilers and Peeters, 1988; Martinez et al., 1997; Aslan and Kapdan, 2006) to more
complicated dynamic models that consider multiple substrates or physical factors
limitations following a structure according to Droop's or Monod kinetics (Solimeno et al.,
2015; Solimeno, Acien and Garcia, 2017). However, mechanistic models that describe
the internal complexity of the interactions between microalgae and bacteria in wastewater
treatment systems (microalgae-bacteria models) are still being developed and tested
(Solimeno and Garcia, 2017).

In the last decades, the use of microalgae for wastewater treatment has promoted the
development of mathematical models as a valuable tool to predict, control and optimize
wastewater treatment systems based on microalgae-bacteria consortia. The integration of
microalgae and bacteria processes in a model is not trivial: these models should be able
to integrate the physical, chemical and biological phenomena occurring in these systems.
These phenomena occur on different time scales and are strongly interdependent (Garcia
et al., 2006). The reactions of microalgae and bacteria change with time due to the daily
variation of environmental variables. Furthermore, microalgae can promote or inhibit
bacterial growth in these systems and vice versa (Marsollier et al., 2004; Awuah, 2007;
Ruiz-Marin, Mendoza-Espinosa and Stephenson, 2010).

The River Water Quality Model 1 (RWQML1) (Reichert et al., 2001), developed by the
International Water Association (IWA) Task Group on River Water Quality Modeling,
was a milestone in the modeling of microalgae and bacteria interactions. This mechanistic
model included the growth of microalgae and bacteria (heterotrophs and nitrifiers) on
nitrogen (ammonium and nitrate) and phosphorus (orthophosphate). The model also
assumes the presence of consumers (feeding on algae, heterotrophic and autotrophic
organisms, and biodegradable organic matter). This model is compatible with the existing
activated sludge models (ASM1, ASM2, and ASM3) (Henze et al., 2000). The model



contained equations for the formulation of biochemical transformation processes for a
river water model that attempts to include the essential processes for C, O, N and P
cycling in a river under aerobic or anoxic conditions. The model is based on the main
elementary composition of organisms (C, H, N, O, and P) and the stoichiometry of
biochemical conversion processes instead of only using chemical oxygen demand, as it is
a common practice in wastewater treatment. The model includes all variables of ASM
series models, considering 26 processes and 24 components (9 particulate and 15 soluble
components). The kinetic expressions of RWQML1 are based on switching functions of
nutrient availability, light, and temperature (Monod function, Lambert and Beer's Law,
and Arrhenius equations, respectively). This model has been implemented in different
simulation platforms to simulate practical cases studies. Most model components and
equations of the RWQM1 have been used or adapted in subsequent models for

microalgae-bacteria processes.

The RWQML1 has significantly influenced subsequent research in the field of microalgae-
bacteria interactions. For instance, a modification of the RWQM1 was proposed by
(Broekhuizen et al., 2012) to simulate water quality characteristics in two pilot-scale
HRAPs. The model introduced important structural changes such as the introduction of
explicit dissolved inorganic carbon limitation, the representation of the form in which
nitrate concentration influences algal growth, and the adoption of a differential/algebraic

equation formulation for the acid/base reactions.

Sah et al. (Sah et al., 2011) developed a mechanistic model to simulate wastewater
treatment in a secondary facultative pond using a 3D hydrodynamic model coupled to an
ASM-type biochemical model. The mathematical equations representing different
aerobic and anoxic biochemical transformations by bacteria in the pond were based on
the Activated Sludge Model 2 (Gujer et al., 1995). Anaerobic process equations were
selected from the Constructed Wetland Model No. 1 (CWML1) (Langergraber et al., 2009),
and the equation for algal growth was derived from RWQM1 (Reichert et al., 2001).
Monod-type rate equations described the nutrient and light limitation on growth. Light
attenuation and temperature dependency are based on Lambert Beer’s Law and the
Arrhenius-type equation, respectively. This model uses the same notation and structure
of the ASM series and considers 19 processes and 18 components (nine particulate and

nine soluble). One distinguishing characteristic of this model is that it considers five



functional groups of bacteria (heterotrophic, nitrifying, fermenting, sulfate-reducing, and
sulfide-oxidizing bacteria).

Most previously referred models do not combine the overall biochemical processes
involved in microalgae-bacteria systems and the simultaneous effects of light intensity,
temperature, pH, or the effect of high dissolved oxygen concentration on biomass growth
(Solimeno and Garcia, 2017). To address these limitations, the dynamic model
BIO_ALGAE (Solimeno et al., 2017a) was developed, integrating crucial biokinetic,
chemical, and physical processes of microalgae and bacteria in wastewater treatment
systems. Microalgae processes are described using the previous model developed by the
authors (Solimeno et al., 2015), inspired by the RWQM1 (Reichert et al., 2001). The
modeling of bacteria processes is inspired in the modified ASM3 model (lacopozzi et al.,
2007). The most relevant feature of the model was the inclusion of carbon limitation on
the growth of microalgae and the growth of autotrophic bacteria. Light attenuation,
photorespiration, temperature and pH dependence, and the transfer of gases to the
atmosphere are also included in the model. This model uses the standard nomenclature of
the IWA models and considers 19 components (6 particulate and 13 dissolved). The
model was calibrated and validated in two identical pilot HRAPS treating real wastewater
(Solimeno et al., 2017a) and in a pilot HRAP during two different seasons (summer and
winter) and operating at different HRT (Solimeno and Garcia, 2019).

A second version of this model, the model BIO_ALGAE 2 (Solimeno, Gémez-Serrano
and Acién, 2019a) was proposed to overcome some limitations of the BIO_ALGAE
model (Solimeno et al., 2017a), including new sub-models that consider the variation of
microalgae and bacteria performance as a function of culture conditions prevailing in
microalgae cultures (pH, temperature, dissolved oxygen). The model BIO_ALGAE 2
uses a cardinal temperature sub-model to describe microalgae growth dependence instead
of the normal distribution of the thermic photosynthetic factor used in the model
BIO_ALGAE (Solimeno et al., 2015). The cardinal temperature sub-model is also used
to replace the Arrhenius equation of the thermal factor, which describes the temperature
dependence of nitrifying bacteria in previous model formulations (Reichert et al., 2001;
Langergraber et al., 2009; Sah et al., 2011; Solimeno, Acien and Garcia, 2017). A cardinal
pH sub-model was included to represent the inhibitory effects on the growth response of
microalgae and bacteria at high pH. The cardinal pH sub-model is based on the cardinal
temperature model presented in (Bernard and Rémond, 2012). Both temperature and pH



cardinal sub-models use the maximum, optimum, and minimum values to represent the
influence of temperature and pH on microalgae and bacteria growth. The model was
calibrated using data from a laboratory reactor fed with real wastewater, and the effect of
CO:z2 injection and the influence of wastewater composition on treatment performance was

investigated through practical case studies (Solimeno, Gomez-Serrano and Acién, 2019a).

The microalgae-bacteria consortia (ABACO) model (Sanchez-Zurano et al., 2021) for
wastewater treatment includes the most relevant features of microalgae, such as light
dependence, endogenous respiration, and growth and nutrient consumption as a function
of nutrient availability (mainly inorganic carbon). The model also includes the most
relevant factors influencing the activity of heterotrophic and nitrifying bacteria. The
model equations are inspired in the BIO_ALGAE model (Solimeno et al., 2017a).
Contrary to the BIO_ALGAE model, the ABACO model considers the influence of
nutrient concentration (CO2, N-NH4*, N-NOs~, P-PO4*" and biodegradable soluble
organic matter) in both microalgal and bacterial growth, and in the coefficient yields. The
model was calibrated and validated with experimental data from duplicate laboratory-

scale photobioreactors using pig slurry as a nutrient source.

The ALBA model (Casagli et al., 2021) shares some common choices with the above-
cited algae-bacteria models, particularly with the ones simulating outdoor environments
(Broekhuizen et al., 2012) and the BIO_ALGAE 2 model (Solimeno, Gomez-Serrano and
Acién, 2019a). The model is based on mass balances of COD, C, N, P, H, and O. It
describes growth and interactions among algae, heterotrophic and nitrifying bacteria, and
other relevant chemical/physical processes. One of the most innovative characteristics of
this model is the philosophy of biological kinetics based on Liebig's minimum law (De
Baar, 1994), which assumes that the most limiting nutrient drives the growth kinetics. In
addition, the pH sub-model includes a detailed chemical speciation described by an
algebraic system. The model also includes the evaporation process and its effect on
dissolved and suspended compounds. The model was calibrated and successfully
validated using an original data set recorded from an outdoor demonstrative raceway pond
treating synthetic wastewater for fifteen months (Casagli et al., 2021).

Most of the models mentioned above describing raceway photobioreactors consider
complete mixing in the entire reactor, thus evaluating the cultures' performance as a
function of the average value of culture parameters such as light availability, pH, and

nutrient concentration. However, raceway reactors are plug-flow reactors exposed to



changing solar light, thus culture conditions change on time and space inside the reactor.
Consequently, dynamic models that account for the temporal-spatial distribution of
culture parameters are essential for detailed simulation of this type of reactor. In this
sense, a dynamic model of microalgae production in raceway reactors was developed
(Fernandez, Acién, et al., 2016) based on a previously reported model for tubular reactors
(Fernandez et al., 2012; Fernandez, Acién, Berenguel and Guzman, 2014). The model
includes mass balances, transport phenomena, thermodynamic relationships, and
biological phenomena taking place in the reactor, thus based on fundamental principles
instead of empirical equations. Mass balances are applied to each reactor section to model
the raceway reactor. Thus, partial differential equations (PDESs) are used to cope with
plug-flow behavior in some parts of the reactor, while ordinary differential equations
(ODEs) are used to describe the stirred tank sections of the reactor as sump and paddle to
reduce the computational effort in simulating the model. In this model, the biological
model for microalgae previously reported by (Costache et al., 2013) and the engineering
characterization of the raceway reactor used in previous works (Mendoza, Granados, de
Godos, Acién, Molina, Banks, et al., 2013; Mendoza, Granados, de Godos, Acién,
Molina, Heaven, et al., 2013; de Godos, Mendoza, et al., 2014) were used to describe this
bioprocess's biological and engineering aspects, respectively. The model was calibrated
and validated with experimental data from a 100 m? pilot-scale raceway reactor
(Fernandez, Acién, et al., 2016).

Mechanistic models, such as those previously referred to, provide a thorough
understanding of the different phenomena that occur in photobioreactors, leading to the
creation of simulators that can be used for process simulation, prediction purposes, or as
a tool for optimizing and designing photobioreactors. These models are also a powerful
tool for applying advanced control strategies, where an appropriate optimization of the
whole system is performed in an upper layer. On the other hand, dynamic nonlinear first
principles-based models are challenging to obtain due to the necessity of previous
knowledge about the system and the large number of experimental tests needed to

calibrate their parameters.

In addition to mechanistic models, reduced models for control purposes have been
developed and applied in many photobioreactor configurations. These models assume

certain system dynamics simplifications to reduce the computational complexity



associated with designing and applying control algorithms in nonlinear systems (Guzman,
Acién and Berenguel, 2021).

With the aim to obtain a trade-off between model complexity and performance, Fernandez
et al. (Fernandez, Acién, Berenguel, Guzman, et al., 2014) developed a simplified model
that would include the main non-linear dynamics of tubular photobioreactors. This model
represented a simplified version of the model presented in (Fernandez, Acién, Berenguel
and Guzman, 2014) and can be used for advanced control purposes and as a tool for the
design and operation optimization of photobioreactors. The model consisted of fluid-
dynamic and mass transfer processes and biological phenomena, all of which are based
on chemical, physical, and biological principles. In addition, the model considered the
physical characteristics of the photobioreactor. The model was calibrated and validated
using a large number of experimental results from a pilot-scale tubular photobioreactor
under different solar and culture conditions. This model was used to develop hierarchical
control algorithms (Fernandez, Berenguel, et al., 2016), reporting a significant reduction

in the computation time.

As previously mentioned, microalgae-bacteria processes are complex systems, often
described using numerous variables, parameters, and equations. From a control
perspective, simplified models are preferred for designing control strategies for low-level
feedback control loops. To this end, intermediate and low-complexity models have been
developed to capture the dynamics of certain variables in microalgae photobioreactors,
such as pH models. Based on the fact the pH of the culture media strongly influences the
photosynthesis rate and, consequently, the microalgae biomass production, many studies
have focused on developing pH models for control purposes (Fernandez et al., 2010;
Pawlowski et al., 2019).

In this sense, the pH NARMAX (Nonlinear AutoRegressive Moving Average model with
eXogenous inputs) model of 18™ order presented in (Fernandez, Acién, Berenguel,
Guzman, et al., 2014) was able to describe the main non-linearities of this variable. This
model considered the effects of radiation and COz2 injection over pH dynamics and was
validated with real data and compared with first principles-based models. The main
drawback of this model was the complexity due to the high order of the parameters
obtained. On this context, Pawlowski et al. (Pawlowski et al., 2019) presented another
model for pH dynamics, looking for a trade-off between model accuracy and complexity.

The Wiener model presented in this work combined linear and nonlinear dynamics. A
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first-order linear term was used to represent the main dynamics of pH, while a third-order
nonlinear polynomial term was used to represent the nonlinear component. In this work,
the model was used in a model-based control approach that allows decoupling the linear
and nonlinear terms, making designing control algorithms easy.

Despite the nonlinear nature of variables involved in microalgae processes, linear models
have also been used to represent particular dynamics in photobioreactors around specific
operation points. For instance, Berenguel et al. (Berenguel et al., 2004) used a linear
model to describe the pH dynamics related to the COz2 injection input and solar radiation
through two transfer functions in the Laplace domain. This linear model was used in an
on-off model predictive control (MPC) to control pH and minimize CO2 losses in a
microalgal tubular photobioreactor. This simplified model was successfully validated in
both open and closed photobioreactors (Fernandez et al., 2010; Fernandez, Acién,

Berenguel, Guzman, et al., 2014; Pawlowski et al., 2015).

Table 1.1 and Table 1.2 provide a concise overview of the main characteristics and
applications of the aforementioned models. As illustrated in Table 1.1, mechanistic
microalgae-bacteria models have been predominantly utilized to simulate the dynamics
of diverse components under varying operational conditions. These models function as a
predictive tool, allowing for the estimation of the relative proportions of microalgae and
bacteria within the system. Conversely, in the domain of microalgae cultivation for high-
value product production, significant advancements have been made in the development
of specific models for control purposes, as illustrated in Table 1.2. The current state of
the art in microalgae-bacteria processes modeling encompasses a range of models with
successful applications under various photobioreactor configurations and operational
conditions. However, the selection of an appropriate model structure for a given
application or intended use (prediction, estimation, control, and optimization) remains a
challenging task, as does the calibration of models due to the number of implicated
parameters, the prevalence of nonlinear dynamics, and potential identifiability issues

between model parameters.
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Table 1.1. List of mechanistic microalgae-bacteria models and main applications.

Model and Model type/
Intended use Distinctive characteristics

Model applications

Process/
Reactor type/
Culture media

e RWQML1 (Reichert et al., 2001)

River water quality and wastewater ~ Mechanistic/

treatment modeling. Complex model with several
Simulation. parameters.

Assessment of the impact of wastewater
effluents and combined sewer overflows
(Borchardt and Reichert, 2001).

Simplifications of RWQML1 to study oxygen
and nitrogen conversion processes (Reichert,
2001).

River Lahn (Germany)

River Glatt (Switzerland)

e Modification of the RWQM1 by (Broekhuizen et al., 2012)

Modeling and simulation of  Mechanistic/

HRAPs  (overcoming ~  the  Complex model with several
limitations of RWQML1 in modeling  parameters.
HRAPs).

Simulate microalgae-bacteria interactions in
HRAPs. Long term validation.

Wastewater treatment/
Pilot-scale HRAPs/
Domestic wastewater

e Sahetal. (Sahetal., 2011)

Wastewater treatment modeling Mechanistic/
and simulation in secondary Combines a 3D hydrodynamic

facultative ponds. with a mechanistic water quality
model.

Evaluate the effect of wind and the addition
of baffles on water flow patterns, pond
temperature profiles and treatment efficiency.
No validation with real data.

Wastewater treatment/

Secondary facultative
pond/

Domestic wastewater
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Modeling and

BIO_ALGAE (Solimeno et al., 2017a) and BIO_ALGAE 2 (Solimeno, Gémez-Serrano and Acién, 2019a)

simulation of

microalgae-bacteria systems.

Mechanistic/

Includes carbon-limited
microalgae  and  autotrophic
bacteria growth, light attenuation,
photorespiration, temperature and
pH dependency.

Simulate microalgae-bacteria interactions.
Predict the microalgae and bacteria
proportions in the system. Model calibration
and validation (Solimeno et al., 2017a).
Long-term validation (Solimeno and Garcia,
2019).

Predict the microalgae and bacteria
proportions in the reactor, estimate daily
biomass production. Predict the removal
efficiency (Solimeno, Gomez-Serrano and
Acién, 2019a).

Wastewater treatment/
Pilot-scale HRAPs/
Municipal wastewater

Wastewater treatment/

Cylindrical-type  stirred
tank reactors (lab-scale)/

Municipal wastewater.
Centrate and  manure
wastewater.

Wastewater

ABACO (Sanchez-Zurano et al., 2021)

treatment modeling

and simulation.

Mechanistic/

Includes the most relevant features
of microalgae and bacteria growth.

Simulate the dynamics of different
components in the system. Predict the relative
proportion of microalgae and bacteria in the
system. Model calibration and validation.

Wastewater treatment/

Laboratory-scale
photobioreactors/

Model calibration using genetic Pig slurry
algorithms.
e ALBA (Casagli et al., 2021)

Wastewater treatment modeling  Mechanistic/ Simulate the dynamics of different  Wastewater treatment/

and simulation. Includes the most relevant components in the system under different  outdoor pilot-scale
features of microalgae and scenarios. Long-term validation. HRAP/
bacteria  growth.  Biological Synthetic municipal
Kinetics based on Liebig's wastewater

minimum law.
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Table 1.2. List of microalgae models intended for control and optimization.

Model and
Intended use

Model type/
Distinctive characteristics

Model applications

Process/
Reactor type/
Culture media

e Dynamic model of microalgae production in tubular (Fernandez et al., 2012; Fernandez, Acién, Berenguel and Guzman, 2014) and raceway
photobioreactors (Fernandez, Acién, et al., 2016)

Simulation of the effects of
different designs and/or
operational conditions into the
performance of the system.

Optimization of design and
operation of photobioreactors.

Analysis and  design  of
advanced control strategies.

Mechanistic/

The model integrates biological
and engineering aspects: in
addition to biological
phenomena, it also considers
fluid dynamics and mass
transfer.

Predicting the evolution of the main
variables of the system. Determine the
values of characteristic parameters.
Model calibration and validation

Microalgae production/
Pilot-scale tubular photobioreactor
(Fernandez et al., 2012)/

Outdoor industrial tubular
photobioreactor (Fernandez, Acién,
Berenguel and Guzman, 2014)/

Mann and Myers medium using
agricultural fertilizers.

Predicting the evolution of the main
variables of the system. Determine the
influence of design parameters in the
performance of the system. Model
calibration and validation (Fernandez,
Acién, et al., 2016).

Microalgae production/
Pilot-scale HRAP/
Arnon medium using fertilizers

e Dynamic lumped parameter model for microalgal production in tubular photobioreactors (Fernandez, Acién, Berenguel, Guzman, et al., 2014)

Advanced control purposes and
as a tool for the design and
operation  optimization  of
photobioreactors.

Simplified model/

Based on fundamental
principles, maintaining the main
physical characteristics and
non-linear dynamics.

Development of hierarchical control
algorithms (Fernandez, Berenguel, et
al., 2016), reporting a significant
reduction in the computation time.

Microalgae production/
Pilot-scale tubular photobioreactor/

Mann and Myers medium using
agricultural fertilizers.
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e Reduced models for pH control

pH control minimizing CO; Linear model/ Development of a branch-and- Microalgae production/
losses Model of the pH evolution based bound  on-off model-based Tubular photobioreactor/
on changes in CO; injectionand ~ Predictive  control  strategy. N.S*
in solar radiation (Berenguel et~ Application in a real
al., 2004). photobioreactor (Berenguel et al.,
2004)
Designing of a Pl control and a Microalgae production/
feedforward compensator to achieve Tubular photobioreactor/
desired . regulation properties. Filtered sterilized culture medium
Comparison of these control strategies
with ON/OFF regulation (Fernandez et
al., 2010).
pH control in  raceway Wiener model/ Development of a model-based control Microalgae production/

photobioreactors

Model intended to trade-off
between model accuracy and
complexity. It combines linear
and nonlinear dynamics.

approach that allows to decouple the
linear and nonlinear terms. Control
scheme based on a PID controller and a
robust filter (Pawlowski et al., 2019).

Raceway photobioreactor/
N.S*

*N.S. (Not specified)
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1.1.2. Parameter estimation in microalgae-bacteria processes

The development of a model is an iterative procedure, which can be roughly divided into
multiple steps: preliminary analysis, model fitting, and model validation. During the
preliminary analysis stage, initial experiments are executed to determine the relation
between the process inputs and measurement data. These relations are typically described
by dynamic, deterministic models expressed as differential and algebraic equations
(DAEs) with a set of parameters that characterize the kinetics of the key processes and
chemical reactions. In addition to finding the correct equations to describe process
phenomena, new experiments are required to generate measurement data. Utilizing the
experimental data, a set of model parameters is found which minimizes the difference
between the measured data and the predicted model response. The validation of the model

is based on the accuracy of its predictions and the precision of its parameters.

The accuracy of parameter estimation (and, consequently, of the mechanistic model) is
significantly influenced by the availability of experimental data. However, it is
challenging to obtain a sufficient amount of data, particularly for bioprocesses. This is
primarily because cultivation experiments are generally costly and time-consuming, and
the measures of the key states of the cultivation are predominantly from analytic
procedures, which are significantly scarcer than those measures provided from online

Sensors.

In order to effectively model microalgae-bacteria interactions and enhance the precision
of identified parameters, a meticulous experimental design is imperative to provide data
of substantial informative content for the model calibration stage. In many cases, a single
experiment is insufficient to estimate the model parameters adequately, and thus the
procedure of experiment design, experiment execution, and parameter estimation must be
repeated. The experiment design must take into account the limitations on process
facilities and the rate of information acquisition, which may be limited by the
experimental budget. When monitoring a microalgae-bacteria process, a number of
system outputs (typically flow rates, temperature, pH, and dissolved oxygen) are
measured continuously, while other responses (typically concentration measurements)
can only be acquired by discrete sampling at a significantly reduced sampling frequency.
These experimental data are essential both to assess the formal validity of the model and
to estimate the model parameters that allow the model to match the process response over

the selected range of operating conditions.
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In the context of microalgae-bacteria processes, particularly in outdoor facilities, the final
experimentation time is of paramount importance. This is because it is essential to record
sufficient experimental data to support parameter estimation and model validation. These
data must capture both rapid dynamics, occurring within hours, and slow dynamics,

occurring over days or even months, within the culture.

The extant literature provides numerous examples of parameter estimation in microalgae
and microalgae-bacteria processes, employing a variety of approaches. Irrespective of the
parameter estimation approach used (manual trial and error adjustment of parameters,
optimization), another important aspect is related to the proper selection of the parameters
to be estimated within the entire set of model parameters. This is especially salient in the
context of mechanistic models, which are frequently employed to describe microalgae-
bacteria interactions and are characterized by an elevated number of parameters. In this
sense, different approaches have also been used to determine those parameters with the

greatest impact on model outputs that should be estimated.

Parameter estimation via optimization was used to estimate the parameter values of the
simplified model developed by Fernandez et al. (Fernandez, Acién, Berenguel, Guzman,
et al., 2014) for tubular microalgae photobioreactors. The estimation of parameters was
achieved using a computer program developed in the MATLAB® environment,
employing experimental data of the dissolved oxygen and pH of the culture registered for
a period of three months. In the validation stage, a distinct dataset, not employed for
identification purposes, was utilized to account for both bias and variance errors in the
identification procedure. The experimental data for parameter estimation and model

validation were recorded under different solar and culture stage conditions.

In the research conducted by Solimeno et al. (Solimeno et al., 2015), the Morris's
uncertainty method was applied to the screening of parameters with a greater influence
on the simulation response. The model for microalgae growth was calibrated using a
manual trial-and-error procedure to adjust the values of the maximum specific growth
rate of microalgae and the mass transfer coefficients. The calibration was conducted by
comparing simulated and experimental data from a microalgae culture. Details of the
application of the Morris method of elementary effects to perform a global sensitivity
analysis were illustrated in (Solimeno, Sams6 and Garcia, 2016) using the same initial
conditions, parameter values, and geometry as in the previous work of the authors

(Solimeno et al., 2015). Furthermore, uncertainty parameters derived from a prior
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sensitivity analysis (Solimeno, Samsé and Garcia, 2016) were calibrated for two different
tubular photobioreactors (Solimeno, Acien and Garcia, 2017), thereby substantiating the
impact of these parameters on model outputs across diverse photobioreactor

configurations and operational conditions.

In the same way, a Morris sensitivity analysis was conducted to evaluate the parameters
that predominantly influenced the simulation response of the BIO_ALGAE model in
duplicated microalgae-bacteria pilot raceway ponds (Solimeno et al., 2017a). The
microalgae and heterotrophic bacteria parameters, as well as the mass transfer
coefficients, were calibrated in order to fit the model outputs with the experimental data.
Given the pivotal role of mass transfer coefficients over model response, these parameters
were also calibrated in a pilot microalgae-bacteria photobioreactor (Solimeno, Gomez-
Serrano and Acién, 2019a).

The sensitivity analysis was also employed in the research conducted by Casagli et al.
(Casagli et al., 2021) to ascertain the most sensitive parameters of the ALBA model. The
sensitivity analysis was carried out using the AQUASIM toolboxes (Reichert, 1994) and
accounting for the environmental conditions that define each season pattern.
Consequently, the parameters to be calibrated are the most sensitive ones in every season
investigated. Parameter values were obtained via optimization using a cost function which
minimizes the sum of square errors between simulated and experimental data weighted
by standard deviations. The model was calibrated and successfully validated using an
original data set recorded from an outdoor demonstrative raceway pond treating synthetic
wastewater for fifteen months. Model calibration was performed using a data set from
autumn and winter (29 days), while model validity was assessed using the data from the
monitoring campaign which were not used during calibration (414 days). The model
exhibited a remarkable capacity to accurately replicate the experimental data trend across
all seasons, employing a unique set of parameters. This finding serves to substantiate the

robustness of the model and the precision of the parameter estimation procedure utilized.

Parameter estimation using genetic algorithms was carried out in laboratory-scale
microalgae-bacteria photobioreactors fed with pig slurry (Sanchez-Zurano et al., 2021).
The use of genetic algorithms for calibration proved to be a valuable and reliable approach
for the estimation of uncertain parameters. In this study, genetic algorithms were
employed to minimize a cost function, which quantifies the discrepancy between the

model output and the actual output of the system by modifying the parameter values
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within predefined limits. This calibration procedure facilitated the estimation of the
values of 17 model parameters of the ABACO model. In addition to parameter estimation,
the genetic algorithm method was also employed to determine the initial percentage of
each species in the photobioreactor. The calibration process using genetic algorithms was
implemented in MATLAB® software using the Genetic Algorithm Optimization
Toolbox. This calibration procedure offers a straightforward and efficient approach to
adjusting the model parameters, facilitating recalibration with different scenarios, such as

different strains and culture media, with minimal effort.

Table 1.3 provides a synopsis of different approaches used for model calibration.
Furthermore, Table 1.3 provides a comprehensive overview of the key parameters
estimated in microalgae and microalgae-bacteria models. Despite the extensive research
conducted on the growth rates of various microorganisms, the growth of microalgae and
bacteria in wastewater is characterized by significant variability in model parameters.
This variability is influenced by the composition of the wastewater. Moreover,
microalgae-bacteria-based wastewater treatment systems comprise a consortium of
diverse microalgae and bacteria strains, with fluctuating proportions of microorganisms
over time. Furthermore, HRAPs are vulnerable to contamination, which can result in
alterations in microbial population dynamics. Additionally, the identification of each
microorganism strain present in the culture to ascertain its specific biokinetic parameters
is a resource-intensive and often unfeasible task. This underscores the predominant
approach in extant literature, which involves the estimation of biokinetic parameters for
each microorganism group, as opposed to distinguishing between the parameter
estimation for each individual strain. This underscores the necessity of model parameter
estimation for each specific situation. Model calibration through a trial-and-error
approach can yield satisfactory results when a limited number of parameters and model
outputs is considered. Conversely, when the objective is to estimate multiple parameters
and adjust a comprehensive set of outputs, optimization-based methods should be used.
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Table 1.3. Parameter estimation approaches in microalgae and microalgae-bacteria processes

Model (Reference)

Parameter estimation approach/ Details

Main calibrated or estimated parameters

Dynamic lumped parameter model
for microalgal production
(Fernandez, Acien, Berenguel,
Guzman, et al., 2014).

Using optimization.

The optimization problem was solved using a
sequential quadratic programming (SQP)
method.

Light availability in each part of the photobioreactor and
the extinction coefficient.

Maximum  photosynthesis rate, form parameters,
respiration rate.

Volumetric gas-liquid coefficients for the bubble column
and the external loop.

Mechanistic model to simulate
microalgae growth (Solimeno et
al., 2015; Solimeno, Samsé and
Garcia, 2016).

Mechanistic model to simulate
microalgae growth (Solimeno,
Acien and Garcia, 2017).

BIO_ALGAE (Solimeno et al.,
2017a)

BIO_ALGAE 2 (Solimeno,
GOmez-Serrano  and  Acién,
2019a)

Using manual trial-and-error procedure for
calibration.

The Morris's uncertainty method was applied to
determine the parameters with a greater influence
on the simulation response (Solimeno et al.,
2015, 2017a; Solimeno, Samsé and Garcia,
2016).

The maximum specific growth rate of microalgae.

Mass transfer coefficients for oxygen, carbon dioxide, and
ammonia.

The maximum specific growth rate of microalgae.
Mass transfer coefficients for oxygen and carbon dioxide

The maximum specific growth rate of microalgae.

The maximum growth and decay rate of heterotrophic
bacteria.

Mass transfer coefficients for oxygen, carbon dioxide, and
ammonia.

Mass transfer coefficients for oxygen, carbon dioxide, and
ammonia.
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ALBA (Casagli et al., 2021)

Using optimization.
Sensitivity analysis was employed to ascertain
the most sensitive parameters of the model.

The maximum specific growth rate of microalgae,
ammonium oxidizing bacteria, and nitrite oxidizing
bacteria.

Light optimal value for growth and light extinction
coefficient. Mass transfer coefficient.

Coefficients for temperature correction for hydrolysis and
ammonification.

Cardinal temperature values for microalgae, heterotrophic
bacteria, and nitrifying bacteria.

Cardinal pH values for microalgae, heterotrophic bacteria,
and nitrifying bacteria.

ABACO (Sanchez-Zurano et
al., 2021)

Using optimization.
Parameter estimation was carried out using genetic
algorithms.

The maximum specific growth rate of microalgae,
heterotrophic bacteria, and nitrifying bacteria.

Maximum and minimum microalgae endogenous
respiration rate.

Microalgae consumption rate of ammonium, nitrate, and
phosphate. Heterotrophic bacteria consumption rate of
ammonium and  phosphate.  Nitrifying  bacteria
consumption rate of ammonium and phosphate.

Biodegradable soluble organic matter (BSOM) generation
rate from microalgae, heterotrophic bacteria, and nitrifying
bacteria.

BSOM consumption rate from heterotrophic bacteria.
Nitrate generation rate from nitrifying bacteria
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1.1.3. State estimation in microalgae processes

Advanced control strategies have emerged as promising instruments to enhance the
performance of microalgae production systems, particularly within the context of large-
scale cultivation plants (Tebbani, Lopes and Becerra Celis, 2015). The implementation
of state feedback control laws and model-based control techniques, such as MPC,
necessitates complete online information of the system. However, in practical scenarios,
only a subset of the states or key variables of microalgae-bacteria processes can be
measured online due to the necessity for more reliable measuring devices or the high cost
of on-line sensors (Mohd Alli et al., 2015).

The basic hardware instrumentation in microalgae-bacteria-based wastewater treatment
plants typically provides online measurements of temperature, pH, dissolved oxygen, and
flow rate. However, this is not the case for other component concentrations (biomass,
substrates, and metabolites), which are crucial for understanding the system state. Despite
of the significant progress in the field, many current hardware sensors for concentration
measurement still exhibit significant drawbacks, including expensive probes, discrete-
time measurements, and offline solutions, among others. Consequently, state estimators
(often termed software sensors) emerge as a promising alternative to determine the non-

measurable states and concurrently reduce the utilization of costly sensors.

State estimators typically use a dynamical model of the process, knowledge about the
applied inputs, and the availability of hardware sensors to measure some state
components to estimate unmeasured state variables. Their application is crucial, as they
help preventing process disruptions, shutdowns, and the severe consequences of process
failures (Mohd Ali et al., 2015). The diversity of state estimation techniques arising from
intrinsic differences in chemical process systems underscores the importance of selecting

the proper technique for design and implementation in specific applications.

The seminal contributions of Luenberger (Luenberger, 1964, 1966, 1967, 1971) and
Kalman (Kalman, 1960; Kalman and Bucy, 1961) in the 1960s laid the foundation for the
development of state observers and Kalman Filter (KF)-based estimators. However, over
the years, research in the design of state estimators has become increasingly popular yet
challenging due to the requirements of high accuracy, low cost, and good prediction

performances.

In the case of linear systems, the standard solutions are the Kalman filter and the

Luenberger observer. Today, many estimators are simply modifications and extended
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versions of the classical Luenberger observer and Kalman filter. However, in the context
of bioprocesses, the estimator design problem is particularly challenging. In addition to
the scarcity of online measurements, additional challenges are presented by considerable
nonlinearities in the cultivation and the consequent modeling complexity. In recent years,
multiple observers and estimators applied to estimate state variables in biochemical
processes have emerged (Haverbeke et al., 2008; Bogaerts and Coutinho, 2014; Araujo
Pimentel et al., 2015; Dewasme et al., 2015; Moreno and Alvarez, 2015; Yoo et al., 2015;
Yin, Decardi-Nelson and Liu, 2018; Tuveri et al., 2023).

In the context of microalgae processes, a range of observers and state estimators have
been employed. Therefore, distinguishing between these approaches is imperative to
facilitate a comprehensive understanding. Fundamentally, the observer design (as the case

of Luenberger-based observers) is predicated on perfect knowledge of system parameters.

Considering a bioprocess described by the continuous-time nonlinear system in state-

space form in equations (1.1) - (1.2):

x=Fxu) = f(x)+gxu (1.1)

y = h(x) (1.2)
where the state vector is x=[x1 ,=, Xp]T € R", the output vector is y =
[Yi s Yq]T € R9, and the input vectorisu = [U1 ,**, Up]T € R™ F(x,u) isa

nonlinear function with respect to x and u. The function £(+), g(*) and h(-) are matrices

of dimensionn X 1, n X m, and g X 1, respectively.

