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Multivariate Analysis of Blood Oxygen Saturation Recordings in
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Abstract— This study focuses on the analysis of blood oxygen
saturation (Sa0Oz) from nocturnal pulse oximetry (NPO) to help
in the diagnosis of the obstructive sleep apnea (OSA) syndrome.
A population of 148 patients suspected of suffering from OSA
syndrome was studied. A wide set of 16 features was used to
characterize changes in the SaO: profile during the night. Our
feature set included common statistics in the time and
frequency domains, conventional spectral characteristics from
the power spectral density (PSD) function and nonlinear
features. We performed feature selection by means of a step-
forward logistic regression (LR) approach with leave-one-out
cross-validation. Second and fourth order statistical moments
in the time domain (M2¢ and M4f), the relative power in the
0.014 — 0.033 Hz frequency band (Pr) and the Lempel-Ziv
complexity (LZC) were automatically selected. 92.0%
sensitivity, 85.4% specificity and 89.7% accuracy were
obtained. The optimum feature set significantly improved the
diagnostic ability of each feature individually. Furthermore,
our results outperformed classic oximetric indexes commonly
used by physicians. We conclude that simultaneous analysis in
the time and frequency domains by means of statistical
moments, spectral and nonlinear features could provide
complementary information from NPO to improve OSA
diagnosis.

Index Terms — Obstructive sleep apnea, nocturnal pulse
oximetry, time domain analysis, frequency domain analysis,
nonlinear analysis, logistic regression

1. INTRODUCTION

BSTRUCTIVE SLEEP APNEA (OSA) syndrome is a

major sleep-related breathing disorder characterized by
repetitive periods of reduced (hypopnea) or total cessation
(apnea) of respiration caused by the partial or complete
collapse of the upper airway, respectively [1]. Epidemiologic
data consistently show a high prevalence of OSA in North
America, Europe and Asia [2]. It is estimated that OSA
affects 1 to 5% of adult men and 2% of women in western
countries [3]. However, 90% of cases in men and 98% of
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cases in women may go undiagnosed for many years [4].
Several factors of OSA syndrome have contributed to its
emergence as an important medical condition [2]. Recent
studies link OSA to inflammatory and metabolic
deregulation, atrial fibrillation, stroke, myocardial infarction
and sudden cardiac death [2]. These consequences have
augmented the interest of the medical community and the
general population on OSA syndrome, exponentially
increasing the number of patients for evaluation [5].

Overnight polysomnography (PSG) is the gold standard
method for a definitive diagnosis of OSA [1]. The apnea
hypopnea index (AHI) from the PSG is used to characterize
its severity. It measures the average number of apnea and
hypopnea events per hour of sleep [1]. However, the AHI is
weakly correlated with sleepiness and daytime performance
[6], [7]. Moreover, the relative high cost and complexity of
PSG limit its capacity as a screening test [6]. Thus, further
research on simplified and less expensive tools is
encouraged [7], [5].

Nocturnal pulse oximetry (NPO) is a standard technique
for monitoring the arterial blood oxygen saturation (SaO,)
[8]. NPO could provide relevant information on patients’
sleep quality: SaO, tends to remain constant around 96% in
normal subjects, whereas significant changes can be found in
patients affected by OSA because of the recurrent apnea
events [9]. Due to its simplicity and low cost, NPO has been
proposed as an alternative for PSG [9]. Moreover,
telemedicine systems based on oximetry alone could reduce
referrals and waiting lists by identifying patients with strong
suspicion of OSA [10]. NPO shows substantial accuracy as a
screening test but important limitations decrease its value as
a single diagnostic tool for OSA [9]. Thus, oximetry
monitoring will not replace the gold standard of full PSG
[10]. Our research was aimed to obtain further knowledge on
Sa0: dynamics to improve the diagnostic ability of NPO in
OSA. Additionally, we should take into account that other
pulmonary and cardiovascular diseases can also modify the
Sa0» profile during the night, which could influence the
performance of oximetry monitoring [1]. Chronic
obstructive pulmonary disease (COPD) is especially
important because it is linked with deep nocturnal
oxyhemoglobin desaturations [11]. The scope of the present
study focused on patients with a clinical suspicion of sleep
apnea regardless of additional respiratory disorders.

