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ABSTRACT

Purpose: First-pass perfusion cardiovascular MR (FPP-CMR) enables the non-invasive diagnosis of microcirculation and coro-
nary artery disease. In free-breathing FPP-CMR, motion correction is usually performed in the image domain, requiring an initial
reconstruction. This fact hinders its use in model-based and deep learning reconstructions, which present remarkable performance
in obtaining high-quality images from highly accelerated acquisitions. We address this challenge by estimating and correcting
respiratory motion in free-breathing FPP-CMR directly in k-space.

Methods: We propose K-CC-MoCo, an inter-frame rigid motion correction approach formulated exclusively in k-space that han-
dles dynamic contrast through a specifically targeted design of the normalized cross-correlation (CC) objective function to deal
with the dynamic contrast. In addition, an ROI-based coil-compression approach was employed to focus the optimization on the
heart region. The proposed method was compared to state-of-the-art image-based registration using a digital phantom and real
free-breathing acquisitions with different accelerations.

Results: The proposed k-space-based method is approximately 2x faster and can correct respiratory motion even at high acceler-
ation factors (up to 50x), where the image-based method fails due to severe undersampling artifacts. Notably, after K-CC-MoCo,
the time-averaged images are visibly less blurred. Quantitative metrics (SSIM, etc.) support this conclusion.

Conclusion: K-CC-MoCo outperforms image-based correction in free-breathing FPP-CMR acquisitions accelerated up to 50X.
Respiratory motion is estimated and corrected in k-space, enabling its use for model-based and/or deep learning reconstructions
from highly accelerated scans.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.

© 2026 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
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1 | Introduction

First-pass perfusion cardiovascular MR (FPP-CMR) enables
non-invasive detection of myocardial perfusion abnormalities
caused by both epicardial coronary stenosis and microvascu-
lar dysfunction [1, 2]. An FPP-CMR protocol involves acquiring
a sequence of contrast-enhanced images during the rapid pas-
sage of a contrast bolus through the heart [3]. The assessment
of dynamic images is routinely performed visually by skilled
reporters; however, quantitative FPP-CMR has emerged as a
more objective approach for detecting perfusion defects by con-
verting MR signal intensity changes into maps of myocardial
blood flow.

In a conventional FPP-CMR protocol, there is a trade-off between
heart coverage, and both temporal and spatial resolution; typ-
ically, 3-4 short-axis slices are acquired with approximately
2.5mm? in-plane spatial resolution in a total time of approxi-
mately 60s [3]. To deal with cardiac motion, data acquisition
is commonly synchronized with the electrocardiogram (ECG)
signal to ensure that images for each slice are captured dur-
ing the same cardiac position, and patients are instructed to
hold their breath to minimize frame misalignments caused by
respiratory motion. Recently, there is a growing preference for
acquiring images during free-breathing, as it offers increased reli-
ability, particularly for ill patients who struggle to hold their
breath, and enhanced patient comfort [4, 5]. Consequently, the
integration of respiratory motion correction (MoCo) approaches
before the myocardial perfusion quantification is essential in
free-breathing acquisitions. Also, for addressing residual motion
resulting from suboptimal breath-holding, particularly during
adenosine-induced stress protocols.

Additionally, to improve resolution and coverage, data should
be acquired as fast as possible. One of the main acceleration
strategies consists of undersampling the k-space over time below
the Nyquist limit followed by a specific reconstruction method
such as k-t SENSE [6], compressed sensing (CS) [7] or low-rank
plus sparse (L+S) [8] among others. Recently, deep learning
and model-based reconstruction methods have taken the stage,
demonstrating unprecedented results in producing high-quality
images from highly accelerated acquisitions [9-11]. However, in
the presence of respiratory motion, images produced by these
techniques can display considerable degradation in image qual-
ity, once again highlighting the importance of MoCo.

Motion can be accounted for either prospectively or retrospec-
tively. Prospective respiratory MoCo has been performed using
prospective slice tracking (PST) [12]; however, this technique
requires a dedicated navigator setup and is susceptible to the
quality of the navigator signal. Additionally, the precision of the
PST correction is affected in stress protocols due to the higher
heart rate and changes in respiratory motion [13]. FastNAV [14] is
also a prospective MoCo method based on a right hemidiaphragm
(RHD) navigator with a subject-specific tracking factor instead of
a fixed one. However, it requires a calibration process that has
only been tested on rest protocols, not in stress [14].

Regarding retrospective MoCo, various methods have been devel-
oped for FPP-CMR, which use multimodal metrics to deal with

image intensity changes caused by the dynamic contrast. Typ-
ically, motion estimation occurs in the image domain using
image-based registration algorithms. Thus, the obtained defor-
mation fields can be modeled as either rigid [15, 16] or non-rigid
[17-21] transformations. Non-rigid registration methods should
theoretically provide better correction [22]; however, they may
be more sensitive to variations in signal-to-noise ratio (SNR),
contrast-to-noise ratio (CNR), and are prone to blurring and geo-
metric distortions.

The common pipeline for obtaining motion-corrected images
consists of an initial reconstruction to obtain dynamic images
that enable the estimation of motion followed by a subsequent
motion-compensated reconstruction [4, 5, 23-26] In some cases,
this process is performed iteratively several times [27]. This
pipeline is not only time-consuming but also difficult to integrate
with model-based and deep learning reconstruction methods.