The Extended Luenberger observer (ELO) has been proposed for nonlinear processes as
natural extension of Luenberger observer. The goal of the state observer is to provide an
estimation of the unmeasured internal states of a given system by utilizing measured states
from the process along with the implemented inputs. The extended Luenberger observer

for the nonlinear system of equation (1.1) is:
X=F&Xu) +K(y—-h®) (1.3)

where X represents the estimated state vector, and the observer gain is denoted by K. It is
observed from equation (1.3) that the first term is the process model, and the second term
K(y — h(X)) is known as the output prediction error, which is considered as a correction

term.
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The goal of the ELO is to minimize the estimation error (e = x — X), in which the

dynamic of the error is determined by equation (1.4):
ée=FX+eu—-FXu —-KhE+e)—hX) (1.4)

As shown in equation (1.4), the problem is to determine in which conditions e can decay

to zero. Therefore, it is important to design K to achieve this goal.

As mentioned above, the observer formulation assumes perfect knowledge of the system
parameters, a condition that is far from being met in microalgae-based processes, where
uncertainties in model parameters and noise are common. In such cases, the use of an
estimator design based on probability distributions and mathematical inference of the

system is preferable.

The Extended Kalman Filter (EKF) is a simple and widely used estimator for nonlinear
systems because the estimation of unknown variables is not limited to state estimation,
but also includes the estimation of unknown parameters and noise in the formulation. The
model of equations (1.1) - (1.2) has been restructured to the form of equations (1.5) - (1.6)
to be represented in discrete time (where k represents the actual time instant) in order to

formulate the EKF algorithm:
X = f(xk—pusk) + Wi (1.5)
Vi = h(xk,umk) + Vg (16)

where x is the state vector of the model, f is the nonlinear state transition function, and h
is a function that relates the state vector with the measurable outputs of the model.
Functions f and h have input arguments denoted as u, and u,,, respectively. These
arguments can be the process inputs for function f, for example. Process noise (w) and
measurement noise (v) are assumed to be zero-mean white noises, with no correlation

and with covariance matrices Q and R, respectively:
wi~(0,Q) (.7)
v~(0,Q) (1.8)

The recursive Kalman filter algorithm consists of two steps: correction (a priori
estimation) and prediction (a posteriori estimation). In the correction step, the predicted
state vector is updated with the available information from the measurable variables of
the process. In the prediction step, estimation for the states is generated based on the

previous values of the state vector.
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The designed state estimator initially performs (in each cycle) the correction step because
measurable variables are always available from the beginning. In the initialization step
given by equations (1.9) and (1.10), the state estimator is initialized based on a first value
for the state vector (xq). The predicted state vector and state estimation covariance are

denoted as X and P, respectively.
’A(o|—1 = E(xo) (1.9)
~ ~ T
Po1 =E [(xo - x0|_1)(x0 - x0|_1) ] (1.10)

In the correction step, given by equations (1.11) - (1.13), the predicted state vector is
corrected using real output measurement data (y), the Kalman gain (K) is computed, and

state estimation covariance is updated.

Relie = Ripees + Ke (Ve = R (R, tm,)) (1.11)
-1
Kk = Pklk—lc;lcw(ckpldk—lc;]; + SkRk|k—IS£) (112)
Pk|k = Pklk—l - KkaPklk—l (113)
where the Jacobians C and S are defined in equations (1.14) - (1.15):
c oh
k= 372
Pz (1.14)
Oh (1.15)
Sk = -
ov Rklk-1

In the prediction step, the future state vector and the state estimation covariance are

predicted according to equations (1.16) and (1.17):
1k = f(jeklk'usk (1.16)
Pis1e = APy + G QG (1.17)

where the Jacobians for the state transition function are defined in equations (1.18) and
(1.19):

_of (1.18)

Ak_ax

Rkl
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of (1.19)

ow fklk

Gy

Kalman filter-based estimators are the most applied estimators in microalgae cultivation
(Su, Li and Xu, 2003; Tebbani, Lopes and Becerra Celis, 2015; Garcia-Mafias et al.,
2019), mainly in processes using real data. The current state of the art regarding KF-based
estimators in microalgae processes includes various reports of estimators applied together
with control and optimization techniques due to the necessity of the entire state vector for
system monitoring and control (Tebbani, Lopes and Becerra Celis, 2015; Yoo et al., 2016;
Garcia-Mafas et al., 2019). These applications have mainly focused on estimating
biomass concentration because the online monitoring of biomass concentration is a
crucial aspect of photobioreactor operation to optimize its performance (Garcia-Mafias et
al., 2019), while using online measurements remains challenging today.

Of the nonlinear filtering methods, the EKF method has received most attention due to
its relative simplicity and demonstrated effectiveness in handling some nonlinear
systems. An Extended Kalman Filter was used in a lab-scale photobioreactor (Li, Xu and
Su, 2003) to estimate a photobioreactor's biomass density, dissolved oxygen
concentration, and average light intensity based on incident light information and online

dissolved oxygen measurement.

The EKF was also employed to estimate the biomass concentration in a bubble column
photobioreactor with a total culture volume of 9.6 L (Tebbani, Lopes and Becerra Celis,
2015). On-line measurements of dissolved carbon dioxide, pH, and incident light intensity
were used for the estimation. The estimation was conducted to propose a control strategy
to regulate biomass concentration in a photobioreactor. The efficacy of this approach was
validated with experimental data.

To account for discrete-time measurements with different sampling rates, a continuous-
discrete EKF was proposed (Jerono, Schaum and Meurer, 2018) and tested with
experimental data for the growth of Haematococcus pluvialis in a lab-scale
photobioreactor. This study addressed the problem of state estimation with biased optical
measurements. The EKF developed estimated the biomass and nitrate concentrations
based on offline nitrate and optical density measurements, and biased online optical

density measurements.

In the research conducted by Tebbani et al, an Unscented Kalman filter (UKF)

methodology was proposed to estimate the biomass, carbon dioxide, and oxygen
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concentrations in the liquid phase of a torus photobioreactor (Tebbani, Titica, et al.,
2013). Online measurements of CO2 and Oz molar fractions in the output gas, pH,

temperature, and input and output flow rates were used for the estimation.

Unlike previous research conducted in lab-scale photobioreactors, Garcia Mafias and co-
workers developed a state estimator using the EKF algorithm to estimate the biomass
concentration in an outdoor industrial raceway photobioreactor (Garcia-Mafias et al.,
2019). The state estimator was based on a dynamic model for microalgae production for
this type of photobioreactor (Fernandez, Acién, et al., 2016). In this work, the EKF
accurately estimated the biomass concentration using the available experimental
measurements of dissolved oxygen, pH, gas injections, and solar radiation. The low
estimation times obtained confirmed the potentialities of the state estimation techniques

in automatic process control.

In addition to the prevalent utilization of KF-based estimators, alternative design
methodologies have been employed in the context of microalgae cultivation,
predominantly within the scope of simulations. The Filtered High Gain Observer (FHGO)
was used to estimate the biomass and carbon dioxide concentrations, assuming measures
of the average light intensity (Farza et al., 2019). The FHGO was first designed by
assuming continuous measurements of the system outputs, and then redesigned to account
for the sampling period of these outputs. The comparison of the obtained estimates with
estimates provided by a Standard High Gain Observer (SHGO) demonstrated the filtering
capabilities of the proposed FHGO (Farza et al., 2019).

The nonlinear integral high-gain observer (NL-PI) was also used to estimate the substrate
concentration in a wastewater treatment photobioreactor (Rodriguez-Mata et al., 2011).
This estimator proved to be able to cancel the dynamical disturbances due to parameter

changes.

Besides the previously works mainly focused on estimating biomass concentration in
microalgae cultures, state estimation techniques have also been applied to estimating
specific components of the microalgal biomass. Microalgal biomass is a valuable source
of lipids, proteins, carbohydrates, pigments, and vitamins. These components are
intracellular and can be separated and upgraded into various products in the biofuel, food,
fodder, cosmetic, and pharmaceutical industries. Efficient medium- and large-scale
microalgal cultivations require online monitoring methods to control these processes. The

online monitoring of these components in these processes is complicated due to their
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intracellular nature. For this reason, online sensors measuring these biological
components are yet in an early developmental stage. The reviews presented by Havlik et
al. (Havlik et al., 2022) and Porras et al. (Porras Reyes, Havlik and Beutel, 2024)
discussed the current state of the art and future outlook in the design and use of software
sensors in the monitoring of biological parameters, primarily concentrations of

intracellular components.

Kalman filter-based estimators have been extensively applied to bioprocesses, often
yielding satisfactory results, provided that linear approximation remains valid, the signal
has low noise, and constraints are negligible. Another approach for nonlinear systems that
has gained popularity over the past two decades among researchers and industrial
practitioners of MPC is the Moving Horizon Estimation (MHE) approach (Rawlings and
Bakshi, 2006; Rawlings, 2014; Alessandri and Battistelli, 2020). This approach
formulates the state estimation problem as an optimization problem over a moving time
window, akin to the MPC formulation. The strategy of MHE has been demonstrated to
exhibit numerous advantages over other nonlinear state estimation techniques. It has the
capacity to incorporate a priori process knowledge by including constraints on the
estimated states and disturbances. Furthermore, its performance is frequently superior
because nonlinear model equations can be used directly without the necessity of
linearization. A salient benefit of this approach is its capacity to generate both filtered and
smoothed estimates of states within the same window. A notable benefit of the MHE
formulation is its ability to estimate states and parameters in a concurrent manner, as well

as modeling inaccuracies.

The aforementioned confirms MHE as a more powerful (but complicated) estimation
method, with certain applications in bioprocesses (Raissi, Ramdani and Candau, 2005;
Tebbani, Le Brusquet, et al., 2013; Elsheikh et al., 2021), including the state estimation
in conventional wastewater treatment plants (Arnold and Dietze, 2001; Busch et al., 2013;
Yin, Decardi-Nelson and Liu, 2018).

As illustrated in Table 1.4, a compendium of state estimators and observers has been
applied in the context of microalgae processes. A thorough examination of this review
discloses a prevailing emphasis on Kalman Filter-based estimators. Conversely, the
application of MHE is restricted to a limited number of research works (Abdollahi and
Dubljevic, 2012). The inherent nonlinear characteristics of microalgae-based wastewater

treatment processes, coupled with the operational constraints associated with these
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processes, underscore the viability of MHE as a solution to the state estimation problem
in this context. This assertion is further supported by previous experience in applying
MHE to other biological and conventional wastewater treatment processes. However, a
review of the literature reveals that MHE has not yet been applied for state estimation in

microalgae-based wastewater treatment processes.
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Table 1.4. State estimators and observers applied in microalgae processes

Observer/ Available measurements States/parameters estimated Application
estimator Process/ Reactor type (Reference)
EKF Local irradiance (using a quantum Biomass concentration and microalgae Dunaliella salina culture in a 3 L stirred tank microalgal
sensor). specific growth rate. Phosphate and photobioreactor (Su, Li and Xu, 2003).
dissolved oxygen concentrations.
EKF Incident light information and Biomass density, microalgae specific Dunaliella salina culture in a 3 L stirred tank microalgal
online dissolved oxygen growth rate, photosynthetic efficiency, photobioreactor (Li, Xu and Su, 2003).
measurement. and average light intensity in the
photobioreactor
NL-PI Biomass. Substrate concentration. Simulation study considering a batch culture of
Spirulina maxima for the pollutant removal in a
wastewater treatment photobioreactor (Rodriguez-
Mata et al., 2011)
MHE Biomass, glucose, and lipid Nitrogen concentration Simulation study considering the heterotrophic growth
content. and lipid production of Auxenochlorella protothecoides
in a fed-batch bioreactor (Abdollahi and Dubljevic,
2012).
UKF Online measurements of CO; and Biomass concentration, carbon dioxide Chlamydomonas reinhardtii culture in a 1.5 L torus
0, molar fractions in the output and oxygen concentrations in the liquid photobioreactor (Tebbani, Titica, et al., 2013).
gas (provided by a mass phase.
spectrometer).
Interval pH and dissolved CO; Biomass concentration. Chlorella vulgaris culture in a laboratory-scale bubble
observer concentration. column photobioreactor (9.6 L) (Tebbani et al., 2014).
EKF Online measurements of pH, incident ~ Biomass concentration. Porphyridium purpureum culture in a 9.6 L bubble

light intensity and dissolved carbon

dioxide concentration.

column photobioreactor (Tebbani, Lopes and Becerra
Celis, 2015).
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UKF Biomass and glucose data. Lipid concentration. Chlorella  protothecoides culture in a 3 L
photobioreactor (Yoo et al., 2016).

EKF Online and offline optical density = Biomass and nitrate concentration. Haematococcus pluvialis culture in a 2 L
measurements, offline nitrate photobioreactor (Jerono, Schaum and Meurer, 2018).
measurements.

FHGO Average light intensity irradiated over ~ Biomass concentration and dissolved Simulation study (Farza et al., 2019).
the photobioreactor. carbon dioxide concentration.

EKF Online measurements of pH and  Biomass concentration Scenedesmus almeriensis culture in an outdoor

dissolved oxygen concentration.

industrial raceway photobioreactor (Garcia-Mafias et

al., 2019).

31



1.1.4. Control and optimization of microalgae-bacteria processes

The literature is rich with a diverse array of control strategies for operating
photobioreactors, whether they are closed photobioreactors designed to produce high-

added-value products or raceway reactors used for wastewater treatment.

Regardless of the photobioreactor configuration and the process goal, the pH of the
culture media must be controlled through the injection of carbon dioxide. This is because
pH significantly influences the photosynthesis rate and the speciation of CO2 and NHs,
directly affecting biomass productivity. Several research works have proposed a variety
of strategies for pH control, ranging from ON/OFF control and conventional Proportional
Integral (PI) controllers to advanced control strategies (Guzman, Acién and Berenguel,
2021).

Classic PI controllers with feedforward scheme were developed based on simplified
linear models for pH control in tubular (Fernandez et al., 2010) and vertical flat panel
(Buehner et al., 2009) photobioreactors. A Filtered Smith Predictor (FSP) strategy (which
includes a PI controller), was proposed to tackle the problem of pH control in processes
with significant time delay due to pH sensor location (Romero-Garcia et al., 2012). The
Pl controller was also employed for the pH control in both raceway and thin-layer
photobioreactors for wastewater treatment (Rodriguez-Torres et al., 2021), thereby
demonstrating the enhancement of system performance in comparison to the ON/OFF

control strategy regarding to CO2 consumption.

The supply of carbon dioxide represents a significant cost in microalgae production
processes, particularly pronounced in cultures in tubular photobioreactors. Here, pH
control is achieved by injecting pure carbon dioxide, a process that can account for up to
30% of the overall microalgae production cost (Acién et al., 2012). Several control
strategies have been developed to regulate pH and minimize CO: losses in different
photobioreactor configurations to address this. MPC strategies have been applied to
accomplish this goal, ranging from MPC using linear models (Berenguel et al., 2004;
Hoyo et al., 2019) to event-based Generalized Predictive Controllers (GPC) (Pawlowski,
Fernandez, et al., 2014; Pawlowski, Mendoza, et al., 2014). A learning-based model
predictive control strategy (LBMPC) for pH control in raceway photobioreactors was also
developed to deal with model uncertainties (Pataro et al., 2023). The validity of the
strategy was confirmed through experimental validation using freshwater and wastewater

culture media. A comparison was made between the strategy and the conventional
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nominal MPC approach. The results demonstrated the superior performance of LBMPC

in comparison to the conventional MPC strategy.

Literature also encompasses the utilization of alternative strategies for pH regulation in
different photobioreactor configurations, including the sliding mode control (SMC) (de
Andrade et al., 2016), the event-based PI control (Rodriguez-Miranda et al., 2019, 2020),
the robust control (Hoyo et al., 2022), and the linear active disturbance rejection control
(Carrefio-Zagarra et al., 2019). The application of parameter adaptation techniques has
also been employed in the context of pH control in raceway reactors (Caparroz et al.,
2023). In this final work, the utilization of regression tree models for the purpose of
predicting pH enables the adjustment of the Pl controller parameters according to the

model selected in the regression tree.

The dissolved oxygen concentration is another variable that significantly influences the
microalgae photosynthesis rate. High concentrations of dissolved oxygen in the cultures
pose a severe inhibition of microalgae growth, necessitating the use of aeration or stirring
mechanisms as a solution. However, the application of the aeration mechanism can lead
to a deterioration in CO2 assimilation (for pH control), thereby complicating the control
task. To overcome this issue, a selective event-based control approach was proposed for
simultaneous control of the pH of the culture media and the dissolved oxygen
concentration (Pawlowski et al., 2015, 2017). The application of a selective event-based
scheme allowed for improved biomass productivity since the controlled variables were
kept within limits for an optimal photosynthesis rate. Moreover, this control scheme
allowed for effective CO2 utilization and energy minimization for the aeration system.
The event-based control system configurations were evaluated in both tubular and
raceway photobioreactors by Pawlowski and coworkers (Pawlowski et al., 2017).
Furthermore, the impact of different pH and dissolved oxygen control strategies on the
efficacy of pilot-scale microalgae production were appraised for two distinct culture
media: one comprising clean water plus fertilizers and the other comprising wastewater
(Nordio et al., 2023). This investigation yielded invaluable insights into the substantial
phenomena that ensue when a consortium of multiple biological groups is present.

A novel control scheme approach for the dissolved oxygen concentration was proposed
using a PI controller and a variable mass transfer coefficient (Barcelé-Villalobos et al.,
2022). The proposed control algorithm permits the implementation of variable air-gas

injections, thereby enhancing biomass productivity while reducing injection costs.
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The monitoring and control of biomass concentration in photobioreactors is of paramount
importance for two reasons. Firstly, the biomass yield should be optimized in order to
maximize economic profit. Secondly, high biomass concentrations within the reactor
affect the penetration of solar radiation into the culture, which in turn affects the growth
of microalgae. In order to achieve this objective, a number of control strategies have been
proposed in the literature at both simulation and laboratory scales (Mailleret, Gouzé and
Bernard, 2005; Ifrim et al., 2013; Tebbani, Lopes and Becerra Celis, 2015). Moreover,
some of the proposed strategies simultaneously consider pH control of the culture media
(Ifrim et al., 2013; Tebbani, Lopes and Becerra Celis, 2015). Therefore, the most suitable
approach involves the use of advanced control strategies, which will facilitate achieving
optimal biomass production while maintaining the desired operational conditions and

minimizing resource utilization.

The research conducted by Tebbani et al. (Tebbani et al., 2014) proposed the application
of a nonlinear model predictive control (NMPC) strategy for maximizing the carbon
dioxide fixation rate of the green microalga Chlorella vulgaris (by maximizing the
biomass productivity). The optimization problem was solved using control vector
parameterization (CVP) techniques and an interval observer was developed to estimate
the biomass concentration based on online dissolved CO2 measurements. The approach
presented in this study was validated experimentally, confirming the advantages of

advanced control strategies in microalgae cultivation control and optimization.

Additionally, optimal and near-optimal strategies were developed with the objective of
maximizing biomass production in outdoor tubular photobioreactors (Gustavo. A. de
Andrade et al., 2016). The optimization system calculates the culture medium flow rate
with the objective of optimizing biomass production over the course of one day. Given
the outdoor conditions, the approach considered the influence of sunlight, day/night
phases, and the auto-shading effect, all of which influence the biological activity within
the reactor. The results of the proposed strategies were validated in simulation and with

experimental data.

To maximize the biomass productivity of the microalgae Scenedesmus AMDD, a model-
based approach was proposed in a continuously operated photobioreactor (McGinn et al.,
2017). In the proposed approach, a simple mathematical model was utilized to solve the
real-time optimization (RTO) problem, and then the optimal solution was implemented

via flow control based on real-time cell density estimations. The proposed approach

34



demonstrated an improvement of 70% compared to the same photobioreactor operated as

a turbidostat.

The problem of biomass growth control was also addressed from a hierarchical
perspective, employing a receding horizon strategy (Fernandez, Berenguel, et al., 2016).
The hierarchical control strategy for microalgal production in a tubular photobioreactor
was composed of two layers. The lower layer is responsible for tracking the pH set-point
through the use of a PI controller in conjunction with a feed-forward compensator. The
upper layer of the control scheme calculates optimal pH set-points based on an economic
model predictive control (eMPC) approach. The objective of the proposed control scheme
was to maximize profits, which were computed as the difference between the incomes
obtained from the final production sale and the associated production costs (including the
environmental impact of the exhausted COz losses). This hierarchical control architecture
demonstrated improvements with respect to a static reference tracking used in this kind

of system in terms of cost savings.

Table 1.5 and Table 1.6 provide a synopsis of the control and optimization strategies,
respectively, that have been implemented in the context of microalgae production and
microalgae-based wastewater treatment. A thorough examination of the data presented in
these tables suggests a more widespread implementation of control strategies in
microalgae production systems. The principal objective of the control strategies
implemented within microalgae-bacteria photobioreactors was directed toward regulating
specific variables, such as pH or biomass concentration, to maintain the desired
operational conditions, while disregarding the monitoring of other process variables.
Nevertheless, the mounting global concern over ensuring effluent quality and the
numerous perturbations that affect wastewater treatment processes require the
development of control and optimization approaches capable of maintaining operational

conditions while achieving the stipulated discharge limits set by legislation.

Moreover, a considerable proportion of the control and optimization strategies
documented in the extant literature for such processes assume a perfect model, an
assumption that is not realistic in the context of microalgae-bacteria processes.
Additionally, the paucity of online measures of many pertinent variables entails a high
degree of complexity in the design and implementation of control and optimization
strategies. In this regard, the development of strategies that consider model uncertainties

is imperative to propose adequate formulations for microalgae-bacteria processes.
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Table 1.5. Control strategies applied in microalgae and microalgae-bacteria processes

Control strategies

Controlled variables

Application
Process/ Reactor type (Reference)

PID and PID-based strategies

Nannochloropsis oculata culture in a vertical flat panel photobioreactor (644 L) (Buehner

Pl+feed-forward controller pH et al., 2009).
Scenedemus almeriensis culture in a tubular photobioreactor (2600 L) (Fernandez et al.,
2010).

FSP strategy pH Scenedemus almeriensis culture in an industrial tubular photobioreactor (3 m®) (Romero-
Garcia et al., 2012).

Robust PI control with linear pH Microalgae culture in a raceway reactor (20 m®) (Carrefio-Zagarra et al., 2019).

active disturbance rejection

Event-based PI control pH Simulation study of the Scenedesmus almeriensis culture in a raceway reactor (20 m°)
(Rodriguez-Miranda et al., 2019).
Golenkinia culture in a raceway reactor (10 m®) (Rodriguez-Miranda et al., 2020).

Pl pH Raceway (1m®) and thin-layer (0.45m?) reactors for wastewater treatment (Rodriguez-
Torres et al., 2021).

Robust PID control pH Scenedesmus almeriensis culture in a raceway reactor (Hoyo et al., 2022).

Pl

Dissolved oxygen
concentration

Scenedesmus almeriensis culture in an industrial raceway photobioreactor (80 m?) (Barcelo-
Villalobos et al., 2022).

Pl control with parameter pH Simulation study of a raceway reactor treating freshwater (Caparroz et al., 2023).
adaptation
Event-based GPC pH Microalgae culture in a raceway reactor (20 m®) (Pawlowski, Mendoza, et al., 2014).
Scenedesmus almeriensis culture in a tubular photobioreactor (2600 L) (Pawlowski,
o Fernandez, et al., 2014).
% MPC using linear models pH Microalgae culture in a raceway reactor (20 m®) (Hoyo et al., 2019).
LBMPC pH Two raceway reactors (20 m®): one operated with freshwater plus fertilizers and the other

one with wastewater as the nutrient source (Pataro et al., 2023).
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Other strategies

SMC pH Scenedesmus almeriensis culture in a tubular photobioreactor (2600 L) (de Andrade et al.,
2016).
Selective event-based pH and dissolved  Microalgae culture in a raceway reactor (20 m®) (Pawlowski et al., 2015).

control approach.

oxygen concentration

Selective event-based
control approach.
Simultaneous control
strategy using ON/OFF
control.

pH and dissolved
0Xygen concentration

Two pilot-scale raceway reactors (80 m?): one operated with freshwater plus fertilizers
and the other with wastewater as the nutrient source (Nordio et al, 2023).

Nonlinear output feedback
controller.

Biomass
concentration

Simulation study for Dunaliella tertiolecta growth in a chemostat (Mailleret, Gouzé and
Bernard, 2005).

Nonlinear multivariable
control, based on the exact
feedback linearization
technique.

pH and biomass

concentration

Chlamydomonas reinhardtii culture on a laboratory torus photobioreactor (1.5 L) (Ifrim et
al., 2013).

Nonlinear control strategy
(based on state feedback
linearizing control law + PI
controller).

pH and biomass
concentration

Porphyridium purpureum culture in a laboratory-scale bubble column photobioreactor (9.6
L) (Tebbani, Lopes and Becerra Celis, 2015)

37



Table 1.6. Optimization strategies applied in microalgae and microalgae-bacteria processes

Strategies Optimization objective Application
Process/ Reactor type (Reference)

NMPC Maximize CO; bio- Chlorella vulgaris culture in a laboratory-scale bubble column photobioreactor (9.6 L)
fixation. (Tebbani et al., 2014).

Optimal and near-optimal strategy Maximize biomass Simulation and experimental study of the Scenedesmus almeriensis culture in a tubular
production photobioreactor (2600 L) (Gustavo. A. de Andrade et al., 2016)

RTO Maximize biomass Scenedesmus AMDD culture in a continuous flow photobioreactor (300 L) (McGinn et
production al., 2017).

Hierarchical control  strategy: Maximize profits. Scenedemus almeriensis culture in a tubular photobioreactor (2600 L) (Fernandez,

Pl+feedforward and eMPC Berenguel, et al., 2016).
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1.2. Motivation and Objectives

The development of accurate models and control strategies has been identified as a
promising approach to enhance the control and optimization of industrial microalgae
production processes. However, this task is inherently challenging, particularly in the
context of wastewater treatment plants, where the intricate interactions between
microalgae and bacteria, in addition to the variable weather conditions and dynamics of
the inlet flow/composition of the wastewater, adds complexity to the process operation.
While numerous models have been developed and validated for conventional microalgae-
based wastewater treatment plants (even over the long term) and for different microalgae
photobioreactor configurations producing high-value products, the modeling of other
novel microalgae-bacteria photobioreactor configurations has not been conducted to date.
Furthermore, parameter estimation applied to innovative wastewater treatment processes

with microalgae remains an open research topic, with many challenges to address.

In a different line of research, the extant literature on developing state estimators for
microalgae-bacteria processes is scarce, with most research being limited to simulations
or laboratory settings. In addition, the development of state estimators in these processes
is primarily based on linearized approximations, simple models, and low noise values,
providing estimations of a limited number of states. However, these assumptions are not
realistic in the context of these complex bioprocesses. This underscores the imperative
need for state estimators that employ a more realistic depiction of the process, while
concurrently accounting for the inherent process constraints in the pivotal parameters and

state variables.

Similarly, in the context of control and optimization strategies, many applications
continue to refer to the control of a limited number of variables (predominantly in small-
scale facilities or closed photobioreactors for the production of high-value biomass),
without considering the behavior of certain relevant process variables, which are key to
evaluate the effluent water quality. Concurrently, the development of control and
optimization strategies that encompass the numerous perturbations impacting these

processes and the inherent model uncertainties remains an active research domain.

Within this framework, the motivation of this thesis relies on modeling innovative
configurations for microalgae-bacteria-based wastewater treatment plants, as well as
contributing to the state estimation and control of industrial microalgae-based wastewater

treatment plants considering model uncertainties.
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The general objective of this thesis is to contribute to the modeling, control, and

optimization of algal-bacterial based wastewater treatment plants.
To accomplish this aim, the following specific goals will be considered:

e Developing and validating dynamics models of microalgae-bacteria based
wastewater treatment plants, with special emphasis in anoxic-aerobic
photobioreactor configurations, in which modeling has yet to be conducted to
date.

e Adapting parametrization methods that facilitate the fitting of the model to

wastewater treatment processes.

e Developing model libraries of components using the software PROOSIS® to

facilitate the reuse of models across diverse applications.

e Designing a state estimator using the Moving Horizon Estimation approach to
estimate non-measure variables in microalga-bacteria processes with model
uncertainties and perturbations. Nonlinear model and process constraints are

considered in the estimator design.

e Developing an economic MPC controller for process control and optimization

considering process variability and model uncertainties.

¢ \alidating the proposed approaches in a lab-scale plant.

1.3. Structure of the thesis

Following this Chapter one that revised the state-of-the-art in the topic, the thesis is

organized into seven chapters as follows:

Chapter 2 delineates the methodological framework employed in this thesis for the

modeling, state estimation, and control strategy design.

Chapter 3 presents the modeling of microalgae bacteria processes with biomass recycling.
This chapter includes a model of anoxic-aerobic algal-bacterial photobioreactor
configurations treating domestic wastewater and digestates. Additionally, a library of

diverse model components for a wastewater treatment plant is also presented.

Chapter 4 presents the parameter estimation applied to two case studies of anoxic-aerobic
algal-bacterial photobioreactors. The chapter presents a methodology for parameter
estimation in biological processes involving multiple outputs and parameters in the

optimization problem.
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Chapter 5 is devoted to the problem of estimating non-measured variables in microalgae-
bacteria processes. The Moving Horizon Estimator approach is presented to estimate the
non-measurable variables in an industrial wastewater treatment plant involving different

sampling times for the output variables.

Chapter 6 is devoted to developing an economic MPC controller for an industrial
wastewater treatment plant. The controller is designed to maintain the limits of nutrient
concentration in the plant's effluent while maximizing biomass production in spite of the

uncertainties that are present in the process.

Chapter 7 compiles the thesis conclusions and outlook perspectives.

1.4. Contributions
Journal contributions:

- Bausa-Ortiz, I., Mufioz, R., Torres-Franco, A. F., Cristea, S. P., and Prada, C.
Parameter estimation in anoxic aerobic algal-bacterial photobioreactor devoted to
carbon and nutrient removal. Algal Research, Vol. 86, March 2025, Ref. 103917,
ISSN 2211-9264. DOI: 10.1016/j.algal.2025.103917,
https://doi.org/10.1016/j.algal.2025.103917

- Bausa-Ortiz, I., Oliveira-Silva, E., Mufioz, R., Cristea, S. P., and de Prada, C.
Moving horizon estimation in microalgae-bacteria based wastewater treatment
using online and analytical multi-rate measurements. Algal Research, Vol. 91,
October 2025, Ref. 104338, ISSN 2211-9264. DOI: 10.1016/j.algal.2025.104338,
https://doi.org/10.1016/j.algal.2025.104338.

Book chapters:

- Bausa, I., Mufioz, R., Podar, S., and de Prada, C. “Modeling and simulation of
anoxic-aerobic algal-bacterial photobioreactor for nutrients removal,” in:
COMPUTER-AIDED CHEMICAL ENGINEERING, 51 - PROCEEDINGS OF
THE 32nd European Symposium on Computer Aided Process Engineering
(ESCAPE32), vol. 2, L. Montastruc and S. Negny, Eds. © 2022 Elsevier B.V. All
rights reserved 2022, pp. 151-156. DOI: http://dx.doi.org/10.1016/B978-0-323-
95879-0.50026-6.
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Bausa-Ortiz, I., Mufoz, R., Cristea, S. P., and Prada, C. “Parameter estimation
approach applied to microalgae-bacteria photobioreactor”, in. COMPUTER-
AIDED CHEMICAL ENGINEERING, 52 - PROCEEDINGS OF THE 33rd
European Symposium on Computer Aided Process Engineering (ESCAPE33),
vol. 1, A. Kokossis, M. C. Georgiadis, E. N. Pistikopoulos Eds. © 2023 Elsevier
B.V. All rights reserved 2023, pp. 721-726. DOI: https://doi.org/10.1016/B978-0-
443-15274-0.50115-3. ISBN (Volume 1): 978-0-443-23553-5, ISBN (Set): 978-
0-443-15274-0, ISSN: 1570-7946.

Congress contributions:

Bausa, I., Mufioz, R., Podar, S., and de Prada, C. “Modelo para la estimacion de
la concentracion de biomasa en una instalacion reactor anoxico-fotobiorreactor
aerobio de algas y bacterias para el tratamiento de aguas residuales domésticas”.
XLII Jornadas de Automatica: libro de actas. Castellon, 1-3 de septiembre de
2021. DOI: https://doi.org/10.17979/spudc.9788497498043.

Bausa, I., Mufioz, R., Podar, S., and de Prada, C. “Modelado de un Fotobiorreactor
en una configuracion Reactor Anoxico-Fotobiorreactor”. Actas del Simposio
Conjunto de los Grupos Tematicos de CEA Modelado, Simulacién, Optimizacion
e Ingenieria de Control. Universidad de Burgos, 27-29 abril 2022, Burgos,
Espafia, pp. 1-6. ISBN: 978-84-09-41387-4. http://hdl.handle.net/10259/6683.
Bausa, ., Mufioz, R., Podar, S., and de Prada, C. “Modeling and simulation of
anoxic-aerobic algal-bacterial photobioreactor for nutrients removal”. 32nd
European Symposium on Computer Aided Process Engineering (ESCAPE32),
June 12-15, 2022, Toulouse, France. DOI: http://dx.doi.org/10.1016/B978-0-323-
95879-0.50026-6.

Bausa, |., Podar, S., Mufioz, R., de Prada, C., and Oliveira-Silva, E. “Libreria para
sistemas de tratamiento de aguas residuales con microalgas y bacterias”. XLIII
Jornadas de Automatica: libro de actas. 7-9 de septiembre de 2022, Logrofio, La
Rioja, Espafa, pp. 493-499. A Corufia: Universidade da Corufia, Servizo de
Publicacions, 2022. XXI, 1075 p. ISBN: 978-84-9749-841-8. DOI:
https://doi.org/10.17979/spudc.9788497498418.
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Bausa, I., Mufoz, R., Podar, S., and de Prada, C. “Modeling and simulation of a
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2. Integrated  methodology: experimental research,
modeling, and validation for advanced control strategies
synthesis

The development and application of dynamic models constitutes the methodological
framework employed in this doctoral thesis. Mathematical models can facilitate a more
profound comprehension of process behavior and function as a decision-support
instrument. In a similar vein, model-based controllers have been demonstrated to be a
suitable instrument for the operation of complex processes. The core challenge addressed
is the precise characterization of system dynamics, a prerequisite for the subsequent
formal controller synthesis and comprehensive performance evaluation. This chapter
delineates the process, which commences with the analytical derivation or system
identification of a high-fidelity dynamic model. This establishes the foundational element
upon which all subsequent experimental validation, calibration, and large-scale

simulation studies are built.
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2.1.  Analytical system modeling and simulation

The foundational approach to system representation in this research involved the critical
analysis of extant dynamic models from the specialized literature (as was detailed in the
comprehensive revision of Section 1.1.1). The present study focused on the examination
of models that effectively capture the intricate biological and chemical interactions
between microalgae and bacteria within wastewater treatment processes. The objective
of this study was twofold: first, to select a model that provides an adequate representation
of the microalgae-bacteria wastewater treatment plant dynamics for system understanding
and prediction; and second, to establish a robust platform for the subsequent design and

evaluation of model-based control strategies.

The selection process prioritized mechanistic models of intermediate complexity. This
choice is fundamentally justified by two core considerations in control engineering:

- Physical relevance: These models are explicitly formulated based on physical and
chemical laws, including mass balances, kinetic rates, and energy transfers.
Consequently, any change in the model's parameters possesses a direct physical
or biological interpretation, which is crucial for system analysis, calibration, and
ensuring the robustness of the control synthesis.

