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 

Abstract— This study focuses on the analysis of blood oxygen 
saturation (SaO2) from nocturnal pulse oximetry (NPO) to help 
in the diagnosis of the obstructive sleep apnea (OSA) syndrome. 
A population of 148 patients suspected of suffering from OSA 
syndrome was studied. A wide set of 16 features was used to 
characterize changes in the SaO2 profile during the night. Our 
feature set included common statistics in the time and 
frequency domains, conventional spectral characteristics from 
the power spectral density (PSD) function and nonlinear 
features. We performed feature selection by means of a step-
forward logistic regression (LR) approach with leave-one-out 
cross-validation. Second and fourth order statistical moments 
in the time domain (M2t and M4t), the relative power in the 
0.014 – 0.033 Hz frequency band (PR) and the Lempel-Ziv 
complexity (LZC) were automatically selected. 92.0% 
sensitivity, 85.4% specificity and 89.7% accuracy were 
obtained. The optimum feature set significantly improved the 
diagnostic ability of each feature individually. Furthermore, 
our results outperformed classic oximetric indexes commonly 
used by physicians. We conclude that simultaneous analysis in 
the time and frequency domains by means of statistical 
moments, spectral and nonlinear features could provide 
complementary information from NPO to improve OSA 
diagnosis. 
 
 Index Terms   Obstructive sleep apnea, nocturnal pulse 
oximetry, time domain analysis, frequency domain analysis, 
nonlinear analysis, logistic regression 

I. INTRODUCTION 

BSTRUCTIVE SLEEP APNEA (OSA) syndrome is a 
major sleep-related breathing disorder characterized by 

repetitive periods of reduced (hypopnea) or total cessation 
(apnea) of respiration caused by the partial or complete 
collapse of the upper airway, respectively [1]. Epidemiologic 
data consistently show a high prevalence of OSA in North 
America, Europe and Asia [2]. It is estimated that OSA 
affects 1 to 5% of adult men and 2% of women in western 
countries [3]. However, 90% of cases in men and 98% of 
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cases in women may go undiagnosed for many years [4]. 
Several factors of OSA syndrome have contributed to its 
emergence as an important medical condition [2]. Recent 
studies link OSA to inflammatory and metabolic 
deregulation, atrial fibrillation, stroke, myocardial infarction 
and sudden cardiac death [2]. These consequences have 
augmented the interest of the medical community and the 
general population on OSA syndrome, exponentially 
increasing the number of patients for evaluation [5]. 

Overnight polysomnography (PSG) is the gold standard 
method for a definitive diagnosis of OSA [1]. The apnea 
hypopnea index (AHI) from the PSG is used to characterize 
its severity. It measures the average number of apnea and 
hypopnea events per hour of sleep [1]. However, the AHI is 
weakly correlated with sleepiness and daytime performance 
[6], [7]. Moreover, the relative high cost and complexity of 
PSG limit its capacity as a screening test [6]. Thus, further 
research on simplified and less expensive tools is 
encouraged [7], [5]. 

Nocturnal pulse oximetry (NPO) is a standard technique 
for monitoring the arterial blood oxygen saturation (SaO2) 
[8]. NPO could provide relevant information on patients’ 
sleep quality: SaO2 tends to remain constant around 96% in 
normal subjects, whereas significant changes can be found in 
patients affected by OSA because of the recurrent apnea 
events [9]. Due to its simplicity and low cost, NPO has been 
proposed as an alternative for PSG [9]. Moreover, 
telemedicine systems based on oximetry alone could reduce 
referrals and waiting lists by identifying patients with strong 
suspicion of OSA [10]. NPO shows substantial accuracy as a 
screening test but important limitations decrease its value as 
a single diagnostic tool for OSA [9]. Thus, oximetry 
monitoring will not replace the gold standard of full PSG 
[10]. Our research was aimed to obtain further knowledge on 
SaO2 dynamics to improve the diagnostic ability of NPO in 
OSA. Additionally, we should take into account that other 
pulmonary and cardiovascular diseases can also modify the 
SaO2 profile during the night, which could influence the 
performance of oximetry monitoring [1]. Chronic 
obstructive pulmonary disease (COPD) is especially 
important because it is linked with deep nocturnal 
oxyhemoglobin desaturations [11]. The scope of the present 
study focused on patients with a clinical suspicion of sleep 
apnea regardless of additional respiratory disorders. 