Alternatively, motion could be retrospectively esti-
mated/corrected directly in the k-space domain, avoiding the
need for an initial reconstruction, which notably reduces the
computational burden. Additionally, MoCo methods in k-space
could potentially achieve increased performance at high accel-
eration factors (AFs), where initially-reconstructed images
present poor quality. Although some methods for k-space-based
MoCo have been proposed, these have not been applied to
undersampled FPP-CMR data [28-31]. Specifically, Huttinga
et al. [28] proposed a forward model in which the k-space value
at a given time instant is generated from the warped version
of a reference object whose image is available. However, the
requirement of a prior available reference image may represent
a limitation of this approach. More recently, Olausson et al. [32]
proposed an extension of the MR-MOTUS framework to cardiac
MR, in which the reference image is not assumed to be static,
thereby accommodating contrast changes, for example. In this
method, the solution iteratively alternates between estimating
the deformation field and reconstructing the motion-corrected
images.

In this work, we propose K-CC-MoCo, a cross-correlation (CC)
based rigid inter-frame respiratory MoCo method for highly
accelerated FPP-CMR data formulated exclusively in k-space.
Specifically, K-CC-MoCo aims to eliminate the effect of res-
piration motion in free-breathing ECG-triggered FPP-CMR
by aligning the heart position along the different frames. The
method was tested on a digital phantom, a DICOM dataset with
40 patients, and also on raw k-space data. The experiments were
performed with AFs from 10X to 50x.

2 | Theory

Let I (r) and [I.(r), denote two complex images. The
cross-correlation (CC) between them can be expressed as

CC(I;.1,)(@x) =1,(x) % I'(-r), (1)

where r € Z? denotes the spatial coordinate, x is used for con-
volution and * is the complex conjugate. Thus, according to the
convolution theorem, CC can also be computed in the Fourier
domain
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F{CC(I.1,)®)} = S, (K)S(K), 2)
where S,(k) and S (k) denote the k-space versions of images
I,(r) and [ (r), respectively, and k € Z* denotes the k-space

coordinate.

If we take the inverse Fourier transform, we obtain
-1 _ 1 * Jj27kr
FYF{cC(I,I1,)m)}} = szlsf(k)sc K2 (3)

where N represents the total number of samples. Since this
equation is valid for all values of r, we can set r = 0, which yields

cc(1,,1,) = cC(s,,S,) = %Zsf(k)sj(k) ©
k

Correspondingly, we can also define the normalized
cross-correlation (NCC) in k-space as

2 Sy 0S5 k)

V5,00 Sy 5.0

NCC(S;.S,) = ©)

where the denominator is expressed in k-space according to Par-
seval’s theorem.

In this work, to be robust against the strong intensity
variations caused by the dynamic contrast, we define a
Gaussian-normalized cross-correlation (GNCC) in k-space com-
puted between the reference k-space S,(k) and the corrected
k-space S.(k; ©) corresponding to each frame. Specifically, the
registration metric employed is

GNCC(S,,S,) =
Yo (5, - S,00G®) (5:(k; 6) — 57 (k; O)G(K))

\/ 2k |Sf(k> - Sf<k)G(k>|2§|Sc(k; 0) - 5,.(k; O)G(K)|*
=V(6) (6)

where G(K) is a Gaussian function used to minimize the influence
of contrast changes located in the center of the k-space. The cor-
rected k-space S, (k; ©) is defined as the rigidly corrected version
of the moving k-space S,,(k) with a rigid transformation defined

0] . .
OR , where subscript R stands for rotation
T

and T for translation. For the particular case of a 2-dimensional
(2D) correction, these parameters are defined by O, = [91] and

or =10, 65]".

by parameters © =

Thus, the corrected k-space is defined as
S.(k; 0) = S, (RTk)e/ >0k, )

where RT is the inverse of a rotation matrix with parameters
Oy and S,,(k) denotes the k-space values of the original moving
image. Note that we exploit the fact that a rotation and a transla-
tion of the object in image-space corresponds to an identical rota-
tion and a linear phase-shift of its Fourier transform in k-space,
respectively.

Then, the minimization problem is formulated as

o= arg m@in — |V (©)? (8)

A detailed formulation of the approach can be found in
Appendix A.

3 | Methods
31 | Data
3.1.1 | Digital Phantom

Fully-sampled FPP-CMR data was generated with MRXCAT [33]
using the following parameters: one slice, FOV = 320 x 320 mm?,
in-plane resolution=1.6 x 1.6mm?, slice thickness=5mm,
TR/TE/TS =2/1/150 ms, flip angle = 15, contrast agent dose =
0.075 mmol/kg, contrast agent relaxivity = 5.6 L/mmol/s, and 32
time frames. Different noise levels were simulated on the data
using MRXCAT with different values of the contrast-to-noise
ratio (CNR) parameter*: Inf (i.e., without noise), 20, 10, 5, and 1.
Afterwards, sensitivity maps for 16 receiver coils were simulated.
One thousand instances of random translations (between —4 and
4 voxels) and rotations (between ~*/,s and */,¢ rad) are inde-
pendently simulated in the k-space of each frame. In addition,
to model different breathing patterns, we simulated a motion
scenario in which the foot-head translation parameter followed
an asymmetric sawtooth pattern, while the other two parameters
were set to zero. Two motion amplitudes were evaluated for the
varying parameter to model shallow and deep breathing pat-
terns. Specifically, the translation parameter 6, varied between
—1 and 1 voxels and between —4 and 4 voxels, respectively.
K-space data were undersampled following a golden-angle radial
(k,t)-sampling in Cartesian grid [34, 35] with 32, 16, 8, and 4
spokes per frame, which corresponds to AF of approximately 6X,
10x, 20%, and 45x," respectively. For the sake of completeness,
we also tried different sampling patterns; thus, k-space data
were also undersampled following a golden-angle pseudo-spiral
sampling [36] with 16, 10, and 6 spirals per frame (i.e., AFs
of 35%, 55x and 90x) and a Gaussian variable-density random
undersampling along the phase encoding direction with 20, 10,
and 5 lines per frame (i.e., AFs of 10x, 20x and 40X).

