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Abstract: 

We are continuously bombarded by external inputs of various timescales from the 
environment. How does the brain process this multitude of timescales? To answer this, 
we review recent studies. They show a hierarchy of intrinsic neural timescales (INT) with 
a shorter duration in unimodal (visual cortex, auditory cortex, etc.) and a longer duration 
in transmodal regions (default mode network, etc.). The unimodal-transmodal hierarchy 
is present in both shorter and longer timescales across acquisition modalities (EEG/MEG, 
fMRI), in both rest and task states, and across different species. Together, this evidence 
shows that the hierarchy of INT is central to temporal integration (joining/combining 
successive stimuli) and segregation (separating successive stimuli) of external inputs 
from the environment, including their prediction and prediction error. 

 



Manuscript  TICS-D-21-00156 

2 

 

The brain processes inputs of different timescales 

Far from a passive experience, watching a movie requires complex skills. One must jointly 

consider the spoken language, visual effects, and background music, each of which 

contains a multitude of timescales. For example, language is comprised of words, 

sentences, and paragraphs that operate on a continuum of timescales, from shorter to 

longer [1]. We attribute meaning to language by temporally integrating words, sentences, 

and paragraphs, joining or combining those that come one after the other. Furthermore, 

we relate this to the background music we hear and the visual stimuli we see. How can 

the brain respond to this range of timescales and integrate them into one coherent whole? 

In this review, we explore how the brain (i) integrates – combines one stimulus after the 

other—and (ii) segregates – separates one stimulus after the other - different timescales 

from various environmental inputs. 

Various studies observed that the brain carries temporal receptive windows (TRW; see 

Glossary). The concept of TRW was first introduced in 2008 [2] and, analogous to spatial 

receptive fields [3–6], refers to temporal windows through which the brain processes, i.e., 

integrates and segregates, information. These TRW process the temporal duration of 

ongoing inputs [7–14]. Specifically, unimodal regions, like the primary sensory cortices, 

process short duration stimuli such as words [1,11]. In contrast, higher-order or 

transmodal regions, such as the lateral and medial prefrontal cortex and the default-

mode network (DMN), can process much longer segments such as whole paragraphs 

[1,8,10,11,13,15,16]. These findings, obtained in fMRI [1,2,11], EEG/ECoG [13,17], and 

single unit recordings [10], show that the brain’s neural activity contains different 

timescales during task states which are related to different timescales in the external 

inputs. 

In line with these observations, recent findings show that the brain’s resting state (or 

spontaneous activity) also carries an elaborate intrinsic temporal hierarchy [10,12–14,18]. 

This hierarchy can be measured by the autocorrelation window (ACW), which 

computes the degree to which neural activity correlates with itself across its own various 

timepoints [3–5,9,10,19] (see Box 1 for different methods of calculating ACW). Unimodal 

regions show a shorter ACW than higher order cortical areas. In contrast, the higher-order 
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transmodal regions exhibit longer timescales, thus a larger ACW [9,10,24,12–14,18,20–

23]. This unimodal-transmodal hierarchy of the resting state’s ACW is consistent with that 

of the TRW described above. 

What is the role of these different intrinsic neural timescales (INT) in the brain’s 

processing of external inputs? A central construct of interest in this review, INT serves as 

an umbrella term referring to the temporal durations, i.e., timescales, of the brain’s neural 

activity. How are INT involved in the temporal integration and segregation of inputs (see 

[11] for the first study linking TRW and INT)? Do INT play a role in inferring future inputs, 

with an empirical prior and prediction error, as discussed in predictive coding [25]? In 

addressing these questions, we first review recent findings of INT on the system-level, 

i.e., network-level of the brain (Figure 1) in resting state and task states. Both rest and 

task states feature a unimodal-transmodal hierarchy of INT (see [19] for a discussion of 

the cellular basis of INT). Next, we discuss the role of temporal integration and 

segregation (see Glossary for a specific definition of these terms) of ongoing inputs, as 

well as how they are involved in producing an empirical prior. This is extended by 

highlighting how the implementation of INT is vital in brain-based robotics (Box 2), and 

outstanding questions (see Outstanding Questions). 