Oxygen desaturation indexes (ODIs) and cumulative time 
(CT) indexes from NPO are commonly used by physicians 
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in OSA diagnosis [9], [12]–[14]. ODIs measure the number 
of dips in the SaO2 signal below a certain threshold, whereas 
CT indexes compute the percentage of time spent below a 
specified saturation level. However, it is known that some 
patients show many hypopneas with small decrements in 
SaO2, whereas others manifest relatively fewer but 
prolonged apneas [2]. Many limitations of classic indexes 
have been documented: CT indexes do not achieve high 
diagnostic accuracy [14], [15], there is not a standard 
definition for oxygen desaturation [9], [15], correlation with 
AHI is not high and their sensitivity and specificity greatly 
vary among studies [9], [14]. Thus, classic oximetric indexes 
based on the number and severity of desaturations could be 
insufficient to correctly diagnose OSA syndrome. The 
proposed methodology was aimed to characterize overall 
dynamics of SaO2 recordings regardless of quantifying the 
number of desaturation events. 

Common statistics from time and frequency analyses of 
heart rate variability recordings have shown to be simple and 
accurate tools in the detection of sleep apnea [16], [17]. First 
to fourth order statistical moments (M1 – M4) could be very 
useful to characterize SaO2 recordings. Spectral features 
from SaO2 frequency analysis have been applied for 
diagnostic purposes [18]–[20]. Conventional characteristics 
such as the total signal power (PT), the peak amplitude (PA) 
and the relative power (PR) in the 0.014 – 0.033 Hz 
frequency band have been used to parameterize the SaO2 
spectrum. The median frequency (MF) and the spectral 
entropy (SE) are usually applied to obtain additional 
information from the frequency domain in other contexts, 
such as EEG analysis [21]–[23]. Thus, MF and SE could 
improve the usefulness of spectral analysis of oximetric 
signals in OSA detection. On the other hand, nonlinear 
analysis of SaO2 has demonstrated to be a powerful tool in 
OSA diagnosis. Approximate entropy (ApEn) [24], central 
tendency measure (CTM) [25] and Lempel – Ziv complexity 
(LZC) [26] have been previously used to quantify 
irregularity, variability and complexity of SaO2 recordings, 
respectively. Previous studies have shown that ApEn, CTM 
and LZC could improve the diagnostic accuracy of classic 
oximetric indexes [27]–[29]. An additional nonlinear 
measure of irregularity, sample entropy (SampEn), has been 
recently applied in the context of OSA diagnosis to 
characterize heart rate variability [30]. 

In the present research, we hypothesized that a large set of 
features from different approaches (time vs. spectral and 
linear vs. nonlinear) could be useful to characterize SaO2 
from NPO. Our analyses could provide essential and 
complementary information to improve the diagnostic ability 
of oximetric recordings in OSA detection. The following 
feature sets were included in our study: 

1) Time domain statistics. First to fourth order statistical 
moments in the time domain (M1t – M4t). 

2) Frequency domain statistics. First to fourth order 
statistical moments in the frequency domain (M1f – 
M4f), MF and SE. 

3) Conventional spectral characteristics. PT, PA and PR. 
4) Nonlinear characteristics. SampEn, CTM and LZC. 
Our study was aimed to obtain an optimum feature set 

from SaO2 signals, in order to provide simple and reliable 
OSA diagnosis. To achieve this goal, a step-forward logistic 
regression (LR) procedure with leave-one-out cross-
validation was applied. Additionally, we evaluated whether 
the optimum feature set from the LR process could improve 
the diagnostic accuracy of classic oximetric indexes 
commonly used by physicians to diagnose OSA syndrome. 

II. POPULATION SET AND SLEEP STUDIES 

The population under study consisted of 148 consecutive 
patients (115 males and 33 females) with a mean  SD age 
of 52.9  14.1 years and an average body mass index (BMI) 
of 29.8  5.6 Kg/m2. All subjects were derived to the Sleep 
Unit of the Hospital Universitario Pío del Río Hortega of 
Valladolid (Spain) reporting at least one of the following 
symptoms: daytime hypersomnolence, loud snoring, 
nocturnal choking and awakenings or apneic events. Patients 
suspected of having other sleep disorders, such as insomnia, 
parasomnia or narcolepsy, were excluded from the study. 
The Review Board on Human Studies approved the protocol 
and each subject gave his or her informed consent to 
participate in the study. Table I summarizes the demographic 
and clinical data of the population under study. 

Overnight conventional PSGs were carried out from 
midnight to 08:00. Patients were continuously monitored 
using a polysomnograph (Alice 5, Respironics, Philips 
Healthcare, The Netherlands). Sleep was scored every 30 s 
epochs by a single scorer according to the standard criteria 
by Rechtschaffen and Kales. Apnea was defined as the 
absence of airflow for more than 10 s. Hypopnea was 
defined as a decrease in respiratory flow of at least 50%, 
accompanied by a greater than or equal to 3% decrease in 
the saturation of hemoglobin and/or an EEG arousal. Static 
(apneas) and dynamic (hypopneas) respiratory events were 
detected by means of a thermistor and a nasal cannula, 
respectively. An AHI  10 events per hour (e/h) from PSG 
was considered as diagnostic of OSA [31]. 

