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ABSTRACT

Diffusion tensor imaging (DTI) corrected for the free-water (FW) enables the separation of a hindered Gaussian-like profile
from an isotropic component, which represents diffusion found in cerebrospinal and interstitial fluids within the extracellular
space of grey and white matter. The assessment of the reproducibility and reliability properties of FW-corrected DTI is a cru-
cial factor in demonstrating the potential clinical utility of this refinement, particularly considering the examinations across
multiple medical centres. This paper explores the variability, reliability, and separability properties of free-water volume frac-
tion (FWVF) and FW-corrected DTI-based measures in healthy human brain white matter using publicly available test-retest
databases acquired in (1) intra-scanner, (2) intra-scanner longitudinal and (3) inter-scanner settings under varying acquisition
schemes. Three different estimation techniques to retrieve the FW-corrected DTI parameters tailored to single- or multiple-
shell diffusion-sensitising magnetic resonance (MR) acquisitions are investigated: (i) a direct optimization of bi-tensor signal
representation in the variational framework, (ii) the region contraction-based approach and (iii) the spherical means technique
combined with a correction of diffusion-weighted MR signal prior to DTI estimation. We found the previous suggestion that the
FW correction to DTI in a single-shell diffusion-weighted MR acquisition improves the repeatability of DTI-based measures
may be data- and methodology-dependent, and does not generalise to multiple-shell scenarios. The study also confirms that
the single-shell variational FW-correction method fails to retrieve meaningful information from the mean diffusivity (MD)
parameter. In contrast, the combined FW-correction scheme reduces the biological variability of MD, regardless of whether
DTI is estimated from single- or multiple-shell data, given that the FWVF used for the correction in both cases is derived from
multiple-shell acquisitions. Our experiments have shown that the most reliable and repeatable/reproducible measures, while
preserving a moderate separability property, are fractional anisotropy and axial diffusivity estimated in a multiple-shell variant
under a combined FW-correction scheme. On the contrary, our results show evidence that the least reliable measures are the
mean diffusivity estimated using any FW-correction procedure, as well as the FWVF parameter itself. These results can be used
to establish the direction for selecting the most attractive FW-correction DTI scheme for clinical applications in terms of the
variability-reliability-separability criterion.

1 | Introduction in vivo, particularly in brain tissue (Le Bihan and Johansen-

Berg 2012). A common approach employed to represent the
Diffusion-weighted magnetic resonance imaging (MRI) is diffusion-weighted MR signal is single-compartment diffu-
a well-established medical modality that enables the non- sion tensor imaging (DTI) by providing a set of unique quan-
invasive probing of random motion of water molecules titative measures summarising the directional water diffusion
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process (Basser et al. 1994; Westin et al. 2002). Extending
the standard DTI to the so-called bi-tensor representation
has facilitated the separation of hindered diffusion depicted
with a tensor-based Gaussian-like profile and the isotropic
component, which illustrates the diffusion found in cerebro-
spinal and interstitial fluids within the extracellular space of
grey and white matter (Pierpaoli and Jones 2004; Pasternak
et al. 2009). This separation is possible due to suitably se-
lected numerical optimization schemes that enable one to
compute the directional DTI profile and the free-water vol-
ume fraction (FWVF), a scalar parameter illustrating the
fitted isotropic fraction of the bi-tensor representation to the
diffusion-sensitised MR signal. Such computations are possi-
ble both for single- (Pasternak et al. 2009) and multiple-shell
acquisitions (Pasternak et al. 2012; Hoy et al. 2014; Bergmann
et al. 2020; Tristan-Vega et al. 2022).

