

OPEN

Five-repetition sit-to-stand test validation in adolescents and adults with intellectual disabilities

Claudio Farias-Valenzuela¹✉, Catalina Shepherd-Shepherd², Paloma Ferrero-Hernández³, Guillermo F. López-Sánchez⁴, Sebastián Espoz-Lazo⁷, Cristian Cofre-Bolados⁸, Pablo del Val-Martín⁵, Eduardo R. de Victo⁶ & Gerson Ferrari²

This study aims to validate the five repetition sit to stand test (5R-STS) test as a measure of strength and functionality in adolescents and adults with intellectual disabilities (ID). The sample was made up of 159 subjects with ID (85 adolescents and 74 adults) of both sexes, with average age of 18.36 (5.26) years, belonging to four special educational centers from Santiago, Chile. Absolute (AHGS) and relative (RHGS) handgrip strength and countermovement jump (CMJ) were considered as muscle strength evaluation tests. The timed up and go (TUG) and agility test 4 × 10 m were considered as functional tests. Spearman and intraclass correlations, as well as Bland-Altman plots were used to establish the respective correlations. The average values obtained in the 5R-STS test (s) in adolescents were 6.55 and 7.24, while in adults they were 6.82 and 7.17 for men and women, respectively. Significant correlations ($p = < 0.05$) are established between the 5R-STS test with AHGS ($r = -0.48$) and RHGS ($r = -0.54$), CMJ (-0.53), 4 × 10 m test (-0.50) and TUG (-0.49), as well as in the analysis of agreement between 5R-STS and the TUG (ICC = 0.74) and agility 4 × 10 m (ICC = 0.61) tests, both in adolescents and adults of both sexes. The 5R-STS test is a valid, simple and safe tool to evaluate general and lower extremity muscle strength. Its use is suggested as a simple measure for monitoring functional capacity by professionals in educational and health contexts for the adolescent and adult population with ID.

Keywords Intellectual disability, Validation, Functional capacity, Adolescents, Adults, Disabilities

In the general population, muscular strength¹ and cardiorespiratory fitness² as independent predictors of functionality. Functional capacity tends to decline irreversibly with age³; however, its preservation is strongly linked to lifestyle choices made in early life⁴. Functional capacity encompasses physical abilities essential for daily tasks, including endurance, muscle strength, and aerobic capacity³. Therefore, selecting appropriate tests and instruments for evaluating physical fitness and functional capacity is critical to identifying risk factors that could compromise autonomy in individuals with varying health conditions and states⁵.

Evaluating individuals with intellectual disabilities (ID) characterized by significant limitations in intellectual functioning and adaptive behavior, including conceptual, social, and practical adaptive skills⁶, presents a particular challenge for professionals who in clinical and school settings⁷. Studies have documented working memory impairments in children on the autism spectrum⁸ and declines in executive function among individuals with Down syndrome⁹, both of which impact self-efficacy and learning capacity¹⁰. The heterogeneity of responses among individuals with ID complicates adherence to assessment, affecting the validity and reliability of standard instruments and protocols¹¹. To address this, there is a need for simplified evaluation protocols with limited motor demands and instructions tailored to the response capacities of individuals with ID¹². Functional tests designed for ease of application, reproducibility across contexts, and minimal equipment requirements are thus ideal¹³. These tests, often used in functional capacity assessments for older adults, have also been adapted for

¹Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile. ²Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago, Chile. ³Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad Autónoma de Chile, Santiago 8900000, Chile.

⁴Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain. ⁵Facultad de Educación y Ciencias Sociales. Observatorio Chileno de Educación Física y Deporte Escolar. Santiago de Chile, Universidad Andres Bello, Santiago, Chile. ⁶Disciplina de Alergia, Imunología Clínica e Reumatología, Departamento de Pediatria da Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brasil. ⁷Facultad de Educación, Pontificia Universidad Católica de Chile, Santiago, Chile. ⁸Escuela de Kinesiología, Universidad Santo Tomás, Santiago, Chile. ✉email: claudio.farias@uss.cl

use with people with ID^{14,15}. Notable among these are the handgrip strength (HGS) test, applied in children and adolescents with Down syndrome^{16,17} and in adults with Prader-Willi Syndrome¹⁸; the 4×10 m agility test, validated for adolescents with ID¹⁹; and the timed up and go (TUG) test, used for individuals on the autism spectrum²⁰, with cerebral palsy²¹, and adults with Down syndrome²². Additionally, the countermovement jump (CMJ) test is commonly used to estimate lower body strength and is associated with obesity indicators²³ and sports performance in children with ID²⁴.

One of the most widely used tests to measure functional capacity is the Five-Repetition Sit-to-Stand Test (5R-STS), which assesses lower extremities and balance²⁵. This test has been applied to individuals with Parkinson's²⁶ disease, cerebral palsy²⁷ and lower limb osteoarthritis¹³, and it is also used as a measure of functionality in people with ID¹¹. Farias-Valenzuela et al.²⁸ employed this test in adolescents with ID, finding sex-based differences. In a meta-analysis²⁹, Muñoz-Bermejo et al. demonstrated high reliability of the 5R-STS test in individuals with hip osteoarthritis, chronic obstructive pulmonary disease, spinal cord injury, stroke, and hip dysplasia; however, this research did not address population with ID.

Despite existing evidence and the broad applications of the 5R-STS test, it has not been validated for individuals with ID. Therefore, the aim of this study was to validate the 5R-STS test as a measure of strength and function capacity in adolescents and adults with ID.

Methods

Study design and sample

This study is characterized by being a cross-sectional study carried out in four special educational centers in the Metropolitan Region, Santiago of Chile. The educational centers and participants were selected by convenience and in a non-probabilistic manner, with whom we have developed collaborative actions since 2018. Initially, the four directors of the participating special educational centers were contacted, with whom an information meeting was arranged that explained the characteristics of the project; subsequently, this information was shared among the relatives of the participating students. In this instance, the objectives and evaluation protocols of the project were presented. The data were collected between the months of August and November 2021, within the framework of the diagnostic evaluation of the first phase of the “LUDOINCLUSIÓN” project belonging to the Vice-Rector's Office for Environmental Linkage of the University of Santiago de Chile.

The study population considered Chilean students with ID male or female, who were regular students at special education centers, with ages ranging from 6 to 26 years. The sample was composed of participants of both sexes, aged ≥ 12 years, who met the following inclusion criteria: (1) absence of lower limb injuries and/or referred pain; (2) independent mobility; (3) participation in mandatory physical education classes taught at school (60–90 min/week; 1 day/week); (4) diagnosis of mild or moderate ID³⁰ ($IQ \leq 70 - 50$ and $\leq 50 - 35$) with or without associated syndromes, diagnosed through the Wechsler Intelligence Scale for children or WISC III for < 18 years³¹, and the Wechsler Intelligence Scale for Adults-IV or WAIS IV for ≥ 18 years of age³² by the psychologist of the establishments, in addition to a compatible medical health certificate. Exclusion criteria considered those participants who did not complete the physical and functional tests defined for the study, who had wheelchair dependence, a diagnosis of profound and/or severe ID ($IQ < 35$), and/or were younger than 12 years.