Oxygen desaturation indexes (ODIs) and cumulative time
(CT) indexes from NPO are commonly used by physicians



in OSA diagnosis [9], [12]-[14]. ODIs measure the number
of dips in the SaO; signal below a certain threshold, whereas
CT indexes compute the percentage of time spent below a
specified saturation level. However, it is known that some
patients show many hypopneas with small decrements in
Sa0,, whereas others manifest relatively fewer but
prolonged apneas [2]. Many limitations of classic indexes
have been documented: CT indexes do not achieve high
diagnostic accuracy [14], [15], there is not a standard
definition for oxygen desaturation [9], [15], correlation with
AHI is not high and their sensitivity and specificity greatly
vary among studies [9], [14]. Thus, classic oximetric indexes
based on the number and severity of desaturations could be
insufficient to correctly diagnose OSA syndrome. The
proposed methodology was aimed to characterize overall
dynamics of Sa0O, recordings regardless of quantifying the
number of desaturation events.

Common statistics from time and frequency analyses of
heart rate variability recordings have shown to be simple and
accurate tools in the detection of sleep apnea [16], [17]. First
to fourth order statistical moments (M1 — M4) could be very
useful to characterize SaO, recordings. Spectral features
from SaO, frequency analysis have been applied for
diagnostic purposes [18]-[20]. Conventional characteristics
such as the total signal power (Pr), the peak amplitude (PA)
and the relative power (Pr) in the 0.014 — 0.033 Hz
frequency band have been used to parameterize the SaO,
spectrum. The median frequency (MF) and the spectral
entropy (SE) are usually applied to obtain additional
information from the frequency domain in other contexts,
such as EEG analysis [21]-[23]. Thus, MF and SE could
improve the usefulness of spectral analysis of oximetric
signals in OSA detection. On the other hand, nonlinear
analysis of SaO, has demonstrated to be a powerful tool in
OSA diagnosis. Approximate entropy (ApEn) [24], central
tendency measure (CTM) [25] and Lempel — Ziv complexity
(LZC) [26] have been previously used to quantify
irregularity, variability and complexity of SaO; recordings,
respectively. Previous studies have shown that ApEn, CTM
and LZC could improve the diagnostic accuracy of classic
oximetric indexes [27]-[29]. An additional nonlinear
measure of irregularity, sample entropy (SampEn), has been
recently applied in the context of OSA diagnosis to
characterize heart rate variability [30].

In the present research, we hypothesized that a large set of
features from different approaches (time vs. spectral and
linear vs. nonlinear) could be useful to characterize SaO»
from NPO. Our analyses could provide essential and
complementary information to improve the diagnostic ability
of oximetric recordings in OSA detection. The following
feature sets were included in our study:

1) Time domain statistics. First to fourth order statistical

moments in the time domain (M1t — M4¢).

2) Frequency domain statistics. First to fourth order

statistical moments in the frequency domain (MIf —
MA4f), MF and SE.

3) Conventional spectral characteristics. Pr, P4 and Px.

4) Nonlinear characteristics. SampEn, CTM and LZC.

Our study was aimed to obtain an optimum feature set
from SaO; signals, in order to provide simple and reliable
OSA diagnosis. To achieve this goal, a step-forward logistic
regression (LR) procedure with leave-one-out cross-
validation was applied. Additionally, we evaluated whether
the optimum feature set from the LR process could improve
the diagnostic accuracy of classic oximetric indexes
commonly used by physicians to diagnose OSA syndrome.

II. POPULATION SET AND SLEEP STUDIES

The population under study consisted of 148 consecutive
patients (115 males and 33 females) with a mean + SD age
of 52.9 £ 14.1 years and an average body mass index (BMI)
of 29.8 + 5.6 Kg/m?. All subjects were derived to the Sleep
Unit of the Hospital Universitario Pio del Rio Hortega of
Valladolid (Spain) reporting at least one of the following
symptoms: daytime hypersomnolence, loud snoring,
nocturnal choking and awakenings or apneic events. Patients
suspected of having other sleep disorders, such as insomnia,
parasomnia or narcolepsy, were excluded from the study.
The Review Board on Human Studies approved the protocol
and each subject gave his or her informed consent to
participate in the study. Table I summarizes the demographic
and clinical data of the population under study.

Overnight conventional PSGs were carried out from
midnight to 08:00. Patients were continuously monitored
using a polysomnograph (Alice 5, Respironics, Philips
Healthcare, The Netherlands). Sleep was scored every 30 s
epochs by a single scorer according to the standard criteria
by Rechtschaffen and Kales. Apnea was defined as the
absence of airflow for more than 10 s. Hypopnea was
defined as a decrease in respiratory flow of at least 50%,
accompanied by a greater than or equal to 3% decrease in
the saturation of hemoglobin and/or an EEG arousal. Static
(apneas) and dynamic (hypopneas) respiratory events were
detected by means of a thermistor and a nasal cannula,
respectively. An AHI > 10 events per hour (e/h) from PSG
was considered as diagnostic of OSA [31].