A positive diagnosis of OSA was confirmed in 100 
patients (67.6%). They composed the OSA-positive group, 
with an average AHI of 40.9  27.6 e/h. The remaining 48 
subjects (32.4%) composed the OSA-negative group, with 
an average AHI of 4.1  2.4 e/h. No significant differences 
between OSA-positive and OSA-negative groups were 
found in age, BMI and recording time. On the other hand, 
significant differences were found in the number of males 
(p-value < 0.01): the OSA-positive group had more males 
(83.0%) than the OSA-negative one (66.7%). This result 
agrees with the higher prevalence of the disease associated 
to the male gender [3]. Table I displays demographic and 
clinical characteristics for both groups. 

The polysomnograph equipment used in the present study 
included a Nonin PureSAT pulse oximeter (Nonin Medical 
Inc., Plymouth, MN, USA), with 3 s or faster averaging 
interval at a minimum heart rate of 60 beats per minute or 



  

greater. The SaO2 recordings from the overnight PSG were 
saved to separate files and processed offline. SaO2 was 
recorded at a sampling rate of 1 Hz. A semi-automatic 
preprocessing stage was carried out. Firstly, we assessed 
each oximetric recording by visual inspection looking for 
artifacts. All SaO2 signals presented drops to zero due to 
poor contact with the finger probe and/or patient 
movements. Finally, oximetric recordings were 
automatically scanned to remove zero samples. 

III. METHODOLOGY 

Our methodology was divided into three stages. Feature 
extraction was accomplished in the first stage. Oximetric 
recordings were analyzed using 16 characteristics from four 
different feature sets: time domain statistics, frequency 
domain statistics, conventional spectral characteristics and 
nonlinear measures. In the second stage, we carried out a 
feature selection process. A forward stepwise LR procedure 
was applied to obtain the optimum feature set. Finally, LR 
with leave-one-out cross-validation was used to assess the 
classification ability in the third stage. We evaluated the 
diagnostic performance of each single feature, the optimum 
model and the classic oximetric indexes from our data set. 

A. Time domain statistics 

The histogram from an overnight SaO2 profile could show 
differences between OSA-positive patients (characterized by 
frequent desaturations) and OSA-negative subjects (showing 
slight variations). The amplitude (%) of the SaO2 signal was 
used to compute the normalized histogram. First to fourth 
order statistical moments were computed as follows [32]: 
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Arithmetic mean (M1t), variance (M2t), skewness (M3t) 
and kurtosis (M4t) in the time domain were derived from 
each SaO2 recording to quantify central tendency, amount of 
dispersion, asymmetry and peakedness, respectively. Each 
feature was computed dividing every SaO2 signal in 
segments of 512 samples. Finally, we averaged over the total 
number of segments to obtain a single value per subject. 

B. Frequency domain statistics 

Spectral analysis was carried out to characterize the 
repetitive nature of apnea events. A power spectrum increase 
in the apnea interest frequency band (0.014–0.033 Hz) of 
SaO2 recordings from OSA-positive patients has been 
previously reported [18], [19]. In this study, the PSD of each 
oximetric recording was computed applying the 
nonparametric Welch’s method [33]. Firstly, the method 
divides the signal into M overlapping segments of length L, 
applies a smooth time weighting w[n] and computes the 
modified periodogram of each windowed segment vL[n] by 
means of the discrete Fourier transform (DFT) V[f] [33]: 
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Finally, all DFTs are averaged to obtain the PSD function. 
512-sample Hanning window with 50% overlap and 1024-
points DFTs were used. These parameters ensured the 
performance of the PSD estimate. Next, six statistics not 
based on conventional spectral measures were computed. 

1) First to fourth order moments in the frequency domain. 
The amplitude (W/Hz) of the PSD function at each single 
spectral component was used to obtain the normalized 
histogram in the frequency domain. Changes in the spectral 
content of SaO2 signals due to recurrent apnea events could 
modify the shape of the histograms. Thus, mean, variance, 
skewness and kurtosis could provide useful information. 
First to fourth order moments in the frequency domain 
(M1f–M4f) were computed using (1)–(4). 

2) Median frequency (MF). MF provides a simple means 
of summarizing the whole spectral content of the PSD. It is 
defined as the spectral component which comprises 50% of 
the total signal power [22]: 
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Lower values of MF correspond to signals with spectral 
power comprised into small frequencies, whereas higher 
values correspond to signals with significant spectral 
components at higher frequencies. 