The call for the study was aimed at 223 families and their students, of which 176 agreed to participate, with 17 participants (13 men and 4 women) being excluded for no meeting the defined inclusion criteria. Then, the final sample considered 159 participants diagnosed with ID, of which 85 were adolescents (12–17 years) and 74 adults (18–26 years). The application of the evaluations was authorized by the educational centers involved and the guardians of the participants, who voluntarily agreed and authorized the student's participation through an informed consent. The research complies with the guidelines set out in the Declaration of Helsinki (2014), which regulates research on human beings and has the approval of the ethics committee of the University of Granada, Spain, code 2052 / CIEH / 2021.

The participants carried out the evaluations through a circuit of three stations (anthropometry, muscle strength and functional capacity), each one composed of 2 professionals for its implementation. The participants attended in the company of a tutor, who fulfilled an assisting role through the process if required.

Anthropometry

Body weight (kg) and height (m) were measured barefoot and with light clothing, using an electronic scale with a built-in stadiometer brand (SECA Mod 769[®], Hamburg, Germany). Waist circumference (WC) was measured in (cm) with an inextensible metal measuring tape (CESCORF[®], Porto Alegre, Rio Grande do Sul, Brazil). The distance between the lower and upper costal edge of the iliac crest was considered the anatomical point³³. The measurement was performed at the end of a normal expiration while the subject was standing with feet together and arms hanging freely at the sides. The previously mentioned measurements were used to calculate the body mass index ($BMI = \text{kg}/\text{m}^2$) and the waist-height ratio (WHR = waist [cm]/(height [cm])).

Muscular strength

The assessment of upper extremity strength was measured using a hand-held dynamometer (Baseline[®], Fabrication Enterprises, Inc., New York, USA). Participants received verbal instructions and a brief demonstration of the test, following the protocol established by the American College of Sports Medicine³⁴ and used by Farias-Valenzuela et al.³⁵ in people with ID. Participants were asked to squeeze the dynamometer handle as hard as possible for five seconds. A total of three attempts were made for each hand. The first was familiarization, while between the two remaining attempts, the average of the Absolute Handgrip Strength (AHGS) in kg, of both the right and left limb, was calculated. Relative Handgrip Strength (RHGS) was calculated by dividing absolute force by body mass (AHGS (kg)/body weight (kg)).

Lower extremity strength was measured by CMJ using a branded contact platform (Chronojump-Boscosystem®, Barcelona, Spain). To explain the execution of the test, the evaluator provided verbal instructions accompanied by a demonstration as a visual aid. The performance of the jump began in an upright position, with the participant in a bipedal position, with his feet apart and his hands on his hips. He flexed his knees and hips performing a squat, and then extended his limbs in an upward jump²⁴. A familiarization test was performed and then two measured attempts, which were averaged to calculate the final result (cm).

Functional capacity

Agility test 4 × 10 m

To evaluate agility, the 4 × 10 m test was used, which was validated in people with ID by Tejero et al.¹⁹. To carry out this evaluation, two marks were drawn on the ground, maintaining 10 m between them. The development of the test required the participation of two evaluators. The first of them was positioned at the start line, providing pertinent instructions to carry out the test, in addition to taking charge of taking temporary records of the subject. Meanwhile, the second evaluator stood at the finish line. During the execution of the test, the individual undergoing evaluation had to make four runs from the start line to the finish line, having to make contact with the hand of the evaluator located on each line, before changing his direction. During the development of the test, words of encouragement were provided in order to motivate the test taker to run at the maximum possible speed.

Timed up and go

The TUG test was used to evaluate dynamic balance and independent mobility³⁶, which has been validated by Martín-Díaz et al.²⁰ in people with ID. To carry out the TUG test, a chair was placed at three meters demarcated by a cone. The test protocol began with the demonstration of the test, then the starting position was adopted once seated in the chair, keeping the back in contact with the back of the chair and ensuring that the feet were correctly positioned on the floor. Next, the evaluated person was required to get up from the chair and walk as fast as possible, avoiding running, go around the cone at the designated point and return to resume his or her seat in the chair²⁰. During the execution of the test, the evaluator provided words of encouragement with the purpose of motivating the evaluated person. The final value was obtained from the average of two attempts.

Five repetitions sit to stand test

The 5R-STS is primarily used to assess lower limb muscle strength and functional capacity. To carry out this test, the subject began by sitting in a chair, keeping his back in contact with the backrest, his arms crossed with his hands resting on his shoulders and his feet placed firmly on the floor²⁷. The participant was instructed to perform five cycles of getting up and sitting down from the chair in the shortest time possible. In addition to the verbal instructions, a visual demonstration was provided that exemplified the process. During the test, words of encouragement were provided to motivate the participant. Prior to carrying out the test, a test was carried out to familiarize the participant with the procedure, subsequently, the test was executed and the time of two attempts was recorded, the average of which was considered as the final measure³⁷.

Statistical analysis

The normality distribution of the variables for the total sample made up of adolescents and adults was contrasted using the Kolmogorov-Smirnov test. Descriptive statistics are presented as mean and standard deviations (SDs), as well as median and interquartile range (p25-p75), depending on the nature of the data. Comparisons by sex between adolescents and adults were made using the Friedman test. To establish correlations between the 5R-STS test and the AHGS and RHGS of both extremities, CMJ, 4 × 10 m agility test and TUG, the Spearman coefficient (r) was used. Values of $r < 0.30$ were considered null; 0.30–0.49 low; 0.50–0.69 moderate; 0.70–0.89 high and 0.90–1.00 very high³⁸.

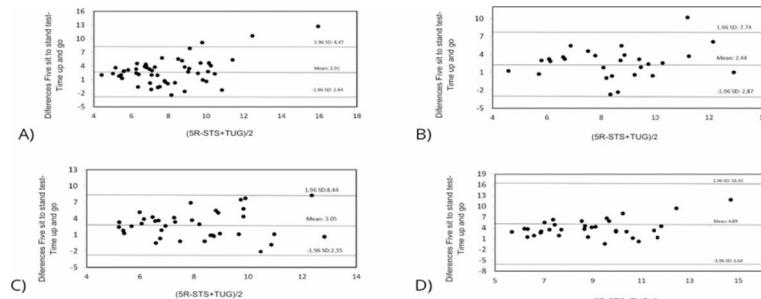
To establish the analysis of internal agreement between variables of the same unit of measurement, the intraclass correlation coefficient (ICC) was used. Bland Altman plots calculated 95% limits of agreement (-1.96 and 1.96) between means and SDs of the differences between 5R-STS and the agility 4 × 10 m and TUG tests. Statistical analyzes were performed with SPSS software version 26.0 (SPSS Inc., IBM Corp., Armonk, New York, NY, USA). A significance of 5% was adopted.