- Computational efficiency: In contrast to highly complex, high-order models that
frequently demand exorbitant computational resources, models of intermediate
complexity offer a better trade-off. These models maintain essential non-linear
dynamics necessary for realistic control design while maintaining sufficient
computational speed for real-time simulation and eventual implementation in

control hardware.

Conversely, simplified, low-order representations, such as classical transfer functions or
local linear state-space models, were deemed unsuitable for the present study. This
exclusion is fundamentally methodological, as these reduced models possess inherent
limitations. Specifically, they fail to adequately capture the pronounced non-linearities,
the multivariable dynamics, and the operational constraints that fundamentally
characterize biological wastewater treatment systems. Indeed, models lacking this
complexity are insufficient for the synthesis of advanced control strategies (such as
MPC), which require high-fidelity dynamic predictions and accurate modeling of the

entire operating envelope to ensure stability and optimal performance.
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This study adapted mechanistic models previously documented in the specialized
literature to accurately represent the microalgae-bacteria interactions specific to the case
studies evaluated in this research. The model that was selected was confirmed to
adequately capture the dynamics of a microalgae-bacteria-based wastewater treatment
plant. This choice ensures the model's suitability as a high-fidelity platform for the

subsequent design and evaluation of advanced model-based control strategies.

As a fundamental element of the modeling strategy employed in this thesis, a reusable
object-oriented model library of components was developed. This library has been
developed to facilitate the easy reuse of validated models and the flexible connectivity of
different process components. The library contains a variety of validated components
relevant to wastewater treatment. It enables the rapid simulation of various WWTP

configurations under a wide range of operational conditions.

The library was constructed on the principles of object-oriented programming (OOP), and
its implementation involved the utilization of the specialized simulation software
EcosimPro|PROOSIS®. The OOP structure ensures that components can be easily
interconnected and managed, promoting modularity and potentially lowering the entry
barrier for users without deep knowledge on modeling and simulation fundamentals. This
structured approach significantly enhances the reproducibility and scalability of the
modeling efforts presented herein. A thorough exposition of the library development and

components is furnished in Chapter 3, Section 3.2.

2.2.  Methods for model calibration and validation

The rigorous calibration and subsequent validation of mathematical models constitute an
essential step in the modeling of complex biological processes. The inherent complexity
and dynamic nature of biological systems, such as the microalgae and bacteria-based
wastewater treatment systems studied here, necessitate empirical investigation involving
intensive, high-time-consuming experimentation to reliably establish operational
fundamentals across a comprehensive range of conditions. The development of a high-
fidelity model thus provides a critical analytical advantage.

Leveraging a validated model enables the efficient simulation of novel configurations,
such as the anoxic-aerobic system studied in this thesis, to assess the influence of varying

operational conditions and inlet nutrient concentrations. This methodology effectively
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minimizes the time and cost dedicated to physical experimentation, enabling the rapid
and systematic evaluation of the global performance and nutrient removal efficiency of
the system under scenarios that would be impractical or prohibitively expensive to test in

a physical laboratory environment.

In this research, a systemic analysis and validation were conducted across two
fundamentally distinct operational scales, which required the implementation of

differentiated methodological approaches:

- Pilot-plant scale (empirical validation): This scale served as the primary source of
empirical data. The model was rigorously calibrated and validated against real
experimental data obtained from the physical pilot facility. The primary objective
of this step was to ensure the predictive fidelity of the model parameters and
structure under controlled conditions. This approach validates the model's
capacity to accurately replicate the system dynamics prior to scaling. The
application of this approach is delineated in Chapter 4.

- Industrial scale (simulated validation and scalability assessment): In light of the
paucity of data from an industrial-scale facility, the industrial scenario was
assessed entirely through the use of high-fidelity simulation. In this context, the
model—already validated at the pilot scale—was used to conduct scalability
assessment and evaluate the performance of the designed control strategies under
the complex, real-world constraints and operational demands of a large-scale

plant.

2.2.1. Methods using experimental data

To address the modeling objective related to the anoxic-aerobic configurations,
previously generated data from experimental campaigns developed at the Institute of
Sustainable Processes at the University of Valladolid were utilized. These datasets
correspond to two distinct anoxic-aerobic algal-bacterial photobioreactor configurations
operating under a variety of operational conditions while treating domestic synthetic

wastewater and synthetic food waste digestate.

To ensure the predictive accuracy of the selected model, a rigorous, multi-step calibration
and validation process was conducted using the PROOSIS® simulation software:
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a)

b)

d)

Sensitivity Analysis. Due to the high dimensionality and large number of
parameters that mechanistic microalgae-bacteria models frequently exhibit, an
initial sensitivity analysis was conducted. This step was essential to determine the
minimum set of parameters with the greatest influence on system outputs,
focusing subsequent efforts on those parameters with the highest identifiability.

Parameter estimation of model biokinetic parameters and mass transfer

coefficients. The optimal values for the selected biokinetic parameters and mass
transfer coefficients within the reactors were determined through dynamic
optimization. This estimation was performed using a robust objective function
designed to minimize the impact of uncertainties from unreliable or noisy
experimental measurements.

Parameter estimation of settling velocity parameters. The values of parameters

characterizing the settling process were determined using a robust objective
function. Additionally, modeling the settling velocity equation required fitting
parameters using a sigmoid function to accurately represent the non-linear
sedimentation behavior.

Cross-validation and goodness-of-fit. The final stage of this phase involved the

cross-validation of the fully calibrated model. The simulated dynamics were
directly compared with independent experimental data sets from anoxic-aerobic
facilities. The results were graphically presented to demonstrate the model's
effective range of validity and goodness-of-fit.

Metrics of model performance: To objectively quantify the model's quality of

adjustment to the experimental data, two performance indices were used: the
Mean Absolute Error (MAE) and the Mean Absolute Relative Error (MARE).
These metrics provided quantitative proof of the model's predictive accuracy

across the observed variables.

The application of the aforementioned process for model calibration and validation in an
anoxic-aerobic algal-bacteria photobioreactor configuration treating different dilutions of
digestate is detailed in Chapter 4, Section 4.1.

In light of the challenges associated with parameter estimation in complex biological
processes, this thesis proposes a novel methodological approach for parameter estimation.
This approach is designed to address the challenges posed by the presence of multiple

variables and parameters in optimization problems. This novel methodology was
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successfully applied and tested using real experimental data from the microalgae-bacteria
photobioreactor of an anoxic-aerobic configuration treating domestic synthetic

wastewater in Chapter 4, Section 4.2.

2.2.2. Methods using model simulation

The predictive capacity of the calibrated model (established via experimental data,
Chapters 3 and 4) enables its use for comprehensive system analysis and control design.
In accordance with the methodological objective of optimizing research resources by
minimizing the reliance on costly and time-consuming physical experimentation, model
simulations were employed to achieve objectives that are impractical or unachievable
through pilot-plant testing. These simulations were specifically designed to assess
scalability and to exhaustively evaluate control strategies under diverse operational

scenarios.
This methodological step is crucial for two main reasons:

- Exploration of the operating envelope: Simulations allow for the systematic study
of the system's operation across a substantially broader spectrum of operational
conditions and under extreme perturbation events that are not economically or

safely viable to replicate in the physical pilot plant.

- Control strategy design and validation: The validated dynamic model provides the
necessary analytical platform for the synthesis, tuning, and closed-loop testing of
the advanced control strategies proposed in this thesis (Chapter 6), prior to any

potential physical implementation.

The decision to evaluate state estimation techniques and control strategies through high-
fidelity simulation of an industrial-scale plant (Chapters 5 and 6), as opposed to
depending exclusively on the physical pilot facility, is a fundamental methodological
necessity driven by the inherent differences between the scales and the objectives of
advanced control design. The industrial plant model, state estimation technique, and
model-based control strategy were developed within the MATLAB® software

environment.

The simulation of the industrial environment enables the rigorous exploration of critical
factors that are either absent or significantly mitigated at the pilot scale, providing a

stringent testbed for both the controller and the state estimator:
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Pronounced non-linearities: Industrial systems often exhibit more pronounced
non-linear dynamics (e.g., in settling, reaction Kinetics) due to their larger
operational volumes and flow rates. These complex effects, which are typically
less evident at laboratory scale, are crucial for challenging the convergence and
stability of non-linear state estimation algorithms or for testing the performance

of the subsequent non-linear control algorithms.

Wider operational and perturbation ranges: Simulation enables the testing of

wider ranges of system input loads and the introduction of larger, more realistic
magnitude of disturbances that characterize real-world municipal wastewater
treatment plants. It is imperative to assess the robustness of the estimator under
these conditions, particularly with regard to its resilience against high

measurement uncertainty and noise propagation.

Influence of external and coupling conditions: The industrial-scale model allows

for the assessment of the pronounced influence of external conditions (e.g.,
realistic, large-scale diurnal and seasonal temperature/radiation fluctuations) and
the inter-component coupling effects (e.g., recycling streams and settler
dynamics) that dominate the overall system behavior at full scale.

Economic and safety constraints: Critically, testing advanced control strategies

under extreme conditions, large disturbances, or complex failure scenarios on a
physical industrial plant is often prohibitively expensive, time-consuming, and
potentially unsafe. A simulation environment provides a risk-free platform for

thorough robustness analysis and optimization.

Thus, industrial-scale simulation is a vital bridge for transferring the technology of the

proposed state estimation and control strategies, ensuring their robustness, stability, and

viability before costly physical implementation.

Simulation conditions

To ensure the representativeness and robustness of the industrial-scale evaluations of both

control and state estimation strategies, the simulation environment was configured using

calibrated parameters and real input data. Key system inputs were driven by real time-

series data to accurately capture the stochastic and dynamic nature of operational

wastewater treatment plants:
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Urban wastewater influent load: Industrial-scale plant simulations were based on
real-time series data of urban wastewater influent quality. This data was sourced
from representative municipal wastewater, allowing for evaluation under the

typical diurnal fluctuations inherent to real-world operation.

Environmental conditions: The dynamic effects on microalgae growth and reactor

temperature were modeled using real meteorological data. Specifically, typical
data on solar radiation and ambient temperature from a suitable geographical
location were used to accurately reflect the influence of external conditions on

biological dynamics.

Model parameters and scaling: The dynamic models for the reactors and settlers

were scaled up to typical industrial dimensions. Typical biokinetic and mass
transfer parameters for HRAPs were used to ensure that the fundamental kinetic
and biological behavior of the simulated system corresponded directly with prior

experimental evidence.

Scenarios for robustness analysis and state estimation evaluation

Model-plant mismatch setup

A fundamental aspect of this simulation methodology was the introduction of a deliberate

model-plant mismatch to accurately emulate the real conditions encountered in industrial

control applications. This setup involved utilizing two distinct dynamic models within the

closed-loop simulation:

Plant model: The full, high-fidelity, validated mechanistic model (developed in
Chapter 3) was employed to represent the true dynamic behavior of the industrial

plant.

Controller/Estimator model: A simplified version of the full model was embedded
within the state estimator and the controller. This model utilized a distinct set of
fixed parameters and a reduced number of states to represent the unavoidable
modeling errors, simplifications, and uncertainties characteristic of real-time
operational models. The details and simplifications performed in the reduced

model can be found in Chapter 5, Section 5.4.
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This rigorous approach ensures that the performance and stability of the designed control
and estimation techniques are tested against realistic structural and parametric

uncertainties, verifying their true robustness.

e Simulation of measurement noise and uncertainty evaluation
To further enhance the realism of the evaluation, the industrial simulation environment
incorporated stochastic noise into the measurements, accurately mimicking the
uncertainty and measurement quality issues found in real instrumentation and analytical

measurement procedures.

- Measurement noise: Additive noise was introduced to both the simulated

analytical and online measurements. This noise component effectively models the
combined effects of high-frequency uncertainty, calibration errors, signal drift,
and process-related fluctuations present in real-world sensors and analytical

procedures.

- Uncertainty evaluation: Testing the state estimator under this noisy environment

is critical, as the performance and convergence of non-linear observers are highly
sensitive to measurement noise propagation and the effects of model
simplifications. This rigorous evaluation confirms the estimator’s capability to
provide reliable state estimations in realistic operational context.

2.3.  State estimator design and tuning methodology

The methodology for the state estimator design was structured around two principal
aspects: the selection of the most pertinent state estimation technique for the system's
non-linear dynamics, and the rigorous tuning of its parameters to ensure operational

robustness.

e Selection of the estimation technique

To effectively address the non-linear nature of the biological system and, critically, the
necessity of incorporating state and measurement constraints, the Moving Horizon
Estimator was selected. The MHE was selected due to its methodological advantages over

linear or extended Kalman filters in this particular context:
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Explicit constraint handling: The MHE explicitly incorporates operational
constraints directly into its optimization formulation, a crucial aspect for ensuring

the safety and physical significance of state estimation.

Global optimization: By utilizing an objective function that minimizes the
estimation error over a receding time horizon, the MHE provides a more robust
and consistent state estimation, particularly in systems characterized by slow, non-

linear dynamics such as WWTPs.

Embedded model: The MHE utilizes a simplified version of the complete dynamic
plant model. This approach offers a realistic simulation of the model-plant
mismatch condition, verifying the estimator's ability to converge despite structural

and parametric uncertainties.

MHE tuning and configuration

The performance of the MHE is critically dependent on the adjustment of its weighting

parameters and the correct inclusion of constraints:

Covariance matrices:

o Process noise covariance matrix: This matrix weights the noise affecting
the model dynamics. The weights were tuned to reflect the level of
uncertainty inherent in the reduced model and the unmeasured
disturbances of the WWTP.

o Measurement noise covariance matrix: The weights were directly adjusted
based on the variance of the stochastic noise introduced into the
simulations. Proper tuning of this matrix is essential for balancing the
estimator's confidence in the measurements versus its confidence in the

model predictions.

Estimation constraints: Constraints were included in the MHE's optimization

problem to ensure that the estimated state variables remain within their known

physical and operational bounds.

Horizon: The estimation horizon was chosen as a compromise between estimation

accuracy and computational feasibility.

This design and tuning process ensures that the MHE is not only theoretically suitable for

the system but has also been configured to operate robustly under industrial conditions of
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uncertainty and constraint. The specific tuning parameters are delineated in Chapter 5,

section 5.5.1.

2.4.

Economic model predictive control design and tuning methodology

The eMPC was designed to optimize the economic performance of the wastewater

treatment plant, using biomass productivity as the primary economic driver.

Optimization problem formulation and tuning

The eMPC is formulated as an online optimization problem that is solved at every

sampling instant. Its distinctive feature is the definition of an economic objective

function. The tuning of the eMPC was an iterative process focused on achieving a robust

balance between economic maximization and the maintenance of stringent quality

constraints.

Economic term: This dominant term is defined to maximize biomass productivity.

Control effort term: This penalizes excessive changes in the manipulated

variables.

Prediction and control horizons: These horizons were selected based on the slow

dynamics of the biological system.

Embedded model: The eMPC utilizes the reduced dynamic model of the plant (the
same version used in the MHE, Section 5.4) to predict the future behavior of the
system over the prediction horizon. The employment of this reduced model is

critical to ensure real-time computational feasibility.

Operational and quality constraints: The optimization must be subjected to

equality and inequality constraints, which are vital for real-world application:

o Biomass constraints: Strict biomass constraints within the reactor, in the

effluent flow and in the wastage flow.

o Actuator constraints: Physical limits were imposed on the manipulated

control variables.

This methodology ensures that the eMPC operates as a robust hierarchical control system,

striving for economic optimization within a framework of strict safety and regulatory

adherence.
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2.5. Laboratory-scale plant for wastewater treatment

In this thesis, a laboratory-scale plant for wastewater treatment was designed to allow the
validation of modeling, estimation, and control strategies. This plant is located at the

University of Valladolid's Institute of Sustainable Processes in Spain.

2.5.1. Pilot plant description

The laboratory-scale wastewater treatment plant developed in this thesis comprised two
independently operated microalgae-bacteria photobioreactors. The photobioreactors are
identical 3.85 L cylindrical PVC (polyvinylchloride) plastic tanks with a total working
volume of 3.2 L. The photobioreactors are illuminated by an array of LED strip lights
(Philips 150 W-0.7 A, Spain) placed 0.44 m above the surface of the photobioreactors.
The photobioreactors are subjected to constant agitation through the use of magnetic
stirring plates (LBX instruments S20, Spain). To ensure a suitable temperature range for
microalgae cultivation, a cooling system is employed, utilizing hoses surrounding the
photobioreactors to circulate water from a thermal bath (Fisher Scientific, Spain). Both
reactors are fed with synthetic wastewater, which is supplied to the reactors using
HYGIAFLEX HF-SK-HandyPump peristaltic flow pumps. Fig. 2.1 presents a schematic

representation of the laboratory-scale plant.

Legend:

. Photobioreactor 1

. Photobioreactor 2

. Magnetic stimng plates
. Peristaltic pumps

5. Probes (pH, Temperature, 02)
6. Data acquisition board

7. SWW tank

8. Effluent tanks

9. Thermal bath

10. LED panels

11. Computer

1
2
3
4

Fig. 2.1. Schematic representation of the laboratory-scale plant (Ruiz Guirola, 2023)
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e Operational conditions

The reactors were inoculated with a consortium of microalgae and bacteria from the
photosynthetic wastewater treatment plants of Almeria, Spain. The microalgae strains
present in the inoculum were Dictyosphaerium sp., Scenedesmus sp., Nitzschia sp. and

Pseudanabaena sp., with Dictyosphaerium sp. predominating.

Both reactors are fed with synthetic wastewater, which is maintained at a constant
temperature of 4 °C before feeding to prevent degradation. To ensure controlled operating
conditions, synthetic wastewater was employed to simulate the physicochemical
characteristics and composition of medium-load urban wastewater. The composition of
the wastewater utilized is delineated in Table 2.1. The utilization of synthetic wastewater
in this laboratory-scale facility offers several advantages, including the ability to regulate
the characteristics and composition of the water, facilitate the comparison and evaluation
of treatment technologies, eliminate the risk of hazardous contaminants, and reduce the
cost of treating and managing real water. Furthermore, it enables the modeling of various
scenarios, thereby reducing the impact of perturbations resulting from heterogeneous

wastewater composition.

Table 2.1. Synthetic wastewater composition

Component Concentration [units]
Glucose anhydrous 625 mg/L
Meat Extract 137.5 mg/L
Peptone from casein 200 mg/L
NaHCO3 1375 mg/L
NaCl 8.75 mg/L
CaClz2-H20 5 mg/L
MgSQOa4-7H20 2.5 mg/L
K2-HPO4 140 mg/L
CHaN20 (urea) 37.5 mg/L
CuClz2-2H20 0.625 mg/L
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The temperature and pH of the culture medium varying between 24-27 °C and 8-9.8,
respectively, throughout the experimental process. In order to guarantee a narrow range
of temperatures, the cooling systems circulates water at 24 °C from a thermal bath. The
photobioreactors are illuminated with LED panels, and the radiation provided by these
panels at each time of the day emulates the sunlight cycle. The Arduino Leonardo
controller transmits the appropriate voltage levels to the LED panels, corresponding to
the radiation values for the various hours of the day. The sunlight cycle programmed in
the Arduino for this experimentation corresponds to the summer radiation conditions in
Castilla y Ledn, with a maximum intensity of 1495 umol/m?s over the surface of the
photobioreactors. The LED panels ensure sufficient illumination, thereby promoting

optimal growth and development of the microalgae.

e Online data acquisition and automatic operation system

The experimental system is designed for the collection of online data concerning the pH
level, the temperature, and the dissolved oxygen concentration. To this end, tree probes
(Vernier®) were positioned within each reactor to obtain precise measurements of the
internal conditions. Each probe is connected to a data acquisition (DAQ) board (LabQuest
Mini, Model 2, Vernier®), which is connected to the computer via USB ports. This
interface enables the real-time transfer of data from the probes to the computer. A
Supervisory Control and Data Acquisition (SCADA) system was developed to address
the necessity for efficient data visualization, storage and processing, as well as the
autonomous operation of the system. This system utilizes LabVIEW 2021 software

(National Instruments, NI).

The SCADA system has been developed for the purpose of facilitating the acquisition of
measurement values at user-defined intervals. Throughout the experiment, the daily data

are stored in an Excel file.

The implementation of the SCADA system facilitates the regulation of synthetic
wastewater flow to both photobioreactors, with each pump functioning independently.
This configuration is guaranteed to provide the necessary synthetic wastewater to each
reactor, thereby ensuring the achievement of the desired hydraulic retention time value.
The control of the pumps for the SCADA system is performed using the Input/Output
device USB-1408FS-Plus (Measurement Computing Corporation). Fig. 2.2 represents the
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instrumentation used to facilitate the exchange of information between the plant and the
SCADA system.

The SCADA is composed of four windows. The first is the main window, which displays
the fundamental operational conditions of the system. The second and third windows
provide detailed information regarding each reactor operation. The fourth window is the
settings window, which allows the user to configure the flow particularities for each

reactor. Details of the SCADA operation are provided in Appendix 4.

\ Probes {

~ -

, Pump

LED Panel . Arduino Controller |

Fig. 2.2. Instrumentation of the laboratory-scale wastewater treatment plant

2.6. Conclusions

The methodological framework established herein ensures the viability, robustness, and
industrial applicability of the contributions presented in this thesis. The strategy,
grounded in a model-centric and hybrid approach, commenced with the establishment of
a high-fidelity predictive platform through the calibration of the dynamic model against

pilot-plant experimental data. The aforementioned model, which has been proven to be
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valid, serves as a foundation for the estimation and evaluation of control strategies. The
simulation environment was configured to prioritize realism, incorporating both real-
world time-series data and a deliberate model-plant mismatch to assess the performance
of algorithms in the face of inevitable uncertainties. The methodology culminates in the
design and tuning of advanced control components: the Moving Horizon Estimator,
selected for its constraint-handling and robustness to non-linearities, and the Economic
Model Predictive Controller, formulated to optimize high-level objectives while strictly
adhering to operational and regulatory constraints. This comprehensive approach
provides the validated and rigorous foundation necessary for the successful synthesis and

technology transfer of the proposed control and estimation strategies.
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3. Modeling of anoxic-aerobic algal-bacterial processes

This chapter is devoted to the modeling of an anoxic-aerobic algal-bacterial
photobioreactor configuration. The utilization of anoxic-aerobic algal-bacterial systems
has emerged as a highly efficient alternative for the removal of nutrients from wastewater
with low carbon to nutrient ratio (de Godos, Vargas, et al., 2014; Alcantara et al., 2015;
Garcia et al., 2017; Dhaouefi et al., 2018). However, these systems are still in an
embryonic stage, and further research must be conducted before being implemented in a
larger scale. As part of the experimental stage, anoxic-aerobic microalgae-bacteria
systems require a series of experiments to evaluate their performance and nutrient
removal efficiencies under various operational conditions and treating different types of
wastewater. In this regard, mathematical modeling applied to this novel photobioreactor
configuration is a useful tool for predicting and understanding the processes occurring in
each plant element, allowing the simulation of a broad range of experimental and

operational conditions in a relatively short period of time.
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3.1. Description of the anoxic-aerobic microalgae-bacteria photobioreactor

configuration

The lab-scale plant was configured as a two-stage anoxic-aerobic system, engineered with
biomass settling and recirculation, as illustrated in Fig. 3.1. The facility was designed
with the objective of promoting nitrogen removal via denitrification and the development
of a rapidly settling algal-bacterial population. The design was based on the hypothesis
that algal-bacterial photobioreactors for wastewater treatment can support the oxidation
of NHj into NO; /NOg3, which can then be easily removed through denitrification (using
the organic matter present in wastewater) under pre-anoxic conditions via internal

recycling of the photobioreactor broth (de Godos, Vargas, et al., 2014).

The aerobic tank (open photobioreactor) was illuminated by LED lamps, whereas the
anoxic reactor consisted of a gas-tight tank maintained in the dark. Synthetic wastewater
(SWW) was fed to the anoxic tank and continuously overflowed by gravity into the
aerobic photobioreactor. The algal-bacterial broth was recycled from the photobioreactor
to the anoxic tank in order to provide the NO, and NO3 (generated in the photobioreactor
via biological nitrification) required for denitrification. An Imhoff cone, interconnected
to the outlet of the photobioreactor, functioned as a settler, wherein the algal-bacterial
biomass settled and was recycled from the bottom of the settler into the anoxic tank.
Biomass was daily wasted from the bottom of the secondary settler to maintain the value
of the sludge retention time (SRT).

LED Panel
] Settler
Anoxic l
SWW ! °O Reactor Treated effluent
Photobioreactor
Internal recirculation |:| 5
Wasted biomass

External recirculation l >

Fig. 3.1. Schematic of the anoxic-aerobic algal-bacterial photobioreactor configuration
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3.1.1. Photobioreactor and anoxic unit modeling

The BIO_ALGAE2 model (Solimeno, Gomez-Serrano and Acién, 2019a) (with some
minor modifications) was used to represent the biochemical reactions and processes in
both anoxic and aerobic reactors. The BIO_ALGAE2 model uses the standard
nomenclature of the IWA models and considers 19 components - 6 particulate and 13
dissolved - as variables involved in the physical, chemical, and biokinetic processes.
These components are listed in Table 3.1 and described in detail in (Solimeno et al.,
2017a), along with their main roles in the processes and their interactions with other

components.

The process rates of the model and the factors equations representing the processes
occurring in the anoxic and aerobic reactors are described in Table 3.2 and Table 3.3,
respectively. Appendix 1 contains the matrix of stoichiometric parameters (Table Al.1),
the values of the parameters (Table A1.2), the fractions of carbon, hydrogen, oxygen, and
nitrogen in microalgae and bacterial biomass (Table Al1.3), and a summary of the

mathematical expressions of the stoichiometric coefficients (Table Al.4).

Model modifications considered in the present work (Table 3.2) were related to the
radiation factor (used in equations describing the microalgae growth (p, and p,)) and the
addition of one factor in the equation representing the aerobic growth of heterotrophic
bacteria on dissolved nitrate (pg) to indicate that when ammonium (or ammonia) and
nitrate are both present, ammonium is generally preferred. Differences in a few

stoichiometric parameters were also considered (Table Al.1).
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Table 3.1. Dissolved and particulate components in the BIO_ALGAE2 model

Component [units]

Description

Particulate XaLe [MgCOD/L] Microalgae biomass
components Xn [mgCOD/L] Heterotrophic bacteria
Xaos [MgCOD/L] Ammonium oxidizing bacteria
Xnos [MgCOD/L] Nitrite oxidizing bacteria
Xs [mgCOD/L] Slowly biodegradable particulate organic matter
X; [mgCOD/L] Inert particulate organic matter
Dissolved Snra [MgN-NH4/L] Ammonium nitrogen
components

Snrz [MON-NH3/L]
Snoz [MgN-NO3/L]
Snoz [MgN-NO2/L]
Spos [MgP-PO4/L]
Soz2 [mgO2/L]

Scoz [mgC-CO2/L]
Sticos [MgC-HCO4/L]
Scos [MgC-CO4/L]
St [mgH/L]

Son [mgH-OH/L]
Ss[mgCOD/L]

S [mgCODI/L]

Ammonia nitrogen
Nitrate nitrogen

Nitrite nitrogen
Phosphate phosphorus
Dissolved oxygen
Dissolved carbon dioxide
Bicarbonate

Carbonate

Hydrogen ions
Hydroxide ions

Readily biodegradable soluble organic matter

Inert soluble organic matter
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Table 3.2. Process rates of the model

Processes

Process rate [M L3T]

Microalgae (X4.) processes

Growth on S Sco2 + SHcos Snuz + Snha Spoa
" P = tare " Ji foo frae Forae” Scos? Ky arc + Snus + Snua .KP aLc T Spoa Hase
K¢ are + Scoz + Shcos + IL ' '
C02,ALG

Growth on Sy 3 0y = tiae f Foo - e f _ Scoz + SHco3 ] Sno3 ) KnaLe _ Spo,

2 ALG /I JDO JTarg ’PHarq Sco2”  Knare +Snos Knare + Swuz + Snua Kpavc + Spoa

Kc.arg + Scoz + Sucos + 7 ' ' '
C02,ALG
"Xare
Endogenous So2
resplratlon p3 = kresp,ALG ’ fTALG ' prALG ' KOZ ALG + SOZ ' XALG
Decay Pa = Kaeatnarc * frag " forae - XaLe
Heterotrophic bacteria (X) (aerobic and denitrifying activity)

Aerobic growth on Sy b=ty fr - f Ss So2 Snu3z + SnHa Spoa ¥

s =y - ) ) ) ) ) )

HITh Py Ksu +Ss Koouw +So2 Kyw + Svuz + Svua Kpu + Spos H
Aerobic growth on Ss So2 SNo3 Ky u Spoa
IS Pe = M “ fry * fony ' ' ' ' Xy
NO3 Ksy +Ss Koauw+So2 Knuw+Snos Knw + Svus + Svua Kpu + Spoa

Anoxic growth on N A S Ss  Koow Snoz ~ Spoa X
Snoz  (denitrification P7 = R M " Jtw Sy Ksy +Ss Koau +So2 Knozmanox +Snoz Kpu + Spoa H
on Syoz)
Anoxic growth on De =t M Fre Fon Ss  Koow Snos __Seox

8 oA Ty TpHE Ksu +Ss Koonw +So2 Knosmanox T Snoz Kpu + Spoa H

Snoz  (denitrification
on Syo3)
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Aerobic  endogenous So2
resplratlon p9 - kresp,H ! fTH ' prH ' KOZH + SOZ ! XH
Anoxic  endogenous — i e Forr Koo Snos + Snoz ¥
respiration Pro = Krespt "Mt " JTy " Ity Koou + Soz Knosmanox + Snoz +Snoz
Decay P11 = Kaeatnn * fry * fory * Xu
Autotrophic bacteria (X405, Xyop ) (nitrifying activity)
Growth of X5 _ Soz Snuz + Snua Scoz + SHco3 Spo4
P12—.UAOB'fTN'prN'K 15 K TS s % TS +S % TS X408
02,40B T 902 BNH4,40B T ONH3 T ONH4 Kc,40B T 9co2 T OHco3 1P,40B T 9P04
Growth of Xyop So2 K nHa SNo2 Sco2 t Sucos Spo4

P13 = Unog " [y fouy : : : )
N PN Koanos + S0z Kiwua + Svuz + Svua Knoznos + Snoz Kewos + Scoz + Sucos Kpnvos + Spoa

" XnoB

Endogenous
respiration of X,op

So2
P14 = kresp,AOB 'fTN 'prN '—K s " Xao8
02,A0B 02

Endogenous
respiration of Xyop

Soz
P15 = kresp,NOB 'fTN 'prN .—K IS XnoB
02,NOB 02

Decay of X405

P16 = Kaeath,a08 'fTN 'prN *Xaos

Decay of Xyop

P17 = Kaeathnos 'fTN 'prN *XnoB

Hydrolysis, Chemical equilibrium and Transfer of gases

Aerobic hydrolysis

—k _ Xs/Xy _
18 HrD Kyyp + (Xs/Xy)

p Xu

Chemical equilibrium
CO, & HCO3

P19 = keg1 - (Scoz - SHSHcos/Keq.l)

Chemical equilibrium
HCO3 & C0%™

P20 = keq,Z . (SHC03 - SHSC03/Keq:2)
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Chemical equilibrium
NH;} & NH,

P21 = keq,3 . (SNH4- - SHSNH3/Keq,3)

Chemical equilibrium
Ht & OH™

P22 = keq,w ' (1 - SHSOH/Keq,w)

Soz transfer to the
atmosphere

P23 = Kig.02 - (S%AT - 502)

Scoz transfer to the
atmosphere

P24 = Kigcoz - (S%‘;T - Scoz)

Syuz transfer to the
atmosphere

P25 = Kignus - (=Snu3)
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Table 3.3. Factors and submodels

Model factor

Submodel

Photosynthetic factories model (Eileers and Peeters) (Eilers and Peeters, 1988)

fi

Il
=
IN)

dxq
E=—a-1-x1+y-x2+5-x3
dxz_ ; /
dt_a Xg =Y X — P X2
dx;
E=,B-I-x2—5-x3

Xy +x, +x3=1
where: I = I,
The average light intensity (I, was described using
Lambert-Beer’s Law:

I _ Ip(1—exp(-K;TSSd))
av K;TSSd

where:

TSS = XALG +XH +XI +XS +XAOB +XNOB

x1: Microalgae in open state (ready to capture a photon).

x,: Microalgae in activated state (microalgae can go back to open state or

can capture another photon).

x3: Microalgae in inhibited state (ready to turn back to the open state.
a: Rate of activation [(uE m~2)~1]

y: Rate constant of production [s~1]

(: Rate constant of inhibition [(uE m=2)~1]

§: Rate of recovery [s™1]

1,,,: Average light intensity [umol m=2s71]

Io: Incident light intensity [umol m=2s71]

K;: Extinction coefficient for particulate biomass [m?g~1]

TSS: Particulate components [gTSS m™3]

d: Photobioreactor depth [m]
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Photorespiration model

foo Kog - 50§A S54T: Saturation concentration of oxygen in the air [g0, m™3]
75547
foo = 1—tanh | S Spp ST+ SSAT Kpg: Photorespiration inhibition constant
- 5347 . .
L o .- ! ¢ o 7: Coefficient of excess dissolved oxygen
y 002 < T 902
pH model
for; | fon; i: Refers to the i-th species of
2 microorganism considered in
_ (pH - pHi,max)(pH - pHi,min) g ]

(pHi,opt - pHi,min) [(pHi,opt - pHi,min)(pH - pHi,opt) - (pHi,opt - pHi,max)(pHi,opt + pHi,min - ZpH)] the model (mlcroalgae,
heterotrophic  bacteria, and
nitrifying bacteria)

Temperature model
2 . H
fr, P (T = Ty max ) (T = Tymin) i: Refers to microalgae and
Ti — g - .
(Ti,opt - Ti,min)[(Ti,opt - Ti,min)(T - Ti,opt) - (Ti,opt - Ti,max)(Ti,opt + Ti,min - ZT)] nlt“fymg baCte“a)
fry fr, = 07 THopt Thope: Optimal temperature

for heterotrophic bacteria [°C]

6: Temperature coefficient
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Table 3.4 summarizes the main reactions related to the activity of the microorganisms in
each reactor. Since the anoxic tank is maintained under dark conditions, the growth of
microalgae is not considered in this reactor. Similarly, due to the occurrence of anoxic
conditions, the growth of autotrophic bacteria and the aerobic growth of heterotrophic
bacteria are not considered in the anoxic reactor. Reactions related to chemical
equilibrium were assumed to occur in the photobioreactor and the anoxic reactor, while
the transfer of gases was considered to occur only in the photobioreactor since the anoxic
reactor was a closed unit. Evaporation was also considered in the mass balance

expressions in the photobioreactor.
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Table 3.4. Processes considered in each compartment of the anoxic-aerobic algal-

bacterial photobioreactor

Process Anoxic Reactor  Aerobic Reactor
Microalgae ~ Growth on Snha Not Considered Considered
processes Growth on Snos Not Considered Considered
Endogenous respiration Considered Considered
Decay Considered Considered
Heterotrophic Aerobic growth on Snha Not Considered Considered
bacteria Aerobic growth on Snos Not Considered Considered
processes Anoxic growth on Snoz Considered Considered
(denitrification on Snoz)
Anoxic growth on Snos Considered Considered
(denitrification on Snos)
Aerobic endogenous respiration  Not Considered Considered
Anoxic endogenous respiration  Considered Considered
Decay Considered Considered
Autotrophic ~ Growth of Xaos Not Considered Considered
E?g(t:z::es Growth of Xnog Not Considered Considered
Endogenous respiration of Xaog  Considered Considered
Endogenous respiration of Xnog ~ Considered Considered
Decay of Xaos Considered Considered
Decay of Xnos Considered Considered
Hydrolysis Hydrolysis Considered Considered
Chemical Chemical equilibrium Considered Considered
equilibrium €0, & HCO3
Chemical equilibrium Considered Considered
HCO; < €032~
Chemical equilibrium Considered Considered
NH; & NH;
Chemical equilibrium Considered Considered
Ht & OH™
Transfer of  S,, transfer to the atmosphere Not Considered Considered
gases Scoz transfer to the atmosphere  Not Considered ~ Considered
Syus transfer to the atmosphere  Not Considered Considered
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3.1.2. Settler modeling

The settler was described using the mass balance expressions of the model of Takéacs et
al. (Takacs, Patryioand and Nolasco, 1991). The model is a multilayer dynamic model of
clarification and thickening processes based on the concept of solids flux and mass
balance around each layer of a one-dimensional settler. This model can simulate the solids
profile throughout the settling column, including the underflow and effluent suspended

solids concentrations under steady-state and dynamic conditions.