3) Spectral entropy (SE). SE is a disorder quantifier related 
to the flatness of the spectral content. Its definition is based 
on the Shannon’s entropy [23]: 
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where pj is the normalized value of the PSD at each spectral 
component, with a bin width of one spectral unit [21]. High 
SE implies a flat PSD with a broad spectral content (or 
higher irregularity in the time domain), whereas low SE 
implies a PSD with all the power condensed into a single 
frequency band (oscillatory behavior in the time domain). 

TABLE I 
DEMOGRAPHIC AND CLINICAL FEATURES OF THE POPULATION SET  

 
 All 

subjects 
OSA 

positive 
OSA 

negative 
p-value 

Subjects (n) 148 100 48 – 
Age (years) 52.9  14.1 55.2  14.6 48.3  11.8 NS 
Males (n) 116 84 32 p < 0.01 
BMI (kg/m2) 29.8  5.6 30.8  5.0 27.3  6.3 NS 
Records (h) 7.2  0.4 7.2  0.4 7.2  0.4 NS 
AHI (e/h)  40.9  27.6 4.1  2.4 p < 0.01 

Data are presented as mean  SD or n; BMI: body mass index; AHI: 
apnea-hypopnea index; NS: no significant statistical differences 

An AHI  10 (e/h) from PSG was considered as diagnostic of OSA 



  

C. Conventional spectral characteristics 

Conventional frequency analysis was also included in our 
study. The following spectral features were derived from 
each PSD estimate [18], [19]: 

1) Total spectral power (PT). It is computed as the total 
area under the PSD function. 

2) Peak amplitude (PA) in the apnea frequency band. It is 
the local maximum of the SaO2 spectral content in the 
apnea frequency range, from 0.014 to 0.033 Hz. 

3) Relative power (PR) in the apnea frequency band. It is 
the ratio of the area enclosed under the PSD function 
in the apnea frequency band to the total signal power. 

D. Nonlinear feature set 

1) Sample entropy (SampEn). SampEn is a family of 
statistics defined to quantify the irregularity of time series, 
with larger values corresponding to more irregular data [21], 
[30], [34]. SampEn(m, r, N) is defined as the negative 
logarithm of the conditional probability that two sequences 
that are similar (within the tolerance width r) for m 
contiguous points remain similar when the run length 
increases to m+1 [34]: 
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Am and Bm are the average number of (m)-length and 
(m+1)-length segments Xm(i) (1  i  N-m+1) with 
d[Xm(i),Xm(j)]  r (1  j  N-m, j  i), respectively, where 
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In order to measure irregularity by means of SampEn, we 
used the recommended input parameters m = 1 and r = 0.25 
times the SD of the signal under analysis [27]. 

2) Central tendency measure (CTM). CTM provides a 
variability measure from second order difference plots, 
assigning larger values to lower variability [25], [28], [29]. 
CTM is computed selecting a circular region of radius  
around the origin, counting the number of points that fall 
inside, and dividing by the total number of points [25]: 
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 In the present study, we applied the recommended radius 
= 1 to compute CTM [29]. 

3) Lempel – Ziv complexity (LZC). LZC is a 
nonparametric measure of complexity, with larger values 
corresponding to high complexity data [26], [28], [35]. To 
compute LZC, the original signal is firstly converted into a 
binary sequence comparing each sample with a predefined 
threshold Td. Next, a complexity counter c(n) is increased 
every time a new subsequence is encountered [35]. Finally, 
c(n) is normalized: 
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Two symbols (‘0’ and ‘1’) were used to obtain binary 
sequences from the original SaO2 signals. In this study, the 
median value was used as threshold Td [28]. 
 

We estimated SampEn, CTM and LZC for all 512-sample 
segments within each SaO2 signal. Finally, we averaged 
these values to obtain a single irregularity, variability and 
complexity measure per subject. 

E. Classic oximetric indexes 

The cumulative time spent below a saturation of 90% 
(CT90) and ODIs over 2% (ODI2), 3% (ODI3) and 4% 
(ODI4) were computed offline from SaO2 recordings. The 
definition of a desaturation event was based on the study by 
Magalang et al. [15]: a decrease in SaO2 greater than or 
equal to the set amount (2%, 3% or 4%) from baseline for at 
least 10 s and at a rate >0.1%/s, returning within 60 s to a 
1%-interval of the initial value. Baseline was set as the mean 
saturation in the previous minute [12]. The mean level in the 
first 3 min of recording was used to initialize its value. 

F. Statistical analysis 

Statistical tests with no prior assumptions about the 
probability distribution of the data were applied. Statistical 
differences were evaluated by means of the nonparametric 
Mann-Whitney U test, whereas LR was used to investigate 
group classification. Additionally, the Dickey-Fuller unit 
root test was applied to assess stationarity. 