3.1.2 | Undersampled DICOM Dataset

Forty patients underwent a free-breathing REST/STRESS
FPP-CMR protocol at CNIC with Institutional Review Board
(IRB) approval. Data were acquired on a Philips Elition X
3T MRI scanner (Philips Healthcare, Best, The Netherlands)
using the following parameters: three slices, FOV =300 X
300mm?, in-plane resolution=2.6 X 2.6 mm?, in-plane recon-
struction resolution=1.35%1.35, slice thickness=10mm,
TR/TE/TS=2.45/1.15/80ms, flip angle=15°, compressed
sensing=2.3, partial Fourier of 75%, scan time=60s, and
approximately 60 and 90 time frames for REST and STRESS,
respectively. In this work, only the mid slice was employed.
In addition, only DICOM data was available; thus, sensitivity
maps for 16 receiver coils were simulated. Afterwards, k-space
data were retrospectively generated from multi-coil images and
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undersampled following a golden-angle radial (k,t)-sampling
in Cartesian positions with AF ranging from 25X (8 spokes per
frame) to 50x (4 spokes per frame)".

3.1.3 | Undersampled Raw k-Space Dataset

A free-breathing REST FPP-CMR acquisition was performed
in one patient with IRB approval. FPP-CMR acquisition was
conducted in a Philips Elition X 3T MRI scanner (Philips
Healthcare, Best, The Netherlands) with the following
parameters: 64 frames, three slices, FOV =350x% 350 mm?,
in-plane resolution=2.0x2.0mm?, slice thickness=10mm,
TR/TE/TS=2.57/1.27/194.06 ms, flip angle=15". A total of six
coil-compressed virtual channels were used from 28 independent
coil elements.

Acquisition was performed following a golden-angle radial
(k,t)-sampling scheme with 27 spokes per frame. Afterwards, dif-
ferent undersamplings were carried out in a radial basis, namely,
with 14, 9, and 5 spokes per frame (i.e., AF of 15x%, 22x, 40X,
respectively) changing the sampling pattern from each dynamic
scan. The k-space was then gridded to a Cartesian grid and the
coil sensitivity maps were estimated using ESPIRIT [37].

3.2 | K-CC-MoCo

The proposed approach performs pairwise registration in the
k-space domain to align each frame of the dynamic images
to a common reference, following the pipeline represented in
Figure 1. The registration is performed against a synthetic refer-
ence computed as the pointwise k-space mean across time. In this
manner, we pursue the following goals: (a) to enhance the robust-
ness of the algorithm by capturing overall contrast and position,

Complementary Gi(k)
Heart ROI

Heart ROI
) P

%_J

Multi-coil Coil-compressed

undersampled undersampled
4 Nx x Ny

k-space k-space
U(k) S(k)

ROVir
coil-compression

Nx x Ny x Nt x Nc

N ‘ ’_

and (b) to artificially compensate for the missing information by
generating a synthetic reference with a reduced undersampling
factor. In addition, this synthetic reference is weighted by a Gaus-
sian filter G, (k), which was used to damp the influence of high
spatial frequencies given than, due to rotating radial sampling
pattern, only a few samples coincide at the same position. The
standard deviation (o) of the Gaussian G, (k) was empirically set
to 20 AK units.

To focus the cost function on the heart region, we used a
region-optimized virtual (ROVir) coils approach [38] to compress
multi-coil k-space into a single virtual coil in which the ROI sig-
nal is maximized and the signal outside the ROI is minimized.
Note that respiratory motion implies, to a large extent, a rigid
transformation of the heart region, although smaller elastic defor-
mations may also occur. However, outside the heart region, for
example, in the abdominal cavity, the deformations caused by res-
piration are highly non-rigid. Thus, in order to identify the heart
region, we employed a simple sum-of-squares (SoS) approach,
that is, root-mean-square average of the zero-filled images associ-
ated with the different coils, to reconstruct the multi-coil under-
sampled k-space into a dynamic image in which the ROI of the
heart is detected. This ROI can be manually delineated or auto-
matically identified; for the latter, we computed the standard
deviation from all frames and, afterwards, the largest connected
region with higher standard deviation was detected. An square
ROI (defined as Q), whose size was empirically set to 80 x 80 pix-
els, was selected around this connected region.

Motion estimation and correction for each frame is performed
in three steps: (1) the rotation is estimated and corrected
in the coil-compressed undersampled k-space, (2) the trans-
lation is estimated and corrected in the rotation-corrected
coil-compressed undersampled k-space, and (3) a rigid transfor-
mation (i.e., rotation and translation) is applied to the multi-coil

Nx x Ny x Nt frame Motion-corrected
by frame multi-coil
undersampled
k-space
Uc(k)
3
Motion "k

correction

Nx x Ny x Nt x Nc

FIGURE1 | Pipeline of the proposed K-CC-MoCo approach. Using a sum-of-squares (SoS) approach, the multi-coil undersampled k-space U (k) is

reconstructed into a dynamic image I,q in which an ROI of the heart region is detected. Next, ROVir coil-compression is performed to generate a single
virtual coil k-space S(k), in which the signal from the heart ROI Q is maximized, and the signal outside Q (i.e., ® ROI) is minimized. Then, the k-space
of each frame S, (k) is rigidly registered to the synthetic reference S (k) (i.e., pointwise k-space mean across time weighted by a Gaussian filter G, (k)).
Lastly, the multi-coil undersampled k-space is motion-corrected U, (k) with © and ©; parameters previously estimated.
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ALGORITHM1 | Pseudocode for K-CC-MoCo (See Figure 1).