Results

The final sample considered 159 participants (96 men), 85 adolescents (53.4%) with an average age of 14.62 (1.24) years and 74 adults (46.5%) with an average age of 22.66 (4.80) years. In the adolescent group, the average for the total sample of weight, height, BMI, WC and WHtR were 62.59 kg, 1.58 m, 23.96 kg/m², 82.6 cm and 0.52, respectively. While in the adult group the same measurements were 69.70 kg, 1.59 m, 24.7 kg/m², 88.75 cm and 0.56, respectively. The anthropometric profile, differentiated by sex and age group, as well as the physical and functional characteristics of the participants, are presented in Table 1.

The 5R-STS test presents significant correlations ($p < 0.05$) with the AHGS and RHGS (right and left), CMJ, and TUG in adolescents and adults, in both sexes. The highest correlations are identified in the adult female group, showing moderate inverse correlations between the 5R-STS test and the AHGS ($r = -0.64$ right and $r = -0.61$ left), RHGS ($r = -0.66$ right and $r = -0.62$ left) and CMJ ($r = -0.56$). Positive correlations were obtained with the 4 × 10 m agility test ($r = 0.60$) and the TUG test ($r = 0.63$) (Table 2). Regarding the agreement analysis between the 5R-STS test and the 4 × 10 m and TUG agility tests, moderate and high and significant intraclass correlations were obtained ($p < 0.05$).

	Adolescents				Adults			<i>p</i> -value
	Total (<i>n</i> = 159)	Total (<i>n</i> = 85)	Male (<i>n</i> = 56)	Female (<i>n</i> = 29)	Total (<i>n</i> = 74)	Male (<i>n</i> = 40)	Female (<i>n</i> = 34)	
Age (years)								
Mean (SD)	18.36 (5.26)	14.62 (1.24)	14.43 (1.30)	15.00 (1.03)	22.66 (4.80)	22.8 (5.05)	22.41 (4.56)	< 0.001*
Median (IQR)	17.00	15.00	14.00	15.00	21.00	21.00	21.50	
	(14.00–21.00)	(14.00–15.00)	(13.00–15.00)	(14.00–15.50)	(19.00–24.50)	(19.00–24.75)	(19.75–24.25)	
Weight (kg)								
Mean (SD)	65.90 (19.39)	62.59 (19.54)	62.52 (18.40)	62.72 (21.93)	69.70 (18.41)	70.56 (18.93)	68.69 (18.02)	0.06
Median (IQR)	63.00	58.00	60.25	58.00	65.35	66.25	64.50	
	(52.00–75.00)	(47.50–73.25)	(50.00–72.00)	(45.00–79.50)	(56.75–76.50)	(58.25–78.75)	(55.75–76.00)	
Height (m)								
Mean (SD)	1.58 (0.11)	1.58 (0.11)	1.61 (0.11)	1.52 (0.10)	1.59 (0.11)	1.65 (0.09)	1.51 (0.09)	< 0.001*
Median (IQR)	1.59	1.58	1.62	1.51	1.59	1.68	1.51	
	(1.50–1.69)	(1.49–1.68)	(1.53–1.70)	(1.45–1.60)	(1.50–1.69)	(1.56–1.72)	(1.44–1.59)	
BMI (kg/m ²)								
Mean (SD)	24.31 (10.0)	23.96 (8.59)	22.94 (8.51)	25.89 (8.53)	24.70 (11.43)	21.31 (10.69)	28.68 (11.12)	0.01*
Median (IQR)	23.55	23.48	23.00	25.71	24.04	21.61	29.12	
	(20.27–29.04)	(04.20–27.58)	(19.13–27.13)	(22.10–29.06)	(20.52–31.18)	(17.44–27.27)	(22.18–32.71)	
Waist circumference (cm)								
Mean (SD)	85.46(16.39)	82.60 (16.13)	80.92 (15.90)	85.86 (16.35)	88.75 (16.17)	87.75 (14.03)	89.92 (18.53)	0.40
Median (IQR)	83.80	80.00	79.80	81.54	86.30	85.51	88.00	
	(75.00–93.50)	(72.00–90.00)	(70.00–87.00)	(74.50–97.70)	(77.87–95.25)	(77.62–93.45)	(78.50–97.25)	
Waist height ratio								
Mean (SD)	0.54 (0.11)	0.52 (0.09)	0.50 (0.09)	0.56 (0.09)	0.56 (0.11)	0.53 (0.09)	0.59 (0.13)	0.09
Median (IQR)	0.52	0.51	0.48	0.53	0.55	0.51	0.59	
	(0.47–0.60)	(0.46–0.56)	(0.43–0.55)	(0.50–0.61)	(0.48–0.63)	(0.46–0.58)	(0.50–0.65)	
Right absolute handgrip strength (Kg)								
Mean (SD)	21.26 (12.05)	21.2 (13.20)	23.58 (14.27)	16.61 (10.26)	21.33 (10.38)	26.83 (9.57)	14.86 (7.08)	< 0.001*
Median (IQR)	20.00	19.50	22.85	15.50	20.50	26.00	15.75	
	(13.00–28.00)	(12.00–28.50)	(14.00–13.70)	(8.50–22.50)	(13.22–28.00)	(19.87–33.50)	(9.25–20.50)	
Left absolute handgrip strength (Kg)								
Mean (SD)	20.20 (11.54)	19.86 (12.26)	22.33 (13.03)	15.10 (9.05)	20.58 (10.73)	26.19 (10.37)	13.98 (6.67)	< 0.001*
Median (IQR)	18.00	18.00	20.75	13.50	19.00	26.75	14.00	
	(12.00–26.00)	(11.50–24.50)	(13.50–26.7)	(8.00–19.5)	(12.87–27.12)	(18.25–33.37)	(9.12–19.00)	
Right relative handgrip strength								
Mean (SD)	0.32 (0.16)	0.33 (0.17)	0.37 (0.17)	0.25 (0.12)	0.31 (0.15)	0.39 (0.14)	0.23 (0.12)	< 0.001*
Median (IQR)	0.31	0.28	0.35	0.24	0.31	0.36	0.22	
	(0.21–0.43)	(0.22–0.44)	(0.22–0.47)	(0.18–0.35)	(0.20–0.42)	(0.27–0.51)	(0.11–0.33)	
Left relative handgrip strength								
Mean (SD)	0.31 (0.15)	0.31 (0.15)	0.35 (0.15)	0.23 (0.10)	0.30 (0.16)	0.38 (0.15)	0.21 (0.12)	< 0.001*
Median (IQR)	0.28	0.27	0.33	0.24	0.28	0.36	0.22	
	(0.20–0.40)	(0.20–0.40)	(0.24–0.45)	(0.15–0.29)	(0.19–0.40)	(0.26–0.50)	(0.09–0.31)	
Countermovement jump (cm)								
Mean (SD)	14.09 (6.72)	15.17 (6.01)	16.90 (5.61)	11.81 (5.37)	12.84 (7.3)	16.46 (6.82)	8.46 (5.21)	< 0.001*
Median (IQR)	13.69	14.69	16.65	11.40	12.59	17.37	8.89	
	(9.00–18.80)	(10.80–19.34)	(11.99–21.26)	(7.55–15.95)	(7.55–17.72)	(10.20–20.83)	(3.72–12.78)	
Agility test 4 x 10 m (s)								
Mean (SD)	18.87 (4.99)	18.39 (3.97)	17.64 (3.80)	19.82 (3.96)	19.44 (5.94)	17.84 (6.08)	21.37 (5.23)	< 0.001*
Median (IQR)	18.00	18.00	17.38	19.65	18.00	16.33	20.40	
	(15.45–21.30)	(15.75–20.47)	(14.49–20.08)	(17.00–21.41)	(14.99–22.70)	(14.34–19.17)	(17.70–24.27)	
Time up and go (s)								
Mean (SD)	6.88 (2.33)	6.79 (2.03)	6.55 (1.92)	7.24 (2.20)	6.98 (2.64)	6.82 (2.88)	7.17 (2.37)	0.57
Median (IQR)	6.66	6.90	6.75	7.21	6.39	6.07	6.69	
	(4.97–8.33)	(4.90–8.27)	(4.82–7.80)	(5.13–9.05)	(4.95–8.35)	(4.59–8.24)	(5.50–8.80)	
Five times sit to stand test (s)								
Mean (SD)	10.16 (4.45)	9.54 (2.86)	9.47 (3.02)	9.68 (2.57)	10.87 (5.70)	9.86 (3.86)	12.06 (7.18)	0.12