Forward stepwise LR was applied to perform feature 
selection. The procedure selected the strongest variables in 
the data set in terms of statistical significant differences: 
iterative binary LR processes were applied to describe the 
relationship between a dichotomous dependent variable 
(OSA-negative vs. OSA-positive) and the 16 independent 
variables included in the study. At each iteration, the 
stepwise method performs a test for backward elimination 
followed by a forward selection procedure [36]. 

A leave-one-out cross-validation process was carried out 
to ensure the statistical validity of classification results. A 
LR classifier was applied along 148 iterations, so that all 
subjects within our population set were used for both 
training and testing the methodology. At each iteration, a 
subset composed of 147 subjects was used to compute the 
logistic model, which was subsequently tested using the 
remaining subject. A different subject was left out at each 
iteration. Finally, sensitivity (OSA-positive patients 
correctly classified), specificity (OSA-negative subjects 
rightly classified) and accuracy (the total percentage of 
subjects correctly classified) were computed taking into 
account the total number of cases from the testing process. 
Additionally, the area under the receiver operating 
characteristics curve (AROC) was computed. 

IV. RESULTS 

A. Single feature assessment 



  

Fig. 1 (a) displays the overnight oximetric recordings 
from a common OSA-negative subject, showing minor 
changes in the SaO2 profile, and a common OSA-positive 
patient, with deep desaturations due to apnea events. Fig. 1 
(b) displays the PSD functions of these recordings, showing 
a power increase in the apnea interest frequency band 
corresponding to the OSA-positive patient. Figs. 1 (c) and 
(d) plot the normalized histogram envelopes of the data for 
both subjects in the time and frequency domains, 
respectively. The Dickey-Fuller unit root test showed that 
95.2% and 97.9% of all 512-sample segments from OSA-
negative and OSA-positive subjects were stationary, with a 
significance level of 0.05 and correction for serial 
correlation of the residuals. In addition, Table II summarizes 
the average (mean  SD) values of each feature included in 
the study for both groups. SaO2 profiles from OSA-negative 
subjects had significantly higher mean and lower variance 
than OSA-positive patients. Additionally, the OSA-negative 
group also showed significantly higher skewness and 
kurtosis than the OSA-negative one. This agrees with Fig. 1 
(c), where the envelope of the histogram from the OSA-
negative subject shows higher symmetry and peakedness. In 
the frequency domain, OSA-positive patients had 
significantly higher mean and variance than OSA-negative 
subjects. On the other hand, non-OSA subjects showed 
higher positive skewness and kurtosis than OSA-positive 
patients, i.e. lower symmetry and higher peakedness. This 
agrees with Fig. 1 (d), where almost all the spectral power in 
the OSA-negative subject is comprised in the very low 
frequency components. On the other hand, Fig. 1 (b) shows a 
broader spectral content in the normalized PSD function of 
the OSA-positive patient due to the power increase in the 
apnea frequency band. Thus, OSA-positive patients 
presented significantly higher MF and SE than OSA-

negative subjects. Conventional spectral features also 
achieved essential information. According to Fig. 1 (b), 
patients in the OSA-positive group showed significantly 
higher PA, PT and PR than non-OSA subjects, due to the 
repetition of apnea events during the night. Finally, OSA-
positive patients had higher average SampEn, lower CTM 
and higher LZC than non-OSA subjects due to the apnea 
events, i.e. higher irregularity, variability and complexity. 
The SaO2 profiles in Fig. 1 (a) illustrate these results. 

Table III summarizes the classification ability of each 
single feature using LR with leave-one-out cross-validation. 
On average, classical spectral features reached the highest 
diagnostic accuracies. 86.0% sensitivity, 77.1% specificity 
and 83.1% accuracy were reached with PA. In the nonlinear 
feature set, CTM equaled the highest accuracy (81.0% 
sensitivity, 87.5% specificity and 83.1% accuracy), slightly 
improving the AROC (0.918). SE achieved the highest 
accuracy (87.0% sensitivity, 54.2% specificity, 76.4% 
accuracy, 0.835 AROC) and MF achieved the highest 
AROC (76.0% sensitivity, 75.0% specificity, 75.7% 
accuracy, 0.864 AROC) within the frequency domain 
statistics feature set. Finally, M2t reached the highest 
accuracy and AROC within the time domain statistics 
feature set (86.0% sensitivity, 70.8% specificity, 81.1% 
accuracy, 0.891 AROC). 