Intrinsic neural timescales display unimodal-transmodal hierarchy  

Hierarchy of timescales along unimodal and transmodal regions 

INT have been investigated in both human and non-human species. Single-cell 

recordings in non-human primates revealed that, during the prestimulus interval [10], time 

windows (i.e., ACW) are longer in transmodal regions and shorter in unimodal regions 

(see also [3–5]). Unimodal-transmodal differences in ACW were confirmed in subsequent 

modelling studies that used either a non-human primate-based connectivity matrix [9,26–

28] or a standard model of synchronization, i.e., Kuramoto model [29] (0.01 to 0.1Hz) (see 

also [30–34], below). 

Are analogous unimodal-transmodal differences in INT present in humans?  Indeed, a 

series of recent resting state fMRI studies support this. Using either small [11,35] or large-

scale [4,12,18] fMRI datasets, longer ACW in transmodal regions of the central-executive 

networks (CEN), dorsal attention networks (DAN), and DMN have been observed. In 
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contrast, unimodal regions exhibited shorter ACW. Interestingly, analogous temporal 

gradients in the ACW of subcortical regions such as the hippocampus have also been 

observed [18]. Interestingly, another study [18] observed analogous temporal gradients 

in the ACW of subcortical regions, such as the hippocampus. Together, these studies 

suggest that the hierarchy of INT along the unimodal-transmodal gradient is present in 

both non-human primates and humans during resting state activity in both cortical and 

subcortical regions. 

In addition to these INT differences, resting state brain activity, especially in humans, has 

been investigated for its inter-regional functional connectivity (FC). FC can be calculated 

between regions in both unimodal and transmodal networks [36,37]. The measurement 

of INT, however, is based on intra-regional activity, as reflected in the ACW. This 

difference raises questions about the relationship between intra-regional ACW and inter-

regional FC.  

Two recent fMRI studies [12,18] addressed this relationship. They demonstrate a positive 

relationship between ACW and FC. Specifically, they found that longer intra-regional 

ACW is related to higher degrees of FC between that region and all other brain regions 

(see also [38–43]). Transmodal regions with longer ACW display stronger FC to other 

regions. In contrast, unimodal regions with their shorter ACW are less connected (FC) to 

other regions in both non-human primates [44] and humans 

[12,14,49,50,18,23,26,38,45–48] (see [51–57] for cellular- and population-based 

feedback mechanisms of inter-regional connectivity yielding intra-regional timescales; 

see also  [3–5] and [19,28] for more details on the cellular basis of INT including excitation 

and inhibition).  

Together, these findings show that the unimodal-transmodal hierarchy of short- and long-

time windows holds across different timescales and modalities, i.e., single cell recordings, 

EEG/MEG, and fMRI, as well as across different species, i.e., non-human and human 

primates. Therefore, this supports the view that the unimodal-transmodal hierarchy of 

neural timescales is an intrinsic feature of the brain’s temporal organisation that holds 

across different species. Moreover, INT are closely related to inter-regional FC, 

suggesting convergence of the brain’s intrinsic temporal and spatial organisation [14,58].  
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Intrinsic neural timescales are modulated during task states  

Does the unimodal-transmodal hierarchy of INT also shape neural activity during task 

states? A recent study using the Human Connectome Project data [14] examined the 

unimodal-transmodal hierarchy during resting state, as well as during three different task 

states (motor, story-math (see Glossary), and working memory). Using MEG, they 

demonstrated that the hierarchy of unimodal-transmodal (i.e., periphery-core) temporal 

differences in the ACW is also manifested in task states, thus exhibiting task-general or 

task-unspecific effects (see also [3]). Moreover, the resting state’s hierarchy of ACW in 

unimodal-transmodal networks highly correlates (r - values of 0.8 to 0.9) with the 

unimodal-transmodal ACW distribution during all three task states. Finally, other studies 

show that the length of INT is directly related to the magnitude of task-related activity with 

regions exhibiting longer INT inducing higher task-related changes [12,59].  

Are there also task-specific changes in the ACW? To measure this, a study [14] 

subtracted the ACW task cortical maps from the ACW resting state cortical maps to obtain 

task-related effects independent of the resting state. The subtraction yielded strong 

shortening of the ACW in transmodal regions, especially during the story-math task. No 

significant task-specific changes in ACW duration were observed in transmodal regions 

during the motor or working memory tasks. Interestingly, the reverse pattern was found 

in unimodal regions; here the ACW showed task-specific changes in motor and working 

memory but not in the story-math task. 