Inputs:
U (k): multi-coil undersampled k-space
Steps:
Reconstruct the sum of squares (SoS) image I5,5(r) from U (k).
Compute the ROI of the heart  on the Ig,(r)
Compute the ROI ® complementary to Q
Compress U (k) into a single virtual coil k-space .S(k) using the
ROVir approach [38] with ROIs Q and @
Compute the Gaussian function G, (k) with o = 20
Compute the synthetic reference k-space .S, (k) as the k-space
mean over time of S(k) weighted by G, (k)
for each frame do
Select the k-space of the current frame ., (k) from the
coil-compressed k-space .S(k)
Estimate the rotation parameters ) R
Apply 2) r to the k-space S, (k)
Estimate the translation parameters @T
Apply O to the rotation-corrected k-space S, (R"k)
Apply the transformation parameters O to U (k).
end for
Outputs
U, (k): motion-corrected multi-coil undersampled k-space

(o] . .
0= [ @R] : rigid transformation parameters
T

undersampled k-space. To avoid interpolation errors in k-space,
which would lead to blurring in the image, rotation is imple-
mented as 3-shears following the method proposed by Unser et al.
[39] (see more details in Appendix A). A pseudocode description
of the algorithm is included in Algorithm 1. The optimization was
solved with a non-linear conjugate gradient algorithm with back-
tracking line search [40].

3.3 | Experiments

Our approach was compared with a robust groupwise
image-based registration method, pTVreg toolbox [18], whose
input arguments were set up to perform rigid registration. The
registration with pTVreg was performed from the SoS recon-
structed dynamic images for the comparison with K-CC-MoCo.
Also, rigid registration with pTVreg was performed from the
fully-sampled dynamic images for obtaining the best achiev-
able MoCo (which can be considered a silver-standard but, for
simplicity, will be hereafter referred to as a reference MoCo). It
is important to note that in these acquisitions the intra-frame
motion can be considered negligible even for fully-sampled
k-spaces. Thus, the motion that we are correcting is the one
occurring inter-frames. In both cases, pTVreg was executed
only on the previously defined ROI (Q) to restrict the MoCo
to the heart region in which the respiratory motion is highly
rigid.

In addition, different evaluation metrics were used to compare
the performance of K-CC-MoCo with respect to pTVreg on the

undersampled DICOM dataset. Specifically, we computed the
structural similarity index (SSIM) [41], the mean squared error
(MSE), the high-frequency signal-to-error ratio (HF-SER) [42],
and the perceptual sharpness index (PSI) [43]. The metrics were
computed on the image obtained by adding the dynamic images
across time in the aforementioned heart ROI (i.e., Q). Thus,
these metrics were computed between the motion-corrected
images (both with K-CC-MoCo and pTVreg) and the refer-
ence MoCo images (except for PSI, which is a non-reference
metric). For baseline comparison, the same metrics were also
computed between the non-motion-corrected and the reference
MoCo images. A Wilcoxon signed-rank test was employed to eval-
uate the differences between the approaches.

The computational burden of both pTVreg and K-CC-MoCo was
also evaluated. Mean execution times were measured across the
40 patients in the undersampled DICOM dataset. Both methods
were executed on the same server (Intel(R) Xeon(R) CPU E5-2697
v4@2.30 GHz, 482 GB RAM) under identical computational load
conditions.

Furthermore, we segmented the myocardium of a few repre-
sentative patients of the undersampled DICOM dataset. The
myocardium is manually delineated on the last frame of the
fully-sampled dynamic image. Next, the rigid transformation esti-
mated for the last frame is applied to the myocardium mask.
For each pixel in the myorcardium, we obtain its time-intensity
curve; then, these curves are averaged across all the pixels in the
same AHA segment [44] of the myocardium. For each averaged
curve, say x[n],1 < n < N, we have calculated its discrete cosine
transform (DCT), X[k],1 < k < N; these coefficients measure
the contribution of a base of cosine functions with increasing fre-
quency with the index k. Hence, the smoother the time-intensity
curve, the more energy will be concentrated in coefficients with
lower k. Consequently, as a measure of curve smoothness we have
represented the normalized cumulative energy of these coeffi-
cients, that is,

J 2
E(j) = —";lx[k] 1< ©)
D X[kT?

where, by construction, 0 < E(j) < 1. It is expected that MoCo
makes E(j) grow faster than for curves from no motion-corrected
images, since curves from the former are expected to have more
low-frequency content, while curves from the latter should be
more ragged due to pixel incoherence (and hence, will have
higher frequency content).