A positive diagnosis of OSA was confirmed in 100
patients (67.6%). They composed the OSA-positive group,
with an average AHI of 40.9 £+ 27.6 e/h. The remaining 48
subjects (32.4%) composed the OSA-negative group, with
an average AHI of 4.1 + 2.4 e/h. No significant differences
between OSA-positive and OSA-negative groups were
found in age, BMI and recording time. On the other hand,
significant differences were found in the number of males
(p-value < 0.01): the OSA-positive group had more males
(83.0%) than the OSA-negative one (66.7%). This result
agrees with the higher prevalence of the disease associated
to the male gender [3]. Table I displays demographic and
clinical characteristics for both groups.

The polysomnograph equipment used in the present study
included a Nonin PureSAT pulse oximeter (Nonin Medical
Inc., Plymouth, MN, USA), with 3 s or faster averaging
interval at a minimum heart rate of 60 beats per minute or



TABLE I
DEMOGRAPHIC AND CLINICAL FEATURES OF THE POPULATION SET

All OSA OSA

subjects positive negative p-value
Subjects (n) 148 100 48 -
Age (years) 529+ 14.1 552+146 483+118 NS
Males (n) 116 84 32 p<0.01
BMI (kg/m?) 29.8+5.6 30.8+5.0 273+6.3 NS
Records (h) 72104 72+04 72+0.4 NS
AHI (e/h) 409 +27.6 41+24 p<0.01

Data are presented as mean = SD or n; BMI: body mass index; AHI:
apnea-hypopnea index; NS: no significant statistical differences
An AHI > 10 (e/h) from PSG was considered as diagnostic of OSA

greater. The Sa0O, recordings from the overnight PSG were
saved to separate files and processed offline. SaO, was
recorded at a sampling rate of 1 Hz. A semi-automatic
preprocessing stage was carried out. Firstly, we assessed
each oximetric recording by visual inspection looking for
artifacts. All SaO, signals presented drops to zero due to
poor contact with the finger probe and/or patient
movements.  Finally, oximetric  recordings  were
automatically scanned to remove zero samples.

[II. METHODOLOGY

Our methodology was divided into three stages. Feature
extraction was accomplished in the first stage. Oximetric
recordings were analyzed using 16 characteristics from four
different feature sets: time domain statistics, frequency
domain statistics, conventional spectral characteristics and
nonlinear measures. In the second stage, we carried out a
feature selection process. A forward stepwise LR procedure
was applied to obtain the optimum feature set. Finally, LR
with leave-one-out cross-validation was used to assess the
classification ability in the third stage. We evaluated the
diagnostic performance of each single feature, the optimum
model and the classic oximetric indexes from our data set.

A. Time domain statistics

The histogram from an overnight SaO, profile could show
differences between OSA-positive patients (characterized by
frequent desaturations) and OSA-negative subjects (showing
slight variations). The amplitude (%) of the SaO, signal was
used to compute the normalized histogram. First to fourth
order statistical moments were computed as follows [32]:
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Arithmetic mean (M), variance (M2t), skewness (M3t)
and kurtosis (M4¢) in the time domain were derived from
each SaO; recording to quantify central tendency, amount of
dispersion, asymmetry and peakedness, respectively. Each
feature was computed dividing every SaO, signal in
segments of 512 samples. Finally, we averaged over the total
number of segments to obtain a single value per subject.

B. Frequency domain statistics

Spectral analysis was carried out to characterize the
repetitive nature of apnea events. A power spectrum increase
in the apnea interest frequency band (0.014-0.033 Hz) of
Sa0, recordings from OSA-positive patients has been
previously reported [18], [19]. In this study, the PSD of each
oximetric recording was computed applying the
nonparametric Welch’s method [33]. Firstly, the method
divides the signal into M overlapping segments of length L,
applies a smooth time weighting w[n] and computes the
modified periodogram of each windowed segment v.[n] by
means of the discrete Fourier transform (DFT) V[f] [33]:
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Finally, all DFTs are averaged to obtain the PSD function.
512-sample Hanning window with 50% overlap and 1024-
points DFTs were used. These parameters ensured the
performance of the PSD estimate. Next, six statistics not
based on conventional spectral measures were computed.