The model of Tékacs et al. (Takacs, Patryioand and Nolasco, 1991) assumes that no
biological reactions take place in the settler. The model considers the settler as a set of
layers, so that the gravitational flow of solids depends on the concentration of sludge in

the settler. Two important assumptions are also made in this model:

(1) incoming particles are instantaneously and uniformly distributed over the entire cross-

sectional area of the settler layer,
(2) the model equations only consider flow in the vertical direction.

The basic principle of this model is based on the mass balance of the suspended solids in
each layer. The flux of solids in each layer (J) depends on the concentration of solids (X)
in the layer and the velocity of the solids (v) as given in equation (3.1). The solids flux
due to the bulk motion of the liquid can be upward or downward depending on the

position of the layer with respect to the feed point.

J=vX)X (3.1)

Five different groups of layers are described with the Téakacs model, depending on their
position relative to the feed point: the top layer, the layers above the feed point, the feed
layer, the layers below the feed point, and the bottom layer.

Considering the settler divided into n layers, layer 1 is the top layer and m is the feed
layer. The state equations describing the concentrations in each layer are represented by
the expressions (3.2)-(3.6):

dx; 1 3.2
d_tl = E(]up,z _]up,l _]s,l) ( )
dx; 1 ; 3.3
d_tl = E(]up,i+1 _]up,i +]s,i—1 _]s,l) 2si<m &9
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dxm 1 /QumX; 34
d_tm = E( ”;1 = _]up,m _]dn,m +]s,m—1 _]s,m) ( )
dx; 1 _ (3.5)

d_t]:E(]dn,j—l_]dn,j+]SJ—1_]SJ) m<j<mn
dx, (3.6)

1
E = E(]dn,n—l _]dn,n +]s,n—1)

where A represents the surface area of the settler, Qin and Xin represent the influent flow
rate, and the influent suspended solids concentration to the settler, respectively.
Expressions (3.7) and (3.8) describe the upward (Jup) and downward (Jan) solids flux due
to the bulk motion of the liquid, respectively. Qe is the treated effluent flow rate and Qout

is the sum of the recycle and wastage flow rates.

Q.rX; ) (3.7)
]up,i: ej;l 2<i<m
Xj 3.8
Jdn.,-=Q°j” m<j<n (38)
In each layer the solids flux due to gravity settling is determined using (3.9):
Jsie = min(Vs e Xpe, Vi 1 Xpe41) 1<k<n-1 (3.9)

The generalized settling velocity (3.10) is described using the double-exponential model
proposed by Takacs and co-workers (Takéacs, Patryioand and Nolasco, 1991). This model

is valid for both: thickening and clarified zone.
Ve = Vye TnXk-Xmin) Voe—rp(Xk—Xmin) 1<k<n 0<V, <V (3.10)

where:
Vs i Settling velocity of the solids particles in the layer k [dm/d]
Xmin: Minimum attainable suspended solids concentration in the effluent [mg/L]
Vy: Maximum theoretical settling velocity [dm/d]
Vy: Maximum practical settling velocity [dm/d]

.. Settling parameter associated with the hindered settling component of settling
velocity equation [L/mg]
1,. Settling parameter associated with the low concentration and slowly settling
component of the suspension [L/mg]
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This work considers a 10-layer settler of equal volume and assumes that no biological
reactions occur in the settler. The model considers only biomass dynamics to predict the
biomass concentration in each layer of the settler. Thus, to estimate the concentration of
components in the settler (and in the external recirculation and effluent streams), this
assumption implies:

¢ the concentration of the dissolved components in the settler is assumed to be the

same as in the photobioreactor, and
e the percentage of each component of the biomass in the settler is assumed to be

exactly the same as in the photobioreactor.

3.2. Library for microalgae-bacteria wastewater treatment modeling

This section presents the development of a library of components for the simulation of
wastewater treatment plants based on microalgae-bacteria consortia using the dynamic
programming environment EcosimPro|PROOSIS® (EA Internacional, 2024).

As mentioned in the previous chapter, several models have been proposed in the last two
decades to represent microalgae-bacteria interactions (Reichert et al., 2001; Solimeno et
al., 2017a; Solimeno, Gémez-Serrano and Acién, 2019a; Casagli et al., 2021; Sanchez-
Zurano et al., 2021). For the simulation of these models, different programming tools
have been used, such as MATLAB®, COMSOL Multiphysics®, AQUASIM, among
others.

Using these models requires a broad understanding of the variables and equations that
describe the dynamics of the process, as well as mathematical and programming skills
that make them difficult to use for students and staff unfamiliar with all the elements of
the models. In most cases, this makes adding new process units or modifying existing
ones too complex for anyone outside the programming team.

The main tools that make models accessible to non-experts users are graphical
environments and model libraries, especially those based on object-oriented
programming, also known as structured programming. On the one hand, the former
allows the user to handle models intuitively (for example, by using icons to represent a
particular process). On the other hand, OOP facilitates software updates, teamwork, or
the creation of graphical environments through features such as model reuse, inheritance,
encapsulation, or abstraction. OOP allows the user to utilize a component without the
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understanding of the implementation details of the model. The user's knowledge is limited
to the component's intended purpose, inputs, and outputs. Object-oriented modeling
facilitates the reuse of previously developed models and also encourages the creation of
parameterizable component libraries with broad applicability across a variety of
simulation projects.

The use of object-oriented programming and library development to simulate industrial
processes is a common practice, as evidenced by numerous studies (Vilas et al., 2008;
Mazaeda et al., 2011; Palacin et al., 2011). In the context of wastewater treatment systems
based on microalgae-bacteria consortia, a comparable methodology has only been
proposed through the plant-wide model (PWM) for the description of microalgal
processes in wastewater treatment plant simulations (Tejido-Nufiez, 2020).

3.2.1. Library development using EcosimPro|PROOSIS®

EcosimPro|PROOSIS ® is a modeling and simulation tool for multidisciplinary systems.
Based on algebraic differential equations and discrete events, it allows the modeling of a
wide range of systems, including control, thermal, hydraulic, and mechanical systems.
PROOSIS® allows the creation of physical system models based on object-oriented
concepts similar to those used in programming languages such as C++ and Java. Using
PROOSIS's proprietary modeling language (EL), the data and dynamic behavior of the
system can be encapsulated in reusable components that provide a well-defined public
interface while hiding the intricacies of their internal implementation. PROOSIS® allows
the construction of more complex components by integrating basic components. It also
allows the definition of a component as an extension or specialization of another basic
component through inheritance mechanisms. The object-oriented modeling technology
of PROOSIS® facilitates the creation of sophisticated dynamic models through the
interconnection of components, thereby promoting a highly productive methodology of
reusing parameterizable components that have already been tested. Furthermore, the open
source code of the libraries allows for the integration of additional components not
included in the existing functionality. The following are basic concepts that are involved
in a simulation using PROOSIS®:
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e Component: Represents a model of a physical object that incorporates variables,
differential algebraic equations, topology, and discrete behavior. (Examples of
components included in the software: pump, valve, and pipe).

e Ports: These define the connection points of a component with other components,
allowing for the exchange of materials, energy, or information. Different ports are
required for each discipline, for example, electrical, hydraulic, and chemical
systems.

e Experiment: This refers to the process of defining how the model is going to be

used in the simulation.

e Library: This includes all the library's components, ports, and global variables.

The library developed was called ALG_BACT _WWTP. This library includes the
essential components that allow the modeling of a simple wastewater treatment plant:

ports, sources and sinks, reactors, and settler. These components are shown in Fig. 3.2.

e} e} s}
Y Y Y

i

Y
o0

REACTOR_ALG_BACT 1 SETTLER_1

CH-* »»0 o

Sink_WW _1 Source WW _1 port_liquid_1

Fig. 3.2. Components of the library ALG_BACT_WWTP.

The definition of a special data type that will be used for all library components is

essential to library design. The PROOSIS® software offers a variety of language
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resources that facilitate a more concise definition. These resources are based on arrays
and a specialized data type (ENUM), which is particularly useful for defining elements
of a specific type, such as chemical species or microorganisms present in wastewater
(WW). In the ALG_BACT_WWTP library, a data type (WW_components), is defined to
include the potential elements present in wastewater. The enumeration of these elements

was previously established in Table 3.1.
The components developed in the library ALG_BACT_WWTP are described below:
e Port_liquid: This port is used to connect the different elements of the WWTP.

e Source_ WW: Wastewater source. Wastewater inlet to the facility. In this
component, only the dissolved elements of Table 3.1 are considered. The user
should assign a value to each dissolved component (depending on the wastewater
concentration used in the simulation).

e Sink_WW: Wastewater sink. Wastewater or biomass outlet. The facility's output

streams may contain both dissolved and particulate components.

e REACTOR_ALG_BACT: Algal-bacterial photobioreactor. This component
encapsulates the differential equations described in Table 3.2. It can be used to
describe different photobioreactor configurations. The user should define the
photobioreactor type, size, and the incident radiation surface. By defect,
REACTOR_ALG_BACT has three inputs and two outputs that can be used to
connect different components in configurations with two or more stages. The user
can modify the initial concentration of components and model parameters in a
simple way.

e SETTLER: This component encapsulates the equations of the model of Tak&cs et
al. (Také&cs, Patryioand and Nolasco, 1991) (Section 3.1.2). The number of layers
considered in the model and the physical dimensions of the settler can be
modified. The component has one input and two outputs (for the clarified effluent
and settled biomass).

Using the advantages of the OOP, more components could be included in the library
ALG_BACT_WWTP, thereby enhancing its functionality. In a similar manner,
components from other PROOSIS® libraries (e.g., tanks, valves, pumps, pipes, or
controllers) could be added to simulate a WWTP. Components of the PROOSIS®
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standard libraries, including HYDRAULIC, CONTROL, and PORTS, can be utilized by
adding these libraries to the workspace and subsequently interconnecting the graphical
symbols of the components according to the user's preference. The construction of a
model of a microalgae-bacteria wastewater treatment plant can be achieved through the
integration of its distinct components, akin to the physical world, and the subsequent
allocation of values to the various parameters and boundary conditions that govern the

plant's operation.

As illustrated in Fig. 3.3, a model for simulating a microalgae-bacteria wastewater
treatment plant is presented, utilizing the components of the ALG_BACT_WWTP
library. The anoxic-aerobic configuration described in Section 3.1 is represented by the
components of the developed library. To specify the characteristics of the plant and
operating conditions, the user can easily modify the component parameters and names by
clicking on each component. This process is illustrated in the edition window of the
photobioreactor represented in Fig. 3.4. This library empowers users to execute a diverse
array of simulations, manipulating biological or operational parameters, without

necessitating a comprehensive understanding of biological modeling principles.

Source_WASTEWATER ’

SETTLER_1

»@—@-*

EFFLUENT

Y
—&o—0 -*
PHOTOBIOREACTOR WASTAGE

Fig. 3.3. Wastewater treatment plant with biomass recirculation using components of the
library ALG_BACT_WWTP.
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ALG_BACT_WWTP.Example1 - PHOTOBIOREACTOR w0 X
Type: ALG_BACT_WWTP.REACTOR_ALG_BACT D
MName: |PHOTOBIOREACTOR | Show Label
2 Al Instances Mame PHOTOBIOREACTOR Units Description  *

v_alg 1.3 1/d Maximurn growth rate of microalgae (1/d)

v_aob 0.63 1/d Maximurn growth rate of ammeonium oxidizing bacteria (1/d)

v_h 1.3 1/d Maximurn growth rate of heterotrophic bacteria (1/d)

v_hidro 3 1/d Hydrolysis rate constant (1/d)

v_nob 1.1 1/d Maximurn growth rate of nitrite oxidizing bacteria (1/d) v

£ >

D | [ |cv l:l All Columns w Close

Fig. 3.4. Edition window of the component REACTOR_ALG_BACT.

3.3. Conclusions

In this chapter, the established models from the extant literature were adapted to represent
novel configurations of anoxic-aerobic algal-bacterial photobioreactors for wastewater
treatment. The proposed models allow for the simulation of anoxic-aerobic configurations
with biomass recirculation under a range of operational conditions. A library of model
components for microalgae and bacteria-based wastewater treatment plants was
developed. The components developed can be reused for multiple simulations and allow

for easy interconnection between plant components.
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4. Parameter estimation in microalgae-bacteria processes

This chapter presents the parameter estimation for the anoxic-aerobic configuration
described in Chapter 3. Parameter estimation, defined as the process of aligning a
specified mathematical model with observed data, poses significant challenges in the
context of bioprocesses. This complexity arises from the intricate nature of the model
parameters, which are often characterized by high dimensionality. Consequently, a
sensitivity analysis is conducted in the present study to ascertain the subset of parameters
that exert the most significant influence on the system outputs. Subsequently, parameter
estimation through optimization is performed to determine the optimal values of the
model parameters. Finally, model validation is performed using the previously obtained
model parameters. Fig. 4.1 provides a synopsis of the modeling and parameter estimation
process employed in this thesis. The modeling, sensitivity analysis, parameter estimation,
and model validation were conducted using the software PROOSIS®.

Modeling process
Software PROOSIS
Selection of
model STl Validation
ST Estimation
% Anoxic Reactor <+ Determine the Dynamic Optimization < Compare simulation
) . parameters with < Model results and
< Photobioreactor the greatest % Cost Function experimental data
< Settler influence on model 2 Constraints
Estimated parar‘r‘@.tcrs

Model

Simulation data

Experimental data

LED Panel

Fig. 4.1. Schematic of the modeling and parameter estimation process.
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In the estimation of parameters, two approaches have been employed: the first involves
the simultaneous determination of all parameters pertinent to the optimization problem
(Section 4.1), while the second involves the division of the optimization problem into
subproblems of increasing complexity (Section 4.2). This second approach enables the
presentation of a methodology for parameter estimation that could be used in a variety of
biological processes when multiple model outputs and parameters are involved in the
optimization problem.

The initial approach to parameter estimation was evaluated in an anoxic-aerobic algal-
bacterial photobioreactor configuration that treated synthetic food waste digestate
(SFWD). The methodology of the subsequent approach was implemented in a comparable

facility that treated synthetic domestic wastewater.
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4.1. Parameter estimation in anoxic-aerobic algal bacterial system

The data utilized in this section to adjust the model of the anoxic-aerobic reactor
configuration were collected by researchers from the Institute of Sustainable Processes at
the University of Valladolid (Spain) from July to December of 2019. The experimental
setup was operated with the objective of evaluating the performance of this
photobioreactor configuration in the treatment of wastewater with high carbon and

nitrogen loads.

The laboratory-scale plant utilized in the present study (Fig. 3.1) comprised an open
photobioreactor with a working volume of 9.15 L. The photobioreactor was illuminated
for 12 hours daily by LED lamps (1314+12 pE/m?s). The anoxic reactor consisted of a
gas-tight tank with a total working volume of 2.85 L maintained in the dark. The SFWD
was fed to the anoxic tank at 1.2 L/d, continuously overflowing by gravity into the aerobic
photobioreactor. The algal-bacterial broth was recycled at a rate of 2.4 L/d from the
photobioreactor to the anoxic tank. The Imhoff cone, with a volume of 1 L, was utilized
as a settler. The algal-bacterial biomass that accumulated at the bottom of the settler was
subsequently transferred into the anoxic tank at a rate of 0.6 L/d. The system was operated
continuously at a hydraulic retention time of 10 days and a temperature of 27 + 2 °C.
Biomass was wasted from the bottom of the secondary settler to maintain the solids

retention time at 18 d.

The experimental configuration was operated for 138 days under step changes in SFWD
load. During the initial stage (Stage 1), the anoxic-aerobic system was supplied with 25%
diluted SFWD. Subsequently, SFWD load was augmented to 50% (Stage I1), and finally,
to 100% during the final stage of operation (Stage I11). The details of SFWD composition,
experimental setup, operational conditions, and the ensuing results can be found in the

study by (Torres-Franco et al., 2021).

The data utilized for model calibration and validation were the results obtained for the
composition of the influent SFWD, anoxic tank, photobioreactor, settled biomass, and
effluent (Torres-Franco et al., 2021). The recorded variables included the pH, the
concentration of dissolved oxygen (DO), dissolved total organic carbon (TOC), inorganic
carbon (IC), dissolved N species (total nitrogen (TN), N-NHj;, N-NO3, N-NO3),
dissolved phosphate (P-PO37), and biomass concentration, expressed as the total
suspended solids (TSS) concentration. The measurement of DO and pH was conducted
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on a daily basis, while the characterization of other variables occurred on a biweekly

basis.

Similar to previous research in anoxic-aerobic systems (Alcantara et al., 2015; Torres-
Franco et al., 2021), the model was built over the assumption that significant removals of
N-NHj, IC, and P-PO; ", were mainly attributed to the contribution of the microbiology
in the photobioreactor. In accordance with the aforementioned rationale, this study has
considered eight key output variables in the reactors: TSS and TOC concentration in the
photobioreactor and anoxic reactor; and dissolved oxygen, IC, N-NHj and P-PO; ™~ in the
photobioreactor. In the settler, the TSS concentration in the effluent and the biomass
wastage stream were considered output variables to adjust in the optimization problem.

Table 4.1 summarized the output variables considered in the model.

Model simulation considers the processes occurring in the anoxic and aerobic reactors
described in Table 3.4. As previously referred, biomass concentration in both reactors and
settler was measured twice a week using standard procedures to determine the
concentration of TSS and Volatile Suspended Solids (VSS). In the model used in this
study, the concentrations of particulate components are expressed in terms of the
Chemical Oxygen Demand. Results from COD tests developed in (Torres-Franco et al.,
2021) were used here to obtain the ratio VSS/COD used in the model. In the simulation,
the average value of the experimental ratio gTSS/gCOD used was 1.28.

Equations (4.1) and (4.2) related the state model variables described in Table 3.1 and the

measured variables (Table 4.1).
TSS[mgTSSL_l] == XALG + XH + XAOB + XNOB + XI + XS (41)
TOC[mgCL™"] = icssSs + ic,siS (4.2)

Where i g5 and ic g, are the fraction of carbon in the readily biodegradable soluble
organic matter (S;) and in the inert soluble organic matter (S;), respectively, which

accounted for:

icss =0.318 gC-gCcOD ~*

ics =0.327gC-gCOD ~*
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Table 4.1. Output variables considered in the model

Output variable Description Sampling
[units] frequency
TSS anoxic [MgTSS/L] Total suspended solids  Twice a week

concentration in the anoxic reactor

TOC anoxic [MgC/L] Total organic carbon concentration  Twice a week
in the anoxic reactor

TSS photobioreactor [MJTSS/L]  Total suspended solids  Twice a week
concentration in the photobioreactor

TOC photobioreactor [MYC/L] Total organic carbon concentration  Twice a week
in the photobioreactor

IC photobioreactor [MYC/L] Inorganic carbon concentration in  Twice a week
the photobioreactor

So2 photobioreactor [MPO2/L] Dissolved oxygen concentration in  Daily
the photobioreactor

Snra [MgN-NH4/L] Dissolved ammonium concentration ~ Twice a week
in the photobioreactor

Spoa [MgP-PO./L] Dissolved phosphate concentration  Twice a week
in the photobioreactor

TSS effiuent [MGTSS/L] Total suspended solids  Twice a week
concentration in the effluent flow

TSS wastage [MQTSS/L] Total suspended solids  Twice a week
concentration in the wastage flow

4.1.1. Sensitivity analysis

Parameter estimation in the anoxic-aerobic system poses a significant challenge due to
the extensive number of model parameters involved, as evidenced by the data presented
in Table A1.2 of Appendix 1. Previous to parameter estimation, a sensitivity analysis is

needed to identify the parameters with the most significant impact on the model. Equation

(4.3) describes the sensitivity functions (sl-, j) from the i-output of the model concerning

the j-parameter (p;):
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_ay, (4.3)

Si,j

In order to compare the values of the sensitivities, scale factors (Eq. (4.4)) should be used
to normalize them:
s, = PO (44)
Yy 0p;
Here, 5;; denotes the scaled sensitivity, and y; represents the average value of the
experimental output.

Then, the norm of column j of the output sensitivity matrix (4.5) provides a measure of
the importance of the parameter pj in the value of the model outputs (y;). This allows to
compare the influence of each parameter in the process response and decide which ones
need to be accurately estimated and which ones can be assigned a reasonable value

without significantly affecting the output.

S11 S12 S1d
So1 S22 S2d (4 5)
Smi Smi 7 Smd

Given the dynamic model described by Equation (4.6),

x(t) = f(x(t),u(®),p) y(®) = g(x(t),u(t),p) (4.6)
The sensitivities (4.3) can be computed by differentiating the model represented by Eq.
(4.6), then, integrating in parallel the so-called extended model, equations (4.7) and (4.8)
are obtained:

d 6x_6f6x+6f 4.7)
dtdp 0xdp 0dp

oy _0gox dg “8)
dp Oxdp OJp
Sensitivity analyses were conducted for reactors and the settler using the software
PROOSIS® with IDAS. The name IDAS stands for Implicit Differential-Algebraic solver
with Sensitivity capabilities (Hindmarsh et al., 2005). Some model parameters are well-
established in the literature, but others are strongly related to the operational conditions

and microorganism strains used in the study. Thus, the sensitivity analysis was carried
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out considering a subset of all the model parameters to determine those significantly
influencing the model outputs for this specific study case, providing crucial insights into

the system's behavior.

The sensitivity analysis took into account a subset of 11 parameters: the maximum
specific growth rate of microalgae (paLc), heterotrophic bacteria (un), and nitrifying
bacteria (1aos and pnos); the decay rate of microalgae (Kqeath,aLc), heterotrophic bacteria
(Kdeathv), and nitrifying bacteria (Kdeathaos and KdeathNos); and the mass transfer
coefficients for oxygen (Kiao02), carbon dioxide (Kiaco2), and ammonia (KianH3). The

scaled sensitivity matrix for the study case is represented by Eq. (4.9):

TSSphot. SNH4- 502 SPO4 SIC TOCphot. TSSanoxic TOCanoxic
1 0.482 —-7.934 0459 -1.244 -0.791 0.001 0.208 —0.0571

Hare
kinactarc |—0.065 1561 —0.119 0.188 0.108 0.004 —0.033 0.027
Uy —0.005 -0.534 0.086 0.201 —-0.100 -—-0.328 0.009 -—3.556
Kinact.n 0.255 —-0.220 -0.086 0.194 -—-0.008 0.207 0.141 1.963
Uaon 0.043 —-1.463 -0.030 -0.007 -0.001 0.007 0.007 0.018 (49)
kinact.aos | —0.006  0.628 0.014 0.011 0.011 —-0.002 -—0.002 -—0.005
UnoB 0.023 0.643 —0.081 -0.018 -—0.019 0.002 0.009 0.016
Kinacenos |—0-004 —0.014  0.022  0.006 0.006 —0.000 -—0.002 —0.003
Kia 02 —-0.002 -—0.065 0.030 0.000 0.002 -0.001 -0.001 -—0.001
Kiacoz —0.000 0.000 0.000 0.000 —0.042 -0.000 -—0.000 -—0.000
Kianys - 0004  —-0.694 —-0.016 —0.006 —0.007 0.002 0.002 0.003 -

The results of the sensitivity analysis for both reactors revealed that the model outputs are
particularly sensitive to 7 of the 11 parameters assessed. These include the maximum
specific growth rates of microalgae and heterotrophic bacteria, the decay rates of
microalgae and heterotrophic bacteria, and the mass transfer coefficients for oxygen,
carbon dioxide, and ammonia. Graphical representations of the sensitivity analysis for

these significant parameters are presented in Fig. 4.2 and Fig. 4.3.

Fig. 4.2A showcases the scaled sensitivity (Eq. (4.4)) for the dissolved ammonium (Sy, )
in the photobioreactor. The graphical results highlight the significant sensitivity of the
dissolved ammonium to the microalgae's maximum specific growth rate (blue line) and
the mass transfer coefficient for ammonia (purple line). These results show the high
inverse effect of the maximum specific growth rate of microalgae over the dissolved
ammonium: an increase in pacc implies a decrease in Sy, in the photobioreactor due to
the fact that microalgae are the primary consumers of dissolved ammonium. On the
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contrary, an increase in the microalgae decay rate (red line) mediates an increase in Sy, .
In this facility, the mass transfer coefficient for ammonia significantly affects Sy, in the
photobioreactor since ammonium is in equilibrium with ammonia. Dissolved ammonium
is also affected (to a lower extent) by the parameters relative to the activity of

heterotrophic bacteria since they consume ammonium during aerobic growth.

Fig. 4.2B shows the scaled sensitivity for the dissolved phosphate concentration (Sp,) in
the photobioreactor. The results indicate that in this photobioreactor, the dissolved
phosphate concentration is mainly affected by microalgae's maximum specific growth
rate: an increase in pacc (blue line) promotes a significant reduction in the dissolved
phosphate concentration. Because heterotrophic bacteria assimilate phosphate during
growth, Sp, is also sensitive to the decay rate of these microorganisms (yellow line). In
a lower extent, the dissolved phosphate concentration is affected by the microalgae decay

rate (red line) and heterotrophic bacteria growth rate (gray line).

Fig. 4.2C shows the results of the graphical sensitivity analysis over the inorganic carbon
in the photobioreactor. These results indicate that inorganic carbon is especially sensitive
to the parameters concerning microalgae activity, especially to the maximum specific
growth rate. Microalgae growth consumes inorganic carbon (in the form of CO: and
HCO3), promoting a decrease in IC concentration, and microalgae death contributes to an
increase in the dissolved IC in the photobioreactor. In addition, inorganic carbon is
significantly affected by heterotrophic bacteria decay rate: an increase in Kdeath + promotes
a decrease in the COz release to the culture medium as a result of heterotrophic bacteria

respiration.

Fig. 4.2D represents the sensitivity results for the concentration of dissolved total organic
carbon. The parameters related to heterotrophic bacteria growth and decay rates are the
most influential over TOC concentration: an increase in the maximum specific growth
rate of heterotrophic bacteria promotes a decrease in the dissolved TOC as result of a
significant assimilation of TOC into the heterotrophic biomass. On the contrary, an
increase in the decay rate of heterotrophic bacteria implies a decrease in the assimilation
of TOC by heterotrophic microorganisms (and, consequently, an increase in dissolved
TOC in the photobioreactor).

With microalgae dominating the microbial population (50% of the inoculum

corresponded to microalgae biomass (Torres-Franco et al., 2021)), the maximum specific
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growth rate of microalgae was the parameter with the most substantial influence over the
concentrations of NHj, PO;~, and IC in the photobioreactor, as confirmed in Fig. 4.2A,
Fig. 4.2B, and Fig. 4.2C, respectively. Similarly, the maximum specific growth rate of
heterotrophic bacteria was the most influential parameter over the dissolved TOC, as
evidenced in Fig. 4.2D. The differences in the values of graphical sensitivities observed
during the period shown in Fig. 4.2 are the result of the stabilization of microbial

populations in the photobioreactor.
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Fig. 4.2. Scaled sensitivities of the dissolved ammonium concentration (A), dissolved
phosphate concentration (B), dissolved inorganic carbon concentration (C) and dissolved

total organic carbon concentration (D) in the photobioreactor.

The scaled sensitivity over the dissolved oxygen concentration (S, ) is represented in Fig.
4.3A. It can be noted that the parameter with the most significant impact is the maximum
specific growth rate of microalgae (blue line) as a result photosynthetic oxygen
production. The decay rate of the microalgae (red line) also influences the dissolved
oxygen concentration. Heterotrophic bacteria consume oxygen for organic matter
assimilation, which explains that parameters related to heterotrophic bacteria activity also

influence S,,. The mass transfer coefficient for oxygen is another parameter that affects

the dissolved oxygen concentration.
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Fig. 4.3B represents the scaled sensitivity of the total suspended solids concentration in
the photobioreactor. Sensitivities of the parameters (without scaled, Eqg. (4.3)) over
microalgae concentration (XaLc) and heterotrophic bacteria concentration (X+) are
presented in Fig. 4.3C and Fig. 4.3D, respectively. Biomass concentration was considered
equivalent to the sum of all particulate components in the model (microalgae biomass,
bacteria biomass, inert particulate organic matter, and slowly biodegradable particulate
organic matter). Biomass concentration is affected mainly by the maximum specific
growth rate of microalgae (blue line). In addition, the inactivation growth rates of
microalgae (red line) and heterotrophic bacteria (yellow line) influence the biomass
concentration (due to the decrease in these populations and the formation of particulate
organic matter from microalgae and bacteria decay). The effect of parameters represented
over microalgae and heterotrophic bacteria biomass represented in Fig. 4.3C and Fig.
4.3D evidences the critical role of normalization in sensitivity analysis for a correct

interpretation of the results.
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Fig. 4.3. Scaled sensitivity of the dissolved oxygen concentration (A) and for the total
suspended solids concentration (B) in the photobioreactor. Unscaled sensitivity of
microalgae biomass (C) and heterotrophic bacteria biomass concentration (D) in the
photobioreactor.
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Regarding the settler, the model parameters of the settling velocity equation (3.10) in the
model of Takacs et al. (Takéacs, Patryioand and Nolasco, 1991) are typically obtained
using nonlinear dynamic optimization. Fig. 4.4 represents the sensitivity analysis for the
parameters of the settling velocity equation over the TSS concentration in the effluent and
wastage flow of the settler. Fig. 4.4A confirms the influence over the biomass
concentration in the effluent flow of the parameter related to the minimum attainable
suspended solids concentration in the effluent (Xmin — blue line), the parameter associated
with the low concentration of solids (rp — gray line), and the maximum theoretical settling
velocity (Vo — yellow line). Fig. 4.4B represents the scaled sensitivity of TSS
concentration in the wastage flow. This variable is affected by the maximum theoretical
settling velocity and the settling parameters associated with the low solids concentration
zone (rp) and the hindered zone (rh— red line). Fig. 4.4C and Fig. 4.4D represent the
unscaled sensitivity for the biomass concentration in the effluent and wastage flow in the
settler, respectively. Considerable scale differences between both analyzed output
variables confirm the critical role of graphical and analytical sensitivity analysis (with
and without normalization) as a previous stage in the calibration or parameter estimation
process. This process ensures the precision and reliability of the results, enhancing the

confidence in them.

The sensitivity analysis results in Fig. 4.2 to Fig. 4.4 provide valuable insights into the
magnitude in which each selected parameter influences model outputs. These results
underscore the importance of sensitivity analysis for each photobioreactor configuration,

inoculum characteristics, and operational values.
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Fig. 4.4. Scaled sensitivity of the TSS concentration in the effluent (A) and in the wastage
flow (B) in the settler. Unscaled sensitivity for biomass concentration in the effluent (C)

and wastage flow (D).

4.1.2. Parameter estimation

The sequential approach to solving a parameter estimation problem in terms of
optimization considers that for each value of the vector of parameters @ (decision
variables), the model predicts the system’s response §(t, #) in each experiment over time
t. For this purpose, a set of data samples from the inputs u(t) and outputs y(t) of the process
are selected. The exact sequence of process inputs u(t) applied to the process is also used
in the model, and both outputs y(t) from the process and 9(t, 8) from the simulation are
compared at every sampling time t. At each t, the prediction error (¥(t,0) — y(t))
indicates model goodness, and the parameterization procedure looks for the set of model
parameters @ that minimizes a cost function of the prediction errors. The parameter
estimation problem can be formulated as a dynamic optimization problem, which can be
solved, for instance, through a nonlinear programming (NLP) software using a control
vector parameterization technique and a proper procedure for computing the cost
function, following the architecture of Fig. 4.5. This work uses the SNOPT algorithm
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(Gill, Murray and Saunders, 2005), a well-known sequential quadratic programming code
for nonlinear optimization within the PROOSIS® dynamic simulation environment. The

selected integration method was IDAS.

/7 Estimated parameters ————

Model outputs

—» Model —l;(t)

Inputs | Optimizer 0
(boundary (Cost functionJ) |

variables)
$y(0)
—» Process

Experimental data

Fig. 4.5. Estimator in sequential optimization.

Although there are several methods for obtaining the statistically coherent value of
variables and estimating the parameters of the mathematical model based on available
data, the weighted least squares (WLS) method is used most frequently. The estimator
WLS described by Eqg. (4.10) consists of the squared difference between the measurement
y and the model prediction . The differences are scaled with their respective standard
deviation o to account for varying dimensions of the model. This method assumes that
measurement errors follow the Normal distribution model. The assumption of Normal
distribution can be severely violated if one or more gross errors, which are not easy to
detect, are present in the measured data set. Even when the majority of the data conforms
to a Normal distribution, such anomalies can lead in poor or deviated estimates (de
Menezes et al., 2021).

(G —y)/o)?] (4.10)

N =

Jis =

In order to avoid this problem, a robust estimator can be used instead. Robust estimation
can be understood as “insensitivity to large deviations from idealized hypotheses” for
which the estimator is optimized (Huber and Ronchetti, 2009). To define the concept of
robust estimation, a set of observations {y,, -+, y, } drawn from some distribution h(x)
must be considered. This set will be used to estimate some parameters 8, where 8,, is the

estimate. The sampling distribution of this estimate is noted as ¢(8,, h) and depends
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upon h(x). However, h(x) is not typically known; instead, an approximated model f(x)
is available. Roughly speaking, 8,, is robust if it scarcely depends upon the difference

between h(x) and f (x), i.e. we expect ¢ (8, h) and ¢(8,, f) to be close together.

More precisely, 8,, is considered robust with respect to distribution £ (and to h) if

d(h,f) <n==>d[p(0,h),0(0,f)] <€ (4.11)

For small positive € and n, and d(h, f) defines the distance between the distributions h
and f, associated with the measures of the plant and the outputs on the simulation model
(Rey, 1983).

Robust statistics provides methods that emulate conventional statistical ones but are less
affected by spurious values or other deviations from the reference statistical distribution
model. Among the robust estimators, M-estimators (the generalization of the Maximum
Likelihood Estimator) have been successfully applied to several problems in the chemical
process industry. The review presented in (de Menezes et al., 2021), which analyzed 50
estimators (48 robust estimators), shows that the Contaminated Normal (quasi-robust),
Welsch, Hampel, Fair, Lorentzian, Correntropy, and Cauchy M-estimators were the most

used for regression analysis in chemical engineering problems.