B. Forward Stepwise LR procedure 

Four features were automatically selected from the whole 
data set: two common statistics in the time domain (M2t and 
M4t), one classical spectral feature (PR) and one nonlinear 
measure (LZC). Table IV summarizes the classification 
statistics at each step in the LR procedure with leave-one-out 
cross-validation. The diagnostic accuracy increased from 
79.7% to 89.7% at the end of the process. Additionally, the 

 
Fig. 1. Overnight SaO2 profiles for a common OSA-negative subject and a common OSA-positive patient (a) in the time domain and (b) in the frequency 
domain. Normalized histogram envelopes for both typical recordings (c) in the time domain and (d) in the frequency domain. 



  

AROC increased from 0.891 to 0.967. 
Finally, we assessed the diagnostic ability of classic 

oximetric indexes. LR with leave-one-out cross-validation 
was applied to test each single parameter. Table V 
summarizes the classification statistics. ODI2 obtained the 
best results in terms of diagnostic accuracy and AROC 
(85.0% sensitivity, 87.5% specificity, 85.8% accuracy and 
0.943 AROC).  

V. DISCUSSION AND CONCLUSIONS 

In the present research, we exhaustively analyzed SaO2 
recordings, in order to improve diagnostic ability of NPO to 
help in OSA detection. M2t and M4t time domain statistics, 
PR from the classical spectral feature set and LZC from the 
nonlinear set, were automatically selected. 

On average, conventional features from spectral analysis 
(PA, PT and PR) achieved higher diagnostic accuracy and 
AROC than other approaches. Frequency-based measures 
could improve the detection of OSA-positive subjects with 

small but frequent desaturations. Frequency domain statistics 
(M1f – M4f, MF and SE) achieved lower performance. 
Differences between OSA-positive and OSA-negative 
patients decreased because these features take into account 
all the frequency components within the whole spectrum, 
whereas PA and PR focused on the apnea frequency band. 
On the other hand, statistics from the histogram in the time 
domain outperformed the diagnostic ability of statistical 
moments in the frequency domain. The variance (M2t) and 
the peakedness (M4t) of the SaO2 amplitude distribution 
could differentiate OSA patients with few but deep 
desaturations from non-OSA subjects better than other 
features based on the number or periodicity of the 
desaturations. Finally, CTM from the nonlinear analysis was 
better able to differentiate OSA-negative subjects than other 
parameters. CTM is a variability measure based on 
differences between delayed versions of the time series, 
which improves the detection of non-OSA subjects with just 
low basal SaO2. 

The optimum model from the LR process summarized the 
main characteristics of apneic events: frequency and 
variability. PR quantifies the repetitive behavior of 
desaturations due to apnea episodes. On the other hand, M2t, 
M4t and LZC take into account the variability and 
complexity of the overnight SaO2 profile in OSA-positive 
patients. Our results suggest that a well-balanced model 
from multivariate analysis could distinguish OSA-negative 
and OSA-positive subjects showing different overnight SaO2 
profiles better than conventional single approaches. 

A sensitivity of 92.0%, specificity of 85.4% and an 
accuracy of 89.7% were reached. The recurrent apnea events 
during the night in OSA-positive subjects could be not 
completely explained by measures from a single approach. 
The optimum feature set significantly outperformed the 
diagnostic ability of each single parameter. Features within 
the model did not achieve the highest accuracies 
individually. However, they maximized statistical 
differences between OSA-positive and OSA-negative 
subjects jointly. Thus, variability, peakedness, frequency and 
complexity measures from M2t, M4t, PR and LZC, 
respectively, could provide complementary information in 
the context of OSA diagnosis. Furthermore, our 
methodology significantly improved classification statistics 

TABLE II 
AVERAGE VALUE OF EACH FEATURE FROM THE GROUPS UNDER STUDY 

 
 OSA negative OSA positive 

M1t 94.44  2.39 92.67  3.94 
M2t 0.70  0.31 2.02  1.79 
M3t 0.03  0.47 -0.22  0.31 
M4t 4.62  1.12 3.67  0.71 
M1f 3.90  6.15 27.74  64.46 
M2f 36.47  71.29 177.91  542.27 
M3f 13.55  1.15 10.34  2.89 
M4f 205.65  27.17 137.32  61.77 
MF 0.002  0.002 0.010  0.007 
SE 0.45  0.08 0.54  0.06 
PA 18.68  19.54 473.68  1107.37 
PT 1.74  2.66 12.92  29.27 
PR 0.15  0.06 0.32  0.13 
SampEn 0.31  0.05 0.33  0.06 
CTM 0.997  0.004 0.922  0.116 
LZC 0.24  0.02 0.26  0.03 

Data are presented as mean  SD. 