Finally, we investigate with the undersampled raw k-space
dataset whether elastic registration could improve the results
compared to the proposed rigid correction in k-space. To this end,
we compare a pipeline consisting of a cascade of K-CC-MoCo
(i.e., rigid MoCo in k-space) followed by an L+ S reconstruc-
tion [8], to a pipeline of an L+ S reconstruction followed by a
pairwise elastic registration in image space [21]. The elastic reg-
istration utilized was a multimodal pairwise approach based on
NCC. Frame 40, after myocardium enhancement, was used as the
reference.
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4 | Result

4.1 | Digital Phantom

Figure 2 shows, for the digital phantom with radial under-
sampling, the dynamic images with and without MoCo when
motion was estimated from the coil-compressed undersampled
k-space with three different AF (i.e., 10X, 20x, and 45x). Note
that motion is estimated from the coil-compressed undersam-
pled k-space, although the results are shown in the fully-sampled
images to facilitate visualization. In addition, Figures S1 and
S2 show the motion correction results for the digital phantom
with a golden-angle pseudo-spiral sampling [36] and a Gaussian
variable-density random undersampling, respectively. Regarding
the analysis with different noise levels, Figure S3 shows boxplots
of the differences between each estimated and corresponding
ground-truth parameter for different CNRs and AFs in simula-
tions with random combinations of rotations and translations in
the digital phantom with radial undersampling. Figure S4 shows
the estimated rotation (6, ) and translation (6, and 6,) parameters
using K-CC-MoCo with respect to the ground-truth (GT) param-
eters for different AFs in simulations representing shallow and
deep breathing patterns.

4.2 | Undersampled DICOM Dataset

Figure 3 shows the dynamic REST images with MoCo performed
with K-CC-MoCo compared with pTVreg for a representative
patient for different AFs (i.e., 25X and 50x). Similar information
can be found in Figure 4, but for the dynamic STRESS images.

K-CC-MoCo

C. 8 spokes
(AF 20x)

D. 4 spokes
(AF 45Xx)

B. 16 spokes

A. w/o MoCo
(AF 10x)

€

Extended versions of these figures are provided in Figures S5 and
S6, respectively.

Figure 5 shows boxplots of the evaluation metrics (i.e., SSIM,
MSE, and HF-SER) computed using all patients of this dataset, for
the fully-sampled images without MoCo, and the fully-sampled
images with K-CC-MoCo and pTVreg. In all the cases, the metrics
were calculated with respect to the fully-sampled images with the
reference MoCo. Boxplots of the PSI evaluation metric are shown
in Figure S7. Note that motion is estimated from the SoS image in
pTVreg, and from the coil-compressed undersampled k-space in
K-CC-MoCo, but results are shown in the fully-sampled images to
facilitate evaluation of the MoCo. Remarkably, although the per-
formance of pTVreg is comparable to that of K-CC-MoCo at an
AF of 25X, it decreases substantially as the AF increases to 50X
for both REST and STRESS.

Regarding computational burden, the mean execution time for
pTVreg in the REST acquisition was 62.95 and 53.33s for AFs
of 25x and 50X, respectively, while for K-CC-MoCo, the execu-
tion times were 32.00 and 32.38s. In the STRESS acquisition,
pTVreg required 82.80 and 70.68 s for AFs 25x and 50X, respec-
tively, whereas K-CC-MoCo achieved execution times of 45.19
and 41.88s. These timings correspond to the duration needed
to estimate and correct all frames of a single slice. Notably,
K-CC-MoCo is almost twice as fast as pTVreg.

Figure 6 presents the time-intensity curves for the segments of
the myocardium mask of the fully-sampled images, both with
and without MoCo, for a REST acquisition from a representa-
tive patient. Additionally, Figure 7 displays similar information

K-CC-MoCo
16 spokes 8 spokes 4 spokes Reference MoCo
E. Intensity profiles

K & € ¥

w/o MoCo

N ] ¥ o
" o ¥ .

F. Time-averaged images

S CRNCCR Ol

L

FIGURE2 | Digital phantom motion correction (MoCo) using the K-CC-MoCo approach for radial undersampling with acceleration factors (AFs)

of approximately 10%, 20x and 45x. (A) Dynamic images without MoCo. (B) Dynamic images with K-CC-MoCo for 10x acceleration. (C) Dynamic

images with K-CC-MoCo for 20x acceleration. (D) Dynamic images with K-CC-MoCo for 45x acceleration. (E) Intensity profiles in y-t (foot-head) and

x-t (right-left) directions. (F) Average across the frames of the dynamic images without MoCo, with K-CC-MoCo for 10x, 20X, and 45X accelerations,

and for the reference MoCo. Motion correction is estimated from the undersampled k-space in K-CC-MoCo and from fully-sampled images in the

reference MoCo, but the estimated corrections are always shown in the fully-sampled images to facilitate MoCo visualization. Note that in A-D time

increases as shown in the arrow on the left.
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FIGURE3 | Motion correction (MoCo) of a REST acquisition for a representative patient for acceleration factors (AFs) of approximately 25x and
50x%. (A) Intensity profiles in y-t (foot-head) and x-t (right-left) directions. (B) Average across the frames of the dynamic images. Motion correction is
estimated from the SoS image in pTVreg, from the undersampled k-space in K-CC-MoCo, and from fully-sampled images in the reference MoCo, but
the estimated corrections are always shown in the fully-sampled images to facilitate MoCo visualization. See Figure S5 for an extended version of this
figure with the profile definitions.
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FIGURE4 | Motion correction (MoCo) of a STRESS acquisition for a representative patient for acceleration factors (AFs) of approximately 25x and
50x. (A) Intensity profiles in y-t (foot-head) and x-t (right-left) directions. (B) Average across the frames of the dynamic images. Motion correction is
estimated from the SoS image in pTVreg, from the undersampled k-space in K-CC-MoCo, and from fully-sampled images in the reference MoCo, but
the estimated corrections are always shown in the fully-sampled images to facilitate MoCo visualization. See Figure S6 for an extended version of this
figure with the profile definitions.
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index (SSIM), mean squared error (MSE), and high-frequency signal-to-error ratio (HFSER). The metrics were computed for the fully-sampled images