How could one specific task like story-math shorten the duration of the ACW in transmodal 

regions, while maintaining the duration of the ACW in unimodal regions and vice versa in 

another task? Tentatively, we speculate that task-specific dissociations between 

unimodal and transmodal regions may be related to the temporal structure of the task 

itself, that is, its continuous (subsequent timepoints) versus discontinuous (discrete) 

nature [60]. For example, story-math is a more continuous paradigm (with 30s blocks) 

that requires longer timescales for integrating various inputs. In contrast, motor and 

working memory tasks are typical event-related discrete paradigms that recruit shorter 

timescales to achieve high temporal segregation [60].  
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These findings suggest that the different timescales of unimodal and transmodal regions 

may mediate the extent to which each region is able to accommodate the timescales and 

temporal structure of the task itself. More direct support comes from a recent EEG study 

[61]. They show that INT modulate the degree to which neural activity in alpha/beta, i.e., 

spectral power changes, relate to the input itself, in this case, a looming sound. The longer 

the ACW, the better stimulus-related alpha/beta power correlate with the physical 

intensity (dB) of a three second looming sound, and the faster the subject’s reaction times 

in noting the sound [61]. Albeit tentatively, these and other data (see also [3–5,10,62] 

suggest a direct relationship between the length of INT with the temporal structure of the 

external input.  

Together, these findings show the prevalence of the unimodal-transmodal hierarchy of 

INT during task states, thus shedding light on the possibility of studying the relationship 

between the duration of INT and the temporal structure of external task demands. Are 

INT thus key in mediating temporal integration and segregation of ongoing inputs during 

task states? This shall be the focus in the next section. 

Intrinsic neural timescales shape cognition  

Temporal receptive windows  

Is there more direct evidence for a key role of INT in temporal integration [63–65] and 

segregation? Multiple empirical investigations [11,16,48,66–71] (see [7] for review) 

highlight the importance of INT in shaping cognition. These studies reveal that different 

brain regions mediate different timescales of the external stimulus, i.e., different regions 

may segregate or integrate the inputs according to different stimulus durations. 

These studies showed that shortened temporal segments of external stimuli - single 

words of stories or short segments in movies - are processed preferentially in lower-order 

unimodal sensory regions. In contrast, longer intervals in the stimulus material - whole 

paragraphs in stories or longer segments in movies - are related to activity changes in 

higher order transmodal regions. In this way, continuous external input streams – a story 

or music – are segregated and integrated according to the temporal structure of different 

input durations. 
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Segregation and structuring of external input streams have been described by the 

concept of TRW. TRW refer to time windows of varying lengths in the brain’s neural 

activity that are related to the length of sensory information, i.e., the duration of input 

features. For example, continuous sensory input streams from music or movies are 

segregated by the brain’s INT into different temporal segments or time windows of shorter 

and longer duration [5,7,11,16,66].  

Temporal segregation has also been complemented by temporal integration. For 

instance, single letters are combined into one word within a short time window in the 

shorter timescales of the unimodal cortex. However, the timescales of the unimodal 

primary auditory or visual regions are too short to combine several words into one 

sentence as that requires longer timescales. Combining words in sentences thus recruits 

regions such as the middle temporal gyrus (or even prefrontal cortex), which exhibit 

longer INT and are thus higher in the unimodal-transmodal hierarchy of INT [7] (Figure 

2). 

Together, these data strongly support the involvement of INT in temporal segregation and 

integration of input streams [29,59,72]. Specifically, shorter, and longer TRW in unimodal- 

and transmodal regions allow for temporal segregation and integration. As such, the brain 

attempts to match duration of INT with the duration of ongoing input streams (words, 

sentences, paragraphs etc.) [7,66–68,73,74].  

Given that the unimodal-transmodal hierarchy of INT is preserved across different 

species, this allows for the exciting possibility of an evolutionary shaping and genesis 

[8,75,76]; the brain’s connection to its respective environmental context, which manifests 

in its capacity for segregating and integrating inputs, may be a result of evolution. This is 

supported by the observation of analogous unimodal-transmodal hierarchies of INT on 

cellular [3–5,10], biochemical [77], and regional [14,18,23,78] levels of both human and 

non-human primates [75,76]. 

From temporal windows to cognition 

INT have been associated with a variety of different forms of cognition in both non-human 

and human primates. Non-human primate data [10] shows that a longer ACW in the 

prefrontal cortex is associated with longer delays in a delay discounting task. Other non-
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human studies demonstrate that a longer ACW is associated with stronger spatial 

response coding in the delay period during a non-match-to-goal task [79], and modulates 

working memory performance during later periods, i.e., delay [44] (see also [3,80] and 

[19,81] for INT in perception and decision making). 