 
TABLE III 

DIAGNOSTIC ASSESSMENT OF EACH SINGLE FEATURE  
 

 TP TN FP FN Se Sp Ac AROC 
M1t 98 3 45 2 98.0 6.3 68.2 0.712 
M2t 86 34 14 14 86.0 70.8 81.1 0.891 
M3t 93 13 35 7 93.0 27.1 71.6 0.687 
M4t 91 19 29 9 91.0 39.6 74.3 0.777 
M1f 100 2 46 0 100 4.2 68.7 0.829 
M2f 100 0 48 0 100 0 67.6 0.744 
M3f 78 26 22 22 78.0 54.2 70.3 0.828 
M4f 78 25 23 22 78.0 52.1 69.9 0.822 
MF 76 36 12 24 76.0 75.0 75.7 0.864 
SE 87 26 22 13 87.0 54.2 76.4 0.835 
PA 86 37 11 14 86.0 77.1 83.1 0.913 
PT 98 9 39 2 98.0 18.8 72.3 0.837 
PR 85 33 15 15 85.0 68.8 79.7 0.891 
SampEn 93 2 46 7 93.0 4.2 64.2 0.648 
CTM 81 42 6 19 81.0 87.5 83.1 0.918 
LZC 91 15 33 9 91.0 31.3 71.6 0.731 

TP: True Positives; TN: True Negatives; FP: False Positives; FN: False 
Negatives; Se: Sensitivity (%); Sp: Specificity (%); Ac: Accuracy (%); 
AROC: Area under the ROC curve. 
 
 

TABLE IV 
RESULTS FROM THE DIAGNOSTIC ASSESSMENT OF EACH ITERATION INTO 

THE FORWARD STEPWISE LR PROCESS 
 

 TP TN FP FN Se Sp Ac AROC 
LR (PR) 85 33 15 15 85.0 68.8 79.7 0.891 
LR (PR, M4t) 89 37 11 11 89.0 77.1 85.1 0.935 
LR (PR, M4t, LZC) 90 39 9 10 90.0 81.3 87.2 0.948 
LR (PR, M4t, LZC, M2t) 92 41 7 8 92.0 85.4 89.7 0.967 
 

TABLE V 
DIAGNOSTIC ASSESSMENT OF CONVENTIONAL OXIMETRIC INDEXES 

 
 TP TN FP FN Se Sp Ac AROC 
CT90 100 0 48 0 100 0 67.6 0.794 
ODI2 85 42 6 15 85.0 87.5 85.8 0.943 
ODI3 86 41 7 14 86.0 85.4 85.8 0.932 
ODI4 85 42 6 15 85.0 87.5 85.8 0.922 

 



  

of classic oximetric indexes commonly used by physicians.  
The utility of SaO2 recordings from NPO in OSA 

diagnosis has been widely studied during the last years [9]. 
Unbalanced sensitivity vs. specificity pairs (31% vs. 100% 
and 91% vs. 69%) were obtained by visual inspection of the 
SaO2 profile [37], [38]. In the same way, the presence of a 
peak in the power spectrum of SaO2 signals achieved 78% 
sensitivity and 89% specificity [18]. Automated analysis of 
oximetric recordings improved the diagnostic ability of 
NPO. A sensitivity of 89.7% and a specificity of 57.8% were 
reached computing CT90 and the average SaO2 [39]. The 
saturation impairment time, which combines time and 
severity of desaturations, provided additional information to 
that obtained with CT indexes [40]. Higher diagnostic 
accuracies were reached using ODIs [12], [14], [41]. 
Sensitivities ranged from 32% to 98.0% and specificities 
from 88.0% to 97.0%. These studies presented two 
important limitations: the threshold used to diagnose OSA 
varies among the studies (from 5 to 15 e/h) and there was 
not a consensus in the definition of desaturation [9], [15]. 

Other researchers quantify the variability of the SaO2 
profile independently of the definition of desaturation. 
90.0% sensitivity and 75.0% specificity were reached using 
the delta index ( index) [42]. The repetition of apnea 
episodes has been also studied [18], [19]. Common spectral 
features based on the peak amplitude and the relative power 
achieved high sensitivities (94% and 91%) but small 
specificities (65% and 67%) [18]. In the same way, the 
negative slope of the PSD in the high frequency band (0.1 – 
0.5 Hz) reached 78% sensitivity and 80% specificity [20]. 
On the other hand, a recent study found that ODIs showed 
higher ability in predicting OSA severity than conventional 
spectral features. However, this study focused on moderate 
(AHI  15) and severe (AHI  30) OSA patients [43]. 
Recent studies by our own group applied nonlinear methods 
to quantify regularity, variability and complexity of SaO2 
recordings [27]–[29], [44]. Accuracies of 84.1% (82.1% 
sensitivity and 86.9% specificity), 87.2% (90.1% sensitivity 
and 82.9% specificity) and 82.9% (86.5% sensitivity and 
77.6% specificity) were reached with ApEn, CTM and LZC, 
respectively. Our results outperformed the diagnostic 
accuracy reported in previous studies. We would like to 
emphasize that classic indexes and new measures from NPO 
were computed using the same data base. Additionally, we 
developed a common methodology based on LR with leave-
one-out cross-validation to properly assess each parameter. 