Continued

	Adolescents						Adults			<i>p</i> -value
	Total (n = 159)	Total (n = 85)	Male (n = 56)	Female (n = 29)	Total (n = 74)	Male (n = 40)	Female (n = 34)			
Median (IQR)	9.35	8.72	8.68	9.59	9.62	9.09	10.98			
	(7.71–11.41)	(7.44–10.89)	(7.22–10.84)	(7.61–10.96)	(8.25–11.55)	(7.62–11.39)	(8.89–12.41)			

Table 1. Anthropometric, physical and functional characteristics by sex of adolescents and adults with ID. SD: Standard deviation; IQR: Interquartile interval (p25–p75); *: significance $p < 0.05$ by Friedman test; differences by sex between adolescents and adults.

Variables	Adolescents		Adults				<i>p</i> -value			
	(n = 85)		(n = 74)							
	Total (n = 159)	Male (n = 56)	Female (n = 29)	Male (n = 40)	Female (n = 34)					
	5R-STS (s)									
	<i>r</i>	ICC	<i>r</i>	ICC	<i>r</i>	ICC	<i>r</i>	ICC		
AHGS-R (kg)	-0.48*	–	-0.41*	–	-0.38*	–	-0.34*	–	-0.64*	–
AHGS-L (kg)	-0.48*	–	-0.40*	–	-0.47*	–	-0.29	–	-0.61*	–
RHGS-R	-0.53*	–	-0.54*	–	-0.24	–	-0.39*	–	-0.66*	–
RHGS-L	-0.54*	–	-0.57*	–	-0.29	–	-0.36*	–	-0.62*	–
CMJ (cm)	-0.53*	–	-0.45*	–	-0.55*	–	-0.35*	–	-0.56*	–
4 × 10 m (s)	0.50*	0.74*	0.38*	0.61*	0.51*	0.56*	0.37*	0.81*	0.60*	0.76*
TUG (s)	0.49*	0.61*	0.44*	0.54*	0.31	0.53*	0.56*	0.80*	0.63*	0.56*

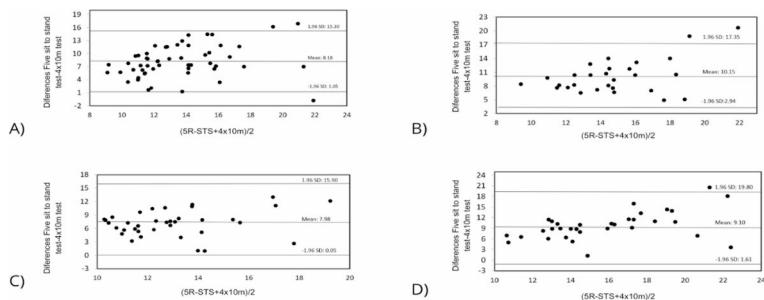

Table 2. Correlations of the 5R-STS test with upper/lower extremity and functional strength tests in adolescents and adults with ID of both sexes. AHGS-R: Right absolute handgrip strength; AHGS-L: Left absolute handgrip strength; RHGS-R: Right relative handgrip strength; RHGS-L: Left relative handgrip strength; CMJ: Countermovement jump; 4 × 10 m: TUG: Timed up and go. r: Spearman correlation coefficient; ICC: intraclass correlation; *: $p < 0.05$; -: no registration.

Fig. 1. Bland Altman Plots for the 5R-STS test in adolescents and adults of both sexes with ID. Bland Altman for the analysis of agreement between the 5R-STS. The sample is represented at each point on the graph by transmitting the average value of the two evaluations (x-axis) and the difference between the two evaluations (y-axis). The mean difference was the estimated bias, and the standard deviation (SD) of the fluctuations around this mean, outliers are considered above 1.96 and under -1.96 SD (outlier). The center line shows the mean difference between the analyzed tests and upper and lower limits of agreement of the 95% CI for the difference between means. (A): Male adolescents; (B): Female adolescents; (C): Male adults; (D): Female adults.

The greatest internal consistency between the 5R-STS test and the agility 4 × 10 m and TUG tests was identified in the adult male group, showing values of (ICC = 0.81) and (ICC = 0.80) for the 4 × 10 m and TUG test, respectively, which are presented in Table 2.

Figures 1 and 2, through Bland-Altman Plots, illustrate the agreement between the 5R-STS test and the agility 4 × 10 m (s) and TUG tests, for the group of adolescents and adults depending on sex.