The Fair function is a convex estimator with continuous first and second order derivatives.
It is defined by Equation (4.12), where ¢ € R+ is a user-defined fitting parameter to tune

the slope for large residues.

A~

y-y y-y (4.12)
o o

= (LE
c

Jrr = c?

M-estimators are robust because of their intrinsic mathematical structure, which renders
the estimation less sensitive to spurious deviations (Rey, 1983; Huber and Ronchetti,
2009; Huber, 2011). These estimators, which use cost functions different from least
squares (LS) or WLS, tend to value most of the data around the mean and ignore the
influence of spurious values (usually located far from the mean) simultaneously. This
performance is represented in Fig. 4.6, which compare the fair estimator (4.12) and the

LS estimator (4.10), evidencing the influence of scaled error over the estimator function.
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Thus, an accurate regression can be performed using robust estimators even if nothing is

known a priori about outliers or the structure of gross errors.
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Fig. 4.6. Comparison of Least squares and Fair function (c=3) estimators.

In the present work, the Fair function estimator was used as a robust objective function J

for parameter estimation. This robust estimator was employed to address the uncertainties

stemming from unreliable measurements, which may be attributable to various sources:

Many analytical procedures used to obtain the data are based on the use of external
standards for calibration or data comparison. These solutions are subject to human

errors during preparation

Human errors in sample preparation and analysis can play a significant role in the
accuracy of the experimental data obtained through analytical methods. For
instance, errors in sample dilution preparation, non-homogeneous mixing, or

sample degradation can lead to inaccurate results.

The incorrect use of calibration curves: methods used to determine the
concentration of dissolved NH;, NO3, NO3, and PO;~ use external calibration
curves. The accuracy of the measurement largely depends on the expertise of the

person analyzing the sample.

The methods used to determine biomass concentration (TSS and VSS) can be
significantly influenced by human errors in sample collection, such as non-
homogeneous mixing of the sample and the presence of flocculated biomass.

Additionally, procedure errors like filter obstruction, irregular oven and muffle
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temperatures, and violations of recommended drying times can also affect these
measurements. Incorrect preservation of the samples (that can result in sample
degradation and changes in the properties due to light and high-temperature
exposition).

e The use of non-updated calibration curves in equipment.

The resulting dynamic optimization problem is formulated using Eq. (4.13):
~ & & 4.13
minJ(0,0) = Z c? [u —In (1 + u)l (4.13)
0 : c c
JEM
Subject to constraints imposed by the model in Equation (4.14) and the upper and lower

limits on the values of the parameters described by Equations (4.15), states (4.16), and
outputs (4.17),

d);(tt) = f(x(t),u(t), 6, t) §(t) = g(x(t), u(t), 8,1) (4.14)
0<0<0 (4.15)
XsX=X (4.16)
ysy=y (4.17)

where &= (?(tj,é) -y(tj))/am is the error between available process measurements

y(¢;) and their estimated values (¢;,0) limited between user-defined minimum and
maximum values (Eg. (4.15) - (4.17)). Besides robust properties, the simplicity of tuning
(just one tuning parameter) is another remarkable advantage of the Fair estimator. In the
present work, all simulations were carried out using a value of ¢c=2.9 in the tuning

parameter of the cost function (4.13).

To comprehensively capture the dynamics of the anoxic-aerobic photobioreactor
configuration treating different dilutions of digestate within the model, the data from 138
days of operation (Torres-Franco et al., 2021) were divided into two datasets. The first
dataset was devoted to parameter estimation in the reactors and the settler, and the second
was utilized for model validation. Specifically, data from stage Il and 25 days of stage 111
(50% and 100% digestate, respectively) were used for parameter estimation. Validation
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was then conducted using data from the first stage (25% digestate — 40 days of operation)

and days 116 to 138 from stage 11l (undiluted digestate — 22 days of operation).

Several decisions were made to improve the solution of parameter estimation, taking into

account the specific experimental conditions:

1- Experimental data were obtained under illumination cycles of 12 h ON/12 h OFF
(Torres-Franco et al., 2021) (considered in daily fraction with illumination
between 2 am (0.083 d) and 2 pm (0.583 d)). Because of this, the time step used
for the simulations was 0.1 d. Using superior time steps could result in an accuracy
loss for the simulation of day/night cycles (and their influence over the model
state variables).

2- The values of some variables vary significantly between day and night in the
photobioreactor. Because samples were always drawn during illuminated periods,
output data interpolation may result in non-representative data values of the
internal dynamics in the photobioreactor. Therefore, only the recorded data at the
exact time were considered in the cost function.

3- Since the values of experimental data broadly differ from stage | to stage llI,
different limits on state and output variables (Eq. (4.16) and Eq. (4.17)), were

considered in the optimization problem for each simulation stage.

The initial concentration of the components in the reactors and the settler used to conduct
the model simulation are shown in Table A2.1 and Table A2.2, respectively, in Appendix
2.

Table 4.2 shows the limits for the decision variables (Eq. (4.15)) and the initial values of
parameters needed for parameter estimation via optimization in the anoxic and aerobic
reactors. These values were established from a comprehensive review of similar studies
reported in the literature (Solimeno et al., 2017a; Solimeno, Gomez-Serrano and Acién,
2019a; Casagli et al., 2021; Bausa et al., 2022).

Table 4.3 shows the values of the decision variables for both bioreactors estimated in this
study via optimization (4.13). All parameter values obtained are within the ranges
reported in the literature for similar systems (Solimeno et al., 2017a; Solimeno, Gomez-
Serrano and Acién, 2019a; Casagli et al., 2021; Bausa et al., 2022). Parameter estimation

was an essential aspect of this study since it provided the maximum specific growth and
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decay rates of the biomass, as well as information about parameters that strongly

depended on photobioreactor size, shape, and stirring (like the mass transfer coefficients).

The adequate calibration of these parameters provides insights into the system model that

will be helpful in using the model for prediction and control purposes.

Table 4.2. Initial values and limits for decision variables in the anoxic and aerobic

photobioreactor

Parameter Description Initial  Limits for
[units] value  optimization

paLe [d7] Maximum specific growth rate of microalgae 15 04-4

KdeathaLc [d] Decay rate of microalgae 0.1 0.05-0.21

tn [dY] Maximum  specific growth rate of 4 1-6

heterotrophic bacteria

keeatns [d]  Decay rate of heterotrophic bacteria 0.6 0.12-0.9

Kia, 02 [d7] Mass transfer coefficient for oxygen 1 0.3-30

Kia,coz2 [d]  Mass transfer coefficient for carbon dioxide 1 0.3-30

Kia,nns [d7Y]  Mass transfer coefficient for ammonia 0.8 0.3-30

Table 4.3. Values of estimated parameters in anoxic and aerobic reactor

Parameter Value [units]

UALG 0.70d*
H 2,50 ¢t
Kdeath, ALG 0.05d™
Kdeath H 0.80d™*
Kia, 02 0.5d*
Kia, coz 2.17d?
Kia, NH3 0.5d*
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The settling properties of microalgae biomass (and consequently, the models to predict
them) are nowadays an open-research field. Settling parameters in microalgae processes
are widely dependent on the settler size, shape, and the structure of the microbial
population. Therefore, those parameters should be determined for each specific

configuration.

During the treatment of undiluted digestate, an increase in the TSS concentration in the
effluent and a decrease in the average TSS concentration in the wastage stream were
reported (Torres-Franco et al., 2021) as a consequence of a reduction of the settling
efficiency (promoted by the decline in the biomass entering the settler from the
photobioreactor). The research conducted in (Torres-Franco et al., 2021), when analyzing
the microalgae populations, reported the dominance of C. vulgaris, Tetradesmus
obliquus, and Cryptomonas sp. during stages | and Il, while the dominant algal strains
during stage Il where Chlorella vulgaris and Pseudoanabaena sp. Similarly,
considerable differences in total microalgae densities per liter and per gram of VSS, as
well as in the total microalgae biovolume during stage I11, were reported (Torres-Franco
et al., 2021). Therefore, the high differences noted for the TSS concentration in the
effluent and wastage flow during stage 111 were attributed to the reduction of the settling
efficiency, differences in microalgae densities, and the different populations of
microorganisms prevailing in this operational stage (consequently, these substantial
changes in biomass characteristics imply different settling velocities and different values
in the parameters related to biomass concentration). The previous assumption underscores
the importance of estimating parameters in such a way that may be able to describe stages
with remarkable differences in biomass composition. For this purpose, a sigmoid function
(Fig. 4.7) was used to represent the variation of parameter values during the experiment.
According to the sigmoid function, each parameter 8; (8; = V;, r,1,) varying between
two values (§imm and Ki+§imin)' Then, instead of estimating the parameter values of the
settling velocity equation (V,,1,,7,), the optimization problem estimates the values of
the parameters of the sigmoid function (éimin’ K;, and t.) in Eq. (4.18) - (4.20), where t

represents the current simulation time, and ¢, is the time where a significant change in

biomass properties was considered.

For parameter estimation in the settler, the limits in the parameter related to the maximum
settling velocity were selected according to values reported in the literature for microalgae
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systems or microalgae-bacteria consortia systems (Smith and Davis, 2013; Passos et al.,
2017; Parakh et al., 2020). The ranges of the other parameters in the settling velocity
equation were selected similar to those reported for activated sludge processes (Takacs,
Patryioand and Nolasco, 1991). These values are shown in Table 4.4.

1 Ki + eimin

<&

ol K; .

@ X A

% ________________ :_ ___________ eimin
5 |

[a T |

tc
Time (d)

Fig. 4.7. Sigmoid function used to adjust the parameters of the settling velocity equation.

— (4.18)

Vo = KVO ' 1 + e(t-to) + Vomin
1 (4.19)

Th = K’”h ) 1+ e(t—to) + Thinin
1 (4.20)

o = Krp . 1 + e(t—to) + D min

Parameter estimation in the settler was conducted, considering that a biomass
composition change during the treatment of undiluted digestate (stage Il1). Data from
stage Il were used to determine the model parameters during the treatment of diluted
digestate, while data from stage | were used for model validation using these parameter
values. Data from stage 111 were used for parameter estimation (the first half of the data)
and validation (the rest) during undiluted digestate treatment. The results of parameter

estimation in the settler obtained via optimization in this study are shown in Table 4.5.
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Table 4.4. Initial values and limits for decision variables in the settler

Parameter [units] Parameter of Initial Limits for
Description the sigmoid value optimization
function

Xmin  [mg/L] - Minimum attainable - 40 30-80
suspended solids concentration in the
effluent.
Vo [dm/d] - Maximum theoretical settling Ky, 3 2-20
velocity (Eqg. (4.18)).

y (Ea. (4.18) Vo min 1 0.1-10
rn [L/mg] - Settling parameter associated K, 1-10% 210 -1.10%
with the hindered settling component of o " -
settling velocity equation (Eqg. (4.19)). Thmin 4-10 510™-1-10
rp [L/mg] - Settling parameter associated Kr, 5.100 1-10% - 2.10
with the low concentration and slowly o o o
settling component of the suspension (Eq. D min 2:5-10 1-107-2-10
(4.20)).
t. [d] - The time when a significant - 85 82-95

change in the dominant populations
occurred (Eq. (4.18) - (4.20))

Table 4.5. Values of estimated parameters in the settler

Parameter Parameter of the

sigmoid function

Value [units]

Kmin

Vo

I'h

50 mg/L

5.040 dm/d

2.097 dm/d

4.33-10% L/mg
7.89:10° L/mg
2.93-10% L/mg
8.71.10* L/mg

88.9d

100



4.1.3. Model validation results

Two performance indexes were used to quantify the quality of the model adjustment to
the experimental data: the mean absolute error (Eq. (4.21)) and the mean absolute relative
error (Eq. (4.22)). Both criteria quantify the difference between model predictions and
experimental data, and the MARE criteria normalize the error according to the magnitude
of the measured variable. For both criteria, the closer the value to zero, the better the
model performance. These values were computed for the complete experimental period
(including the data set used for parameter estimation and model validation). The factor ¢
(@ = 0.1) in the denominator of Equation (4.22) is included to avoid division by zero in

the case of experimental data y; = 0.

VA 1 © A (4.21)
= Zb’i — Jil
=1
n
1 D, (4.22)
varg = LN i 3l
nLiyite

Fig. 4.8A, Fig. 4.8B, and Fig. 4.8C show simulation results and experimental
measurements for Syy,, Spo,, and dissolved inorganic carbon in the photobioreactor,
respectively. In Fig. 4.8, the white area indicates the data set used for parameter
estimation, and blue shadow areas contain the data sets used for model validation.
Ammonium and phosphate assimilation was mainly attributed to the biological processes
occurring in the photobioreactor (Torres-Franco et al., 2021), which mediated high
removal efficiencies of both nutrients during the treatment of diluted digestate, as
confirmed during model validation. The model also reproduced the trend of increasing
ammonium concentration and phosphate concentration observed in the photobioreactor
during the treatment of undiluted digestate. The MARE values (Table 4.6) computed for
ammonium concentration in the photobioreactor (below 0.72 for stages Il and I11) confirm
the model's prediction capability. The model performance for phosphate, which was also
quantified with the previously referred metrics, exhibits low MARE values for stages Il
and 111 (below 0.16 for both cases). The high values of MARE during the first stage for
ammonium and phosphate were caused by the normalization of this metric due to zero-
close values reported experimentally for this stage. This error could be acceptable, taking
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into account that low values of MAE were obtained during this stage (and due to possible

inaccuracies of the experimental methods for low concentrations of dissolved nutrients).

As reported by (Torres-Franco et al., 2021), high values of IC in the influent enhanced
the activity of both microalgae and nitrifying bacteria. An intensive autotrophic activity
demanded a high consumption of inorganic carbon in the photobioreactor, mainly during
the first two operational stages (treating 25% and 50% diluted digestate, respectively).
Thus, the model accurately reproduced the dynamic behavior of IC concentration in the
photobioreactor during the experiment. This was confirmed with the low values of MARE

(Table 4.6) reported for all experimental period (below 0.23).
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Fig. 4.8. Time course of the concentrations of dissolved ammonium (A), dissolved
phosphate (B), and dissolved inorganic carbon (C) in the photobioreactor. The white area
indicates the data set used for parameter estimation, and blue shadow areas contain the

data sets used for model validation.
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Results for parameter estimation and validation for the concentration of TOC in the
anoxic reactor and the photobioreactor are presented in Fig. 4.9A and Fig. 4.9B,
respectively. The model reproduced the high removal efficiencies of TOC in both
reactors, as reported by (Torres-Franco et al., 2021) for diluted digestate. The model also
reproduced the decrease in TOC removal efficiency during the treatment of undiluted
digestate. The MARE values (Table 4.6) during the three operational stages (values below
0.5 for both reactors) confirmed the model's capability to reproduce the total organic

carbon concentration evolution in both reactors.
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Fig. 4.9. Time course of the total organic carbon concentration in anoxic reactor (A) and
in the photobioreactor (B). The white area indicates the data set used for parameter

estimation, and blue shadow areas contain the data sets used for model validation.
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The results in Fig. 4.8 and Fig. 4.9 showed that the model can effectively predict nitrogen,
phosphorus, and carbon removal efficiencies. The validation results, which were
performed using data corresponding to digestate dilutions different from those used in
parameter estimation, confirm the model's prediction capability under different
operational conditions. The validation results suggest that the calibrated model, which
boasts broad applicability, may be employed to simulate a wide range of operational

conditions with minimal resources and time consumption.

The estimation of dissolved oxygen is of paramount importance in the calibration of any
biological model. In the photobioreactor, the dissolved oxygen concentration is the result
of the photosynthetic activity of microalgae and bacteria's heterotrophic and nitrifying
activity. As illustrated in Fig. 4.10A, the simulation results for the dissolved oxygen
concentration in the photobioreactor are presented alongside the recorded experimental
data. Although the dissolved oxygen concentration was recorded once a day during the
experiment, the model simulation reveals daily variations in the dissolved oxygen
concentration due to the effect of incident radiation (Fig. 4.10). This figure contains part
of the data set that was used for model validation. As previously mentioned, the intense
autotrophic activity observed during the treatment of 25% diluted digestate resulted in
elevated dissolved oxygen concentrations during the illuminated periods within the initial
40 days of experimentation. Furthermore, the elevated heterotrophic activity within the
photobioreactor throughout the experimental period resulted in a decline in dissolved
oxygen levels during the dark phases for the three distinct operational stages. As (Torres-
Franco et al., 2021) have demonstrated, significant reductions in the maximum dissolved
oxygen values during illuminated periods were reported in stages Il and Ill. These

reductions were confirmed through model simulation.

As demonstrated by the trend of simulated variables, the daily fluctuations in dissolved
oxygen concentration due to the occurrence of light/dark periods have practical
implications for the daily trends of other variables in the photobioreactor. These changes
during the diurnal cycle in the assimilation of ammonium, phosphates, inorganic carbon,
and total organic carbon (Fig. 4.8A, Fig. 4.8B, Fig. 4.8C, and Fig. 4.9B, respectively)
provide valuable insights for the practical model application to operate and monitor the
performance and environmental parameters prevailing in the anoxic-aerobic

configuration. Concerning the dissolved oxygen results, during the first stage, low values
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of MARE were obtained (below 0.5), confirming the model's prediction capability.
Instead, high values of MARE were reported for stages Il and 111, mainly due to high
standard deviations reported for the experimental data during stage Il and to zero-close
experimental values during stage Ill. Instead, low values of the MAE were reported
during the complete period (Table 4.6). The quantitative analysis of this variable may be
confusing because both the metrics used were calculated considering the average of all
the data for the period. In this case, experimental data may vary significantly depending
on the hour of the day, affecting the average value.
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Fig. 4.10. Time course of the dissolved oxygen concentration in the photobioreactor
during the experiment (A) (the white area contains the data set used for parameter
estimation, and blue shadow areas indicate the data sets used for model validation). The
blue rectangle delimited area shows the time course of the dissolved oxygen concentration

during 20 days of data used for model validation (B).
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Fig. 4.11represents the biomass concentration in both reactors and the settler. Fig. 4.11A
and Fig. 4.11B show the simulation results and experimental measurements for the
concentration of TSS in the anoxic reactor and in the photobioreactor, respectively. The
model replicated the observed decline in TSS concentration during stage Il in both
reactors (Torres-Franco et al., 2021). In summary, the model demonstrated a satisfactory
degree of efficacy in replicating the dynamic behavior of biomass concentration. Small
changes in the TSS concentration in the photobioreactor due to daily variations in light
irradiation were observed, fundamentally due to microalgae activity as the dominant
group of the consortia. Consequently, the increase in microalgae growth during the day
led to an increase in the TSS concentration, while microalgae death at night resulted in a
decrease in the TSS concentration. The model's capacity to reproduce biomass dynamics
is confirmed by the low values of the MARE (below 0.35) reported for both reactors

during the experimental time (Table 4.6).

Fig. 4.11C and Fig. 4.11D represent the total suspended solids concentration in the
effluent and biomass wastage stream, respectively. An increase in the TSS concentration
in the effluent was reported during the treatment of undiluted digestate. This increase was
likely due to a decrease in the settling efficiency, different dominant populations of
microalgae, and differences in microalgae densities (as referred to by the authors of
(Torres-Franco et al., 2021)), which presumably affects the sedimentation capability of
the biomass. The model reproduces the trend of increasing TSS concentration in the
effluent during stage Ill. The low MARE values reported for the effluent biomass

concentration confirm the match between experimental and simulated data (Table 4.6).

In the wastage flow, low values of the MARE (below 0.22) were reported during the
treatment of undiluted digestate (Table 4.6), which confirms the model prediction
capability. The high standard deviation reported for the experimental data during stage
I11in the wastage flow (4742 + 2529) suggests the presence of flocculated biomass, which
could be a source of gross error during the analytical procedure to quantify the biomass
concentration. High experimental data dispersion in the TSS concentration in the waste
flow makes it difficult for the model to fit during the treatment of undiluted digestate.

The model validation results (Fig. 4.8 - Fig. 4.11) have allowed the evaluation of the
model's qualitative responses to input changes and the confirmation of its validity over

long periods under changing conditions.
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Fig. 4.11. Time course of the total suspended solids concentration in anoxic reactor (A)
and in the photobioreactor (B). TSS concentration in the effluent (C) and wastage flow
(D) of the settler. White area indicates the data sets used for parameter estimation, and

blue shadow areas contain the data sets used for model validation.
108



Table 4.6 summarizes the computed criteria for the measured variables in each
operational stage. Results for the MARE criteria (close to zero in most cases) confirm the
model's capability to reproduce the experimental data. The MARE criteria generally
constitute a reliable indicator of the model's goodness. However, the MARE value

increases for small values of measured variables.

In this research, the model simulation results are of the utmost importance due to the
absence of online measurements for fast-dynamic variables, such as dissolved oxygen.
The utilization of model simulation facilitates the acquisition of invaluable insights into
process behavior, thereby enabling a comprehensive analysis of the dynamic behavior of
various variables throughout the day, as opposed to merely at the time of sample

collection.

Simulation results revealed the model's versatility in photobioreactors with one or two
stages, including sedimentation and biomass recirculation. The model's proficiency in
replicating both rapid and slow dynamics further reinforces its potential application to
various biological processes, such as biogas upgrading processes with microalgae and the

simultaneous treatment of digestates.
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Table 4.6. Model evaluation for the three stages of experimentation

Mean absolute error

Stage | Stage 11 Stage 111
S_NHya - Photobioreactor 1.3877 1.5671 44.3109
S PO, - Photobioreactor 2.7609 1.1039 5.3482
IC - Photobioreactor 26.6770 42.2906 23.1514
TOC - Anoxic Reactor 8.7098 21.6805 76.3308
TOC - Photobioreactor 9.3972 17.6676 39.2998
S_0O; - Photobioreactor 3.4216 1.1678 0.3025
TSS - Anoxic Reactor 383.2931 348.3835 181.2617
TSS - Photobioreactor 167.9968 393.1145 196.3628
TSS - Effluent 20.9246 58.0595 108.3349
TSS - Wastage 1153.0377 1779.9657 2370.5445

Mean absolute relative error

S_NHya - Photobioreactor 1.2013 0.7172 0.5138
S PO, - Photobioreactor 14.5448 0.1055 0.1560
IC - Photobioreactor 0.2270 0.2274 0.0514
TOC - Anoxic Reactor 0.2641 0.4943 0.3594
TOC - Photobioreactor 0.3459 0.4781 0.3524
S_0O; - Photobioreactor 0.4867 0.9884 2.1065
TSS - Anoxic Reactor 0.3145 0.3454 0.1598
TSS - Photobioreactor 0.1304 0.2625 0.0847
TSS - Effluent 0.2798 0.5922 0.4039
TSS - Wastage 0.1943 0.2138 1.2124
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4.2.  Methodology for parameter estimation in microalgae-bacteria based

wastewater treatment

This section presents an approach for parameter estimation when dealing with multiple

outputs and parameters in the optimization problem (Fig. 4.12).

Initial guess
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T
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Fig. 4.12. Graphical representation of the parameter estimation process

The proposed approach is designed to solve a series of increasingly complex optimization
problems, thereby gradually estimating process parameters and avoiding convergence
issues. This approach offers an alternative to handling large optimization problems in
parameter estimation, a common challenge in microalgae-bacteria processes. Parameter
estimation via dynamic optimization is realized in each optimization step to fit simulated
outputs to experimental data. The idea is to formulate one easier parameter estimation
problem involving a subset of system outputs and parameters, replace the other output
variables with their experimental values, and then use these estimated values as a starting
point for the next step of the optimization problem. The selection of subsets is performed

based on sensitivity analysis and connectivity.

This approach is illustrated in Fig. 4.13, which shows the division of the total number of
output variables to adjust (Fig. 4.12) into subsets. One subset is maintained as output
variables to fit, while the other is used as input data (see first step in Fig. 4.13). Due to
the common discrete nature of samples in biological processes, the subset used as input
data is usually interpolated. This approach reduces the computational complexity by
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decreasing the number of outputs variables to adjust, and consequently, the number of
state variables in the model (as each output variable frequently involves one or more
model states). In general, the total number of parameters to estimate in each step is also
reduced, as it is possible that there are parameters only appearing in those equations that
were substituted by experimental data. In the first step of this methodological approach,
an initial guess of parameter values is derived from a comprehensive review of pertinent

literature.

In the subsequent steps, additional outputs to adjust are incorporated (and, consequently,
the number of model differential equations increases). Subsequently, the vector of
parameters obtained in the preceding step is utilized as the initial estimate. This procedure
is repeated until all the system outputs and parameters are included in the optimization

problem.
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4.2.1. Case study

The proposed methodology is tested in an anoxic—aerobic algal-bacterial photobioreactor
configuration with biomass recycling devoted to wastewater treatment located in the
facilities of the Institute of Sustainable Processes at the University of Valladolid. The data
utilized in this section were collected from May 2014 to July of 2014. The experimental
setup is described in (Alcéantara et al., 2015). The laboratory-scale plant corresponds to
the scheme of the anoxic-aerobic configuration depicted in Fig. 3.1, with different
dimensions and operational values than those referred to in the study case developed in

Section 4.1. The facility has been engineered to treat synthetic (domestic) wastewater.

The photobioreactor was composed of an enclosed jacketed 3.5 L glass tank with a total
working volume of 2.7 L continuously illuminated by LED lamps. The anoxic reactor
consisted of a gas-tight 1 L polyvinyl chloride tank with a total working volume of 0.9 L,
which was maintained in the dark. Synthetic wastewater was fed to the anoxic tank and
continuously overflowed by gravity into the aerobic photobioreactor. The algal-bacterial
broth was continuously recycled from the photobioreactor to the anoxic tank. An Imhoff
cone, with a volume of 1 L and interconnected to the outlet of the photobioreactor was
used as a settler. The algal-bacterial biomass settled was recycled from the bottom of the
settler into the anoxic tank and wasted 3 days a week to control the algal-bacterial sludge
retention time. In (Alcantara et al., 2015), a detailed description of the system,
microorganisms and culture conditions, experimental design, and analytic procedures is

provided.

The design of the experimentation was conducted based on the hypothesis that algal—
bacterial photobioreactors for wastewater treatment can support the oxidation of
ammonium (N-NHJ) into NO3/NO3, which can then be easily removed through
denitrification (using the organic matter present in SWW) under anoxic conditions via
internal recycling of the photobioreactor broth into the anoxic tank (de Godos, Vargas, et
al., 2014). Liquid samples of 100 mL were drawn three times a week from the SWW
storage tank, anoxic tank, aerobic tank, wastage, and clarified effluent to monitor the
concentration of dissolved TOC, dissolved IC, dissolved N species (total nitrogen, N-
NHj;, N-NO3, and N-NO3) and biomass concentration, expressed as TSS. The DO,

temperature and pH of the cultivation broth in both tanks were in situ recorded every day.
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In (Alcéantara, et al., 2015), the influence of the HRT, intensity and regime of light supply,
and dissolved oxygen concentration in the photobioreactor were analyzed in five-stage

experimentation.

4.2.2. Parameter estimation approach applied to the case study

The present study utilized data corresponding to one experimentation stage, with the
system operating at an HRT of 4 days (HRT =1 d in the anoxic reactor, HRT = 3 d in the
photobioreactor) and under continuous illumination in the photobioreactor. Table 4.7

summarizes the photobioreactor output variables considered in the objective function.

Table 4.7. Output variables considered in the photobioreactor

Output variable Description Sampling
[units] frequency
TSS photobioreactor [MJTSS/L]  Total suspended solids Three times a
concentration in the photobioreactor week
TOC photobioreactor [MGC/L] Total organic carbon concentration Three times a
in the photobioreactor week
IC photobioreactor [MYC/L] Inorganic carbon concentration in Three times a
the photobioreactor week
So2 photobioreactor [MPO2/L] Dissolved oxygen concentration in Daily

the photobioreactor

Snra [MgN-NH4/L] Dissolved ammonium concentration Three times a
in the photobioreactor week

The photobioreactor has been described using the model BIO_ALGAE 2 (Solimeno,
Gobmez-Serrano and Acién, 2019a) with the modifications described in section 3.1.1. The
modeling, sensitivity analysis, and simulation were carried out using the dynamic
simulation software PROOSIS® (EA International, 2022).

Similarly to the previous case study, model outputs are especially sensitive to the
maximum specific growth rate of microalgae (HaLc) and heterotrophic bacteria (pr); the
decay rate of microalgae (Kdeath,aLG) and heterotrophic bacteria (Kdeath,H); and the gas-liquid

mass transfer coefficients for ammonia (Kianns), oxygen (Kia,02), and carbon dioxide
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(Kia,co2). The results of sensitivity analysis are also used here as a guide to determine the
best selection of subsets of model outputs to consider. In addition, prior knowledge of

system dynamics should be considered.

The estimation of parameters has been executed in accordance with the approach
delineated in Section 4.2 and Fig. 4.13. In this particular case study, a four-step
optimization sequence was employed, as illustrated in Fig. 4.14.

Stagel Stage Il Stage I11 Stage IV %
S_NH} S_NH} S_NH} SNH |3
£7 TOC TOC TOC T0c  |5:
% IC IC IC Ic 5
S0, S0, S0, s 0, é §
TSS TSS TSS TSS

Fig. 4.14. Stages of the optimization problem in the photobioreactor

In the first step of the parameter estimation approach, two model outputs were considered
for alignment with the experimental data: TSS concentration and DO concentration. The
TSS concentration is associated with numerous model processes, and its value is
contingent on the concentration of all particulate components in the photobioreactor.
Furthermore, DO concentration plays a pivotal role in numerous processes pertaining to
microalgae and bacteria activity. These outputs are contingent upon the maximum
specific growth rate of microalgae and the decay rate of microalgae and heterotrophic
bacteria. This assertion is substantiated by the graphical sensitivity analysis results
presented in Fig. 4.3A and Fig. 4.3B. The selection of this pair of model outputs was
based on the effect in the same direction provided by the most influential model
parameters. An increase in the microalgae growth rate and in the inactivation growth rate
of heterotrophic bacteria has been shown to promote an increase in both the DO
concentration in the photobioreactor and in the TSS concentration in the photobioreactor.
Conversely, an increase in the inactivation constant of microalgae has been shown to
result in a decrease in both the DO and TSS concentrations, as evidenced by the findings

presented in Fig. 4.3A and Fig. 4.3B. The analogous effects of the parameters on the
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designated outputs preclude convergence issues and prevents that the parameters do not

exceed the limits imposed in the formulation of the optimization problem.

Inorganic carbon is incorporated as a model output in the second step of the optimization
process. Microalgae employ carbon dioxide as a carbon source for growth. As anticipated,
MaLc has been identified as the parameter exerting the most substantial influence on IC
concentration. It is noteworthy that inorganic carbon is also influenced by the decay rate
of microalgae and heterotrophic bacteria, as evidenced by the findings presented in Fig.
4.2A. The incorporation of inorganic carbon as a model output in the second stage of the
parameter estimation process is predicated on the established correlation between IC and

the model outputs that have been previously selected.

In the third step of the methodology, the total organic carbon concentration is also
considered as a model output to be fitted. In microalgae-bacteria processes, heterotrophic
bacteria oxidize the organic matter present in the wastewater. Consequently, TOC
concentration is predominantly influenced by the maximum specific growth rate and the
decay rate of heterotrophic bacteria, as illustrated in Fig. 4.2D.

In the final step, the dissolved ammonium concentration is incorporated as model output.
As demonstrated in the graphical sensitivity analysis results provided in Fig. 4.2A, the
ammonium concentration is mainly affected by pace, Kdeath,aLc, and KianHa.

The initial values for parameter estimation in Step 1 and the ranges of the decision
variables for optimization were selected from a comprehensive literature review. These
values are reported in Table 4.8. The parameter estimation results are provided in Table
4.9.
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Table 4.8. Initial values and limits for decision variables in the photobioreactor

Parameter Description Initial  Limits for
[units] value  optimization
uae [d7] Maximum specific growth rate of microalgae 15 04-4
keeathaLc [d?]  Decay rate of microalgae 0.1 0.05-0.21
Uy [d7] Maximum specific growth rate of heterotrophic bacteria 4 1-6
Kdeathr [07] Decay rate of heterotrophic bacteria 0.6 0.12-0.9
Kiao2 [d] Mass transfer coefficient for oxygen 1 0.3-30
Kiacoz [d7] Mass transfer coefficient for carbon dioxide 1 0.3-30
Kianns [d7] Mass transfer coefficient for ammonia 0.8 0.3-30

Table 4.9. Values of estimated parameters in the photobioreactor

Parameter Value
[units] Stepl Step2 Step3  Step4
pace [ 1.627 0.990 1.062 1.062
Kgeatn,aLa [d™] 1.656 1.000 1.210 1211
un [d1] 0.101 0.050 0.050 0.050
Kaeath 1 [d7*] 0.895 0.900 0.900 0.900
Kiao2 [d] 13.081  4.000  4.000 4.000
Kiacoz [d] - 3.666 3.666 3.666
Kianmz [d7] - - - 3.920

4.2.3. Validation results

The data utilized in this study corresponded to 47 days of experimentation. These data

were employed for parameter estimation and model validation. In each stage of the

parameter estimation methodology, data from the initial 30 days were utilized for

parameter estimation. Model validation was performed using data from days 30 to 47.
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The simulation results of the Stage 4 of the applied methodology are presented in Fig.
4.15 and Fig. 4.16. As illustrated in Table 4.10, the model fit in the photobioreactor was
evaluated using the MAE and MARE criteria (Eq. (4.21) and (4.22), respectively).

The simulation results for the TSS concentration in the photobioreactor are presented in
Fig. 4.15A. As previously referenced, the experimental data were recorded under constant
HRT and illumination in the photobioreactor. Consequently, variations in the biomass
concentration in the photobioreactor (with an experimental standard deviation of 299.78
mgTSS/L) can be attributed primarily to changes in microbial populations and possible
errors in the sample drawing. The simulated average values of biomass concentration in
the photobioreactor demonstrate a high degree of correlation with the experimental
results, as evidenced by the low values of MAE and MARE obtained (Table 4.10).

As illustrated in Fig. 4.15B, the simulation results depict the dissolved oxygen
concentration within the photobioreactor. The model effectively reproduces the dynamic
behavior of this variable, as confirmed by the low values of MARE reported (lower to
0.3) during the experimental period.

The simulation results of the total organic carbon concentration, inorganic carbon
concentration, and ammonium concentration in the photobioreactor are presented in Fig.
4.16A, Fig. 4.16B, and Fig. 4.16C, respectively. The assimilation of TOC by
heterotrophic bacteria has been observed to increase since the initial time of
experimentation (day 0). This trend has been replicated by the model, as evidenced by
Fig. 4.16A and the low values of MARE reported in Table 4.10. In a comparable manner,
the assimilation of IC and dissolved ammonium by microalgae has been observed to
increase during the experiment. This trend is illustrated in Fig. 4.16B and Fig. 4.16C,
which demonstrate the model's capacity to replicate this trend. The low values of MARE
reported for these variables confirms the model's effectiveness in reproducing the
dynamic behavior of the different measured variables. The proposed optimization
approach is designed to avert probable convergence issues and may facilitate a more

optimal alignment between the experimental and simulated data.
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Fig. 4.15. Time course of the total suspended solids concentration (A) and dissolved
oxygen concentration in the photobioreactor (B). The white area indicates the data set
used for parameter estimation, and blue shadow area contains the data set employed for

model validation.
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Table 4.10. Model evaluation in the photobioreactor

Mean absolute error Mean absolute relative

error
TSS - Photobioreactor 245.0805 0.0928
S_ O3 - Photobioreactor 5.0598 0.2544
TOC - Photobioreactor 10.1155 0.4058
IC - Photobioreactor 8.1515 1.0105
S_NH4 - Photobioreactor 4.5492 0.1105

4.3. Conclusions

This chapter presented the dynamic simulation results of anoxic-aerobic algal-bacterial
photobioreactor configurations. The simulation results for two distinct plants confirmed
the model's capability to replicate the experimental data in photobioreactors comprising
one or two stages, including sedimentation and biomass recirculation, while treating
domestic or high-strength wastewaters. Parameter estimation was instrumental in
ascertaining the most influential parameters of the microalgae—bacteria process. In a
similar vein, parameter estimation in the settler facilitated the estimation of the primary
parameters associated with settleability properties, which are not well-established in

microalgae—bacteria processes.