In humans, recent fMRI and/or EEG studies demonstrate that the resting state’s ACW is 

directly related to higher-order cognition, such as the level of consciousness [82,83], the 

sleep stage [84], the sense of self [85–88], and psychiatric disorders like schizophrenia 

and autism [22,35,89]. One study even measured INT during the drawing of different 

emotions - participants were instructed to draw the scenes of the following emotions 

(excitement, anger, depression, etc.) - which yielded different durations of ACW during 

subjects’ drawing process [90].  

TRW have been associated with process memory [7]. Process memory, a refined form of 

working memory, is based primarily on the temporal features that process memory 

contents (like longer or shorter duration) (see also [91] for a discussion of ‘temporal 

memory’ as distinguished from ‘cognitive memory’). Other studies linked the INT to 

decision making [3,80] and the impact of reward on visual perception [10,19].  

A recent review associates the longer TRW of transmodal regions with internally oriented 

cognition, while the shorter TRW of unimodal regions is more related to externally 

oriented cognition [8]. This association of the transmodal regions’ longer INT with 

internally oriented cognition is supported by recent studies on the self and ACW. Applying 

fMRI [92] and EEG [85], it was observed that higher degrees of self-consciousness (as 

measured by the Self-Consciousness Scale) are related to longer INT in the resting state, 

especially in the cortical midline regions of the DMN. Longer INT indexing higher degrees 

of temporal integration thus appear to favor our internal self over the external non-self, 

i.e., environment, which, presumably requires stronger degrees of temporal segregation. 

But is this association of self-consciousness related to higher degrees of temporal 

integration? This was addressed by a recent EEG study [87]. They first measured resting 

state activity and then conducted a psychological self-task. In this task, subjects were 

required to associate self- (geometric shapes previously assigned to the participants) and 

non-self-specific (geometric shapes previously assigned to other people) stimuli across 
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different time delays (from 200 ms to 1400 ms). Their findings demonstrate that the self-

specific effect of accuracy was preserved across all temporal delays, with inter-subject 

variation. That, in turn, was related to the length of the resting state ACW: the longer the 

ACW, the stronger the preservation of the self-specific effect across different time delays 

on the psychological level.  

This suggests that temporal integration, especially of self-specific inputs across different 

timescales, is mediated by the length of INT. If correct, alterations in INT could lead to 

changes in cognition about one’s self. This is indeed supported by a recent EEG study in 

schizophrenia: subjects showed an abnormally long ACW which mediated their self-

disturbances, including their relation to negative schizophrenic symptoms [89] (see also 

[90]). 

The INT are also related to consciousness. Another EEG study [84] demonstrated that 

increasing loss of consciousness - N1 to N3 sleep during different degrees of sedation in 

anesthesia, and unresponsive wakefulness syndrome (UWS) - is related to an increase 

in the length of the ACW. In contrast, subjects who lost their motor function but preserved 

their consciousness (such as in locked-in syndrome and/or amyotrophic lateral sclerosis) 

did not show such lengthening of their ACW. Abnormally long INT have also been 

observed in fMRI of subjects in light and deep anesthesia and subjects with disorders of 

consciousness [82].  

These studies suggest that even when not exposed to actual multiscale inputs from the 

external environment, the resting state still exhibits its own INTs, which index its capacity 

for processing potential inputs. Since they investigated only resting state activity, the 

ACW can only be indirectly related to specific input processing. However, converging 

these results with studies on task-related activity and INT [1,2,11,58,66,93] it is plausible 

to suggest that, when someone suffers a flattening of neural timescales to abnormally 

long durations, the ability to process inputs according to the normal temporal hierarchy, 

as well as a balanced relationship between segmentation and integration, is impaired or 

lost. This is, for example, the case in sleep where we can still be awakened at any time 

by sufficiently strong external inputs: the brain capacity or the predisposition to input 

processing is preserved [94,95]. In this regard, as Andrillon and colleagues have shown 
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in their studies, neural activity related to the semantic content of stimuli is conserved in 

light NREM sleep, so that consciousness is not a necessary condition for several input 

processing activities (e.g., integration and segregation on the neural level). On the 

contrary, this remains impossible in total anesthesia and coma, where even the strongest 

external input will not awaken the individual, suggesting that the brain’s capacity or 

predisposition for input processing is lost.   

Together, these findings support the key role of INT in mediating temporal integration and 

segregation in higher-order cognition like process memory, self, and consciousness. 