Fig. 2. Bland Altman Plots for the 5R-STS test and the TUG in adolescents and adults of both sexes with ID. Bland Altman Plots for the analysis of agreement between the 5R-STS and TUG tests. The sample is represented at each point on the graph by transmitting the average value of the two evaluations (x-axis) and the difference between the two evaluations (y-axis). The mean difference was the estimated bias, and the standard deviation (SD) of the fluctuations around this mean, outliers are considered above 1.96 and under –1.96 SD (outlier). The center line shows the mean difference between the analyzed tests and upper and lower limits of agreement of the 95% CI for the difference between means. (A): Male adolescents; (B): Female adolescents; (C): Male adults; (D): Female adults.

Discussion

This study aimed to validate the 5R-STS test as a measure of strength and functional capacity in adolescents and adults with ID. Results indicate strong and significant correlations between the 5R-STS and both upper and lower extremity strength tests, as well as functional tests for adolescents and adults with ID across both sexes. Correlation analyses showed the strongest associations in the adult female group, while the highest intraclass correlation was observed in the adult male group.

The 5R-STS test has been used as an indirect measure of lower extremity muscle strength in various populations, including children with cerebral palsy, who have an average performance time of 28.9 s³⁹, individuals with Parkinson's disease, averaging 20.25 s²⁶, and patients with multiple sclerosis, where the test has been validated⁴⁰. Literature reports a cut-off of 11.64 s for assessing fall risk and functional independence in older adults⁴¹, while another study demonstrated normative values of 12.6 s for people aged 70 to 79 years²⁵. The average values obtained in the present study were 9.54 s in adolescents (women: 9.68; men: 9.47) and 10.87 s in adults (women: 12.06; men: 9.86). According to these data, the female adults in the present study present similar values to older people. Compared to studies of the same test in other populations⁴², people with ID have 19.3% of lower performance. The reported values of people with ID are even similar to those of older people with knee and hip osteoarthritis¹³, even determining that the average performance of people with osteoarthritis is higher than the performance obtained by the female adult group from this study.

Previous studies have determined that people with ID have lower limb strength compared to people without disabilities⁴³. Likewise, other studies in people with ID indicate that this group not only has lower levels of general strength, but also has less muscle mass and less explosive strength in the lower limbs, which translates into a risk factor that affects their functional capacity^{44,45}. This may be due to certain barriers that affect social participation, added to the lack of physical stimuli received by this population, a shortage of exercise programs in special schools and the low participation and inclusion of people with ID in sports activities both inside and outside of the school context⁴⁶. This participation may be limited by the lack of infrastructure and suitable spaces for the implementation of physical activity programs, as well as by the limited experience and training of physical activity professionals to work in special education settings⁴⁷. In addition to the above, Yu et al.⁴⁸ identified other barriers related to personal factors, including biomedical conditions inherent to the disability, lower self-confidence, lack of parental support, insufficient or inaccessible facilities, and the lack of appropriate programs which can predispose this population to a decline of physical fitness and, consequently affect performance on this particular test.

The 5R-STS is influenced by nutritional status, where people with ID with a higher BMI took longer to perform the test⁴⁹, indicating lower functional capacity and lower limb strength. Likewise, male groups present better performance than female groups, which is repeated in previous studies in people with and without ID^{18,28,50,51} and translates into a lower functional capacity for the female group. However, it has been shown that after a training plan both performance and body composition are improved⁵², which suggests physical exercise as a good alternative to improve these parameters within this population, being even more beneficial when combined with a nutritional intervention that influences the eating habits of the participants^{53,54}. Following this line, both the 5R-STS test and the TUG test are used to evaluate the strength and functionality of lower limbs, so, in studies in other populations, similar values are observed in both tests, yielding strong correlations and being presented as alternative tests to measure functional capacity^{42,55,56}.

A previous study demonstrated that the 5R-STS test had also correlations with the handgrip strength test, where the group of participants with a higher level of strength had better performance in 5R-STS and TUG⁵⁷, which may be due to handgrip is considered an indicator of general strength. Regarding the results of this study, both the adolescent and adult groups had higher values in men than in women in all the measurements, which coincides with previous studies carried out in people with and without ID^{18,50,51}. Reference values in a previous

study even determine that, in women, AHGS has been declining since adolescence and this reaches average values below the cut-off point established as the risk of sarcopenia in older people³⁵.

The 5R-STS test presents a strong negative correlation with the CMJ test⁵⁸, which aligns with the results of the present study. Previous research has noted low CMJ scores in individuals with ID, likely due to higher levels of inactivity in this population⁵⁹. Since the CMJ assesses lower-limb strength and power, and power is recognized as a marker of health, the 5R-STS test may serve as a proxy for survival rates and overall health⁶⁰. This suggests that individuals with lower CMJ scores may be at a higher risk of premature mortality. Additionally, recent studies have demonstrated that jump strength can be protective against obesity, with established cut-off points in relation to the waist-to-height index at 17.1 cm for adolescents and 12.9 cm for adults, and in relation to BMI of 14.2 cm and 8.9 cm for adolescents and adults, respectively²³. Another study used the 5R-STS test among with the agility test 4 x 10 m to assess functional capacity in people with ID, where average values similar to those presented in this study were obtained for both tests³⁷.

In accordance with our results, other investigations have validated functional tests using indirect tests, as is the case of the validation of the 5R-STS in older adults with total hip arthroplasty⁶¹, with an r value = 0.73 with the TUG test and an ICC of 0.98 with the step test. The study by Goldberg et al.⁶² establishes a correlation between the previous tests with an r value = 0.64 in a sample of older adult women, similar to the values declared for the adult women in the present study ($r=0.63$). Another study with similar characteristics carried out on a sample of patients with coronary artery disease showed positive correlations of the 5R-STS test of r value = 0.53 with the 6-minute functional walk test⁶³. Likewise, the study by Sánchez-González et al.⁶⁴ validated the 10-meter walking speed test using the TUG test as a reference in a sample of adolescents with Down syndrome. In this study, the 5R-STS test has a high correlation with the handgrip, CMJ, agility 4 x 10 m and TUG tests, demonstrating that it is useful for measuring functional capacity, specifically lower extremity strength in the ID population. This is related to a previous study where associations were found between functional and dynamometric tests of hand pressure and trunk extensor strength³⁷. Most of the concordance analyzes reported in the literature in people with ID are intra-rater reliability analyzes²⁰, contrasting the use of the same test, but at different moments in time⁶⁵, however the internal consistency analyzes cannot be contrasted with the results of the present study, as they are analysis methodologies applied to different functional tests.