The methodology for parameter estimation was tested in a photobioreactor for wastewater
treatment when multiple outputs and parameters were involved in the optimization
problem. This approach has been demonstrated to prevent convergence issues and

facilitate a more optimal alignment between the experimental and simulated data.
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5. Moving horizon estimation in microalgae-bacteria based
wastewater treatment

This chapter expounds on the application of the MHE technique in an industrial
microalgae-bacteria based wastewater treatment plant. The inherent nonlinear
characteristics of microalgae-based wastewater treatment processes, coupled with the
operational constraints associated with these processes, underscore the viability of MHE
as a solution to the state estimation problem in this context. The objective of the MHE
technique's implementation was to facilitate online estimation of effluent water quality
and other pertinent variables associated with plant operation. This research considers the
availability of online and analytical measurements, which poses the challenge of multi-
rate measurement management. In this chapter, a complex model was employed to
represent the hypothetical wastewater treatment plant, while a reduced model with
additive noise in the measured outputs and parameter mismatch was utilized for the
estimation. The state and parameter estimation was conducted. Furthermore, the MHE
technique was employed for the estimation of model uncertainties, output noise, and the
inlet wastewater concentration. The results of the estimation are presented via simulation,
demonstrating the potentialities of the MHE technique for the online estimation of
multiple states and parameters, even in the presence of model uncertainties and parameter
mismatch. The implementation of online state estimation would facilitate the subsequent
integration of control and optimization strategies within the plant, contingent upon the
actual values of the states.
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5.1. Moving Horizon estimation

MHE is a powerful tool for state estimation in dynamic systems, transforming the
problem into an optimization problem. This approach entails the identification of values
for states and parameters that result in a minimization of the discrepancy between
measured and model-predicted outputs over a sliding window of past data. Additionally,
MHE effectively incorporates unmeasured disturbances and other inaccuracies within this
finite sequence of past measurements. Furthermore, the admissible ranges of the different

variables involved must be considered.

Unlike filter-based approaches for nonlinear systems such as the Extended Kalman Filter
(EKF), MHE offers greater flexibility in handling constraints and system nonlinearities.
The ability to incorporate additional constraints on estimated variables allows for
enforcing physical limitations, integrating valuable information about the system’s
characteristics (such as ensuring concentrations remain positive or molar fractions stay
within the [0,1] range). These constraints not only improve the physical realism of the
estimates but also enhance the efficiency of the optimization solver by reducing the search
space. As a result, estimation errors decrease, as more information is utilized in the

optimization process.

It is important to acknowledge that nonlinear optimization with constraints increases
computational complexity. However, with recent advancements in computing power and
improved nonlinear solvers, MHE has become more practical, allowing solutions to be
obtained within a reasonable timeframe. In highly nonlinear systems, such as biological
processes, MHE typically outperforms EKF, which relies on the assumption that the
system behaves linearly during updates, a condition that may not always hold.

Another key advantage of MHE is its versatility in scenarios where plant measurements
are available at different frequencies (e.g. measurements from plant transmitters and from
the lab). Traditional state estimation methods often assume that all relevant states can be
observed from high-frequency measurements, but this is not always the case. Some states
may only be inferred from less frequent measurements, making multi-rate measurements
essential. By incorporating slower measurements into the estimation process, MHE
improves both the quality of state estimates and the overall observability of the system,

addressing potential information gaps.

124



The MHE dynamic optimization problem can be defined as problem (5.1) to (5.7) below
and Fig. 5.1. The problem is solved at regular time intervals or sampling times k. At
current time k, the estimation considers a past horizon t € [tk_ne,tk], where n,
represents the number of past sampling time included in the estimation. Within this
horizon, the inputs u,_; to the process over the intervals [t;_;, tx—;+1], and the process
measurements collected at ¢,_;, denoted as yp ,_;, are known for i = 1, ..., n,. The past
horizon of the MHE is illustrated in Fig. 5.1.
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Fig. 5.1. Past values of the MHE estimation

The decision variables in this problem include the state values at the beginning of the
sliding window of past data (xk_ne), and the past unmeasured system disturbances,
unknown parameters, or system noise accounting for modeling errors (and unknown
dynamics) (wy_;). The objective (5.1) is to minimize discrepancies between the model-
predicted outputs (y,) and the measured values (yplk), while also considering the

deviation between the newly estimated past initial state x,_,, and the state estimated
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from the previous MHE execution at time t —n, (fk_ne), as well as maintaining
consistency or minimizing the past disturbances (or parameters 8,_;) and w;_;. Then,
the trajectory of the state variables up to time k [xk—ne' ...,xk] is estimated using the
process model. The name moving horizon estimation is derived from this problem
formulation: at each sampling time t;, a new measurement yp , enters the horizon, while

the oldest measurement yp -4 is discarded from the estimation window.

The weighting matrices @,, @, and @,, regulate the influence of each term on the cost
function. The optimization problem is subjected to the dynamic system model (5.2) and
(5.3), as well as the operational and physical constraints defined in (5.4). The problem
also incorporates inequality constraints (5.5) to restrict disturbances to the permissible
range. The incorporation of additional constraints in the values of the states (5.6) and
parameters (5.7) could enhance the estimation performance. This is a dynamic
optimization problem that can be solved either with a sequential approach involving a
dynamic simulator and a non-linear optimizer or directly with a non-linear solver after
full discretization.

Ne—1 n

. 2 o 2 ; 2
m1n Z ||3’k—i - YP,k—i”Qy + ”xk—ne - xk—ne”Qx +2”Wk—i”Qw (5.1)
i=0 i=1

Xk—neWk-iOk-i

i=1,..1,
s.t. fGxuw,0) =0,Vt € [ty_p,, ti] ) X(ty-n,) = Xk, (5.2)
h(x,u,y,w,0) =0, V&€ [ty_p,, ti] (5.3)

gwy) <0, Vt € [typ, te] (5.4)
wk<w,_,<swl, i=1.n, (5.5)
xl<x,_;<xVY, i=1..n, (5.6)
ot<o,_,<0Y, i=1..n, (5.7)

The solution of a problem (5.1) - (5.7) gives xj_y, , Wj_;, and 8;_;,i = 1...n.. Then,
this solution can be used to estimate the initial value of the model state at time t;, (x;,).

To obtain X, the model equations must be integrated over t € [tk_ne, tk] starting from
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Xj—n,, Using the estimated disturbances wj,_; and parameters 6;_;,i =1..n,, and
applying w,_;

fGx,u,w*,07) = 0,Vt € [typ, ti] , X(tken,) = Xi—n, (5.8)

State estimation employing the MHE technique is also beneficial in scenarios where plant
measurements are not available at the same frequency. This situation is illustrated in Fig.
5.2, where the measurements of outputs y, and y, (represented with circles), are available
with a sampling period greater than the sampling period of the measurements of the output
ys. The prevailing state estimation methodologies typically utilize solely the rapid

measurements (ys , , in Fig. 5.2), operating under the assumption that all states of interest

are observable from them. However, this assumption does not always hold true, and there
exist instances where states cannot be observed from the rapid measurements alone.
Consequently, the utilization of measurements obtained at varying rates has the potential
to enhance the observability properties of the system. Therefore, it is recommended to
use methodologies capable of managing multi-rate measurements, with the objective of
leveraging the slower measurements to enhance the quality of state estimates or their

observability.

YVip

Yap

\ Al

Fig. 5.2. Scenario considering a plant with multi-rate measurements

5.2.  Plant description

This study considers a hypothetical wastewater treatment plant for a population of

approximately 5,000 inhabitants, treating an average flow rate of 875 m®d. The system
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consists of two parallel HRAPs, each with an area of 10,208 m?, designed in the typical
form of raceways with two channels and two reversals (452m long and 22.6 m wide). The
HRAPs have a depth of 0.3 m and operate at a hydraulic retention time of 7 days. Two
settlers, each with a total working volume of 293.75 m®, are connected to the output of
each HRAP. The algal-bacterial biomass settled is recirculated to the HRAP to enhance
nutrient assimilation and biomass settling ability. It is hypothesized that the algal-
bacterial WWTP is preceded by a pre-treatment stage with primary sedimentation to
remove the solid fraction of the wastewater. The schematic representation of the plant is
depicted in Fig. 5.3, and the average composition of the inlet domestic wastewater is listed
in Table 5.1. The values for wastewater composition were obtained from the typical
domestic wastewater concentrations reported in (Henze et al., 2000; Metcalf & Eddy Inc.,
2003).
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Fig. 5.3. Schematic of the hypothetical WWTP

The algal bacterial broth is composed of a consortium of microalgae and bacteria. The
microalgae consortia consist of different strains utilized for wastewater treatment. The
bacterial groups encompass heterotrophic bacteria and autotrophic bacteria (ammonium-
oxidizing bacteria and nitrite-oxidizing bacteria). It is hypothesized that HRAPs are
inoculated with 2.5 gVSS/L of microalgae consortia and 2.5 gVSS/L of activated sludge.

The particulate components' relative proportions in the sludge are assumed based on those

128



proposed in the Activated Sludge Model 2 (ASM2) (Henze et al.,, 2000). The

concentration of particulate components in the inoculum is summarized in Table 5.2.

Table 5.1. Average inlet wastewater composition

Component Description Concentration Units

SNHa Ammonium nitrogen 45 mgN-NH, L*

SnHs Ammonia nitrogen 0.15 mgN-NH; L*

Sno3 Nitrate nitrogen 0 mgN-NOz L™

Snoz Nitrite nitrogen 0 mgN-NO, L

Sco2 Dissolved carbon dioxide 9.15 mgC-CO, L™

Shicos Bicarbonate 290 mgC-HCO; L™

Scos Carbonate 0.85 mgC-COz L™

Spos Phosphate phosphorus 8 mgP-PO, L™

So2 Dissolved oxygen 0 mgO, L™

Sk Hydrogen ions 0.000010 mgH L™

Son Hydroxide ions 0.017008 mgH-OH L

Ss Readily biodegradable soluble 100 mgCOD L™*
organic matter

Si Inert soluble organic matter 40 mgCOD L™*
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Table 5.2. Inoculum composition

Component Description Value Units

XaLe Microalgae biomass 3550 mgCOD L™*
Xn Heterotrophic bacteria 592.85 mgCOD L™*
XaoB Ammonium oxidizing bacteria 3.55 mgCOD L™*
XnoB Nitrite oxidizing bacteria 1.775 mgCOD L™*
Xs Slowly biodegradable particulate 2463.7 mgCOD L™

organic matter

X Inert particulate organic matter 493.45 mgCOD L™

Fig. 5.4 illustrates the daily variations in inflow and inlet wastewater concentrations for
all components, as well as temperature and solar radiation. The inlet wastewater flow rate
(Fig. 5.4A) exhibits a trend consistent with the domestic wastewater flow data presented
in (Metcalf & Eddy Inc., 2003). The inlet concentration for each wastewater component
is represented by the trend described in Fig. 5.4B, in which the average wastewater
concentration for each component is described in Table 5.1. The temperature and
Photosynthetic Photon Flux Density (PPFD) values were evaluated in the context of

summer conditions, as illustrated in Fig. 5.4C and Fig. 5.4D, respectively.
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Fig. 5.4. Daily variation profiles of the inlet wastewater flow rate (A), inlet concentration

(B), temperature (C), and photosynthetic photon flux density (D).

This study considers the availability of online pH, temperature, and dissolved oxygen
measurements, with a sample period of 1.2 hours. It is further assumed that daily
measurements of dissolved total organic carbon, dissolved ammonium, dissolved
phosphate, and biomass concentration in the effluent are available for quality water
monitoring. Additionally, the daily availability of measurements of biomass
concentration in the HRAP and in the wastage flow rate is also assumed. The biomass
concentration is quantified in terms of the TSS concentration. It is hypothesized that the
measurements of dissolved components are drawn from the HRAP, and that the
concentration of dissolved components in the effluent is equal to that of the HRAP. The
specific measurements and their respective sampling frequencies are summarized in
Table 5.3.
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Table 5.3. Measured variables in the plant

Measured variable Description Type of Sampling
[units] measurement frequency
[samples/day]

So2 [mgO2/L] Dissolved oxygen Online 20
pH pH in the HRAP Online 20
T [°C] Temperature in the HRAP Online 20
TOC [mgC/L] Total organic carbon Analytics 1
Snha [MgN-NH./L] Dissolved ammonium Analytics 1
Spoa [MgP-PO./L] Dissolved phosphate Analytics 1
TSSHrapr [MgTSS/L] Total  suspended  solids Analytics 1

concentration in the HRAP

TSSerrivent [NgTSS/L]  Total  suspended  solids Analytics 1
concentration in the effluent
flow

TSSwastage [MGTSS/L]  Total  suspended  solids Analytics 1
concentration in the wastage
flow

5.3. Plant model

In this study, a detailed plant model was employed to simulate the dynamics occurring in
the HRAP system with biomass recirculation. This sophisticated model was employed
“in lieu” of the actual plant, and the measured variables are indeed the outputs of the

detailed model.

5.3.1. HRAP model

The present study used the model BIO_ALGAE 2 (Solimeno, GOmez-Serrano and Acién,
2019a) (with minor modifications as outlined in Section 3.1.1) to represent the
biochemical reactions and processes occurring within the HRAP. The model has
previously undergone validation in HRAPs and other photobioreactor configurations
under a range of operational conditions (Solimeno et al., 2017a; Solimeno and Garcia,

2019; Solimeno, Gémez-Serrano and Acién, 2019a; Bausa et al., 2022). Details of the
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process rates of the model and factors equations used to represent the processes occurring
in the HRAP are summarized in Table 3.2 and Table 3.3, respectively. The matrix of
stoichiometric parameters, the values of the parameters, and the fractions of carbon,
hydrogen, oxygen, and nitrogen in microalgae and bacteria biomass are described in
Appendix 1. This appendix also includes a summary of the mathematical expressions of
the stoichiometric coefficients. To simulate the processes occurring in the HRAP, 22 state
variables were utilized, including 19 state variables corresponding to model components
and 3 state variables corresponding to the photosynthesis model.

Inthe BIO_ALGAE model, the compositions of the particulate components are expressed
in terms of COD. Therefore, it is necessary to perform the transformation from mgCOD/L
to mgTSS/L to make a comparison with the considered measured data. The COD/TSS
relationships (5.9) and (5.10) were used to perform this adjustment. The relationships
between state model variables and measured variables are represented by equations (4.1)
and (4.2).

1gVSS = 1.42gCOD (5.9)

1gTSS = 0.85gVSS (5.10)

5.3.2. Settler model

The settler was described using the mass-balance expressions of the Takacs model
(Takécs, Patryioand and Nolasco, 1991). The Takacs model is a multi-layer dynamic
model typically used for the clarification and thickening processes. In this work, a 10-
layer settler was considered (this implies that 10 states were used to settler modeling). A
comprehensive description of settler model used in this work can be found in Section
3.1.2.

5.4. Reduced model for state estimation

To create a more realistic framework for the application of the MHE technique, the
detailed model previously referenced was used to simulate the "real plant,” while a
reduced model was employed for estimation with MHE. Given that this research was

conducted within a simulation framework, the utilization of a reduced model in the
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estimation process enables the consideration of potential model uncertainties that
invariably arise in practical applications. Furthermore, employing a lower-complexity
model for estimation facilitates the reduction of estimation time, a critical factor in

addressing nonlinear optimization problems.

The estimation developed in the present research is intended for further use in monitoring
and controlling the quality of effluent water in a WWTP with microalgae and bacteria
using the MPC strategy. The utilization of the state estimator in the context of effluent
water quality monitoring can serve as a valuable instrument for enhancing the operational
efficiency of the plant. By offering pertinent real-time information regarding the process's
status, the state estimator can reduce the necessity for conducting analytical
measurements, thereby facilitating more efficient management of the process. Similarly,
the implementation of all real-time control and optimization strategies demands the
knowledge of the actual state of the process.

The implementation of a control strategy within the WWTP should ensure compliance
with the prevailing legislation (Directive 1/271/CEE for EU states) (Union Europea,
1991; Real Decreto 509/1996, de 15 de marzo, 1996). This directive establishes minimum
requirements for the collection, treatment, and discharge of urban wastewater and
wastewater from specific industrial sectors within the European Union. According to the
directive, the evaluation of the quality of the treated wastewater discharged from urban
WWTPs is to be based on the concentration of COD, TSS, total nitrogen, and total
phosphorus in the effluent water. Therefore, components not directly associated with
these variables are not necessarily subject to estimation by the MHE. Subsequently, the

reduced model encompasses the estimation of the following variables:

e Biomass concentration (in the effluent flow, within the HRAP, and in the wastage
flow). It is imperative to precisely monitor the TSS concentration in the effluent,
as this is a critical factor in ensuring the desired quality of the water. Concurrently,
the attainment of optimal biomass values within the HRAP is imperative to ensure
sufficient wastewater treatment. The TSS concentration in the wastage flow is
also estimated because in a system with recirculation, this value affects the TSS
concentration in the HRAP. The biomass concentration is contingent upon the
particulate components of the model, as delineated in Equation (4.1). Of the

biomass components, the concentration of nitrifying bacteria (Xaos and Xnos)
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was not incorporated into the reduced model. This was due to the fact that
nitrifying bacteria, despite their acknowledged role in wastewater treatment,
exhibited considerably lower concentrations compared to the other particulate
components present in the HRAP.

The ammonium concentration. Due to the main role of the ammonium over the
microalgae growth and its influence in the total nitrogen concentration that should
be guaranteed in the effluent wastewater. In the context of this particular study,
the concentrations of nitrites and nitrates are significantly lower in comparison
with other nitrogen species, such as ammonium. Consequently, the concentration
of these variables was not considered in the reduced model. The legislation
establishing limits for components concentrations stipulated values for total
nitrogen, rather than for nitrites and nitrates.

The phosphate concentration. Due to their influence over microalgae and bacteria
growth. Additionally, the monitoring of phosphate concentrations is crucial for the

overall assessment of total phosphorus in effluent wastewater.

The dissolved oxygen concentration is a critical factor in achieving a
comprehensive understanding of the primary processes within the HRAP. The
availability of reliable online So2 measurements, as well as the relation of the
dissolved oxygen with the main process variables, allows for the design and

implementation of state estimators based on dissolved oxygen measures.

The TOC concentration, defined by Equation (4.2) is directly related with the

COD. Evaluating the COD is imperative to ensure efficient wastewater treatment.

The components of the inorganic carbon (Scoz, SHcos, and Scos) are not estimated by the

reduced model because the focus of this study is on estimating those components

regulated by the legislation that should be analyzed prior to the discharge. Consequently,

the concentration of inorganic carbon is not regarded as a limiting factor in the discharge

of effluent water.

In order to simplify the reduced model (and consequently improve the estimation time of

the MHE), the concentration of Su and Son was not calculated. In the reduced model, the

pH of the culture medium is regarded as a known measured input.
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The reduced model encompasses 10 processes, which are described in Table 5.4.
Furthermore, the objective of minimizing the estimation time was pursued by calculating
the factors of the photosynthesis model directly using the relations described in Table 5.5,
as opposed to the system of differential equations utilized in the model of the plant (Table
3.3).

Summarizing, the reduced model of the HRAP included 10 state variables, as it was not
necessary to estimate all components of the system for operation. A comprehensive
summary of the state variables considered in both the real plant and MHE model is
provided in Table 5.6. The settler model used for estimation, similarly with the one used

for plant simulation, encompasses also 10 state variables.

A synopsis of the processes encompassed in the plant and the reduced model is
summarized in Table 5.7. The analysis of Table 5.6 and Table 5.7 reveals the substantial
structural disparities between the plant and the reduced model for the HRAP, as evidenced
by the number of states and equations involved. Additionally, disparities in the values of
some parameters were considered in plant and model (Table 5.8). The values of the
parameters in the plant were selected based on the values previously reported in the
literature for microalgae-bacteria raceway reactors (Solimeno et al., 2017b; Casagli et al.,
2021).
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Table 5.4. Process rates of the reduced model

Processes

Process rate [M L3T%]

Microalgae (X4, ) processes

Growth on Syy

P1 = Hare ﬁ .fDO .fTALG .prALG ’

Scoz + Shcos Snuz + Snha Spoa

' ) " Xare
Scoz>  Kware + Swuz + Svna Kpare + Spos

Kc.ar6 + Scoz + Shcos + 7
C02,4LG

Endogenous respiration

So2

p2 = kresp,ALG 'fTALG 'prALG '—K TS " XaLe
02,ALG 02

Decay

P3 = Kaeatnarc * frayc

prALG “Xare

Heterotrophic bacteria (X};) (aerobic activity)

Aerobic growth on Syy

P4 = Uy 'fTH 'prH'KS

Aerobic endogenous respiration

Ps = kresp,H 'fTH 'prH

Ss _ So2 _ Snuz + SnHa _ Spoa X
H
H+Ss Kozt So2 Knw~+ Svuz + Svua Kppy + Spoa
So2
Kozu + So2

Decay Pe = Kaeatnu * fry ~ fory " Xu
Hydrolysis, Chemical equilibrium and Transfer of gases
Aerobic hydrolysis Xs/ Xy

P7

=k . .
HYp Kuyp + (Xs/Xy)

Xy

Chemical equilibrium NH} & NH,

Pg = keq,3 ) (SNH4 - SHSNHB/Keq,3)

So> transfer to the atmosphere

Py = Kig02 " (S(%AT - 502)

Syus transfer to the atmosphere

P10 = Kignusz (—Snnu3)

137



Table 5.5. Photosynthesis model used in the reduced model

Photosynthetic factories model (Eileers and Peeters) (Eilers and Peeters, 1988)

fi

The photosynthetic factories model is described by the system of differential
equations described in Table 3.3. In outdoor conditions, variations in
irradiance during the daily solar cycle are very slow with respect to the
dynamics of photosynthesis (Eilers and Peeters, 1988; Camacho Rubio et al.,
1999; Solimeno et al., 2015). In these conditions x; and x, are close to
equilibrium in less than a second (Solimeno et al., 2015). Assuming this
condition, the solution to the system of differential equations is:

v = y8+BIS
17 aprz+(a+B)8I+ys
X = adl
27 aprz+(a+B)SI+ys
_ afI?
X3 = >
aBI?+(a+B)SI+ys
where:
I =1y

The average light intensity (I,,y was described using Lambert-Beer’s Law:

_ Ip(1—exp(-K;-TSSd))
- K;TSSd

Iav

Where TSS = XALG +XH +XI +XS

x1: Microalgae in open state (ready to capture a photon).

x,: Microalgae in activated state (microalgae can go back to
open state or can capture another photon).

x3: Microalgae in inhibited state (ready to turn back to the
open state.

a: Rate of activation [(uE m~2)~1]
y: Rate constant of production [s~1]
: Rate constant of inhibition [(uE m=2)~1]

§: Rate of recovery [s™1]

1,,,: Average light intensity [umol m=2s71]

I,: Incident light intensity [umol m=2s™1]

K;: Extinction coefficient for particulate biomass [m?g~1]
TSS: Particulate components [gTSS m™3]

d: Photobioreactor depth [m]
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Table 5.6. State variables considered in the plant and in the reduced model

State variables

Considered in
the plant [units]

Estimated by the reduced model
(Yes/No) / Additional comment

Output or
measured
variable affected

Xare [MgCOD/L] Yes TSS
Xn [mgCOD/L] Yes
Xaos [MgCOD/L] No
Xnos [MgCOD/L] No
Xs [mgCOD/L] Yes
X; [mgCOD/L] Yes
Snna [MgN-NH./L] Yes SNHa
Snns [MgN-NHs/L] Yes
K Snos [MgN-NOs3/L] No
§ Sno2 [MgN-NO2/L] No
é Spoa [MgP-PO4/L] Yes Spoa
I Soz2 [mgO2/L] Yes So2
Scoz [mgC-CO,/L] No
Sticos [MgC-HCO4/L] No
Scos [mgC-COs/L] No
Sk [mgH/L] No/ pH
Son [mgH-OH/L] Used as model input in the reduced
model
Ss[mgCOD/L] Yes TOC
S [mgCODI/L] Yes
o No/
é _ Xq Calculated directly, instead as a
%-?é X, state variable
o
g x
o
TSSetfluent Yes TSSeffluent
TSS; Yes
TSS3 Yes
g TSS4 Yes
= TSSs Yes
g TSSe Yes
3 TSS; Yes
TSSg Yes
TSSy Yes
TSSwastage Yes TSSwastage
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Table 5.7. Processes considered in the plant and the model

Process Plant Model
Microalgae Growth on Sy Considered Considered
rocesses . .
P Growth on Snos Considered Not Considered
Endogenous respiration Considered Considered
Decay Considered Considered
Heterotrophic Aerobic growth on Snna Considered Considered
bacteria . . .
Aerobic growth on Snos Considered Not Considered
processes
Anoxic growth on Sno2 Considered Not Considered
(denitrification on Sno2)
Anoxic growth on Snos Considered Not Considered
(denitrification on Snos)
Aerobic endogenous respiration Considered Considered
Anoxic endogenous respiration Considered Not Considered
Decay Considered Considered
Autotrophic  Growth of Xaos Considered Not Considered
bacteria G h of X Considered Not Considered
processes rowth of Xnos onsidere ot Considere
Endogenous respiration of Xaos Considered Not Considered
Endogenous respiration of Xnos Considered Not Considered
Decay of Xaos Considered Not Considered
Decay of Xnos Considered Not Considered
Hydrolysis Hydrolysis Considered Considered
Chemical Chemical equilibrium C0, < Considered Not Considered
equilibrium  HCO3
Chemical equilibrium HCO3; < Considered Not Considered
coz-
Chemical equilibrium NH} & Considered Considered
NH,
Chemical equilibrium H' & Considered Not Considered
OH™
Transfer  of S, transfer to the atmosphere Considered Considered
ases . .
g Sco2 transfer to the atmosphere Considered Not Considered
Syus transfer to the atmosphere Considered Considered
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Table 5.8. Values of parameters in plant and model

Parameter [units] Description Plant Model
Hacc [d] Maximum specific growth 2.5 35
rate of microalgae
Hy [d7] Maximum specific growth 5.8 5.5
rate of heterotrophic bacteria
Kia, 02 [d™] Mass transfer coefficient for 10 9
oxygen

The simulated differences between the plant and the reduced model starting from the
initial inoculation time of the plant are illustrated in Fig. 5.5 to Fig. 5.9 for a period of 60
days operating under the conditions illustrated in Fig. 5.4. The initial values of the states
set in the plant and model simulation are described in Table A3.1 and Table A3.2 of the
Appendix 3. The differences in the concentration of particulate components in the HRAP
are shown in Fig. 5.5. The biomass concentration into the raceway reactors, in the effluent
flow, and in the wastage flow for the plant and the reduced model are illustrated in Fig.
5.6. The effect of daily variations over the biomass due to operational and environmental
variables is visible in both the plant and model trend. The concentration of the dissolved
components in the HRAP is illustrated in Fig. 5.7, where the ammonium and phosphate
assimilation by microalgae (Fig. 5.7A and Fig. 5.7B, respectively) was highly affected by
day/night cycles, as well as the TOC assimilation by heterotrophic bacteria (Fig. 5.7C).
Concomitantly, substantial variations in the dissolved oxygen concentration within the
HRAP, attributable to diurnal fluctuations in irradiation, are evident in both the plant and
in the reduced model (Fig. 5.8). States of the photosynthesis model are represented in Fig.
5.9 for the plant and the reduced model. The analysis of Fig. 5.5 to Fig. 5.9 reveals that
the reduced model effectively replicates the trend of the primary variables involved in
wastewater treatment. This findings validated its use as a prediction model in the MHE
approach. Conversely, the discrepancies in the behavior of the reduced model in
comparison to the plant depicted in Fig. 5.5 to Fig. 5.9 can be attributed to two primary
factors: structural mismatches (summarized in Table 5.6 and Table 5.7) and parameter
mismatches (detailed in Table 5.8).
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Fig. 5.5. Plant and reduced model differences in the biomass composition in the HRAP:

microalgae biomass (A), heterotrophic bacteria (B), slowly biodegradable particulate

organic matter (C), and inert particulate organic matter (D).
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5.5.  State estimation using MHE in a microalgae-bacteria wastewater treatment

plant

MHE was designed to furnish the values of the unmeasured states for prospective
implementations of model predictive control algorithms and optimization strategies to
enhance system performance. These unmeasured states offer critical information about
the system, which is essential for the effective implementation of feedback control
strategies. The application of MHE to microalgae-based wastewater treatment systems
poses specific challenges, primarily due to i) the scarcity of online measurements, ii) the
lack of perfect knowledge of the model structure, iii) uncertainties in the values of
parameters and states, iv) the unavailability of direct methods to determine the fractions
of particulate components in the biomass, v) the reliability of analytical measurements is
highly dependent on human expertise, vi) the elapsed time from the moment the sample

is taken to the moment the analytical procedure is completed.

In the hypothetical microalgae-based WWTP studied in this work, multi-rate
measurements are presented with the sampling frequency shown in Table 5.3. Online
measurements of the high-rate dynamic variables (pH, temperature, and dissolved
oxygen) could be available with a higher sampling time. However, the sampling time of

1.2 hours was used considering the slow dynamics of these variables in a large treatment
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plant and to avoid excessive computational time in the optimization. The estimator takes
into account the availability of Photosynthetically Active Radiation (PAR), pH,

temperature, and flow measurements. The schematic of the MHE applied to the case study
is depicted in Fig. 5.10.

Measurement
Process noises
noises l Vi
Measurements
Plant outputs
Process > Sensors Analytical
“ .............................
Measurements
Inputs Yk
— >
Uu o
ke l _______________________ Xg
: Wy
: ' Estimated values
| ] v
— MHE : > k
E | Yk
Ok

Fig. 5.10. Schematic of MHE for the microalgae-based WWTP

The structure of the state, output, and input vectors employed in the MHE formulation
are described by equations (5.11) to (5.13):

X=[Xac Xu Xs X1 Ss Si Svua Swuz Spos Soz TSSerfment (5.11)

TSS, TSS; TSS, TSSs TSSy, TSS, TSSg TSSq TSSwastage]”

Yp = [TSSurap  TOCurap Snua Spoa So2 TSSeffluent Tsswastage ]T (5.12)
u=[ pH T Quww @ri Qwastage]” (5.13)

The naming of the state variables to estimate (Eq. (5.11)) is detailed in Table 5.1, Table
5.2, and Table A3.2 in Appendix 3. The measurement vector, as developed by Eqg. (5.12),
encompasses the variables enumerated in Table 5.3. In the MHE formulation, the vector

of known inputs, defined by Eq. (5.13), includes the values of PAR (1), pH (pH), and
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temperature (T) of the culture media, as well as the values of inlet wastewater flow

(Quw). recirculation flow (Q,;), and wastage flow (Quastage)-

The MHE is intended to estimate the state vector values at each sampling time (x), as
well as the values of the unknown disturbances (w) and measurement noises (v) that
minimize the cost function defined in Eq. (5.1). In order to obtain useful information for
system operation and control, the values of the input wastewater concentration c; (Eq.
(5.14)) and the values of relevant process parameters (vector 0, Eqg. (5.15)) are also
decision variables in the optimization problem. Estimated parameters are instrumental in
characterizing the microbial dynamics in the process. In this sense, the maximum specific
growth rates of microalgae (uay¢) and heterotrophic bacteria were estimated (uy), as well
as the decay rate of microalgae (kgearnarg) and heterotrophic bacteria (kgeqen )
Concurrently, the estimation of the mass transfer coefficient of the dissolved oxygen was
conducted (K, o2). These parameters were identified as the most relevant parameters to

adjust in Section 4.1.1.
Ci = [Ssy Stpw SNHay, SNH3w  OPO4y,lT (5.14)
0 = [Myg Kacathare My Kdeatnn Kia02 1T (5.15)

Given the availability of multi-rate measurements, the execution time of the MHE is
determined by the fastest measurements (dissolved oxygen measurements). It is assumed
that analytical measurements are available daily at 0 a.m., implying that a full vector of
output measurements is only available on a daily basis. Conversely, at each sampling time
(1.2 hours), a new dissolved oxygen measurement is available. An overview of the
availability of measurements is given in Table 5.3 . To address the challenge posed by

multi-rate measurements in the context of MHE, two decisions were made:

» The consideration of a past horizon, encompassing at least a full vector of output

measurements (the estimation past horizon should be a minimum of 1 day).

* The cost function incorporates only the available measurements at each sampling time.

5.5.1. MHE coding and tuning

The MHE was coded using MATLAB® software (MathWorks Inc., 2024), version 24.1,
R2024a and the MPCTools (Risbeck and Rawlings, 2016). MPCTools is a control and
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estimation tool for linear and nonlinear dynamic models. Its provides an oriented interface
to CasADi for Octave and MATLAB. MPCTools provides an interface to CasADi
solvers, thereby facilitating the simulation of MPC controllers or MHE on any system of
interest. Although CasADi is a more robust software, MPCTools allows code saving in
the formulation of MHE or MPC problems (Risbeck and Rawlings, 2016). The estimation
problem was addressed by employing the Ipopt (Interior Point Optimizer) solver, which
IS an open-source software package for large-scale nonlinear optimization. The model
used for estimation was discretized using the Runge-Kutta method. The MHE simulations
were carried out using the following computer hardware specifications: an 13" Gen
Intel® Core™ i9-13900K processor (3.0 GHz), 128 GB of RAM memory, and a 500 GB
hard-disk drive.