1) First to fourth order moments in the frequency domain.
The amplitude (W/Hz) of the PSD function at each single
spectral component was used to obtain the normalized
histogram in the frequency domain. Changes in the spectral
content of Sa0O; signals due to recurrent apnea events could
modify the shape of the histograms. Thus, mean, variance,
skewness and kurtosis could provide useful information.
First to fourth order moments in the frequency domain
(M1f~M4f) were computed using (1)—(4).

2) Median frequency (MF). MF provides a simple means
of summarizing the whole spectral content of the PSD. It is
defined as the spectral component which comprises 50% of
the total signal power [22]:

0.50§ZPSD( )= %F:PSD( 1)- (®)

Lower values of MF correspond to signals with spectral
power comprised into small frequencies, whereas higher
values correspond to signals with significant spectral
components at higher frequencies.

3) Spectral entropy (SE). SE is a disorder quantifier related
to the flatness of the spectral content. Its definition is based
on the Shannon’s entropy [23]:

SE = —ij ln(pj) ) ©

where p; is the normalized value of the PSD at each spectral
component, with a bin width of one spectral unit [21]. High
SE implies a flat PSD with a broad spectral content (or
higher irregularity in the time domain), whereas low SE
implies a PSD with all the power condensed into a single
frequency band (oscillatory behavior in the time domain).



C. Conventional spectral characteristics

Conventional frequency analysis was also included in our
study. The following spectral features were derived from
each PSD estimate [18], [19]:

1) Total spectral power (Pr). It is computed as the total

area under the PSD function.

2) Peak amplitude (PA) in the apnea frequency band. It is
the local maximum of the SaO, spectral content in the
apnea frequency range, from 0.014 to 0.033 Hz.

3) Relative power (Pr) in the apnea frequency band. It is
the ratio of the area enclosed under the PSD function
in the apnea frequency band to the total signal power.

D. Nonlinear feature set

1) Sample entropy (SampEn). SampEn is a family of
statistics defined to quantify the irregularity of time series,
with larger values corresponding to more irregular data [21],
[30], [34]. SampEn(m, r, N) is defined as the negative
logarithm of the conditional probability that two sequences
that are similar (within the tolerance width ») for m
contiguous points remain similar when the run length
increases to m+1 [34]:

m
SampEn(m,r,N) = —lnl:A(r)} . (10)
B"(r)

A™ and B™ are the average number of (m)-length and
(m+1)-length segments X,(i) (1 < i < N-m+l) with
d[Xu(D),Xn())] £ 7 (1 £j £ N-m, j #1), respectively, where

dX,0.X,0]= max(pi+h-GhD- - (1D

In order to measure irregularity by means of SampEn, we
used the recommended input parameters m = 1 and » = 0.25
times the SD of the signal under analysis [27].

2) Central tendency measure (CTM). CTM provides a
variability measure from second order difference plots,
assigning larger values to lower variability [25], [28], [29].
CTM 1is computed selecting a circular region of radius p
around the origin, counting the number of points that fall
inside, and dividing by the total number of points [25]:

1 N-2
CTM =—— » 8(d;
N_zg (), (12)

where

5 dl_):{l if [(x(i+2)—x(i+1))2+(x(i+1)—x(i))2]]/2< P (13)
0 otherwise

In the present study, we applied the recommended radius
p=1to compute CTM [29].

3) Lempel — Ziv complexity (LZC). LZC is a
nonparametric measure of complexity, with larger values
corresponding to high complexity data [26], [28], [35]. To
compute LZC, the original signal is firstly converted into a
binary sequence comparing each sample with a predefined
threshold 7, Next, a complexity counter c¢(n) is increased
every time a new subsequence is encountered [35]. Finally,
c(n) is normalized:

LZC =c(n)/b(n) , (14)

where

b(n)=n/log,(n). (15)
Two symbols (‘0’ and ‘1’) were used to obtain binary

sequences from the original SaO, signals. In this study, the
median value was used as threshold 7y [28].

We estimated SampEn, CTM and LZC for all 512-sample
segments within each SaO, signal. Finally, we averaged
these values to obtain a single irregularity, variability and
complexity measure per subject.

E. Classic oximetric indexes

The cumulative time spent below a saturation of 90%
(CT90) and ODIs over 2% (ODI2), 3% (ODI3) and 4%
(ODI4) were computed offline from SaO, recordings. The
definition of a desaturation event was based on the study by
Magalang et al. [15]: a decrease in SaO, greater than or
equal to the set amount (2%, 3% or 4%) from baseline for at
least 10 s and at a rate >0.1%/s, returning within 60 s to a
1%-interval of the initial value. Baseline was set as the mean
saturation in the previous minute [ 12]. The mean level in the
first 3 min of recording was used to initialize its value.