without MoCo, with pTVreg rigid MoCo, and with K-CC-MoCo. In all the cases, the metrics were calculated with respect to the fully-sampled images

with the reference MoCo. p-values from Wilcoxon signed-rank tests are reported.
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FIGURE6 |
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Perfusion intensity curves over time for six segments of the myocardium mask obtained for the REST acquisition from a representantive

patient. The mean intensity values are computed in the segments of the myocardium mask for the fully-sampled images (A) without MoCo and (B)
with K-CC-MoCo. See Figure S8, which shows cumulative energy E(j) of each segment within the myocardium mask.

for the STRESS acquisition. Figures S8 and S9 show cumula-
tive energy E(j) as a function of the coefficient index j (see
Equation 9) for the segments on the myocardium masks s1-s6
defined in Figures 6 and 7, respectively.

4.3 | Undersampled Raw k-Space Dataset

Figure 8 shows the mid slice of the dynamic REST images with
MoCo performed with K-CC-MoCo compared with pTVreg. The

results are shown for two different accelerations (i.e., 9 and 5
spokes per frame). An extended version of this figure is provided
in Figure S10. Similar results but for the apical and basal slices
are shown in Figures S11 and S12, respectively. Figure 9 shows for
14 spokes per frame a comparison between an L + S reconstruc-
tion pipeline with K-CC-MoCo (i.e., rigid MoCo in k-space) and
with elastic MoCo in image space. Finally, Figure S13 illustrates
the cost function values for the L + S reconstruction method with
and without the preceding K-CC-MoCo step.
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FIGURE 7 | Perfusion intensity curves over time for six segments of the myocardium mask obtained for the STRESS acquisition from a represen-
tantive patient. The mean intensity values are computed in the segments of the myocardium mask for the fully-sampled images (A) without MoCo and

(B) with K-CC-MoCo. See Figure S9, which shows cumulative energy E(j) of each segment within the myocardium mask.
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FIGURE S8 | Motion correction (MoCo)in the mid slice of the raw k-space dataset patient for two different accelarations, namely, nine spokes/frame
and five spokes/frame (i.e., AF of 22x and 40X, respectively). (A) Intensity profiles in y-t (foot-head) and x-t (right-left) directions. (B) Average across

the frames of the dynamic images. Motion correction is estimated from the SoS image in pTVreg, from the undersampled k-space in K-CC-MoCo, and

from fully-sampled images (i.e., 27 spokes per frame) in the reference MoCo, but the estimated corrections are always shown in the fully-sampled images

to facilitate visualization of the MoCo. See Figure S10 for an extended version of this figure with the profile definitions. Note that the effective temporal

resolution for these accelerations correspond to approximately 23.04 and 12.8 ms for nine and five spokes per frame, respectively.

5 | Discussion

In this work, we have proposed K-CC-MoCo, an inter-frame rigid
MoCo approach for highly accelerated FPP-CMR acquisitions
formulated exclusively in k-space. K-CC-MoCo was tested using

a digital phantom and real patient data (both an undersampled
DICOM dataset and, also, a raw k-space dataset).

The digital phantom results demonstrate that the application of
K-CC-MoCo notably reduces motion distortions. As expected, its
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FIGUREY9 | L+S reconstruction with different motion correction (MoCo) strategies in the raw k-space dataset patient with acceleration of 14
spokes/frame (i.e., AF of 15x). Average across the frames for: (A) the reconstructed dynamic images without MoCo, (B) the dynamic images with the
elastic MoCo in image space, and (C) the dynamic images with the proposed rigid MoCo in k-space with K-CC-MoCo. (D) Intensity profiles in y-t
(foot-head) direction. (E) Intensity profiles in x- (right-left) direction. Note that the effective temporal resolution for this acceleration corresponds to

approximately 35.98 ms.

performance tends to decline as the AF increases; nevertheless,
the correction remains evident even in the presence of substantial
motion and severe undersampling, with as few as four spokes per
frame. This enhanced image quality would improve the diagnos-
tic accuracy of various cardiovascular diseases characterized by
perfusion abnormalities, including epicardial coronary artery dis-
ease, microvascular dysfunction, and certain cardiomyopathies
[1]. The simulations with the asymmetric sawtooth pattern in
the foot-head translation parameter suggest that the approach
remains relatively robust to different breathing patterns, includ-
ing shallow, deep, and arrhythmic motion, although further vali-
dation with real data is required to confirm these observations.