In order to formulate MHE, it is necessary to provide the values of the weight matrices of

the cost function, as defined by (5.1). It is imperative to note that Q,, Q,,, and Q,, are

positive definite matrices, with weighting and normalization factors. Given the imprecise
nature of the initial guesses for the states, the diagonal elements of Q,, are set to a value
of 0.5. Table 5.9 and Table 5.10 present the values of the diagonal elements of Q,, and

Q,, respectively. The tuning values of Q,, and Q,, were selected based on the standard

deviation of the variables in order to normalize the different terms of the cost function. In
the WWTP, considerable scale differences in the measured output variables, as well as in
the estimated states, necessitated the normalization of these values. This procedure was
implemented with the objective of ensuring that each output was accorded equal
importance, as well as to guarantee the same importance in the modeling error for each
estimated state. The weight values were selected to allocate greater importance to the
discrepancies between the model and the measurements, indicating that the reliability of
the measurements surpasses that of the model. The constraints on the variables involved

in the optimization problem are summarized in Table 5.11 through Table 5.14.
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Table 5.9. Diagonal elements of the weight matrix Q,,

States Weight Units
XaLe 60 [mgCOD/L]
Xu 5 [mgCOD/L]
Xs 10 [mgCOD/L]
X 50 [mgCOD/L]
Ss 2 [mgCOD/L]
Si 4 [mgCOD/L]
SNHa 0.1 [mgN-NH./L]
SNHs 0.1 [mgN-NHs/L]
Spros 1 [mgP-PO4/L]
So2 2 [mgO-/L]
TSSeffluent 5 [mgTSS/L]
TSS; 10 [mgTSS/L]
TSS3 10 [mgTSS/L]
TSS, 10 [mgTSS/L]
TSSs 10 [mgTSS/L]
TSSe 20 [mgTSS/L]
TSS; 50 [mgTSS/L]
TSSs 50 [mgTSS/L]
TSSe 50 [mgTSS/L]
TSSwastage 300 [mgTSS/L]

Table 5.10. Diagonal elements of the weight matrix Q,

Output Weight  Units
TSShrar 100 [mgTSS/L]
TOC 2 [mgC/L]

SNHa 0.1 [mgN-NH./L]
Spos 1 [mgP-PO4/L]
Soz 2 [mgO2/L]
TSSeffiuent 5 [mgTSS/L]
TSSwastage 300 [mgTSS/L]
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Table 5.11. Upper and lower bounds on states and process noise

States

Process noise

Upper bound Lower bound Upper bound Lower bound

(x") (xh) w") wh
XaLG 800 400 500 -500
XH 60 0 500 -500
Xs 150 40 500 -500
Xi 700 500 100 -100
Ss 25 5 10 -10
Si 50 38 10 -10
SnH4 1 0 0.05 -0.05
SnH3 2 0 0.01 -0.01
Spos 13 0 2 -2
So2 32 0 2 -2
TSSeffiuent 60 0 30 -30
TSS; 80 0 30 -30
TSS3 90 0 30 -30
TSS, 150 0 30 -30
TSSs 500 0 30 -30
TSSe 500 0 70 -70
TSS, 1000 0 100 -100
TSSg 1000 0 200 -200
TSSy 1000 300 200 -200
TSSwastage 8000 2000 5000 -5000

Table 5.12. Upper and lower bounds on outputs noise

Output Upper bound Lower bound
@) ")

TSSHraP 100 -100

TOC 5 -5

SNH4 1 -1

Spos -3

So2 -4

TSSeffiuent 15 -15

TSSwastage 400 -400
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Table 5.13. Upper and lower bounds on the inlet wastewater concentration

Wastewater  Upper bound Lower bound Units
component ) (Y

Ss, 135 45 [mgCODI/L]
St 55 18 [mgCODI/L]
SNHay,, 67 23 [MgN-NH./L]
SNH3,, 0.20 0.07 [mgN-NHs/L]
Spo4,, 19 6 [mgP-PO./L]

Table 5.14. Upper and lower bounds in the estimated parameters

Wastewater  Upper bound Lower bound Units
component (8Y) D)

HaLc 15 4 [dY]
Kdeath, ALG 0.045 0.15 [d]
HH 3 6.5 [dY]
Kdeath, H 0.6 1 [d'l]
Kia, 02 7 13 [dY]

5.6. MHE simulation results

The results of the MHE execution are presented considering the system operation under
a periodic regime. The parameters used for the MHE simulation are enumerated in Table
5.15. The estimation horizon of two days is regarded as sufficient in terms of data
availability to support the calculation of an accurate estimation. In the context of the MHE
application, it is imperative to align the sampling period with the dynamics of the
variables to be estimated. The application under consideration in this research involves
the estimation of variables related to water quality. The variables in question exhibit slow
dynamics, thereby rendering lower sampling times unnecessary. Despite the fact that
commercial sensors for dissolved oxygen measurement provide data with considerably
lower sampling times than those employed in the present research, the sampling time used
in this paper was selected considering that large estimation times are generally needed for

nonlinear estimation with constraints. Moreover, in order to consider the possible

150



applications of the MPC control strategy in this process, it is essential that the sampling
time be adequately long to encompass both the estimation time and the time required for

executing the nonlinear constrained MPC controller.

Table 5.15. MHE simulation parameters

Parameter Description Value
N, Estimation horizon 2 d (40 samples)
Delta Sampling time 0.05d

Simulations were executed under the environmental conditions illustrated in Fig. 5.4.
Additionally, to simulate possible measurement errors in sensors and analytical
procedures, a measurement noise was introduced. This noise was generated using a
MATLAB® function which returns a random scalar drawn from the standard normal
distribution. For each output, the media of the noise value introduced corresponds to 5 %
of the average output value. The simulation results for the MHE application during 10
days (corresponding with 200 samples) are presented in Fig. 5.11 to Fig. 5.16, using initial
information of past data corresponding to two previous days. In each sample, the MHE
estimation was provided with an average value of 17.97 seconds (the higher estimation
time being 37.49 seconds), which means that MHE can be used as the first step of

advanced control or process dynamic optimization.

The estimated values (blue line) for the dissolved oxygen concentration in the HRAP are
illustrated in Fig. 5.11. The red line in the graph represents the actual values of the
dissolved oxygen concentration, which include the noise in the measurements. As this
study was conducted within a simulation framework, real-time plant values are available
for continuous representation, with the purpose of illustrating the estimator fit. In real-
world scenarios, the measured values are only available at discrete time intervals, which
are represented by crosses in the data. Error bars (purple bars) are included to illustrate
the limits of uncertainty that were assumed in the measurements. The results demonstrate
the accuracy of the prediction provided by the MHE, as well as estimator robustness, even

considering noisy measurements.
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Fig. 5.11. Measured and estimated values of the dissolved oxygen in the HRAP

The estimated values for the biomass concentration in the HRAP, the biomass
concentration in the effluent, and the biomass concentration in the wastage stream are
illustrated in Fig. 5.12. As demonstrated in Fig. 5.12, the MHE effectively estimates the
biomass concentration values for the entire simulation time by leveraging historical
output values and dissolved oxygen measurements at each sampling time. The error bars
represent the uncertainties in the measured values of the biomass. In such cases, where
analytical procedures are employed to ascertain biomass values, low biomass values are
deemed to be more susceptible to measurement uncertainties. The online estimation of
biomass concentration is imperative for ensuring the optimal operation of
photobioreactors taking early actions in response to the values of the estimated variables,
without waiting for the lab analysis to arrive. Optimal biomass values in the HRAP are
necessary to ensure the adequate wastewater depuration, and high biomass concentrations
within the reactor affect the penetration of solar radiation into the culture, which in turn
affects the growth of microalgae. In addition, the online monitoring of TSS concentration
in the effluent is of a paramount importance in order to guarantee the desired water

quality. Conversely, in scenarios where the primary objective is the harvesting of biomass
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for the production of diverse bioproducts, it is essential to optimize biomass yield to

ensure maximum economic profitability.

The MHE has the capacity to predict the values of the various components of biomass
(Fig. 5.13). Conventionally, the assessment of these values does not employ direct or
standardized methodologies. Indeed, a salient benefit of the application of state estimators
in such processes is that they enable the estimation of the concentrations of different

biomass components without the necessity of employing complex analytical methods.
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Fig. 5.12. Measured and estimated values of the biomass concentration in the HRAP (A),

in the effluent (B), and in the wastage stream (C).
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Fig. 5.13. Estimated values of the biomass components: microalgae biomass
concentration (A), heterotrophic bacteria concentration (B), slowly biodegradable

particulate organic matter (C), and inert particulate organic matter (D).

The measured and estimated values of the TOC in the effluent are presented in Fig. 5.14A.
The online monitoring of the TOC concentration is imperative for the evaluation of
effluent water quality. Fig. 5.14B and Fig. 5.14C illustrate the estimated values of readily
biodegradable soluble organic matter and inert soluble organic matter, respectively, as

components of the TOC.

The quality of effluent water is also contingent upon the concentrations of dissolved
ammonium and dissolved phosphate. The measured and estimated values of dissolved
ammonium and dissolved phosphate concentration are illustrated in Fig. 5.15A and Fig.
5.15B, respectively. As demonstrated in Fig. 5.15A, the estimate of the ammonium
concentration in the effluent exhibits a slight overestimation relative to the actual value.
This phenomenon can be attributed to the observation that the proliferation of microalgae
and heterotrophic bacteria (the two predominant microorganisms groups in the HRAP) is
exclusively associated with the utilization of ammonium. This association disregards the
microalgae growth on Snos, as well as the heterotrophic bacteria aerobic growth on nitrate
and the heterotrophic bacteria anoxic growth on nitrite and nitrate (as summarized in
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Table 5.7). This finding suggests that the reduced model attributes the observed growth
exclusively to nitrogen species in the form of Snns, which may lead to an overestimation
of this component in the HRAP. In a similar fashion, the phosphate estimation (Fig.
5.15B) exhibits a slight increase compared to the actual value of Spos concentration. This
discrepancy can be attributed to the reduced model incorporating a smaller number of
nutrients utilized by microalgae and bacteria for its growth, resulting in an overestimation
of these components within the reduced model. Nevertheless, these discrepancies
between the actual and estimated values are acceptable given the variation range of these
components, as well as the potential inaccuracies in the analytical procedures employed
to obtain the actual values of these variables. The validity of this assertion is supported
by the results presented in Fig. 5.14 and Fig. 5.15. These figures demonstrate that the
estimated values fall within the uncertainty limits that have been established in the

measurement of these variables.

The MHE approach assessed in this study effectively estimated the concentrations of
particulate and soluble components in the WWTP, even when a limited number of
samples are available. These results suggest that further enhancement of the application

of control and optimization strategies in wastewater treatment plants is possible.
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Fig. 5.14. Measured and estimated values of the TOC (A). Estimated values of the readily

biodegradable soluble organic matter (B) and inert soluble organic matter (C).
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Fig. 5.15. Measured and estimated values of the dissolved ammonium concentration (A)
and dissolved phosphate concentration (B).

Despite the existence of analytical measurements on a daily basis, the employment of a
state estimator offers insights into the progression of wastewater components throughout
the entirety of the experimental period, a situation that has been previously observed in
simulation results. State estimators serve as instrumental tools for the analysis of water
quality over the course of a day. Leveraging this analysis, control actions can be
implemented in a targeted and informed manner. As illustrated in Fig. 5.15, which depicts
the time course of dissolved ammonium concentration, there is a demonstrable variation
in the dynamics of dissolved ammonium over the course of a day. Specifically, higher
values of ammonium are observed during nocturnal hours, which can be attributed to the
assimilation of dissolved ammonium by microalgae during daylight hours. Given that the
samples were hypothesized to be drawn during the night, these values are representative
of a particular moment in the process dynamics evolution, which underscores the

importance of continuous state estimation.
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Parameter estimation is paramount for characterizing the kinetics of the key processes
and chemical reactions, as well as the operational conditions in the HRAP. The results of
parameter estimation for the parameters described by Eq. (5.15) are provided in Fig. 5.16.
Fig. 5.16 shows that the estimated parameters exhibited a high degree of proximity to the
"real values" of the parameters assumed in the plant. As demonstrated in Fig. 5.11 - Fig.
5.15, the simulation results substantiate the validity of the selected parameter values for
predicting the process's state evolution. In order to ensure the effective implementation
of model-based control strategies within the WWTP, it is imperative to establish precise
parameter estimations.
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Fig. 5.16. Measured and estimated values of the parameters in the HRAP. The circles
represent the initial guess for parameter values that were utilized in the optimization
problem.
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In order to evaluate the robustness of the estimator under different operational conditions,
variations in the incident light were considered during the final three days of the
estimation process. As illustrated in Fig. 5.17, the radiation profile under consideration
comprises seven days with uniform radiation conditions, analogous to those previously
illustrated in Fig. 5.4D, and three days characterized by substantial cloud cover. The
estimation results for this condition are illustrated in Fig. 5.18 to Fig. 5.20. The dissolved
oxygen concentration in the HRAP under fluctuating solar radiation is depicted in Fig.
5.18, where it is demonstrated that the available solar radiation during the last three days
of operation affects the maximum values of dissolved oxygen concentration in the
photobioreactor, owing to a decline in microalgae activity. The reliability of the estimator
in reproducing the trend in the dissolved oxygen concentration is indicative of its
effectiveness in a variety of environmental conditions and in the presence of noisy
measurements. This reliability is indicative of the robustness of the estimator.
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Fig. 5.17. Profile of the photosynthetic photon flux density considered over the course of

ten days of operation.
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Fig. 5.18. Measured and estimated values of the dissolved oxygen in the HRAP under
fluctuating solar radiation.

Fig. 5.19 illustrates the measured and estimated values of biomass concentration under
fluctuating solar radiation and also demonstrates the robust behavior of the estimator,
effectively replicating the measured values of biomass concentration in the HRAP (Fig.

5.19A), the effluent flow (Fig. 5.19B), and the wastage flow (Fig. 5.19C).

The performance of the estimator in predicting the concentration of dissolved components
in the HRAP under fluctuating solar radiation is illustrated in Fig. 5.20. Predicted values
of the dissolved total organic carbon concentration (Fig. 5.20A), ammonium
concentration (Fig. 5.20B), and phosphate concentration (Fig. 5.20C) demonstrate slight
overestimation, as previously evidenced in simulation results. Nevertheless, the
discrepancies observed in these estimations fall within the permissible uncertainty range
(as indicated by the error bars), even in the presence of significant environmental
variations and unreliable measurements.

The simulation results demonstrate the efficacy of the MHE approach in online estimation
of the most relevant variables of a wastewater treatment process, even in the presence of

noisy measurements, model inaccuracies, varying environmental conditions, and multi-
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rate measurements. The MHE has the capacity to provide online estimation for measured
variables and for variables that cannot be measured directly. The findings, in conjunction
with the reduced estimation times observed, underscore the promise of state estimation
leveraging the MHE technique in conjunction with control and optimization strategies
within wastewater treatment facilities, particularly in the context of low dynamics that

characterize wastewater treatment processes.
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Fig. 5.19. Measured and estimated values of the biomass concentration in the HRAP (A),

in the effluent (B), and in the wastage stream (C) under fluctuating solar radiation.
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Fig. 5.20. Measured and estimated values of the dissolved TOC concentration (A),
dissolved ammonium concentration (B), and dissolved phosphate concentration (C) under

fluctuating solar radiation.

5.7.  Conclusions

This chapter proposes the utilization of the MHE technique for a microalgae-based
wastewater treatment process, with a focus on the estimation of multiple states and
parameters concurrently to evaluate the effluent water quality. The utilization of an
estimation model characterized by multiple states and parameters, exhibiting a substantial
structural mismatch with respect to the plant model, was contemplated. Multi-rate
measurements obtained from online measurements and analytical procedures were used
to enhance the performance of the estimator. The simulation results confirmed the
efficacy and robustness of MHE in the online estimation of the most pertinent variables
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in the microalgae-based wastewater treatment process. Furthermore, the simulation
results demonstrated MHE's potential for future application in the development of control
and optimization strategies, which requires the knowledge of system states and

parameters.
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6. Economic MPC in microalgae-bacteria wastewater
treatment

This Chapter expounds the development of an economic MPC for an industrial
microalgae-bacteria based wastewater treatment plant with biomass harvesting. The
eMPC has been developed with the objective of controlling the plant and optimizing
biomass yield to ensure maximum profit from biomass sales as a bioestimulant. The
predictive controller utilizes the estimated variables provided by the MHE algorithm in
the model to predict the future evolution of the system and to calculate the future control
actions. The sequence of future control actions is calculated using an optimization
procedure that aims to minimize a cost function, while respecting the operational

constraints.
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6.1. Economic Model Predictive Control

The optimal operation and control of dynamic systems and processes has been a subject
of significant research for many years. One methodology for enhancing process
performance while achieving operational targets and constraints is the online
implementation of optimal control problem (OCP) solutions. In essence, the control
actions for the manipulated inputs of a process are determined by formulating and solving
a dynamic optimization problem online. This problem takes advantage of a dynamic
process model while accounting for process constraints. The online resolution of complex
dynamic optimization problems is becoming an increasingly viable option as a control
scheme to improve the steady-state and dynamic performance of process operations.

The process performance of a chemical or biological process typically refers to the
process economics and encapsulates multiple objectives, including profitability,
efficiency, variability, capacity, sustainability, and so forth. Conventionally, a
hierarchical strategy for planning, scheduling, optimization, and control has been
employed in the process industries. A block diagram illustrating the hierarchical strategy
is presented in Fig. 6.1. While the block diagram offers a comprehensive overview of the
primary components, it must be noted that it presents a simplified representation of the
modern planning/scheduling, optimization, and control systems that are employed in the
process industry. It is important to acknowledge that each layer of the block diagram may
be comprised of numerous distributed and hierarchical computing units (Ellis, Durand
and Christofides, 2014; Ellis, Liu and Christofides, 2021).

The upper layer, designated as real-time optimization (RTO), is responsible for process
optimization. Within the RTO layer, a metric quantifying the operating profit or operating
cost is optimized with respect to an up-to-date and rigorous steady-state process model to
ascertain the optimal process steady-state. The resultant computed steady state is then
transmitted to the feedback process control systems, which consist of the supervisory
control and regulatory control layers. The process control system utilizes manipulated
inputs to regulate the process, thereby ensuring its operation at a steady state. The process
control system must function in order to reject disturbances and, ideally, guide the

trajectory of the process dynamics along an optimal path to the steady-state.
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Fig. 6.1. Traditional paradigm in process industries for process optimization and control
(Ellis, Durand and Christofides, 2014)

The advanced or supervisory process control layer of Fig. 6.1 comprises control
algorithms that are utilized to account for process constraints, coupling of process
variables and processing units, and operating performance. In advanced process control,
model predictive control employs a dynamic model of the process in an optimization
problem to predict the future evolution of the process over a finite-time horizon and to
determine the optimal input trajectory with respect to a performance index (Camacho and
Bordons, 2007). The performance index is typically the sum of squared errors between
output predictions and its desired set points. Furthermore, MPC possesses the capacity to
address process constraints and multi-variable interactions that are inherent to the
optimization problem. Consequently, it possesses the capacity to regulate constrained

multiple-input multiple-output systems in an optimal manner.

The regulatory control layer is composed of predominantly single-input, single-output
control loops, such as PID control loops, which function to implement the control actions
computed by the supervisory control layer. In essence, this layer ensures that the control

actuators achieve the control action requested by the MPC layer.
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Notice that RTO does not consider dynamics aspects in its formulation and it is executed
typically every several hours when process reaches steady state, which limits its
efficiency. In an effort to integrate economic process optimization and process control,
as well as to realize the possible process performance improvement achieved by
consistently dynamic, transient, or time-varying operation, economic MPC has been
proposed. This approach, instead of minimizing the errors between output predictions and
set points, incorporates a general cost function or economic performance index in its
formulation. This cost function may be a direct or indirect reflection of the process
economics and its optimization is computed at high frequency, every sampling time of
the controller.

Broadly, economic model predictive control can be characterized by the following
optimization problem (Ellis, Durand and Christofides, 2014):

min [P £,(%(0), u(®))dt

ues(h) (6.1)
s.t.  X(t) = f&(@),u(t),0) (6.2)
x(0) = x(&) (6.3)
g(®@®),u(®)) <0, Vte|[0,tyred] (6.4)

where the decision variables of the optimization problem are the trajectories of the
manipulated variables of the process (u € S(A)) over the prediction horizon, i.e., the time
interval [y, tyreq), and X denotes the predicted state trajectory over the prediction
horizon. The objective function £, of Eq. (6.1) is the process economic cost function that
the eMPC optimizes through dynamic operation of the process. £,.(%,u) is a direct or
indirect reflection of the (instantaneous) process economics. A dynamic model, typically
the nominal process model, is used as a constraint (6.2) and is initialized through a state
measurement obtained at every sampling instant (6.3). In addition to the model constraints
of Equations (6.2) - (6.4), process operation or economics-based constraints are often
added.
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6.2. Economic MPC formulation for a microalgae-bacteria based WWTP

The present study considers a hypothetical microalgae-bacteria-based WWTP with the
configuration illustrated in Fig. 5.3, operating under the conditions described in Section
Fig. 5.2. In the preceding chapter, it was hypothesized that measurements obtained by
analytical procedures are available on a daily basis, while online measurements are
available at considerably higher sampling rates. In order to design a pertinent online
eMPC strategy, it is imperative to combine model predictive control and state estimation
using MHE. In each sample time, the MHE provides estimated values of the states,
parameters and model uncertainties. These are used by the MPC model to calculate the
sequence of future control actions. The aforementioned procedure is summarized in Fig.
6.2.
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Process .
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(eMPC) > lyti
-
A
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L
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Fig. 6.2. Scheme combining state estimation and model predictive control

The eMPC searches for the control moves Auy,; (i = 0,1,2,...,n, — 1) that minimize
the cost function (6.5) subject to constraints (6.6) to (6.11) and the computations are
repeating every sampling time, following a moving horizon policy. The process is
represented by a continuous dynamic model (6.6) and (6.7), which is assumed to be
continuously differentiable. In the formulation, x € R"x is used to represent the states,

u € R™ is used to represent the control actions, andy € R" is used to represent
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measured outputs. The estimation of the actual states (X € R™x), disturbances (v € R™
and w € R™), and parameters (@ € R"p) is achieved by the MHE (Section 5.1). As the
model is formulated in continuous time, u, and y are functions of t. However, for the
sake of simplicity, this dependence has been omitted in the present document. Utilizing a
control vector parameterization approach, the control actions are permitted to change
solely at regular time intervals At = t; — t,_,. For the purposes of this study, k denotes
the current sampling time. The control actions u; € R™, computed and applied at time
tk, are kept constant within each time interval [t;, t;x+1), as in Eq. (6.10). The current and
future control moves, denoted as Auy,;,i = 0,1,2,... ,n, — 1, defined in (6.11), are the
decision variables of problem (6.5) - (6.12). The selection of the control horizon n,, and

other tuning parameters is governed by the usual rules of MPC.

The model allows to compute predictions of the cost function and constraints over a future
horizon from ¢, to the final prediction horizon t,;..q. ¢4 refers to the number of time
instants from t; to reach t,,¢q.

The control moves are computed every sampling time from the current time t;, to a control
horizon ty ., , after which, Au,,; = 0, but only the first control move Auw,, is applied to

the process.

et ny—1
pin [T 00, u©) + Y sl 0,0 (65)
i=0,..ny—1 i=0
s.t. fOox,u,wg, v, 0,) =0, VYt E [ty tyrea] (6.6)
h(x, U, Y, Wy, Vi, 0,) =0, VYt € [ty, tyreq] (6.7)
ul <uyy; <uY, i=0,1,..,Nppeqg — 1 (6.8)
Upq = Upqjoq + AUy, [1=0,1,.. ,Npreq — 1 (6.9)
u(t) = Wy, tE [tryptirie] =01 npreqg—1 (6.10)
Auy,; =0, [ =My, e Npreg — 1 (6.11)
x(tx) = Xy (6.12)

The cost function (6.5) comprises two terms:
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1. The first term ff:ot””d t’e(x(t),u(t)), corresponds to an economic objective
computed with the value of the model variables and control actions. It is
hypothesized that the value of £, at any given time instant k can be calculated

from process measurements and control actions.

2. The second term Z?gg 1Au};Jrl-QuAukJ,i penalizes changes in the manipulated
variables. @, is a positive definite matrix, with weighting factors on the control
moves (Au), which can be regarded as tuning factors for the purposes of

normalization and stabilization, as in the current practice of MPC.

The cost function is constrained by the model (6.6) - (6.7), and the inequality constraints
(6.8). To solve (6.5) - (6.12), at each sampling time k, it is necessary to initialize the
model states x(t; ), disturbances, and parameters to the values of X, wy, v, and 8,
respectively. The following section presents the algorithm for solving the eMPC problem
with estimations provided by the MHE.

eMPC algorithm using MHE and multi-rate measurements
I. Initialization
1. Collect n, previous data of variables uy_;, yp ,—;, where i =1, ..., n,.

MHE algorithm: given @, @, and Q,,

2. Initialize Xy _,,
a. For measured states, consider X, = y3,_n,. being %, the
subset of states that are measured, and yf,,k_ne the subset of yp;_p,
containing the measured states in k — n,.

b. For unmeasured states, use the values predicted by the model with
Ve, =0,wi_;=0,and 6 =0, i=1,..,n,. Being 8, the initial
guess for parameters.

3. Solve the MHE problem (5.1) - (5.7) to find the past values of the states

Xy_n, disturbances vj_; wj._;, inlet concentration values c;, _,, and

parameters 0, _;, i =1, ..., n,.
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5.

Evaluate the estimated state X, from t,_,, to t;. Estimate the values of

the disturbances and parameters using vy = vj_;, Wi = Wy_;, € =

Cil*(—l" and Bk = 0]*(_1'.

Update Xy _,,, = Xk_p,-

eMPC controller:

6.

Go to step 11.

ii. For next iterations

MHE algorithm:

7.

8.

9.

Collect n, previous data of variables uy_;, yp —;, Wherei =1, ..., n,.
Solve the MHE problem (5.1) - (5.7) to find the past values of the states
Xj—n, disturbances vj,_;, wy_;, and parameters 8_;, i = 1, ..., n,.
Evaluate the estimated state X, from t;_, _ to t;. Estimate the values of
the disturbances and parameters using v, = v,_;, W, = w,_;, and
0, =06;_,.

10. Update Xy _p, = Xj_p, -

eMPC controller:

11. Solve problem (6.5) - (6.12) using Xy, vy, wy, and @, from MHE.

12. Apply Au,, to the process.

13. Wait for the next sampling time and update k = k + 1.

14. Goto step 7.

6.2.1. Case study

The present study hypothesizes that the WWTP depicted in Fig. 5.3 treats wastewater
from agricultural activities. Consequently, the harvested biomass could be utilized as a
bioestimulant, representing a valuable product. In this facility, the wastage flow rate
(Qwase) s regarded as the manipulated variable for this purpose. The same operating
conditions, inlet flows, measured variables, and measurement noise of the plant described
in Section 5.3 were considered. In a similar fashion, the reduced model contemplated in
Section 5.4 was employed as a prediction model in the present case study.
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The eMPC is intended to maximize the profit resulting from bioestimulant sales.
Subsequently, the cost function is defined by Equation (6.13), in which pj is the price of
the biomass. The terms n,, and n,, refer to the prediction horizon and the control horizon,
respectively. The change in the control action (AQ,,,s: ), as well as a weight that penalizes
the control effort (MS), are also included in the cost function. The cost function is subject
to the model described in Table 5.4 and the constraints defined in Eq. (6.14) - (6.18). The
aforementioned constraints are associated with the biomass concentration in the various

streams of the process.

ny—1
. t=tn,,

min —PsB j Qwast. " T~S'~S‘was>‘tagedt + z MS - AQwast.j (6.13)

iffff{u t=0 j=1

kg

sit. 085 < TSSypap <12 kg/m3 (6.14)
TSSeffluent < 0.06 kg/m3 (6.15)
TSSwastage = 2 kg/m? (6.16)
0.5m3/d < Quusr. < 60 m3/d (6.17)
0m3/d < AQuast. < 4m3/d (6.18)

The constraint (6.14) corresponding to the biomass concentration in the HRAP, it is
intended to ensure sufficient microalgae biomass within the HRAP to facilitate effective
wastewater treatment without affecting the light penetration into the HRAP. The objective
of constraining the TSS concentration in the effluent (6.15) is to adhere to the limitations
imposed by legislation concerning the permissible TSS concentration in the effluent flow.
The biomass concentration in the wastage flow is also constrained (6.16) to achieve the
concentration values necessary for the biomass to be sold as a bioestimulant.
Additionally, constraints on the control action (6.17) and in the control effort are also
considered (6.18). It is hypothesized that the biomass price is pg = 1€/kg. The
parameters of the eMPC are summarized in Table 6.1.

As was hypothesized in the preceding chapter, it was posited that the samples of biomass

are available on a daily basis. In order to design a pertinent online eMPC strategy, it is
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imperative to combine model predictive control and state estimation using MHE in order
to estimate the biomass values at a higher frequency. The procedure used was illustrated

in Fig. 6.2 and is described in the algorithm of Section 6.2.

The simulation of the WWTP was formulated in continuous-time domain in MATLAB®.
The MHE problem and the dynamic optimization problem in the economic controller were
formulated using MPCTools. The controller was solved using the sequential quadratic
algorithm, which is available in the fmincon NLP solver. It is hypothesized that the
stabilization of the microbial population occurs at day 50 after the inoculation of the
photobioreactors, thus marking the initiation of the optimization process. It is hypothesized
that during the initial 50-day period, the system operates at a constant wastage flow rate of
15m3/d. The calculus of the control action was performed at 1.2-hour intervals (the
sampling time for dissolved oxygen measurements). The mean elapsed time for the entire
problem (MHE + controller) to be resolved at each sampling time was 38.54 seconds on a PC
with the following hardware specifications: an 13th Gen Intel® Core™ i9-13900K processor
(3.0 GHz), 128 GB of RAM memory, and a 500 GB hard-disk drive.

Table 6.1. Parameters of the eMPC controller

Parameter Description Value

n, Prediction horizon 10 d (200 samples)
n, Control horizon 2 d (40 samples)
MS Weight in the control effort 100

6.3. Simulation results

The simulation results for the eMPC operation during fifteen days under the previously
described conditions are provided in Fig. 6.3 through Fig. 6.5. It is important to note that,
due to the influence of the solar cycle, the process is never in a steady state but rather
follows a cyclical operation, as illustrated in Fig. 6.5. The eMPC slowly pushes the
process towards the optimal operating conditions. Fig. 6.3 shows the evolution of the cost
function, which indicates that the calculated profit is higher during the day due to

microalgae growth.
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Fig. 6.3. Calculated profit from biomass sold as a bioestimulant (eMPC)

The control actions calculated for the eMPC are illustrated in Fig. 6.4. The biomass
evolution in the HRAP, in the effluent flow, and in the wastage flow are represented in
Fig. 6.5 (without considering the noise in the measurements). As demonstrated in Fig. 6.4
and Fig. 6.5, the eMPC is able to satisfy the constraints imposed on the manipulated
variable and the states, respectively. Transitory violations of constraints illustrated in the
biomass concentration in the wastage flow are attributable to discrepancies between the
prediction model used and the actual plant values.

4
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10 .

gk Manipulated variahle | 4

Wastage flow (L/d)

Time (d)

Fig. 6.4. Control actions applied to the WWTP
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Fig. 6.5. Biomass evolution in the HRAP (A), the effluent flow (B), and in the wastage
flow (C)

As illustrated in Fig. 6.6, the estimated, measured, and actual dissolved oxygen
concentration values are presented. The estimation performed by the MHE is used to
calculate the future values of the plant states. The actual plant values (considering noise
in the measurements) of the biomass concentration in the HRAP, the effluent, and in the
wastage stream are illustrated in Fig. 6.7. The plant (noisy) values of the dissolved TOC
concentration, dissolved ammonium concentration, and dissolved phosphate
concentration in the HRAP are represented in Fig. 6.8. The low values of dissolved
components in the effluent, as well as the low values of the TSS concentration in the
effluent flow, indicate that an adequate wastewater treatment is obtained in a concurrent

manner with maximizing the biomass production in the WWTP.
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Fig. 6.7. Biomass concentration in the HRAP (A), the effluent flow (B), and the wastage
flow (C)
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Fig. 6.8. Dissolved TOC concentration (A), dissolved ammonium concentration (B), and
dissolved phosphate concentration (C) in the HRAP

In order to facilitate a comparison of the WWTP operation at a constant wastage flow rate
of 15 m3/d, the plant simulation was conducted over the course of 65 days of the system
operation. The flow rate value under consideration enables the accomplishment of the
constraints specified in (6.14) to (6.16), as illustrated in Fig. 6.9. The profit obtained
during the period between days 50 and 65 is illustrated in Fig. 6.10. A comparison of Fig.

6.3 and Fig. 6.10 demonstrates the merits of operating the WWTP according to an eMPC
control strategy.
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6.4. Conclusions

This chapter proposes the utilization of an economic predictive controller for a
microalgae-based wastewater treatment plant with biomass harvesting. The hypothetical
wastewater treatment plant under consideration includes a sedimentation stage in order to
concentrate the microalgae biomass. The eMPC was conceived with the objective of
maximizing the financial gain derived from biomass sales, despite the inherent
uncertainties associated with the process. The predictive controller leverages the
estimated variables provided by the MHE algorithm in the model to predict the future
evolution of the system and to calculate the future control actions. The findings revealed
that the profits obtained under the eMPC operation strategy were superior to those
obtained under constant operational values, thereby demonstrating the merits of
employing optimization strategies in WWTPs.
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7. Final conclusions and future work

7.1.

Final conclusions

This thesis deals with the modeling of anoxic-aerobic photobioreactors configurations for

microalgae-bacteria based wastewater treatment, as well as with the optimization of the

operation of WWTPs by means of advanced control strategies. In order to address the

challenge posed by the scarcity of online measurements in microalgae-based wastewater

treatment plants, a moving horizon estimator has been proposed. The estimation provided

by the MHE was utilized to implement an eMPC in a hypothetical industrial wastewater

treatment plant with microalgae and bacteria. The following list enumerates the primary

contributions:

The modeling of anoxic-aerobic algal-bacterial photobioreactor configurations
with biomass recycling. A model was developed to simulate the continuous
operation of the integrated system, encompassing all components of the plant,
including the open photobioreactor, the enclosed anoxic reactor, and the secondary
settler. This model enabled the simulation of the entire system, thereby providing
a comprehensive representation of the plant's functionality. A sensitivity analysis
was conducted to ascertain the most pertinent parameters of the model for
estimation. Parameter estimation was conducted using a robust estimator in order
to address the uncertainties imposed by unreliable measurements. The simulation
results closely match with the experimental data, thereby further validating the
model's accuracy and its capacity to assess the performance of anoxic-aerobic
configurations under diverse scenarios. The results of the modelling and
parameter estimation in an anoxic aerobic configuration treating different
dilutions of digestate were presented in the paper: “Parameter estimation in
anoxic aerobic algal-bacterial photobioreactor devoted to carbon and nutrient
removal. Algal Research, Volume 86, March 2025, Ref. 103917. ISSN 2211-9264.
https://doi.org/10.1016/j.algal.2025.103917.”
The development of a methodology for parameter estimation in biological
systems. The proposed methodology addresses a series of optimization problems
of escalating complexity, enabling the estimation of model parameters in a gradual
manner while circumventing convergence issues. The proposed methodology has
been applied to the problem of parameter estimation in an anoxic-aerobic algal
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bacterial photobioreactor configuration for domestic wastewater treatment. The
methodology was presented in the contribution: ““Parameter estimation approach
applied to microalgae-bacteria photobioreactor, in: COMPUTER-AIDED
CHEMICAL ENGINEERING, 52 - PROCEEDINGS OF THE 33rd European
Symposium on Computer Aided Process Engineering (ESCAPE33), vol. 1,
https://doi.org/10.1016/B978-0-443-15274-0.50115-3.”

The development of a library of components for the simulation of wastewater
treatment plants based on microalgae-bacteria consortia. This library is composed
of diverse components that can be interconnected, thereby enabling the simulation
of various configurations of wastewater treatment plants with microalgae and
bacteria. This contribution was presented in the congress communication:
“Libreria para sistemas de tratamiento de aguas residuales con microalgas y
bacterias. XLIIlI Jornadas de Automatica: libro de actas. 7-9 de septiembre de
2022, Logrofio, La Rioja, Espafa, pp. 493-499. A Corufa: Universidade da
Corufia, Servizo de Publicacions, 2022. XXI, 1075 p. ISBN: 978-84-9749-841-8.
DOI: https://doi.org/10.17979/spudc.9788497498418.”