Previous studies applied multivariate analysis to improve 
OSA diagnosis from NPO recordings. A sensitivity of 88% 
and a specificity of 70% were reached applying stepwise 
linear regression [45], whereas 90% sensitivity and 70% 
specificity were obtained with adaptive regression splines 
[15], both using classical indexes and the  index. 82% 
sensitivity and 84% specificity were obtained applying LR 
and spectral features [20]. A preliminary study by our own 
group assessed the usefulness of different classifiers in OSA 
diagnosis. The highest diagnostic performance (91.1% 
sensitivity, 82.6% specificity, 87.6% accuracy and 0.925 
AROC) was obtained using a reduced set of spectral features 
from NPO as inputs to a linear discriminant classifier [46]. 

The classification ability of the classifier decreased when 
nonlinear features were included in the study. Other 
researches have assessed multivariate analysis to classify 
patients with OSA from ECG. A wide set of time and 
spectral features from RR-interval time series were used to 
assess linear and quadratic discriminant classifiers. An 
accuracy of 100% was reported using quadratic discriminant 
analysis when borderline patients were removed from the 
study [17]. 74.4% accuracy was reached using discriminant 
analysis to characterize the apnea severity from time 
statistics and scale features in a similar study [47]. In our 
research, we obtained an optimum feature set from a forward 
stepwise LR procedure. To our knowledge, this is the first 
study where a wide set of features from four different 
approaches are combined to obtain an optimum model of 
SaO2 dynamics using forward stepwise LR with leave-one-
out cross-validation. Our methodology had some advantages 
over previous studies: no assumptions about the data 
probability distribution are needed when applying LR and 
the stepwise process automatically selects the features that 
best fit the model. 

Limitations of the study. We should take into account 
some drawbacks that limit the generalization of our results. 
The population under study could be larger and OSA-
positive patients were predominant. An important limitation 
should also be pointed out. Desaturations in the overnight 
SaO2 profile could not be exclusively due to apnea events 
typical of OSA. Patients with different respiratory or sleep-
related breathing disorders may exhibit significant 
desaturations during the night, which could influence our 
results. The severity of OSA could be overestimated if 
COPD coexists since individuals with both diseases have 
more and worse sleep desaturations than they would have 
with only one condition [48]. On the other hand, patients 
with COPD alone could increase the number of OSA-false 
positive cases. Thus, our findings should only be applied to 
patients without significant pulmonary or cardiac 
comorbidity. Additionally, patients under study were derived 
to the Sleep Unit due to prior symptoms of suffering from 
OSA, which limits the general application of our 
methodology. Oximetry alone has demonstrated to achieve 
high sensitivity and specificity in populations showing 
moderate to high risk of OSA [49]. However, a control 
group composed of normal subjects without suspicion of 
sleep-related breathing disorders could provide significant 
information about the consistence of our methodology. 
Moreover, further work is required to test the performance 
of our methodology when oximetric recordings are carried 
out from ambulatory portable monitoring at patient’s home. 

Another limitation of the study should be taken into 
account regarding the oximetry equipment setting, i.e. 
sampling frequency and averaging time. A different 
equipment setting could influence our results. We would like 
to point out that our methodology could be less dependent 
on changes in SaO2 resolution than conventional approaches 
based on the detection and quantification of desaturations, 
such as ODIs. Nevertheless, the performance of our 
methodology should be assessed using different oximetry 
monitors, with different sampling frequencies and time 



  

averaging intervals. Additionally, although our methodology 
reached high diagnostic accuracy, we should take into 
account that a definitive diagnosis must be done on the basis 
of additional information. The American Academy of Sleep 
Medicine recommends that OSA diagnosis should be 
performed using portable monitoring together with a 
comprehensive sleep evaluation [49]. 
 

In summary, we found that diagnostic ability of NPO in 
OSA diagnosis could be enhanced combining features from 
different approaches. Conventional oximetric indexes are 
insufficient to completely characterize changes in the SaO2 
profile during the night. Time, frequency and nonlinear 
analyses provide additional and complementary information 
that could be used to better characterize SaO2 dynamics. 
Additionally, stepwise LR has shown to be a powerful tool 
to obtain an optimum model from oximetric recordings. The 
automatically selected optimum feature set significantly 
improved the diagnostic accuracy of conventional indexes 
commonly used by physicians. Thus, this new model could 
enhance the performance of NPO to help in the diagnostic 
assessment of OSA syndrome. 
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