This study has several limitations. It is a cross-sectional study with a convenience sample, and we did not consider the various syndromes associated with ID, nutritional status, or lifestyle habits and behaviors of participants⁶⁶. Additionally, while analyses were stratified by sex, the female sample was smaller than the male sample, and the study included only adolescents and adults, excluding younger children. Furthermore, gold-standard tests were not used for correlation purposes. Despite these limitations, the study's sex-stratified data helps to address the gender gap in ID research and offers meaningful insights into functional differences between men and women with ID. The sample also represents a group that is under-researched and difficult to access, and the findings offer valuable groundwork for future research. Lastly, by using an accessible test, this study provides a practical opportunity for replication and further investigation into strength and functional capacity in individuals with ID.

Conclusion

The 5R-STS test shows significant correlations with the HGS, CMJ and agreement with the agility 4 x 10 m and TUG tests. This supports its validity as a simple, safe, and effective tool for assessing overall muscle strength and functional capacity in individuals with ID. Given its low cost, we recommend its use by professionals in educational and healthcare settings as a straightforward measure for monitoring preventive or therapeutic needs in adolescents and adults with ID.

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Received: 19 April 2024; Accepted: 21 November 2024

Published online: 05 December 2024

References

1. Lopez-Jaramillo, P., Lopez-Lopez, J. P., Tole, M. C. & Cohen, D. D. Muscular strength in risk factors for Cardiovascular Disease and Mortality: A narrative review. *Anatol. J. Cardiol.* **26**, 598–607. <https://doi.org/10.5152/AnatolJCardiol.2022.1586> (2022).
2. Lang, J. J. et al. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: An overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. *Br. J. Sports Med.* **58**, 556–566. <https://doi.org/10.1136/bjsports-2023-107849> (2024).
3. Booth, F. W. & Zwetsloot, K. A. Basic concepts about genes, inactivity and aging. *Scand. J. Med. Sci. Sports.* **20**, 1–4. <https://doi.org/10.1111/j.1600-0838.2009.00972.x> (2010).
4. Johnson, A. A., English, B. W., Shokhirev, M. N., Sinclair, D. A. & Cuellar, T. L. Human age reversal: fact or fiction? *Aging Cell.* **21**, e13664. <https://doi.org/10.1111/ace.13664> (2022).
5. Subías-Perié, J. et al. Prevalence of metabolic syndrome and association with physical activity and frailty status in Spanish older adults with decreased functional capacity: A cross-sectional study. *Nutrients* <https://doi.org/10.3390/nu14112302> (2022).
6. Schalock, R. L., Luckasson, R. & Tassé, M. J. An overview of intellectual disability: Definition, diagnosis, classification, and systems of supports. *Am. J. Intellect. Dev. Disabil.* **126**, 439–442. <https://doi.org/10.1352/1944-7558-126.6.439> (2021). 12th ed.
7. Wouters, M., van der Zanden, A. M., Evenhuis, H. M. & Hilgenkamp, T. I. M. Feasibility and reliability of tests measuring Health-related physical fitness in children with moderate to severe levels of intellectual disability. *Am. J. Intellect. Dev. Disabil.* **122**, 422–438. <https://doi.org/10.1352/1944-7558-122.5.422> (2017).
8. Rabiee, A., Vasaghi-Gharamaleki, B., Samadi, S. A., Amiri-Shavaki, Y. & Alaghband-Rad, J. Working memory deficits and its relationship to Autism Spectrum disorders. *Iran. J. Med. Sci.* **45**, 100–109. <https://doi.org/10.30476/ijms.2019.45315> (2020).