The FW-corrected DTI has been an essential tool in clinical
applications, particularly the single-shell FW-corrected DTI,
which is primarily employed in cognitive performance evalu-
ation (Maillard et al. 2019), modelling neurodegenerative dis-
orders such as Parkinson's (Ofori et al. 2015) or Alzheimer's
(Bergamino et al. 2021; Nakaya et al. 2022), brain ageing
(Metzler-Baddeley et al. 2012; Chad et al. 2018), schizophre-
nia (Carreira Figueiredo et al. 2022) or detecting first episodes
of psychosis (Lyall et al. 2018), as the evidence indicates the
method improves the specificity of DTI measures (Bergamino
et al. 2021; Chad et al. 2023) and the reliability and accuracy
of tractometry in brain ageing (Chang et al. 2025). However,
the single-shell FW-corrected DTI by Pasternak et al. (2009)
has been lately put into stake because it is unclear whether
it accurately captures actual anatomy-related changes in the
diffusivity profile of brain white matter. For instance, Golub
et al. (2021) have shown that the single-shell FW-correction
scheme can yield plausible results, but the optimization proce-
dure heavily depends on the initialization strategy, potentially
affecting the method's specificity. Correia et al. (2024) discov-
ered a flattening effect of FW-corrected MD profiles with age
and FW-corrected FA strong positive correlations with age in
some regions, which seem not to be present in a multiple-shell
scenario. The authors of these works advocate for considering
the multiple-shell rather than single-shell tailored schemes
once correcting the DTI for the FW component. As an ex-
ample, the multiple-shell variant has explicitly demonstrated
benefits over the single-shell in brain age predictions (Nemmi
et al. 2022).

Although numerous FW-corrected DTI applications have al-
ready been demonstrated in a wide range of clinical scenar-
ios, much less attention has been paid to the reproducibility
and reliability of the measures obtained from this refinement.
Until now, the intra-scanner repeatability (or more generally,
the inter-scanner reproducibility) and reliability studies have
concentrated primarily on the standard DTI-based metrics
under specific acquisition conditions, such as variable mag-
netic strength fields (Grech-Sollars et al. 2015; Venkatraman
et al. 2015; Jakab et al. 2017), multi-band acquisition scheme
(Duan et al. 2015), and spatial resolution (Shahim et al. 2017;
Zhong et al. 2024), considering particular cohorts like fetal
brains (Jakab et al. 2017), neonates (Merisaari et al. 2019) or
in the older population (Laguna et al. 2020), in a longitudinal

scenario (Boudreau et al. 2025), across multiple centres (Grech-
Sollars et al. 2015) or even under scanner relocation (Melzer
et al. 2020). Apart from providing detailed quantitative re-
sults, some other studies proposed vendor-agnostic sequences
to reduce inter-scanner variabilities (Liu et al. 2024) or drew
conclusions on possible solutions to post hoc improve the repro-
ducibility or reliability of DTI-based parameters. For instance,
Jakab et al. (2017) presented a negative impact of fetal head
motion on DTI repeatability and suggested that this effect can
be partially palliated with motion correction algorithms. Ades-
Aron et al. (2025) have shown that proper denoising of diffusion-
weighted MR data (either in complex or magnitude space) leads
to a significant reduction in variability of DTI-based measures
and increases statistical power for low signal-to-noise ratio vox-
els in intra- and inter-scanner, and inter-protocol studies. In the
work by Albi et al. (2017), it has been suggested that suppress-
ing the FW component in DTI using the single-shell approach
by Pasternak et al. (2009) leads to reduced repeatability errors
of standard metrics such as fractional anisotropy (FA) or mean
diffusivity (MD) on average approximately at 1%pt.! However,
taking a closer look at the experimental methodology, the work
by Albi et al. (2017) may lead to more inquiries than answers, as
different numerical optimization schemes have been arranged
to compare the standard DTI-based measures and the FW-
corrected ones, i.e., the linear least squares procedure versus the
non-linear optimization in a variational framework. Besides,
the work utilises a questionable single-shell-based FW correc-
tion scheme and uses only a test-retest database acquired in a
longitudinal intra-scanner scenario.