F. Statistical analysis

Statistical tests with no prior assumptions about the
probability distribution of the data were applied. Statistical
differences were evaluated by means of the nonparametric
Mann-Whitney U test, whereas LR was used to investigate
group classification. Additionally, the Dickey-Fuller unit
root test was applied to assess stationarity.

Forward stepwise LR was applied to perform feature
selection. The procedure selected the strongest variables in
the data set in terms of statistical significant differences:
iterative binary LR processes were applied to describe the
relationship between a dichotomous dependent variable
(OSA-negative vs. OSA-positive) and the 16 independent
variables included in the study. At each iteration, the
stepwise method performs a test for backward elimination
followed by a forward selection procedure [36].

A leave-one-out cross-validation process was carried out
to ensure the statistical validity of classification results. A
LR classifier was applied along 148 iterations, so that all
subjects within our population set were used for both
training and testing the methodology. At each iteration, a
subset composed of 147 subjects was used to compute the
logistic model, which was subsequently tested using the
remaining subject. A different subject was left out at each
iteration. Finally, sensitivity (OSA-positive patients
correctly classified), specificity (OSA-negative subjects
rightly classified) and accuracy (the total percentage of
subjects correctly classified) were computed taking into
account the total number of cases from the testing process.
Additionally, the area under the receiver operating
characteristics curve (AROC) was computed.

IV. RESULTS

A. Single feature assessment



Fig. 1 (a) displays the overnight oximetric recordings
from a common OSA-negative subject, showing minor
changes in the SaO; profile, and a common OSA-positive
patient, with deep desaturations due to apnea events. Fig. 1
(b) displays the PSD functions of these recordings, showing
a power increase in the apnea interest frequency band
corresponding to the OSA-positive patient. Figs. 1 (c) and
(d) plot the normalized histogram envelopes of the data for
both subjects in the time and frequency domains,
respectively. The Dickey-Fuller unit root test showed that
95.2% and 97.9% of all 512-sample segments from OSA-
negative and OSA-positive subjects were stationary, with a
significance level of 0.05 and correction for serial
correlation of the residuals. In addition, Table IT summarizes
the average (mean * SD) values of each feature included in
the study for both groups. SaO, profiles from OSA-negative
subjects had significantly higher mean and lower variance
than OSA-positive patients. Additionally, the OSA-negative
group also showed significantly higher skewness and
kurtosis than the OSA-negative one. This agrees with Fig. 1
(c), where the envelope of the histogram from the OSA-
negative subject shows higher symmetry and peakedness. In
the frequency domain, OSA-positive patients had
significantly higher mean and variance than OSA-negative
subjects. On the other hand, non-OSA subjects showed
higher positive skewness and kurtosis than OSA-positive
patients, i.e. lower symmetry and higher peakedness. This
agrees with Fig. 1 (d), where almost all the spectral power in
the OSA-negative subject is comprised in the very low
frequency components. On the other hand, Fig. 1 (b) shows a
broader spectral content in the normalized PSD function of
the OSA-positive patient due to the power increase in the
apnea frequency band. Thus, OSA-positive patients
presented significantly higher MF and SE than OSA-
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negative subjects. Conventional spectral features also
achieved essential information. According to Fig. 1 (b),
patients in the OSA-positive group showed significantly
higher PA, Pr and Pp than non-OSA subjects, due to the
repetition of apnea events during the night. Finally, OSA-
positive patients had higher average SampEn, lower CTM
and higher LZC than non-OSA subjects due to the apnea
events, i.e. higher irregularity, variability and complexity.
The SaOs profiles in Fig. 1 (a) illustrate these results.

Table III summarizes the classification ability of each
single feature using LR with leave-one-out cross-validation.
On average, classical spectral features reached the highest
diagnostic accuracies. 86.0% sensitivity, 77.1% specificity
and 83.1% accuracy were reached with PA. In the nonlinear
feature set, CTM equaled the highest accuracy (81.0%
sensitivity, 87.5% specificity and 83.1% accuracy), slightly
improving the AROC (0.918). SE achieved the highest
accuracy (87.0% sensitivity, 54.2% specificity, 76.4%
accuracy, 0.835 AROC) and MF achieved the highest
AROC (76.0% sensitivity, 75.0% specificity, 75.7%
accuracy, 0.864 AROC) within the frequency domain
statistics feature set. Finally, M2¢ reached the highest
accuracy and AROC within the time domain statistics
feature set (86.0% sensitivity, 70.8% specificity, 81.1%
accuracy, 0.891 AROC).