9. Tungate, A. S. & Conners, F. A. Executive function in Down syndrome: A meta-analysis. *Res. Dev. Disabil.* **108**, 103802. <https://doi.org/10.1016/j.ridd.2020.103802> (2021).
10. Sánchez, J. G. S. & Vázquez, D. J. Beneficios Del Ejercicio Físico Sobre La Autoeficacia Y El Aprendizaje en Estudiantes: Revisión Sistemática Y Metaanalítica. *J. Sport Health Res.* **16** (2024).
11. Oppewal, A. & Hilgenkamp, T. I. M. Adding meaning to physical fitness test results in individuals with intellectual disabilities. *Disabil. Rehabil.* **42**, 1406–1413. <https://doi.org/10.1080/09638288.2018.1527399> (2020).
12. Alcántara-Cordero, F. J., Gómez-Piriz, P. T., Sánchez-López, A. M. & Cabeza-Ruiz, R. Feasibility and reliability of a physical fitness tests battery for adults with intellectual disabilities: the SAMU DIS-FIT battery. *Disabil. Health J.* **13**, 100886. <https://doi.org/10.1016/j.dhjo.2020.100886> (2020).
13. Cofré-Bolados, C. et al. Validación Del test 5 repeticiones de sentarse y levantarse en adultos mayores con artrosis en extremidades inferiores. *J. Sport Health Res.* **13**, 99–106 (2021).
14. Welch, S. A. et al. The short physical performance battery (SPPB): A quick and useful Tool for fall risk stratification among older primary care patients. *J. Am. Med. Dir. Assoc.* **22**, 1646–1651. <https://doi.org/10.1016/j.jamda.2020.09.038> (2021).
15. Knapik, A. et al. The relationship between physical fitness and health self-assessment in elderly. *Med. (Baltim.)* **98**, e15984. <https://doi.org/10.1097/md.00000000000015984> (2019).
16. Casajús, J. A., Vicente-Rodríguez, G., González-Agüero, A. & Matute-Llorente, Á. Hand span influences optimal grip span in adolescents with Down syndrome. *Nutr. Hosp.* **34**, 626–631. <https://doi.org/10.20960/nh.612> (2017).
17. Beqaj, S., Tērshnjaku, E. E. T., Qorolli, M. & Zivkovic, V. Contribution of physical and motor characteristics to functional performance in children and adolescents with Down Syndrome: a preliminary study. *Med. Sci. Monit. Basic. Res.* **24**, 159–167. <https://doi.org/10.12659/msmbr.910448> (2018).
18. Hsu, W. L. et al. Hand strength and dexterity in patients with prader-Willi syndrome: a pilot intervention study. *J. Int. Med. Res.* **46**, 4669–4677. <https://doi.org/10.1177/0300060518788243> (2018).
19. Tejero-González, C. M. et al. Reliability of the ALPHA health-related fitness test battery in adolescents with Down syndrome. *J. Strength. Cond. Res.* **27**, 3221–3224. <https://doi.org/10.1519/JSC.0b013e31828bed4e> (2013).
20. Martín-Díaz, P., Carratalá-Tejada, M., Molina-Rueda, F. & Cuesta-Gómez, A. Reliability and agreement of the timed up and go test in children and teenagers with autism spectrum disorder. *Eur. J. Pediatr.* **182**, 3577–3585. <https://doi.org/10.1007/s00431-023-05027-8> (2023).
21. Smith, J., DiVito, M. & Fergus, A. Reliability and discriminant validity of the quantitative timed up and go in typically developing children and children with cerebral palsy GMFCS levels I-II. *J. Pediatr. Rehabil. Med.* **16**, 25–35. <https://doi.org/10.3233/prm-210034> (2023).
22. Bertapelli, F., Pitetti, K., Agiovlasitis, S. & Guerra-Junior, G. Overweight and obesity in children and adolescents with Down syndrome-prevalence, determinants, consequences, and interventions: A literature review. *Res. Dev. Disabil.* **57**, 181–192. <https://doi.org/10.1016/j.ridd.2016.06.018> (2016).
23. Ferrero-Hernández, P. et al. Cut-off points for isometric handgrip and low limb explosive strength in relation to indicators of overweight/obesity in people with intellectual disabilities: analysis by age groups. *J. Intellect. Disabil. Res.* **67**, 1124–1135. <https://doi.org/10.1111/jir.13069> (2023).
24. González-Ravé, J. M., Turner, A. P. & Phillips, S. M. Adaptations to swimming training in athletes with Down's syndrome. *Int. J. Environ. Res. Public. Health.* **17** <https://doi.org/10.3390/ijerph17249175> (2020).
25. Bohannon, R. W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. *Percept. Mot. Skills.* **103**, 215–222. <https://doi.org/10.2466/pms.103.1.215-222> (2006).
26. Domingues, V. L., Pompeu, J. E., de Freitas, T. B., Polese, J. & Torriani-Pasin, C. Physical activity level is associated with gait performance and five times sit-to-stand in Parkinson's disease individuals. *Acta Neurol. Belg.* **122**, 191–196. <https://doi.org/10.1007/s13760-021-01824-w> (2022).
27. Wang, T. H., Liao, H. F. & Peng, Y. C. Reliability and validity of the five-repetition sit-to-stand test for children with cerebral palsy. *Clin. Rehabil.* **26**, 664–671. <https://doi.org/10.1177/0269215511426889> (2012).
28. Farías-Valenzuela, C. et al. Comparación de medidas antropométricas de riesgo cardiovascular, fuerza isométrica y funcionalidad entre adolescentes chilenos de ambos sexos con discapacidad intelectual. *J. Sport Health Res.* **13**, 75–86 (2021).
29. Muñoz-Bermejo, L. et al. Test-Retest Reliability of Five Times sit to stand test (FTSST) in adults: a systematic review and Meta-analysis. *Biology (Basel)* **10** <https://doi.org/10.3390/biology10060510> (2021).
30. Koriakin, T. A. et al. Classification of intellectual disability using the Wechsler Intelligence Scale for children: full scale IQ or General abilities Index? *Dev. Med. Child. Neurol.* **55**, 840–845. <https://doi.org/10.1111/dmcn.12201> (2013).
31. Ramírez, V. & Rosas, R. Estandarización Del WISC-III en Chile: Descripción Del Test, Estructura Factorial Y Consistencia Interna De Las Escalas. *Psykhe (Santiago)* **16**, 91–109 (2007).
32. Rosas, R. et al. Estandarización De La Escala Wechsler De Inteligencia Para Adultos: Cuarta Edición en Chile. *Psykhe (Santiago)* **23**, 1–18 (2014).
33. Ukegbu, T. E. et al. Waist-to-height ratio associated cardiometabolic risk phenotype in children with overweight/obesity. *BMC Public. Health* **23** (2023).
34. Medicine, A. C. o. S. *ACSM's guidelines for exercise testing and prescription*. (Lippincott williams & wilkins, (2013).
35. Farías-Valenzuela, C. et al. Reference values of Absolute and relative handgrip strength in Chilean schoolchildren with intellectual disabilities. *Child. (Basel)* **9** <https://doi.org/10.3390/children9121912> (2022).
36. Wolan-Nieroda, A. et al. Assessment of rehabilitation effects in children with mild intellectual disability. *Sci. Rep.* **13**, 15541. <https://doi.org/10.1038/s41598-023-42280-1> (2023).
37. Farías-Valenzuela, C. et al. Pruebas dinamometricas y desempeño funcional en adolescentes con discapacidad intelectual moderada. *J. Sport Health Res.* **11** (2019).
38. Hinkle, D. E., Wiersma, W. & Jurs, S. G. *Applied Statistics for the Behavioral Sciences* (Houghton Mifflin, 1998).
39. Chaovalit, S., Dodd, K. J. & Taylor, N. F. Sit-to-stand training for self-care and mobility in children with cerebral palsy: A randomized controlled trial. *Dev. Med. Child. Neurol.* **63**, 1476–1482. <https://doi.org/10.1111/dmcn.14979> (2021).
40. Dos Santos, F. C., Candotti, C. T. & Rodrigues, L. P. Reliability of the five times sit to stand test performed remotely by multiple sclerosis patients. *Mult. Scler. Relat. Disord.* **73**, 104654. <https://doi.org/10.1016/j.msard.2023.104654> (2023).
41. Porto, J. M., Peres-Ueno, M. J., de Matos Brunelli Braghin, R., Scudilio, G. M. & de Abreu D. C. C. Diagnostic accuracy of the five times stand-to-sit test for the screening of global muscle weakness in community-dwelling older women. *Exp. Gerontol.* **171**, 112027. <https://doi.org/10.1016/j.exger.2022.112027> (2023).
42. Makizako, H. et al. Predictive cutoff values of the five-times sit-to-stand test and the timed up & go test for disability incidence in Older people Dwelling in the community. *Phys. Ther.* **97**, 417–424. <https://doi.org/10.2522/ptj.20150665> (2017).
43. Blomqvist, S., Olsson, J., Wallin, L., Wester, A. & Rehn, B. Adolescents with intellectual disability have reduced postural balance and muscle performance in trunk and lower limbs compared to peers without intellectual disability. *Res. Dev. Disabil.* **34**, 198–206. <https://doi.org/10.1016/j.ridd.2012.07.008> (2013).
44. Merchán-Baéza, J. A., Pérez-Cruzado, D., González-Sánchez, M. & Cuesta-Vargas, A. Development of a new index of strength in adults with intellectual and developmental disabilities. *Disabil. Rehabil.* **42**, 1918–1922. <https://doi.org/10.1080/09638288.2018.1543464> (2020).
45. Hartman, E., Smith, J., Westendorp, M. & Visscher, C. Development of physical fitness in children with intellectual disabilities. *J. Intellect. Disabil. Res.* **59**, 439–449. <https://doi.org/10.1111/jir.12142> (2015).