Regarding the results with the undersampled DICOM dataset, the
intensity profiles of Figures 3 and 4, corresponding to the REST
and STRESS acquisitions, respectively, show how the application
of the MoCo methods (both pTVreg and K-CC-MoCo) reduces
variability across frames compared to the dynamic image without
MoCo. Consequently, the resulting average images are notably
less blurred. Comparing pTVreg and K-CC-MoCo, it is evident
that as the acceleration factor increases, the correction performed
by pTVreg deteriorates. At an AF of 50X, the resulting aver-
age image obtained with pTVreg is significantly distorted due
to the presence of unusual transformations. This finding is also
supported by the boxplots of the evaluation metrics shown in
Figure 5. At 25X acceleration, the application of a MoCo approach
(whether image-based or k-space-based) improves the metrics

compared to those obtained without MoCo. Specifically, no sig-
nificant differences were found between pTVreg and K-CC-MoCo
using the Wilcoxon test at this AF. However, at 50x accel-
eration, significant differences were observed between pTVreg
and K-CC-MoCo on all metrics. Another important observation
in Figures 3 and 4 is that time-averaged images for the refer-
ence MoCo appear sharper because the frames are overall better
aligned, but the intensity profiles show some degree of blurring
in comparison with K-CC-MoCo probably as a result of the inter-
polation step that is not needed in the proposed method. The
examples shown in Figures 6 and 7 also highlight a smoother
behavior in the time-intensity curves obtained from segments of
the myocardium and their associated cumulative energy.

We have shown that the proposed k-space-based method,
K-CC-MoCo, is approximately 2x faster than the image-based
method pTVreg, and can correct respiratory motion even at high
AF, whereas the image-based method fails in those cases due
to strong undersampling artifacts. Although pTVreg with SoS
reconstruction may misuse coil information, other reconstruc-
tion methods, such as CS and L + S, also suffer from artifacts and
temporal blurring at high AFs and, they also require additional
reconstruction time.

Results obtained for the raw k-space data (Figure 8) show a
similar behavior to that observed in both the phantom and the
DICOM dataset. Similarly, the results obtained for the apical and
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basal slices (Figures S11 and S12) show corrections comparable to
those observed in the mid slice. In addition, Figure 9 depicts that
non-rigid registration shows more blurring than K-CC-MoCo.
Although the former is expected to be more flexible than the lat-
ter, a high AF could lead to poorer parameter estimation in the
more complex model, resulting in a degradation of performance.
Also, the interpolation step needed in the image-based meth-
ods may play a role in the blurring visible in the time-averaged
images. Interestingly, performing motion correction prior to the
reconstruction appears to improve the reconstruction itself by
promoting sparsity in the temporal dimension [45]. This effect
is depicted in the behavior of the L + S cost as a function of the
iteration number, shown in Figure S13.

K-CC-MoCo has promising applications especially in deep learn-
ing and model-based reconstructions, since motion could be
directly estimated and corrected in k-space without the need
for an initial reconstruction, except for detecting the heart ROI
which can be carried out using a rapid, low-quality recon-
struction. Thus, quantitative parameters could be directly esti-
mated from k-space [11], which may enable higher AFs. Also,
physics-informed deep learning models are typically trained with
motion-free images [10], which hinders their use in practice. This
motion correction step in k-space allows for a fast and straightfor-
ward implementation, and it could be easily added with minor
changes as a pre-processing step for all existing reconstruction
workflows, with a low computational burden.

Motion estimation can also be performed using deep learning
methods, as demonstrated in recent works [46], potentially accel-
erating the estimation process. Some approaches estimate motion
directly in k-space [31, 47] or jointly combine motion compensa-
tion and image reconstruction [48, 49]; however, limited research
has focused on contrast-enhanced acquisitions [50], particularly
in first-pass perfusion cardiac imaging.

This work has several limitations. Although K-CC-MoCo sub-
stantially reduces motion artifacts under high undersampling
conditions, it does not completely eliminate them and it is out-
performed by the image-based registration method applied to
fully-sampled images. In our implementation, the heart ROI
was empirically set to 80 x 80 pixels. Using an ROI size defined
in physical units (e.g., in millimeters) would yield more con-
sistent behavior across datasets and will be explored in future
work. Nevertheless, the results across datasets with different
in-plane resolutions indicate that the proposed method is rela-
tively robust to moderate variations in ROI size. Regarding the
sampling requirements, the method can currently be applied
only to Cartesian acquisitions due to the 3-shears implementa-
tion of the rotation step; extending it to non-Cartesian trajec-
tories without re-gridding would require additional modifica-
tions. Concerning the minimum information needed per frame
for reliable motion estimation, the method is applicable to both
time-invariant and time-varying sampling patterns; however, in
the latter case, the limiting factor is the construction of the
synthetic reference. For the specific case of radial sampling in
a Cartesian grid, the effective AF was measured as the frac-
tion of acquired samples within the effective region. This region
was defined as the area around the center of k-space where the

Gaussian filter G,(k) reached 10% of its maximum value. The
effective AF turned out to be below 2x.

Furthermore, the accuracy of the registration is limited by its
sensitivity to through-plane motion. While non-rigid registra-
tion techniques offer a degree of flexibility by allowing local
deformations, thereby enabling the alignment of, for example,
heartbeats affected by mistriggering, rigid registration methods
operate under the assumption of no deformation. As a result,
rigid techniques are unable to accommodate anatomical changes
across frames, which can lead to residual motion artifacts. This
constraint reduces the effectiveness of rigid registration in sce-
narios where the heart exhibits significant morphological varia-
tion due to cardiac phase differences or arrhythmic events. Con-
versely, rigid motion correction methods, such as the one pro-
posed, are generally more robust as can be seen in Figure 9. Also,
rigid MoCo methods like K-CC-MoCo may serve as an initial step
before applying non-rigid correction, helping to prevent geomet-
ric distortions, even at low AF.