Future studies are warranted to probe for specifically temporal integration versus 

segregation during different kinds of input constellations in the different forms of 

perception [96] and cognition (Figure 3).  

Intrinsic neural timescales mediate temporal integration and segregation  

From unimodal-transmodal hierarchy to temporal integration and segregation 

What are the mechanisms through which the INT shape behavior and cognition? The 

observation of shorter TRW in unimodal and longer TRW in transmodal regions suggests 

a key role for temporal integration and segregation. Here, temporal integration refers to 

the summing of different inputs [58]: despite their occurrence at different timepoints, 

successive inputs are nevertheless lumped, or smoothed, together within one neural 

activity whose duration is based on the region’s time window, i.e. its INT. Longer windows 

with longer INT, as in transmodal regions, will thus favor temporal integration. Hence, 

temporally distinct inputs lead to a temporally extended longer lasting neural activity 

change. 

In contrast, temporal segregation refers to the degree to which different inputs at different 

points in time are separated in their respective neural activity. Here, temporally distinct 

inputs lead to temporally distinct, and thereby short, neural activity changes. This requires 

high temporal precision [58], which is favored by the shorter INT of the unimodal regions. 

Together, we suppose a close relationship between the length of INT and the duration of 

neural activity changes in response to inputs; this mediates the latter’s temporal 

integration and segregation. One would expect that neural activity changes are generally 

short in unimodal regions whereas they may be longer in transmodal regions. This is 



Manuscript  TICS-D-21-00156 

11 

 

indeed supported by computational models.  Using a non-human primate-based large-

scale computational model, the authors in [9] applied pulse input stimulation to the 

primary visual cortex. The computational results show that the activity in transmodal 

regions (here the anterior cingulate cortex) takes much longer to decay back to baseline 

resting state levels when compared to the rapid activity decay seen in unimodal regions 

(here the visual cortex). This converges with other computational modelling studies 

showing that a longer duration of ACW in rest is related to slower responses to external 

inputs such as TMS [29] or electrical stimulation [9,26] (when compared to a shorter 

duration of ACW).  

Together, these computational results suggest that the differential timescales along the 

unimodal-transmodal hierarchy exert differential effects on the temporal duration and 

course of task-related neural responses to the same input. The shorter and longer INT of 

unimodal- and transmodal regions lead to shorter and longer task-related responses 

respectively.  

In addition to the duration of the INT of a particular region, input duration can also be 

considered. Inputs of shorter and longer duration may exert a differential impact on 

unimodal- and transmodal regions as their task-related activity is driven by the different 

durations of their respective INT (Figure 4). 

Together, these observations suggest that the different durations of the INT in unimodal- 

and transmodal regions are related to different durations in their task-related activity. 

These, in turn, favor different degrees of temporal integration and segregation of inputs 

whose duration, i.e., their input statistics, is also to be considered. Briefly, regions with 

longer INT favor temporal integration and longer-lasting inputs in particular. Regions with 

shorter INT tilt the balance towards temporal segregation with shorter-lasting inputs.  

From temporal integration/segregation to prediction 

Predictive coding (PC) is a theory in which the difference between an observation and its 

predicted value (the prediction error) is minimized through reciprocal interactions in a 

hierarchy of cortical areas [97]. This PC framework [25] suggests a ‘hierarchy of 

prediction’ [101,102] in the brain as higher order transmodal regions send a prediction to 

the next lower region. This prediction sent to the lower level is then compared to the 
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observation at this level, and the prediction error (the difference) is produced. The 

prediction error from this lower level is then sent back to the higher level, where it adjusts 

the observation, which in turn changes the prediction. In this way, the hierarchy of top-

down modulation [98–100] of lower-order unimodal regions from higher-order transmodal 

regions as postulated in PC [25] converges with the unimodal-transmodal hierarchy of 

INT. 

As stated in a recent paper [101], findings suggest a ‘hierarchical feedforward-feedback 

cascade’. The inferior frontal cortex, which lies at the apex, yields top-down predictions 

to the superior temporal gyrus, which in turn sends prediction error signals back to the 

inferior frontal cortex (Figure 5) [103]. The cascade continues to the primary auditory 

cortex. In this way, the empirical prior in each level is the prediction from the previous 

level [25,104]. There is thus a hierarchy from transmodal to unimodal regions in the brain 

– we therefore speak of ‘transmodal-unimodal hierarchy of predictions’ (Figure 5).  