46. Bossink, L. W. M., van der Putten, A. A. & Vlaskamp, C. Understanding low levels of physical activity in people with intellectual disabilities: A systematic review to identify barriers and facilitators. *Res. Dev. Disabil.* **68**, 95–110. <https://doi.org/10.1016/j.ridd.2017.06.008> (2017).
47. McDermott, G., Brick, N. E., Shannon, S., Fitzpatrick, B. & Taggart, L. Barriers and facilitators of physical activity in adolescents with intellectual disabilities: An analysis informed by the COM-B model. *J. Appl. Res. Intellect. Disabil.* **35**, 800–825. <https://doi.org/10.1111/jar.12985> (2022).
48. Yu, S., Wang, T., Zhong, T., Qian, Y. & Qi, J. Barriers and facilitators of physical activity participation among children and adolescents with intellectual disabilities: A scoping review. *Healthc. (Basel.)* **10**. <https://doi.org/10.3390/healthcare10020233> (2022).
49. Pataky, Z., Armand, S., Müller-Pinget, S., Golay, A. & Allé, L. Effects of obesity on functional capacity. *Obes. (Silver Spring)* **22**, 56–62. <https://doi.org/10.1002/oby.20514> (2014).
50. Cuesta-Vargas, A. & Hilgenkamp, T. Reference values of grip Strength measured with a Jamar Dynamometer in 1526 adults with Intellectual Disabilities and compared to adults without intellectual disability. *PLoS One.* **10**, e0129585. <https://doi.org/10.1371/journal.pone.0129585> (2015).
51. Ramírez-Vélez, R. et al. Normative reference values for Handgrip Strength in Colombian schoolchildren: the FUPRECOL Study. *J. Strength. Conditioning Res.* **31**, 217–226. <https://doi.org/10.1519/jsc.0000000000001459> (2017).
52. Naczk, A., Gajewska, E. & Naczk, M. Effectiveness of swimming program in adolescents with down syndrome. *Int. J. Environ. Res. Public. Health.* **18** <https://doi.org/10.3390/ijerph18147441> (2021).
53. Harris, L. et al. A cluster randomised control trial of a multi-component weight management programme for adults with intellectual disabilities and obesity. *Br. J. Nutr.* **118**, 229–240. <https://doi.org/10.1017/s0007114517001933> (2017).
54. Kim, Y. S., Moon, J. H., Hong, B. K. & Ho, S. H. Effect of a multicomponent intervention program on Community-Dwelling People with Intellectual Disabilities. *Ann. Rehabil. Med.* **44**, 327–337. <https://doi.org/10.5535/arm.19124> (2020).
55. Pieper, B., Templin, T. N. & Goldberg, A. A comparative study of the five-times-sit-to-stand and timed-up-and-go tests as measures of functional mobility in persons with and without injection-related venous ulcers. *Adv. Skin. Wound Care.* **27**, 82–92. <https://doi.org/10.1097/01.Asw.0000442876.94332.26> (2014). quiz 93–84.
56. Abd Elkader, S. M., Al-Shenqiti, A. M. & El-Gohary, T. M. Timed up and go and five Times sit to stand test among community ambulant, overweight, obese Saudi elderly population. *J. Pak Med. Assoc.* **72**, 1306–1310. <https://doi.org/10.47391/jpma.1270> (2022).
57. Yokozuka, M., Okazaki, K., Hoshi, M., Shiine, A. & Fukumoto, T. Effects of self-management exercise group participation in community-dwelling older adults. *BMC Geriatr.* **22**, 814. <https://doi.org/10.1186/s12877-022-03509-2> (2022).
58. Santos, C. A. F. et al. Vertical Jump tests: A safe instrument to improve the Accuracy of the functional Capacity Assessment in Robust Older Women. *Healthc. (Basel.)* **10** <https://doi.org/10.3390/healthcare10020323> (2022).
59. Hassani, A. et al. Differences in counter-movement jump between boys with and without intellectual disability. *Res. Dev. Disabil.* **35**, 1433–1438. <https://doi.org/10.1016/j.ridd.2014.03.034> (2014).
60. Eglseer, D., Poglitsch, R. & Roller-Wirnsberger, R. E. Muscle power and nutrition. *Z. Gerontol. Geriatr.* **49**, 115–119. <https://doi.org/10.1007/s00391-015-1008-7> (2016).
61. Özden, F., Coşkun, G. & Bakurhan, S. The test-retest reliability and concurrent validity of the five times sit to stand test and step test in older adults with total hip arthroplasty. *Exp. Gerontol.* **142**, 111143. <https://doi.org/10.1016/j.exger.2020.111143> (2020).
62. Goldberg, A., Chavis, M., Watkins, J. & Wilson, T. The five-times-sit-to-stand test: validity, reliability and detectable change in older females. *Aging Clin. Exp. Res.* **24**, 339–344. <https://doi.org/10.1007/bf03325265> (2012).
63. Wang, Z. et al. Reliability and validity of sit-to-stand test protocols in patients with coronary artery disease. *Front. Cardiovasc. Med.* **9**, 841453. <https://doi.org/10.3389/fcvm.2022.841453> (2022).
64. Sánchez-González, J. L. et al. Reliability and validity of the 10-Meter walk test (10MWT) in adolescents and young adults with Down Syndrome. *Child. (Basel.)* **10** <https://doi.org/10.3390/children10040655> (2023).
65. Reguera-García, M. M., Leirós-Rodríguez, R. & Fernández-Barro, E. Alvarez-Barrio, L. Reliability and Validity of the six spot step test in people with intellectual disability. *Brain Sci.* **11** <https://doi.org/10.3390/brainsci11020201> (2021).
66. Pérez-Mármol, M., Chacón-Cuberos, R., Belmonte-Arévalo, A. B. & Gamarra-Vengoechea, M. A. & Castro-Sánchez, M. Desempeño académico y autoconcepto como mediadores de hábitos saludables: modelo lineal en adolescentes. *J. Sport Health Res.* **16** (2024).

Acknowledgements

To the Vice-Rectory for Liaison with the Environment (VIME), University of Santiago de Chile and Special Olympics, Chile.

Author contributions

C.F-V and C.S-S conceived, designed, and helped write and revise the manuscript; C.F-V, S.E-L, C.C-B and G. LS were responsible for coordinating the study, contributed to the intellectual content, and reviewed the manuscript. G.F, C.S-S, P.D-M, P.F-H and E.R-V helped write and revise the manuscript. All authors contributed to the study design, critically reviewed the manuscript, and approved the final version.

Declarations

Competing interests

The authors declare no competing interests.

Ethics approval

University of Granada, Spain, code 2052 / CEIH / 2021.

Additional information

Correspondence and requests for materials should be addressed to C.F.-V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2024