B. Forward Stepwise LR procedure

Four features were automatically selected from the whole
data set: two common statistics in the time domain (M2¢ and
M4t), one classical spectral feature (Pr) and one nonlinear
measure (LZC). Table IV summarizes the classification
statistics at each step in the LR procedure with leave-one-out
cross-validation. The diagnostic accuracy increased from
79.7% to 89.7% at the end of the process. Additionally, the
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Fig. 1. Overnight SaO, profiles for a common OSA-negative subject and a common OSA-positive patient (a) in the time domain and (b) in the frequency
domain. Normalized histogram envelopes for both typical recordings (c) in the time domain and (d) in the frequency domain.



TABLE I
AVERAGE VALUE OF EACH FEATURE FROM THE GROUPS UNDER STUDY

TABLE IV
RESULTS FROM THE DIAGNOSTIC ASSESSMENT OF EACH ITERATION INTO
THE FORWARD STEPWISE LR PROCESS

OSA negative OSA positive

Mit 94.44 +2.39 92.67+3.94 TP TN FP FN Se Sp Ac AROC
M2t 0.70£0.31 2.02+1.79 LR (Pr) 85 33 15 15 85.0 688 79.7 0.891
M3t 0.03 £ 0.47 -0.22£0.31 LR (Pr, M4t) 89 37 11 11 89.0 77.1 85.1 0.935
M4t 4.62+1.12 3.67+0.71 LR (Pg, M4t, LZC) 90 39 9 10 90.0 81.3 872 0948
Mif 3901615 2774+ 64.46 LR (P, M4L,LZC,M20) 92 41 7 8 920 854 897 0.967
M2f 36.47 £71.29 177.91 £542.27
M3f 13.55+ 115 1034+ 2.89 TABLE V
M4f 205.65 +27.17 13732 + 61.77 DIAGNOSTIC ASSESSMENT OF CONVENTIONAL OXIMETRIC INDEXES
MF 0.002 £0.002 0.010 +0.007
SE 0.45 +0.08 0.54+0.06 TP TN FP FN Se Sp Ac AROC
PA 18.68 + 19.54 473.68 £ 1107.37 €r%0 100 048 0 100 0 676 0.794
P 174 +2.66 12.92 42927 ODI2 85 42 6 15 85.0 875 85.8 0.943
PT 0'15 ; 0.06 0'32 ; 0 1'3 ODI3 86 41 7 14 860 854 858 0.932

L —— ——— ODI4 85 42 6 15 85.0 875 85.8 0.922
SampEn 0.31£0.05 0.33+0.06
CTM 0.997 £0.004 0.922+0.116 . . .
LZC 0.24 +0.02 0.26 + 0.03 small but frequent desaturations. Frequency domain statistics

Data are presented as mean + SD.

TABLE III
DIAGNOSTIC ASSESSMENT OF EACH SINGLE FEATURE

TP TN FP FN Se Sp Ac AROC
Mit 98 3 45 2 980 63 682 0.712
M2t 86 34 14 14 860 708 8l.1 0.891
M3t 93 13 35 7 930 271 716 0.687
M4t 91 19 29 9 910 396 743 0.777
MIf 100 2 46 0 100 42  68.7 0.829
M2f 100 0 48 0 100 0 67.6 0.744
M3f 78 26 22 22 780 542 703 0.828
M4f 78 25 23 22 780 521 699 0.822
MF 76 36 12 24 760 750 757 0.864
SE 87 26 22 13 870 542 764 0.835
PA 8 37 11 14 86.0 77.1 83.1 0.913
Pr 98 9 39 2 980 188 723 0.837
Pr 85 33 15 15 850 68.8 79.7 0.891
SampEn 93 2 46 7 930 42 642 0.648
CTM 81 42 6 19 810 875 831 0918
LZC 91 15 33 9 910 313 716 0.731

TP: True Positives; TN: True Negatives; FP: False Positives; FN: False
Negatives; Se: Sensitivity (%); Sp: Specificity (%); Ac: Accuracy (%);
AROC: Area under the ROC curve.

AROC increased from 0.891 to 0.967.

Finally, we assessed the diagnostic ability of classic
oximetric indexes. LR with leave-one-out cross-validation
was applied to test each single parameter. Table V
summarizes the classification statistics. ODI2 obtained the
best results in terms of diagnostic accuracy and AROC
(85.0% sensitivity, 87.5% specificity, 85.8% accuracy and
0.943 AROC).