How is the prediction hierarchy related to the temporal hierarchy of INT? In both temporal 

and prediction hierarchies, transmodal regions stand at the apex of the hierarchy while 

unimodal sensory regions are located at the base. This suggests a close relationship of 

the prediction hierarchy with temporal integration and segregation.  

The longer timescales of transmodal regions, especially the DMN, are ideally suited for 

integrating different inputs over longer stretches or windows of time. That, as we 

tentatively suppose, may be key for yielding the empirical priors requisite for top-down 

modulation of lower-order unimodal regions. In contrast, unimodal regions exhibit shorter 

timescales which are ideal for segregating incoming inputs they receive from higher order 

transmodal regions, yielding a prediction error. Together, we assume that through 

different degrees of temporal integration and segregation, the unimodal-transmodal 

temporal hierarchy of INT is key for processing along the unimodal-transmodal hierarchy 

of predictions. 

Albeit tentatively, we suppose that the timescales and their hierarchy of prediction may 

thus be strongly shaped by INT, the details of which remain to be determined. This would 

lend support to the notion of ‘deep temporal models’ or ‘temporal thickness’ [107] in the 

context of PC [31,107]. 
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Concluding Remarks 

Recent evidence from both humans and non-human primates demonstrates that the brain 

displays its own hierarchy of INT. Unimodal regions show shorter timescales while 

transmodal regions exhibit longer ones. This temporal hierarchy is present during rest 

and task states, where the INT have been described as ‘temporal receptive windows’. 

INT are also instrumental in mediating behavior and cognition-like processes (memory, 

self, and consciousness) including their different manifestations in unimodal- and 

transmodal regions. Together, these findings strongly point towards a key role of INT in 

temporal segmentation, with temporal integration and segregation of input streams. That, 

in turn, may provide a temporal underpinning of prediction, i.e., PC in its hierarchy. 

The involvement of INT in behavior and cognition raises the question for the temporal 

structure underlying the latter. Do the INT structure and organize the contents of our 

cognition including mental features like self and consciousness [108]? The contents 

themselves may be strongly shaped by the balance of temporal integration and 

segregation mediated by the INT of the various regions and networks. Finally, the 

preservation of INT across different species raises the prospect that we, as humans, 

share how we process and thus temporally integrate and segregate environmental 

information to a certain degree. That suggests a deeper evolutionary origin of INT, 

including their unimodal-transmodal hierarchy. This, in turn, may allow for similar temporal 

integration and segregation of the shared environmental input streams across different 

species. 
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Box 1: Different ways of measuring ACW and methodological considerations 
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The estimation of the duration and characteristics of the INT have been carried out with 

different methodologies. Most of these methods rely on the previous calculation of the 

autocorrelation function to later estimate its slope or its fall in different percentages, 50% 

and 0% [12,14,38]. However, there are other methods that, for example, are based on an 

analysis of the lag through a generalization of the Pearson correlation [18] or on the 

calculation of autoregressive models with exogenous inputs for the simultaneous 

estimation of multiple intrinsic timescales [3]. 

Yet another methodological issue is the frequency range within which the ACW is 

calculated. For example, the timescales considered in single cell recordings from non-

human primates are much shorter than those of human fMRI, which operates in the range 

of 0.01 to 0.1Hz (100 to 10s). While the unimodal-transmodal hierarchy of INT has been 

well demonstrated in single cell recordings [3–5,10] and in the infraslow frequency domain 

of fMRI [12,18,22,23,35], the frequency range of EEG/MEG was yet to be determined.  

This gap was addressed in two recent MEG studies [14,26], which again show longer 

ACW in transmodal regions and shorter ACW in unimodal regions (Figure 2). Finally, it 

shall be noted that the ACW is usually computed across all frequencies (broadband), 

though it was recently computed in individual frequency bands in EEG [61]. In conclusion, 

despite the variety of the methods, modalities and frequency ranges used, all of these 

studies show similar hierarchy and topology in the neural patterns, which reinforce not 

only the robustness of these methods, but also the reliability of the results: INT and their 

hierarchy hold across different timescales. 