Future work includes additional tests using prospectively under-
sampled data with different acceleration rates to establish clinical
applicability. The method should also be more exhaustively tested
with other sampling strategies besides the radial (k,t)-sampling
scheme employed in this work. In this work, we have selected
the NCC due to the fact that its definition in the image domain
carries over directly to k-space. However, the inclusion of a Gaus-
sian term in Equation (6) departs from a direct subtraction of the
mean in the image domain. A more general view leads to the
question of whether a direct definition in k-space of metrics cus-
tomarily used in the image domain may prove competitive; this is
also worth exploring for future work. Another potential extension
of our method would be to incorporate a quality control or frame
rejection mechanism; since the NCC value between each regis-
tered frame and the synthetic reference is available, this measure
may serve as a diagnostic indicator of registration quality.

Finally, this work focused on rigid motion, because perfusion is
usually measured approximately in the same cardiac phase across
the contrast passage dimension, and 2D acquisition since clinical
protocols generally comprise just a few short-axis slices along the
long axis. However, our mathematical formulation carries over to
motion in 3D, and in the case that some jitter in the selected car-
diac phase was observed, our model could be extended to affine
motion due to the properties of the Fourier transform for vari-
able transformation with a non-unitary matrix. This extension
also deserves further attention.

6 | Conclusion

We propose K-CC-MoCo, an inter-frame rigid respiratory MoCo
for free-breathing FPP-CMR formulated in k-space. The results
obtained in a digital phantom and real patient data show
that K-CC-MoCo outperforms image-based correction for highly
accelerated acquisitions, as high as 50x. Motion estimation
directly from k-space does not require high-quality reconstructed
dynamic images, unlike traditional methods that depend on such
reconstructions.
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Endnotes

"Noise standard deviation is computed based on the desired CNR and the
contrast, which is determined by the maximum difference in myocardial
signal along time during acquisition.

"AF was calculated as the total number of points in the Cartesian grid
divided by the non-zero points.
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Appendix A

Formulation

Motion Correction Model

The corrected k-space S, (k; ©) defined as in Equation (7), corresponds
to the rigidly corrected version of the moving k-space S,,(k) where O, =
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[01] and O, = [6)2 03] " are the parameters that define the rigid transfor-
mation for the particular case of a 2D correction. Thus, R7 is the inverse
of a rotation matrix with parameters O 5. However, to avoid interpolation
errors in k-space, which lead to blurring in the image, rotation is imple-
mented as 3-shears following the method proposed by Unser et al. [39]

Thus, the rotation correction of the moving k-space S,,(k) for the partic-
ular case of 2D slices is implemented as

S,.(R'k) = F, P, FIF, P FIF PFIS, K), (A1)

where 7, and F, represent the Fourier transforms along columns and
rows, respectively. The superscript H indicates the adjoint operator, that
is, proportional to the inverse Fourier transform. Lastly, P, and P, are
diagonal matrices, the entries of which are given by

P = e—jsin(ﬁl)kfr, (A2)

Py = ejlan(ﬂl/z)kl-rl (A3)

Optimization Metric

Let the registration metric be defined in k-space as

N@®O) _

D©)

2(S, k)~ S,®GK)(S:(k; 0) - S (k; ©)G(k))
k

GNCC(S,(K), S.(k; ©)) =

2S00 - Sf<k>c<k>|2 >'15.0: 0) - S.(k: ©)GK)[*
k k

~~

E F

=V(O) (A4)

Optimization may be carried out, alternatively, in |V (©)|? to ensure that
solutions based on gradient-descent algorithms are real. In this case

¥(©) =V (©)* =V (©)V*(®) (A5)
Thus, the optimization problem is defined as follows:

6= arg®min - ¥(0)

=arg®min - |V(0) (A6)

Derivatives

HO®) _ zm{ m;;@) Vv *(@)}, (A7)

a0, p

where R{-} represents the real part operator.

4C] N'(® N(@©)D'(®
wor@)] = VO _ N O _ NOD©)

20, D(©®) D%(©)
_N'(® N(©) EF(©)
T D) D*®) 2D(©)
N'(®) N(@®OE

= Dp® 200 @ (A8)

Since the transformation we are considering is rigid, we will assume that
F will not change upon a change in ©;.. Thus, the derivative of F with
respect to any parameter 6,,; with 1 <i < 2 will considered to be zero.

Using the definition of S, (k; ©) in Equation (7), we can express the three
derivatives as:

IN(®)
20,

S*(k; ©
1 ( )

le Gk Sf(k>

a5* (Rk) _
=Y- G<k>|2S,(k)<%e-ﬂ”®¥k> (A9)
k 1
with
95" (R"k aP 0P,
M:r —2FIP,PFIF P, + PFIF, L FIF P,
06, 00, 20,
H H aP H ¢

+P,FHF,PF! Flﬁ Fis* k), (A10)

where the derivatives of the diagonal elements of P, and P, are given by

P,

—L = 7SOk (_jcos(6; )k, - 1y) (A11)
20,
1 2(6,/2
2k = ek <j S tanz(el/ i, - r2> (A12)
1

IN(©) ) 057 (k; ©)
2 = 1-G&k)|*S (k)————
) o @ (o)1, 00—
= Y [1-G®)12S,(K)S! (RTk)e /0% (- j2n[K],).
k . J/
95§ (k:©) - 957 (k;0)
1<i<2 (A13)
IF®) 9 2 ) 1
D0 = a0 Zk‘,u G®)|*S, (k; ©)S; (k; ©)
0S.(k;®)
= Zzu - GER)*R T5 k; ©) (A14)
with 25:450) (k © as defined (but for the complex conjugate) in Equation (A9).
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