The implementation of algorithms for real-time estimation of unknown and
unmeasured variables. A state estimator based on the MHE algorithm was
proposed to estimate unmeasured states, parameters, and model uncertainties in
cases when the measurements are not available at uniform time periods. The
present study proposes the utilization of MHE technique for an industrial
microalgae-based wastewater treatment process, with a focus on the estimation of
multiple states and parameters concurrently to evaluate the effluent water quality.
The simulation results demonstrate the efficacy of the MHE approach in online
estimation of the most relevant variables of a wastewater treatment process, even
in the presence of noisy measurements, model inaccuracies, varying
environmental conditions, and multi-rate measurements. The main results
obtained during this stage of the research were incorporated into the paper:
“Moving horizon estimation in microalgae-bacteria based wastewater treatment
using online and analytical multi-rate measurements. Algal Research, Volume 91,
October 2025, Ref. 104338. ISSN 2211-9264.
https://doi.org/10.1016/j.algal.2025.104338.”
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The design of an economic predictive controller for a microalgae-based
wastewater treatment plant with biomass harvesting. The development of the
eMPC was driven by the objective of optimizing biomass yield to ensure
maximum profit from biomass sales as a bioestimulant. The predictive controller
utilizes the estimated variables provided by the MHE algorithm in the model to
predict the future evolution of the system and to calculate the future control
actions. The sequence of future control actions is calculated using an optimization
procedure that aims to minimize future errors with respect to the desired operating
points of the plant, while respecting its operational constraints.

The design of a laboratory-scale microalgae-bacteria wastewater treatment plant
with an SCADA system that allows the online monitoring of the process, and the
implementation of state estimators and control strategies.

These results substantiate the possibility of developing models capable of simulating a

range of microalgae—bacteria-based WWTP configurations, as well as using these models

to support decision-making in process operations. Likewise, the findings demonstrate that

the application of appropriate modeling and optimization techniques enables the real-time

estimation of unmeasurable variables, which is crucial for the effective operation and

optimization of wastewater treatment plants.

7.2.

Future Work

Future research on this topic will focus on:

Testing alternative discretization technigues, such as orthogonal collocation, in
order to enhance computational performance while preserving solution accuracy
and stability.

The application of the Modifier Adaptation algorithms to MPC control in
wastewater treatment processes with microalgae and bacteria. Due to the daily
and seasonal variability that occurs in systems based on microalgae and bacteria,
in the future, we intend to incorporate Modifier Adaptation techniques into the
eMPC that will allow the problem to be adapted to the changes caused by this
variability, thereby ensuring that the optimal actions calculated are not affected by

the use of an incorrect model.
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e Testing proposed estimation algorithms and control strategies in a real wastewater
treatment plant with microalgae and bacteria.
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Appendices

Appendix 1. Parameters used in the photobioreactor and anoxic reactor model

Table Al.1. Matrix of stoichiometric parameters

wn w (%) wn %) wn wn
z z z z Q z Q é/) @ w & i (% )2< X X X 32< o
= 7 ) 9 9 o 2 = 65 T & < - + 8 8
P1 Vi1 Vs,1 Vg1 V9,1 Vio,1 Vi1
P2 V3,2 Vs,2 Vg2 Vo2 V10,2 V14,2
P3 V1,3 Vs,3 Vg3 Vo,3 V10,3 V14,3
P4 Vi4 Vs,4 Vg4 Vo4 Vio,4 Via,a Vis4 Vie4
Ps V1,5 Vs5 Vg5 Vo5 Vio,5 Vi2,5 V17,5
Pe V36 Vs Vg6 Vo6 Vio,6 Vi2,6 Vi76
P7 \% Vs,7 Vg7 Vio,7 Vi2,7 Vi7,7
Ps V3 g Vs Vg8 Vios Vi2,s Vi7,8
Po Vio V59 Vgo Vo9 V10,9 V17,9
P10 | V1,10 V310 | V410 | Vs,10 Vg,10 V10,10 V17,10
P11 V15,11 V16,11 V17,11
P12 | V112 V412 | V512 Vgi12 | Voiz2 | Vio12 Vig,12
P13 V3,13 | V413 | V513 Vg13 | V913 | V10,13 V19,13
P14 | V114 V514 Vgi14 | Voi14 | V10,14 Vig,14
Pis | V1,15 V515 Vgi1s5 | Vois | Vio1s V19,15
P16 Vis,16 Vi6,16 V18,16
P17 Vis,17 Vi6,17 Vi9,17




Pis | V118 Vs,18 Vg 18 V10,18 Viz2,8 | V1318 Vis5,18
P19 V5,19 | Ve,19 V10,19

P20 Ve,20 | V7,20 V10,20

P21 | V121 | V2,21 Vio0,21

P22 Vio22 | V11,22

P23 V9,23

P24 V5,24

P25 V2,25




Table Al.2. Values of biokinetic, chemical and physic parameters

Parameters Description Value | Unit Source
Microalgae (XaLc)
Maximum growth rate of

HaLG XaLe 0.7 d+? Estimated
K Endogenous respiration

resp.ALG constant 0.1 d?! (Reichert et al., 2001)
KdeathALG Decay constant 0.05 d+? Estimated
K Saturation constant of Xaic

CALG on Scoz 4E-3 | gCm?® | (Novak and Brune, 1985)
I Inhibition constant of Xaic

COz,ALG on Scoz 120 gC m? | (Silvaand Pirt, 1984)
K Saturation constant of Xaic

NALG on nitrogen 0.1 gN m? | (Reichert et al., 2001)
K Saturation constant of Xaic

02,ALG on Soz 0.2 gO.m? | (Reichert et al., 2001)
K Saturation constant of Xaic

PALG for Supos 0.02 | gPpm?® | (Reichertetal., 2001)
Heterotrophic bacteria (XH)
Uy Maximum growth rate of Xy | 2.5 d+? Estimated

Anoxic reduction factor for

MH X 0.6 — | (Gujer et al., 1999)
K Endogenous respiration rate

respH of Xy 0.3 d?! (Reichert et al., 2001)
K Saturation constant of Xy for

0zH Soz 0.2 gO.m? | (Reichert et al., 2001)
K Saturation constant of X for

NH S 0.2 gN m? | (Reichert et al., 2001)
K Saturation constant of Xy for gCoD

SH Ss 20 m3 (Henze et al., 2000)
K Saturation constant of X for

NO3,H,anox Snos 0.5 gN m? | (Reichert et al., 2001)
K Saturation constant of Xy for

NO2,H,anox Snoz 0.2 gN m? | (Reichertetal., 2001)
K Saturation constant of Xy for

PH Shpo4 0.02 | gPm?® | (Reichertetal., 2001)
Kdeath Decay constant of Xy 0.8 d? Estimated

Autotrophic bacter

ia: ammonia oxidizing bacteria (Xaos)

and nitrite oxidizing bacteria (Xnos)

Maximum growth rate of

Haos X po8 0.63 | d? (Casagli et al., 2021)
Maximum growth rate of

Hnos Xnos 1.1 g (Casagli et al., 2021)
K K Saturation constant of Xaog /

02,A0BTRO2NOB | X 05 fOr Sop 0.5 g0, m3 | (Reichert et al., 2001)
K Saturation constant of Xaos

NH4,A0B 0N SnHa 0.5 gN m? | (Reichert et al., 2001)
K Ammonia inhibition constant

LNH4 of Xnos 5.0 gN m? | (Henze et al., 2000)




Saturation constant of Xnos

Knoznos for Snoz 0.5 gN m? | (Henze et al., 2000)
K IK Saturation constant of Xaog /
CAOBTCNOB Xnos for Shcos 0.5 gCm? | (Henze et al., 2000)
K K Saturation constant of Xaos /
P,AOBTP,NOB Xnos for Shpos 0.02 | gPm? | (Reichertetal., 2001)
K Ik Endogenous respiration rate
resp,AOB! “resp,NOB of Xaoe Xnos 0.05 d? (Reichert et aI., 2001)
Kdeath,a0B Decay constant of Xaos 0.1 d? (Casagli et al., 2021)
Kdeath,NOB Decay constant of Xnog 0.08 d? (Casagli et al., 2021)
Hydrolysis
Kuyp Hydrolysis rate constant 3.0 d? (Reichert et al., 2001)
Photorespiration factor of microalgae
K Inhibition constant  of (Solimeno, Sams6  and
FR photorespiration 0.03 - Garcia, 2016)
(Fernandez, Acién,
T Berenguel, Guzman, et al.,
Excess of So, coefficient 3.5 — 2014)
(Fernandez, Acién,
Sg5T Berenguel, Guzman, et al.,
So7 air saturation 9.07 | gO.m?3 | 2014)
Light factor of microalgae
1.9E- | (ME m
« Activation rate 3 )1 (Wu and Merchuk, 2001)
8 5.7E- | (ME m
Inhibition rate 7 )1 (Wu and Merchuk, 2001)
Y Production rate 0.14 st (Wu and Merchuk, 2001)
4.7E-
Recovery rate 4 st (Wu and Merchuk, 2001)
K Biomass extinction
! coefficient 0.07 | m?g? | (Molina Grimaetal., 1994)
pH cardinal factor
H (Solimeno, GoOmez-Serrano
PHALGmax Maximum pH value for Xaie | 12.3 — | and Acién, 2019b)
H _ (Solimeno, GoOmez-Serrano
PHALG min Minimum pH value for Xaic | 4 — and Acién, 2019b)
H (Solimeno, GOmez-Serrano
PHALG opt Optimum pH value for Xaic | 8.8 - and Acién, 2019b)
(Solimeno, GOmez-Serrano
PH, max Maximum pH value for Xy | 11.2 — and Acién, 2019b)
Huo o (Solimeno, GOmez-Serrano
PHHmin Minimum pH value for Xy 2 — and Acién, 2019b)
H (Solimeno, GOmez-Serrano
P H.opt Optimum pH value for Xy 8.2 - and Acién, 2019b)
H Maximum pH value for Xaos (Solimeno, GoOmez-Serrano
PN max and Xnos 11 — | and Acién, 2019b)
He o Minimum pH value for Xaos (Solimeno, GOmez-Serrano
PN min and Xnos 2 — | and Acién, 2019b)
H Optimum pH value for Xaos
PHN.opt and Xnog 7 — Experimental




Temperature cardinal factor

T Maximum temperature value (Solimeno, GoOmez-Serrano
ALGmax for XaLe 46 °C and Acién, 2019b)
T _ Minimum temperature value (Solimeno, GOmez-Serrano
ALGmin for XaLe 7 °C and Acién, 2019b)
Tarc Optimum temperature value (Solimeno, GoOmez-Serrano
Ot for XaLe 26 °C and Acién, 2019b)
T Maximum temperature value (Solimeno, Gomez-Serrano
N,max for XAOB and XNOB 40 °C and ACién, 2019b)
Minimum temperature value
TN min for Xaos (Solimeno, GoOmez-Serrano
and Xnos 13 °C and Acién, 2019b)
Optimum temperature value
TN,opt for Xaos
and Xnos 31 °C Experimental
Heterotrophic bacteria thermal factor
T Optimum temperature value
Hopt for Xy 20 °C (Reichert et al., 2001)
0 Temperature coefficient for
Xu 1.07 (Von Sperling, 2007)
Parameters Equations
3404.71

Chemical equilibrium CO, < HCO3

Keql — 1017.843—m—0.032786(273.15+T)

Chemical equilibrium HCO3 « C0%~ Keqz = 109-494‘%‘0-02379(273-15+T)
. Cper . ' 2727

Chemical equilibrium NHf < NH; Keqs = 1081 @735+ )

Chemical equilibrium H* < OH" Koqu = 107273 T57T+120875-0.01706(27315+)

Kinetics parameters

K (Reichert et al.,
et Dissociation constant of CO, & HCO3. | 100000 | d* 2001)

K (Reichert et al.,
&2 Dissociation constant of HCO; « €03~ | 10000 | d* 2001)

K (Reichert et al.,
a3 Dissociation constant of NH} < NH, 10000 | d* 2001)

K (Reichert et al.,
eaw Dissociation constant of H* < OH~ 10000 | gm3d?* | 2001)

Transfer of gases to the atmosphere

Kla02 Mass transfer coefficient for So» 0.62 d? Estimated

Kla,coz Mass transfer coefficient for Sco» 4,94 d? Estimated

KjanH3 Mass transfer coefficient for Snns 1 d? Estimated




Table A1.3. Values of fractions of carbon, hydrogen, oxygen, and nitrogen in

microalgae and bacteria biomass

Parameters | Description Value | Unit Source
Fractions of microalgal biomass (XaLc)
icaLG Fraction of carbon in microalgae 0.387 | gCgCOD* | (Reichertetal., 2001)
inaLG Fraction of hydrogen in microalgae 0.075 | gH gCOD? | (Reichertetal., 2001)
ipALG Fraction of oxygen in microalgae 0.269 | g0, gCOD™* | (Reichert et al., 2001)
iNALG Fraction of nitrogen in microalgae 0.065 | gN gCOD* | (Reichertetal., 2001)
ipALG Fraction of phosphorus in microalgae 0.01 gP gCOD! | (Reichertetal., 2001)
Fractions of bacteria biomass (X, Xaos, XnoB)
icBM Fraction of carbon in bacteria 0.323 | gCgCOD! | (Reichertetal., 2001)
iy BM Fraction of hydrogen in bacteria 0.060 | gH gCOD? | (Reichertetal., 2001)
io.BM Fraction of oxygen in bacteria 0.077 | gO, gCOD™* | (Reichert et al., 2001)
iNBM Fraction of nitrogen in bacteria 0.075 | gN gCOD* | (Reichertetal., 2001)
ippMm Fraction of phosphorus in bacteria 0.018 | gP gCOD* | (Reichertetal., 2001)
Fractions of slowly biodegradable substrates (Xs)
icxs Fraction of carbon in Xs 0.318 | gCgCOD* | (Reichertetal., 2001)
iy xs Fraction of hydrogen in Xs 0.045 | gH gCOD? | (Reichertetal., 2001)
ipxs Fraction of oxygen in Xs 0.077 | gO, gCOD™* | (Reichert et al., 2001)
Inxs Fraction of nitrogen in Xs 0.034 | gN gCOD* | (Reichertetal., 2001)
ipxs Fraction of phosphorus in Xs 0.005 | gPp gCOD* | (Reichertetal., 2001)
Fractions of inert particulate organics (Xi)
icxt Fraction of carbon in X, 0.327 | gCgCOD* | (Reichertetal., 2001)
igxi Fraction of hydrogen in X, 0.037 | gH gCOD? | (Reichertetal., 2001)
io s . . (Reichert et al.,
‘ Fraction of oxygen in X, 0.075 | g0, gcoD* | 2001)
iNnxi Fraction of nitrogen in X 0.016 | gN gCOD? | (Reichertetal., 2001)
ipxi Fraction of phosphorus in X| 0.005 | gPp gCOD* | (Reichertetal., 2001)
Fractions of readily biodegradable substrates (Ss)
icss Fraction of carbon in Sg 0.318 | gCgCOD* | (Reichertetal., 2001)
igss Fraction of hydrogen in Ss 0.045 | gH gCOD? | (Reichertetal., 2001)
ipss Fraction of oxygen in Sg 0.078 | g0, gCOD™* | (Reichert et al., 2001)
inss Fraction of nitrogen in Ss 0.034 | gN gCOD? | (Reichertetal., 2001)
ipss Fraction of phosphorus in Ss 0.005 | gPp gCOD* | (Reichertetal., 2001)
Fractions of soluble inert organics (Si)
icsr Fraction of carbon in S, 0.327 | gCgCOD* | (Reichertetal., 2001)
sy . . (Reichert et al.,
‘ Fraction of hydrogen in S 0.037 | gHgcoD?! | 2001)
igs Fraction of oxygen in S, 0.075 | g0, gCOD™* | (Reichert et al., 2001)
ins1 Fraction of nitrogen in S 0.016 | gN gCOD? | (Reichertetal., 2001)




‘ 0.005 ‘ gP gCOD! ‘ (Reichert et al., 2001)

ipgp Fraction of phosphorus in S,
Fractions of inert produced by biomass degradation
£ Production of X, in endogenous gCoD

ALG respiration of XaLc 0.1 gCoD! (Sah et al., 2011)
f Production of X, in endogenous gCOD

Xl respiration of Xy 0.1 gCoD! (Sah et al., 2011)
f gCoD

St Production of S;in hydrolysis of Xs 0 gCoD! (Henze et al., 2000)
Yield of biomass
v gCoD

ALG Yield of XaLc 0.62 | gCoOD! (Reichert et al., 2001)
v gCoD

H Yield of Xy on So; 0.6 gCoD?! (Reichert et al., 2001)
v gCoD

HNO3 Yield of Xy on Snos 0.5 gCoOD! (Reichert et al., 2001)
v gCoD

HNO2 Yield of Xy on Snoz 0.3 gCoOD™* (Reichert et al., 2001)
v gCoD

AOB Yield of Xaos 0.13 | gCcoD! (Reichert et al., 2001)
v gCoD

NOB Yield of Xnos 0.03 | gCoD! (Reichert et al., 2001)
K gCoD

HYD Hydrolysis saturation constant 1 gCoD! (Reichert et al., 2001)




Table Al.4. Mathematical expressions of the stoichiometric coefficients

Stoichiometric coefficients Unit
Growth of XaLe 0N S
Vi1 = ~inaie gN gCoD'!
Vs1 = —lcalg gC gCoD™!
Vg1 = —lpalg gP gCOD™*
Vo1 = 8icara/3 + Binarg — loare — 12inare/7 + 40ipa /31 g0, gCOD'!
Vigs = inae/14 = 2iparc/31 gH gCcoD*!
Vi =1 gCOD gCOD™
Growth of XaLc 0n Snos
V32 = —lnag gN gCoD!
Vs2 = ~icag gC gCOD*
Vga = —lpaig gP gCOD?*
Voo = 8igara/3 + Bigae — loare + 20inara/7 + 40ipara/31 gO2 gCoD™*
Viog = — iN,ALG/14 - ZiP,ALG/31 gH gCOD!
Vigp =1 gCOD gCOD!
Endogenous respiration of XaLe
Vi3 = inae = fawe inxi gN gCoD*!
Vs3 = icac — faic lcx gC gCoD™!
Vgs = ipac — faic lpxi gP gCOD?
Vo3 = (iO,ALG — fac iO,Xl) - 8(iH,ALG — farc iH,XI) -8/3 (iC,ALG — fawc iC,Xl)

+12/7 (inarc — farc inxi) —40/31 (iparc — farc ipxi) g0, gCOD™*
Vigs = — 1/14 (iN,ALG — faig iN,XI) +2/31 (iparc — farc irxi) gH gCOD™!
Vigz = —1 gCOD gCOD!
Decay of XaLc
Via = inae = (1= fu16) Yare inxs—fareYare inae gN gCoD™*
Vsa = loare = (1= fare) Yar lexs—fareYaug icare gC gCoD*
Va = iparg = (1 — fare) Yare tpxs—farcYarc iparc gP gCoD™
Vo4 = (iO,ALG — faLc iO,Xl) - 8(iH,ALG — falc iH,XI) -8/3 (iC,ALG = falc iC,Xl)

+12/7 (inare — farc inxi) —40/31 (ipare — farc ipxi) g0, gCOD*
Viga = —1/14 (ivare (1 — fare)Yare inxs—farcYarc inxi)

+2/31 (iparc (1 — fare)Yarc ipxs—farcYarc ipxi) gH gCcoD’!

Vigy =—1 gCOD gCOD?*
Visa = (1 = fare)Yare gCOD gCOD*!
Viea = farcYarc gCOD gCOD*

Aerobic growth of Xn on Snha




Vis = inss/Yu — ingm gN gCoD*!
Vss = lgss/Yu — icam gC gCoD™!
Vgs = Ipss/Yu — Ipgm gP gCOD?
Vos = —(1 — Yy)/ Yy g0, gCOD™!
Vios = — 1/14 (iN,SS/YH - iN,BM) + 2/31 (iP,SS/YH - iP,BM) gH gCoD*!
Vigs = —1/Yy gCOD gCOD!
Vizs =1 gCOD gCOD™
Aerobic growth of XH on Snos
Vi = inss/Yu — ingm gN gCOD*!
Vs = lcss/ Yy — icau gC gCOD™
Vg = (iP,SS/YH - iP,BM) gP gCOD?*
Vo = —(1 = Yu)/ Yu g0z gCOD"!
Vigs = — 1/14 (iN,SS/YH - iN,BM) +2/31 (iP,SS/YH - iP,BM) gH gCOD™*
Vige = —1/Yy gCOD gCOD™
Vize =1 gCoD gCOD'*
Anoxic growth of Xn on Snoz
Va7 = —(1 — Yyno2)/(1.71Yp no2) gN gCOD™*
Vs7 = (iC,SS/YH,NOZ - iC,BM) gC gCOD™!
Vg7 = (iP,SS/ YiNoz — iP,BM) gP gCOD'!
Vi = 1/24 (iO,SS/YH,NOZ - io,BM) -1/3 (iH,SS/YH,NOZ - iH,BM)

-1/9 (iC,SS/YH,NOZ - iC,BM) +1/93 (iP,ss/YH,Noz - iP,BM) gH gCcoD*!
Vizs = = 1/Yunoz gCOD gCOD**
Vizgy =1 gCoOD gCOD™
Anoxic growth of XH on Snos
V3 = —(1 — Yino3)/(1.14Yp no3) gN gCoD*!
Vsg = (ic,ss/ Yy, N03 — iC,BM) gC gCoD*
Vgg = (iP,SS/YH,NO3 - iP,BM) gP gCOD?*
Vigg = 1/14 (iN,SS/YH,NOB - iN,BM) +2/31 (iP,SS/YH,NO3 - iP,BM) gH gCOD™!
Vizg = —1/Yynos gCOD gCOD™.
Vizg =1 gCOD gCOD™!
Aerobic endogenous respiration of Xn
V1o = ingm — fxiinxi gN gCOD™*
Vso = icpm — fxi icx gC gCOD™!
Vgo = Ippm — fx1 ipxi gP gCOD!
Voo = —(1 —fxy)/2 g0, gCOD™!
Viog = — 1/14 (iN,BM — fx iN,XI) +2/31 (iP,BM — fx iP,XI) gH gCoOD™*




Vize = =1

gCOD gCOD™

Anoxic endogenous respiration of Xn

V1o = ingm — fxiinx gN gCoD*!
vz = (f, — 1)/1.14 gN gCOD™*
Voo = (1 —£,)/1.14 oN gCOD'!
V510 = igpm — leiC‘XI gC gCOD!
V10 = lpam — fxilpy gP gCOD?*
Vigio = 1/40 (iO,BM - fXIiO,XI) -1/5 (iH,BM - fXIiH'Xl)
~1/15 (igpm — fXIiC'XI)

+1/35 (ingm — fxaingi) — 1/31 (ipsm — friipxi) gH gCOD™!
Vizi0 = —1 gCOD gCOD!
Decay of XH
vissn = (1 = fi)Yy gCOD gCOD™.
Vi1 = fxi Y gCOD gCOD*
Vizq1 = —1 gCOD gCOD**
Growth of ammonia oxidizing bacteria (Xaos)
Vi = =1/Yaop — inpu gN gCoD*!
Va12 = 1/Ya0s — ingm gN gCoD*!
V512 = —icpm gC gCcoD™t
Vgi12 = —lppm gP gCOD?*
Vo1 = (1 —3.43/Y0p) g0, gCoOD™!
Vipiz = 2/14Y,05 — 1/14 (iN,BM) -2/31 (iP,BM) gH gCOD™*
Vigip = 1 gCoD gCOD*
Growth of nitrite oxidizing bacteria (Xnos)
V313 = 1/Ynos — ingm gN gCoD*!
V413 = — 1/Ynos gN gCOD-1
V513 = —licpm gC gCoD*
Vg13 = —ippu gP gCOD™!
Vo3 = (1 — 1.14/Yyop) g0, gCoOD™!
Vigus = —1/14 (iN,BM) —-2/31 (iP,BM) gH gCOD™!
Vig1z3 =1 gCOD gCoD*
Endogenous respiration of Xaos
V14 = inpm — i i gN gCoD*!
Vs1a = lcam — fuilcy gC gCOD!
Vg4 = lppm — fXIip'XI gP gCOD!
Vo1 = —(1 — £ ) g0, gCOD!




Vig1a = — 1/14 (ingm — fixr inxt) +2/31 (ipgm — fxi ipxr) gH gCoD**
Vigis = —1 gCOD gCOD**!
Endogenous respiration of Xnos
Vi1s = ingm — fxiinx gN gCOD™*
Vs15 = icpm — fXIiC‘X] gC gCOD!
Vg 15 = lppM — fXIip'Xl gP gCOD™!
Voqs = —(1 —£) g0, gCOD™!
Vigss = — 1/14 (ingm — fxi inxi) +2/31 (ipsm — fxa ipx1) gH gCOD™!
Vigys = —1 gCOD gCOD!
Decay of Xaos and Xnos
Visie = (1 —fxi )Yaos gCOD gCOD*
Vie,16 = fxi1Yaos gCOD gCOD**
Vigie = —1 gCOD gCoD*
Visgy = (1 —fx ) Yyop gCOD gCOD™.
V1617 = fxi¥nos gCOD gCOD*
Vigqy = —1 gCOD gCOD**!
Hydrolysis
Vigg = —(1 - fSl)iN‘SS — foiiyg *inxs gN gCOD*!
Vs,1g = igxs — (1— fSI)YHYDiC_SS — £ Yuypic g gC gCoD™!
Vs = fpxs — (1= fSI)YHYDip'SS - fl,XSYHYDiP'S] gP gCOD':
Vigis = — 1/14 (iN,XS -(- fSI)YHYDiN‘SS - fSIYHYDiN‘SI)

+2/31 (ipxs — (1 — f5)Yuypipss — fs:Yuypirsi) gH gCcoD’!
Vizag = (1 = f5)Yayp gCoOD gCoD*
Viz1s = (fs) Yiyp gCOD gCOD™.
Visgg = —1 gCOD gCOD!
Chemical equilibria CO, < HCO3
Vsq9 = —1 gCgC*
Veio = 1 gCgC*
Vigig = 1/12 gH gC?
Chemical equilibria HCO3; « CO%~
Voo = —1 gCgC*
V720 =1 gCgC?
Vio20 = 1/12 gH gC?
Chemical equilibria NH} < NH3
Vig1 = —1 gN gN™*
Vo1 =1 gN gN™*




Vio21 = 1/14 gH gN-!
Chemical equilibria HY < OH™

Vippr =1 gH gH!
Viggy =1 gH gH™

Oxygen transfer to the atmosphere

Voaz =1

Carbon dioxide transfer to the atmosphere

Vsog =1

Ammonia transfer to the atmosphere

Vyps =1




Appendix 2. Initial values for simulation (Section 4.1.2)

Table A2.1.

Initial concentrations of components in the anoxic reactor and

photobioreactor

Component Description Value Units
Photobioreactor Anoxic
Reactor

XaLe Microalgae biomass 201.3 @ 42240 mgTSS L*

Xn Heterotrophic bacteria 68.25 @ 143.22 @ mgTSS L

Xaos Ammonium oxidizing 0.2 ® 0.43©® mgTSS L™
bacteria

Xnos Nitrite oxidizing bacteria 2.04® 429 @ mgTSS L

Xs Slowly biodegradable  283.64 @ 595.17 @ mgTSS L*
particulate organic matter

Xi Inert  soluble  organic  56.81 @ 11921@  mgTSS L™
matter

SNH4 Ammonium nitrogen 2.09 18.1 mgN-NH, L*

SNH3 Ammonia nitrogen 1 1 mgN-NH; L™

Sno3 Nitrate nitrogen 0 0 mgN-NOsz L™

Sno2 Nitrite nitrogen 0.7 2.6 mgN-NO, L™

Sco2 Dissolved carbon dioxide 1 2 mgC-CO, L

Shcos Bicarbonate 163.1 164 mgC-HCO; L™

Scos Carbonate 9 1.4 mgC-COs L™

Spos Phosphate phosphorus 0 54 mgP-PO, L™

So2 Dissolved oxygen 1.48 0.09 mgO, L™

SH Hydrogen ions 6.07e-07 2.47e-06 mgH L™

Son Hydroxide ions 0.28 0.7e-01 mgH-OH L™

Ss Readily ~ biodegradable  8.74® 39.07 @ mgCOD L*
soluble organic matter

Si Inert  soluble organic 50 @ 70 @ mgCOD L™*
matter

Photosynthetic model

State Description Value Units

X1 Microalgae in open state 1 -

X2 Microalgae in activated state 0 -

X3 Microalgae in inhibited state 0 -




) Both anoxic and aerobic reactor were inoculated with a microalgae- bacteria consortia in

which the third part of the total biomass corresponding to microalgae biomass.

@ The composition of the activated sludge biomass (corresponding with 2/3 of the total
biomass) was assumed composed of: 16.7% of Xy, 13.7% of X, and 69.05% of Xs

(considering the composition similar to the adopted by the ASM2).

@ Since the facility was a short set-up period (previous to data recorded), was assumed a

nitrifying bacteria composition of 0.05% of Xaos and 0.5% of Xnos.

@ Values of Sy and Ss were estimated according to COD tests.

Table A2.2. Initial values of biomass concentration in the settler

Component Description Value Units

TSSeffiuent Total suspended solids concentration in the top layer 70 mgTSS L*
TSS; Total suspended solids concentration in layer 2 80 mgTSS L*
TSS3 Total suspended solids concentration in layer 3 100 mgTSS L*
TSS, Total suspended solids concentration in layer 4 130 mgTSS L*
TSSs Total suspended solids concentration in layer 5 200 mgTSS L*
TSSe Total suspended solids concentration in layer 6 600 mgTSS L*
TSSy Total suspended solids concentration in layer 7 (feeding 700 mgTSS L*

layer)

TSSs Total suspended solids concentration in layer 8 1200 mgTSS L*
TSSy Total suspended solids concentration in layer 9 1700 mgTSS L*
TSSwastage Total suspended solids concentration in the bottom layer 2250 mgTSS L*




Appendix 3. Initial values for simulation (Section 5.4)

Table A3.1. Initial concentrations of components in the HRAP

Component Description Value Units

XaLe Microalgae biomass 3550 © mgTSS L*
Xn Heterotrophic bacteria 592.85@  mgTSSL?
XaoB Ammonium oxidizing bacteria 355@ mgTSS L!
XnoB Nitrite oxidizing bacteria 1.775 @ mgTSS L*
Xs Slowly biodegradable particulate organic matter 2458.375 @ mgTSS L™
X Inert soluble organic matter 493.45@  mgTSS L?
SN Ammonium nitrogen 8 mgN-NH, L*
SnH3 Ammonia nitrogen 0.049 mgN-NH;z L™
Sno3 Nitrate nitrogen 0 mgN-NO; L
Snoz Nitrite nitrogen 0 mgN-NO, L*
Scoz Dissolved carbon dioxide 7.1 mgC-CO, L
Shcos Bicarbonate 42 mgC-HCOz L™
Scos Carbonate 0.9 mgC-COs L™
Spos Phosphate phosphorus 7 mgP-PO4 L™
So2 Dissolved oxygen 10 mgO, L

Sk Hydrogen ions 9.7375e-05 mgH L™

Son Hydroxide ions 0.0018 mgH-OH L™
Ss Readily biodegradable soluble organic matter ~ 8@ mgCOD L™
Si Inert soluble organic matter 40@ mgCOD L™*
Photosynthetic model

X1 Microalgae in open state 1 -

X2 Microalgae in activated state 0 -

X3 Microalgae in inhibited state 0 -

()]

@

(©)]

The HRAP was considered inoculated with 2.5 gVSS/L of microalgae consortia.

The composition of the activated sludge biomass (corresponding with 2.5 gVSS/L
of activated sludge.) was assumed composed of: 16.7% of Xn, 13.9% of X, and
69.25% of Xs (considering the composition similar to the adopted by the ASM2
(Henze et al., 2000)).

A nitrifier bacteria composition of 0.1% of Xaos and 0.05% of Xnos was

assumed.



@ Values of Sy and Ss were estimated according to COD tests for similar wastewater

composition.

Table A3.2. Initial values of biomass concentration in the settler

Component Description Value  Units
TSSerfiient  Total suspended solids concentration in the top 100 mgTSS L~
layer 1
TSS: Total suspended solids concentration in layer 2 200 mgTSS L-
1
TSSs Total suspended solids concentration in layer 3 300 mgTSS L-
1
TSSa4 Total suspended solids concentration in layer 4 400 mgTSS L-
1
TSSs Total suspended solids concentration in layer 5 500 mgTSS L-
1
TSSe Total suspended solids concentration in layer 6 1000 mgTSS L-
1
TSS7 Total suspended solids concentration in layer 7 2000 mgTSS L-
(feeding layer) !
TSSs Total suspended solids concentration in layer 8 4000 mgTSS L-
1
TSSo Total suspended solids concentration in layer 9 6000 mgTSS L-
1

TSSwastage ~ Total suspended solids concentration in the bottom 20000 mgTSS L-
layer !




Appendix 4. SCADA for microalgae- bacteria WWTP

The main window of the SCADA (Fig. A4.1) is comprised of two distinct segments. The
left side of the interface contains the “Navigation pane” buttons (labeled “A’), which
facilitate the navigation between the various windows of the SCADA system. Indicators
labeled as “B” allow for the visualization of the control mode in which the system is
operating, while the button labeled “C” is used to terminate the execution of the SCADA
program. The right side of the main window (section labeled “D”) displays the real-time
values of the measured variables, including pH, dissolved oxygen concentration, and
temperature, as well as the input flow to each reactor. The section labeled "E" is intended
to provide a visual indication of the pump's operational status, thereby communicating its
current status as either active or deactivated. Furthermore, it enables the selection of the
channel on which each pump is connected. In the section designated “F”, the selectors fs1
and fs2 permit the cessation of data recording or the DAQ connection, respectively, for
each reactor. Consequently, the status of data recording (indicators fi1) and the status of
the connection of the LabQuest Mini devices for each reactor (indicators fi) are indicated
on the right side of the main window. Indicators fi> facilitate the identification of
connection failures in LabQuest Mini devices. The objective of the selectors fs1 is to
enable uninterrupted system functionality and data visualization during probes calibration
or cleaning tasks. In the event that the "calibration mode™ (selectors fs1) is activated, all
SCADA functions remain operational; only the data recording of variables in the Excel

file is suspended until the “calibration mode" is deactivated.

The window for each reactor (Fig. A4.2) also facilitates navigation between the various
windows of the SCADA system, as well as the selection of "calibration mode" and
"automatic control mode.” The window also displays the operational values of the
variables (pH, dissolved oxygen, temperature, and input flow). In the event that the
"automatic control mode" is selected, it is imperative that the set point for the dissolved
oxygen concentration be provided, in conjunction with the parameters for the PID

controller.
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Fig. A4.1. Main window of the SCADA
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Fig. A4.2. Reactor 1 window

The "Settings" window of the SCADA (Fig. A4.3) facilitates the configuration of
operational parameters associated with the input flow to each photobioreactor. The values



of the slope of the calibration curve, which must be obtained through experimental means,
as well as the desired input flow rate, are to be provided. Due to the limited dimensions
of the laboratory-scale plant, fixed input flows (and, consequently, the associated voltage
values) were selected. To achieve the desired input flow values, a mathematical
relationship was formulated, with the variable to be modified being the time of pump

activation.
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Fig. A4.3. Settings window of the SCADA
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