V. DISCUSSION AND CONCLUSIONS

In the present research, we exhaustively analyzed SaO»
recordings, in order to improve diagnostic ability of NPO to
help in OSA detection. M2t and M4t time domain statistics,
Py from the classical spectral feature set and LZC from the
nonlinear set, were automatically selected.

On average, conventional features from spectral analysis
(PA, Pr and Pg) achieved higher diagnostic accuracy and
AROC than other approaches. Frequency-based measures
could improve the detection of OSA-positive subjects with

(M1f — M4f, MF and SE) achieved lower performance.
Differences between OSA-positive and OSA-negative
patients decreased because these features take into account
all the frequency components within the whole spectrum,
whereas PA and Pr focused on the apnea frequency band.
On the other hand, statistics from the histogram in the time
domain outperformed the diagnostic ability of statistical
moments in the frequency domain. The variance (M2¢) and
the peakedness (M4f) of the SaO, amplitude distribution
could differentiate OSA patients with few but deep
desaturations from non-OSA subjects better than other
features based on the number or periodicity of the
desaturations. Finally, CTM from the nonlinear analysis was
better able to differentiate OSA-negative subjects than other
parameters. CTM is a variability measure based on
differences between delayed versions of the time series,
which improves the detection of non-OSA subjects with just
low basal SaO,.

The optimum model from the LR process summarized the
main characteristics of apneic events: frequency and
variability. Pr quantifies the repetitive behavior of
desaturations due to apnea episodes. On the other hand, M2z,
M4t and LZC take into account the variability and
complexity of the overnight SaO; profile in OSA-positive
patients. Our results suggest that a well-balanced model
from multivariate analysis could distinguish OSA-negative
and OSA-positive subjects showing different overnight SaO,
profiles better than conventional single approaches.

A sensitivity of 92.0%, specificity of 85.4% and an
accuracy of 89.7% were reached. The recurrent apnea events
during the night in OSA-positive subjects could be not
completely explained by measures from a single approach.
The optimum feature set significantly outperformed the
diagnostic ability of each single parameter. Features within
the model did not achieve the highest accuracies
individually. However, they maximized statistical
differences between OSA-positive and OSA-negative
subjects jointly. Thus, variability, peakedness, frequency and
complexity measures from M2¢, M4t, Pr and LZC,
respectively, could provide complementary information in
the context of OSA diagnosis. Furthermore, our
methodology significantly improved classification statistics



of classic oximetric indexes commonly used by physicians.
The utility of SaO, recordings from NPO in OSA
diagnosis has been widely studied during the last years [9].
Unbalanced sensitivity vs. specificity pairs (31% vs. 100%
and 91% vs. 69%) were obtained by visual inspection of the
Sa0; profile [37], [38]. In the same way, the presence of a
peak in the power spectrum of SaO, signals achieved 78%
sensitivity and 89% specificity [18]. Automated analysis of
oximetric recordings improved the diagnostic ability of
NPO. A sensitivity of 89.7% and a specificity of 57.8% were
reached computing CT90 and the average SaO, [39]. The
saturation impairment time, which combines time and
severity of desaturations, provided additional information to
that obtained with CT indexes [40]. Higher diagnostic
accuracies were reached using ODIs [12], [14], [41].
Sensitivities ranged from 32% to 98.0% and specificities
from 88.0% to 97.0%. These studies presented two
important limitations: the threshold used to diagnose OSA
varies among the studies (from 5 to 15 e/h) and there was
not a consensus in the definition of desaturation [9], [15].
Other researchers quantify the variability of the SaO,
profile independently of the definition of desaturation.
90.0% sensitivity and 75.0% specificity were reached using
the delta index (A index) [42]. The repetition of apnea
episodes has been also studied [18], [19]. Common spectral
features based on the peak amplitude and the relative power
achieved high sensitivities (94% and 91%) but small
specificities (65% and 67%) [18]. In the same way, the
negative slope of the PSD in the high frequency band (0.1 —
0.5 Hz) reached 78% sensitivity and 80% specificity [20].
On the other hand, a recent study found that ODIs showed
higher ability in predicting OSA severity than conventional
spectral features. However, this study focused on moderate
(AHI > 15) and severe (AHI > 30) OSA patients [43].
Recent studies by our own group applied nonlinear methods
to quantify regularity, variability and complexity of SaO,
recordings [27]-[29], [44]. Accuracies of 84.1% (82.1%
sensitivity and 86.9% specificity), 87.2% (90.1% sensitivity
and 82.9% specificity) and 82.9% (86.5% sensitivity and
77.6% specificity) were reached with ApEn, CTM and LZC,
respectively. Our results outperformed the diagnostic
accuracy reported in previous studies. We would like to
emphasize that classic indexes and new measures from NPO
were computed using the same data base. Additionally, we
developed a common methodology based on LR with leave-
one-out cross-validation to properly assess each parameter.
Previous studies applied multivariate analysis to improve
OSA diagnosis from NPO recordings. A sensitivity of 88%
and a specificity of 70% were reached applying stepwise
linear regression [45], whereas 90% sensitivity and 70%
specificity were obtained with adaptive regression splines
[15], both using classical indexes and the A index. 82%
sensitivity and 84% specificity were obtained applying LR
and spectral features [20]. A preliminary study by our own
group assessed the usefulness of different classifiers in OSA
diagnosis. The highest diagnostic performance (91.1%
sensitivity, 82.6% specificity, 87.6% accuracy and 0.925
AROC) was obtained using a reduced set of spectral features
from NPO as inputs to a linear discriminant classifier [46].