Box 2: From INT to brain-based Robotics 

Robots are equipped with sensors and actuators, giving them the capacity to navigate 

and continuously interact and align with the environment. However, these capacities 

would fall short under circumstances where the agent fails to carry the neural 

predisposition necessary to align with the input statistics from the environment, which 

ultimately carry multiple timescales – music is an example of multi-dimensional data. Is 

there a particular system design whereby its robotic implementation may ensure 

continuous matching/alignment with environmental stochastics? 
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To properly dance to the rhythm of the music, we propose that the implementation of INT 

in brain-based robotics can endow artificial agents with the ability to segregate and 

integrate multi-dimensional input statistics. The implementation of INT in robots may be 

achieved by constructing a deep multi-layered network that follows a unimodal-

transmodal hierarchy (Figure IIA). Here faster and slower timescales would be associated 

with unimodal and transmodal layers respectively. Based on this topographic 

organization, the network may display a gradient a fast-slow timescales, with activity that 

is then directly linked to the agent’s sensorimotor apparatus. In turn, this one-to-one 

correspondence between multi-layered network activity and behavior can be directly 

linked to the external inputs. For example, the embodiment of INT would provide the agent 

with the capacity to segregate and integrate external inputs according to their duration – 

directly assessing its ability to align to the rhythm of certain music features over others 

(Figure IIB). Finally, if the robot carries a limited number of timescales (e.g., single layer 

network with single frequency activity), the agent may fail to carry the neural 

predisposition necessary to align with the multitude of timescales of the music, thus 

dancing either too fast or too slow to the rhythm of the music. 

Glossary 

• Autocorrelation window (ACW): measures temporal integration in the time domain 

as the full-width-at-half-maximum (FWHM) of the autocorrelation function. 

• Input processing: the concept of input can be understood more precisely by referring 

to sensory or exteroceptive inputs from the external environment (visual, auditory, or 

somatosensory inputs). A wider meaning would also include the input from the own 

body, the interoceptive input. Finally, resting state spontaneous brain activity can 

serve as internal input, e.g., auditory hallucination and dreams.  

• Intrinsic neural timescales (INT): refers to temporal windows of neural activity during 

which neural activity is strongly correlated with itself. They are intrinsic to the brain 

because they are present in the resting state, independent of task-evoked activity. 

Moreover, the different brain regions (unimodal, transmodal) exhibit different durations 



Manuscript  TICS-D-21-00156 

16 

 

in their temporal windows; therefore, one can speak of multiple timescales in the 

brain’s neural activity. 

• Neural predispositions of consciousness (NPC): refer to necessary but insufficient 

neural conditions of consciousness; the neural correlates of consciousness (NCC) are 

sufficient for the actual manifestation of consciousness. 

• Predictive coding (PC): an instance of active inference referring to the capacity to 

predict a forthcoming input, the empirical prior, which is then compared with the actual 

input, thereby yielding a prediction error. 

• Story-math task: Human Connectome Project (HCP) task containing an auditory 

story presentation (5-9 sentences adapted from a colletion of Aesop’s fables) with 

questions and math problems (simple addition/subtraction problems). The 

approximate length of the full story-math recording was 3.8 minutes. 

• Temporal prediction: refers to the capacity to predict the next input; longer INT may 

yield an earlier prediction of the next input than shorter INT. The length of INT can 

influence the predictability of the next input with longer timescales potentially yielding 

an earlier prediction (Box 1). 

• Temporal receptive windows (TRW): refer to the duration of meaningful external 

inputs like words (short), sentences (longer), and paragraphs (very long). The INT 

may provide temporal windows that receive and process inputs of different durations 

(see main text for details and references). 

• Temporal integration: refers to summing of different inputs at different timepoints of 

neural activity based on specified regional timescales (sentences may be pooled 

together within one paragraph by one long time window of neural activity).   

• Temporal segregation: refers to the parsing of different inputs at different timepoints 

of neural activity based on specified regional timescales (a sentence may be parsed 

into words and ultimately letters by short time windows of neural activity).  

• Transmodal regions: cortical regions that process inputs from different sensory 

modalities (visual, auditory, etc.) including higher-order regions (prefrontal cortex). 
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• Unimodal regions: cortical regions that are lower-order sensory regions 

(primary/secondary visual cortex, auditory cortex). They are defined by processing 

exclusively inputs of one sensory modality (visual, auditory, etc.).  
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Figure Legends: 

Figure 1: Intrinsic neural timescales (INT). Top shows a schematic view of various 

timescales present in the brain (repertoire of timescales) alongside their unimodal or 

transmodal hierarchy (little red circles in brains). Increase in the length of the timescales 

is associated with their position in the spatial hierarchy of the brain. Bottom shows a 

schematic view of the role of intrinsic neural timescales in temporal segmentation 

including both temporal integration and segregation as well as prediction of inputs. The 

input contains different timescales (first box); for example, if the input is a paragraph in a 

book, the paragraph contains shorter timescales (syllables, words) and longer timescales 

(sentences). The input is segregated using these timescales (second box), and each 

timescale in the input is matched to a timescale in the brain through temporal integration 

(third box). Continuing with the example of the paragraph, the syllables and words are 

matched to the shorter timescales in your brain while the sentences are matched to the 

longer timescales in your brain. The combination of temporal integration and segregation 

yields the prediction error (fourth box). The prediction error, therefore, is the difference 

between the relevant timescale in your brain (shorter timescale) to the related timescale 

of the input (words). 

Figure 2: INT across the unimodal-transmodal axis. Top left: the timescales (ACW) in 

an EEG topographical plot of the brain. Healthy controls data previously published in 

[109]. Top right: the hierarchy of timescales in an fMRI spatial map [14]. Bottom: the 

schematic illustration of INT across the unimodal-transmodal axis of the brain. 

Figure 3: Temporal segmentation with temporal integration and segregation 

according to different repertoires of neural timescales in different states. This is an 

attempt to converge the results of various studies [1,2,11,58,66,83,84,93,94]. The ACW 

shows the different lengths of the INT repertoire and its topographic distribution. In awake 

and healthy subjects (A), the wide repertoire of timescales and balance between long and 

short INT correspond to sampling the input statistics in a fine-grained and temporally 

differentiated way; every detail of the chase scene is parsed across multiple levels of 

duration. Long segmentation: the integration of the two lines in the dialogue; mid-level 

segmentation: the distinction of the lines and the structure of the sentences; short 
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segmentation: the ability to separate and select every single word or syllable. Instead, in 

different sleep stages such as N1 (B), N2 (C), and impaired states of consciousness or 

under anaesthesia (D), the ratio between long and short INT becomes unbalanced, as 

the ACW shows a progressive reduction of the INT repertoire towards abnormally longer 

timescales. This corresponds to the loss of ability to segment the input series in detail, 

resulting in the coarse-grained integration of all stimuli into long time windows. From a 

phenomenological perspective, this consists of lumping together all words of the dialogue, 

as well as all frames of the scene, until the subject is no longer able to segment and 

process the stimuli in any temporal order and duration (as in deep anaesthesia and severe 

disorders of consciousness).  

Figure 4: Input segregation-integration along the unimodal-transmodal hierarchy. 

A: Successive pulse inputs to primary visual cortex (V1) are differentially processed along 

the unimodal-transmodal hierarchy. Here, unimodal regions separate successive inputs 

while transmodal regions join or combine them (top). Schematically, area V1 treats the 

inputs as three distinct instantiations while anterior cingulate cortex (area 24c) treats them 

as a single instantiation (bottom). B: During a single pulse input of long duration, area V1 

activity is fast-acting at input onset and short-lasting at input offset, whereas area 24c is 

slow-acting and long-lasting, respectively. C: Fast frequency activity in area V1 (purple 

inset) yields shorter ACW relative to the slow frequency activity in area 24c (red inset), 

which yields longer ACW.  

Figure 5: Hierarchy of cortical areas (feedforward-feedback cascade) and 

timescales related to Predictive Coding [101]. Primary cortical areas (e.g., early 

auditory cortex) receive external sensory input (music notes). The number and repertoire 

of timescales in this primary sensory area is large. At the top of the hierarchy (inferior 

frontal cortex), higher order areas have a smaller number and repertoire of timescales. In 

this ‘feedforward-feedback cascade’ [101], higher order areas provide ‘top-down 

predictions’ to lower order areas. At the same time, these higher order areas receive 

prediction error signals from lower order areas [103].  

Figure I: Implementation of INT in brain-based robotics using deep multi-

layered networks. A: Robots can carry multimodal sensory and 
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motor capacities, making them suitable candidates for embodying a hierarchical 

organization of INT that follows the unimodal-transmodal hierarchy. B: Input segregation-

integration can be directly tested in these agents, particularly in dynamic settings such 

as in music, which carries multiple timescales. As such, robots that operate only over fast 

timescales may carry the capacity for segregating music features, but not for integrating 

them. Consequently, the agent may dance too fast relative to the rhythm of the music 

(left). In contrast, robots that only exhibit slow frequencies would dance too slowly, 

missing out on the input processing of faster rhythms (middle). Finally, constructing a 

robot that carries both slow and fast frequencies would allow for both segregation and 

integration of input statistics, thus enabling the agent to dance to the rhythm of 

the music (right). 
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