The classification ability of the classifier decreased when
nonlinear features were included in the study. Other
researches have assessed multivariate analysis to classify
patients with OSA from ECG. A wide set of time and
spectral features from RR-interval time series were used to
assess linear and quadratic discriminant classifiers. An
accuracy of 100% was reported using quadratic discriminant
analysis when borderline patients were removed from the
study [17]. 74.4% accuracy was reached using discriminant
analysis to characterize the apnea severity from time
statistics and scale features in a similar study [47]. In our
research, we obtained an optimum feature set from a forward
stepwise LR procedure. To our knowledge, this is the first
study where a wide set of features from four different
approaches are combined to obtain an optimum model of
Sa0> dynamics using forward stepwise LR with leave-one-
out cross-validation. Our methodology had some advantages
over previous studies: no assumptions about the data
probability distribution are needed when applying LR and
the stepwise process automatically selects the features that
best fit the model.

Limitations of the study. We should take into account
some drawbacks that limit the generalization of our results.
The population under study could be larger and OSA-
positive patients were predominant. An important limitation
should also be pointed out. Desaturations in the overnight
Sa0» profile could not be exclusively due to apnea events
typical of OSA. Patients with different respiratory or sleep-
related breathing disorders may exhibit significant
desaturations during the night, which could influence our
results. The severity of OSA could be overestimated if
COPD coexists since individuals with both diseases have
more and worse sleep desaturations than they would have
with only one condition [48]. On the other hand, patients
with COPD alone could increase the number of OSA-false
positive cases. Thus, our findings should only be applied to
patients without significant pulmonary or cardiac
comorbidity. Additionally, patients under study were derived
to the Sleep Unit due to prior symptoms of suffering from
OSA, which limits the general application of our
methodology. Oximetry alone has demonstrated to achieve
high sensitivity and specificity in populations showing
moderate to high risk of OSA [49]. However, a control
group composed of normal subjects without suspicion of
sleep-related breathing disorders could provide significant
information about the consistence of our methodology.
Moreover, further work is required to test the performance
of our methodology when oximetric recordings are carried
out from ambulatory portable monitoring at patient’s home.

Another limitation of the study should be taken into
account regarding the oximetry equipment setting, i.e.
sampling frequency and averaging time. A different
equipment setting could influence our results. We would like
to point out that our methodology could be less dependent
on changes in SaO, resolution than conventional approaches
based on the detection and quantification of desaturations,
such as ODIs. Nevertheless, the performance of our
methodology should be assessed using different oximetry
monitors, with different sampling frequencies and time



averaging intervals. Additionally, although our methodology
reached high diagnostic accuracy, we should take into
account that a definitive diagnosis must be done on the basis
of additional information. The American Academy of Sleep
Medicine recommends that OSA diagnosis should be
performed using portable monitoring together with a
comprehensive sleep evaluation [49].

In summary, we found that diagnostic ability of NPO in
OSA diagnosis could be enhanced combining features from
different approaches. Conventional oximetric indexes are
insufficient to completely characterize changes in the SaO,
profile during the night. Time, frequency and nonlinear
analyses provide additional and complementary information
that could be used to better characterize SaO, dynamics.
Additionally, stepwise LR has shown to be a powerful tool
to obtain an optimum model from oximetric recordings. The
automatically selected optimum feature set significantly
improved the diagnostic accuracy of conventional indexes
commonly used by physicians. Thus, this new model could
enhance the performance of NPO to help in the diagnostic
assessment of OSA syndrome.
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