In this paper, we revisit the study by Albi et al. (2017) and explore
the repeatability and reproducibility, reliability and separability
of FW-corrected DTI under three different approaches used to
correct the DTI for the FW component, namely (1) a single-shell
variational scheme by Pasternak et al. (2009), (2) the multiple-
shell region contraction-based approach by Hoy et al. (2014), and
(3) a prior correction of diffusion-weighted MR signal for the FW
component estimated using the spherical means technique by
Tristan-Vega et al. (2022), preceded by a standard DTI estima-
tion from FW-corrected signal. We emphasise that single-shell
estimation should not be regarded as equivalent to multiple-
shell estimation, as it fails to capture the full spectrum of the
biological variability of brain tissue. Our study encompasses
three databases acquired in (i) intra-scanner, (ii) intra- scanner
longitudinal and (iii) inter-scanner scenarios, as well as under
various experimental setups.

2 | Materials and Methods
2.1 | InSilico Data
We generate in silico data by composing the signals originat-

ing from cellular and free-water compartments, following the
formulation:

A(b,g)
A(0)

= (1=f) D e Ax(b,8)+ fexp(=bD,) ,f €[0,1]
keB —— D
—————— ——frec—water compartment

cellular compartment
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with D, = 3.0 x 107> mm? /s being the apparent diffusion coef-
ficient for water at a temperature of approximately 37°C, f is
the FWVF parameter, and A, (b, g) is the cellular compartment
integrating intra- and extra-axonal parts spherically convolved
with the fibre orientation density function ®(g)

Ay (b, 8) =1, @(Q) ® exp(—bg" D ,g) + (1 — v ) D(g) ® exp(—bg' D, 8),
2

where the tensor D, represents the intra-cellular part and is
characterised with two perpendicular null eigenvalues, Af’c ej{p =0,
and the tensor D, is axis-symmetric with a non-zero perpen-
dicular diffusivity . The cellular compartment defined in
Equation (1) can be represented using a single- (B = {1}) or two-
fibre bundle (B = {1, 2}) with partial fractions a; + a, = 1. The
signal given by Equation (1) is then contaminated with a Rician
noise (Aja-Fernandez and Vegas-Sanchez-Ferrero 2016; Pieciak
et al. 2017), as follows S(b,g) = |A(b,g) + Ny, +Jj - Nip,| with
Nie, Niy ~ N (0, 62). For more information on synthetic data
generation scheme, see the Supporting Informations in Pieciak
et al. (2023).

We generate two sets of synthetic data representing a single
fibre bundle («, = 0) and a two-fibre bundle case (¢; = @, = 0.5).
The experimental setup for each dataset comprises 18 replicas
of baseline samples and diffusion-weighted samples generated
at b= {600,1200}s /mm? and 90 gradient directions per shell
distributed according to the sampling defined by the HCP
WuMinn project (Van Essen et al. 2013). The signal-to-noise of
the data ratio has been defined in terms of baseline signal as
SNR = A(0) / o and fixed to 300. For each set, we also generate
noiseless reference data with no FW component, i.e., f =0 in
Equation (1).

2.2 | InVivo Data

We use three publicly available diffusion-weighted MR da-
tabases compatible with single- and multiple-shell DTI and
FW-corrected DTI. Two databases, namely MICRA (Koller
et al. 2021) and Magdeburg (Lehmann et al. 2021), cover re-
peated scans for each subject acquired using a single scan-
ner (i.e., intra-scanner acquisitions). The third database, the
ZJU (Tong et al. 2020), covers multiple scans across identi-
cal scanners located in different centres (i.e., inter-scanner
scenario).

The acquisition setup for the MICRA database was as follows.
The database covers inter-session repeated scans from a sin-
gle centre. Six healthy volunteers (3F/3M) aged 24-30 were
scanned, five times each using a 3T Connectom MRI research
scanner (Siemens Healthcare, Erlangen, Germany) equipped
with an ultra-strong gradient system at 300 mT/m. Acquisition
protocol: single-shot spin-echo echo planar imaging sequence,
anterior-posterior (AP) phase-encoding direction, repetition
time (TR): 3000ms, echo time (TE): 59ms, pulse separation/
pulse duration A/8: 24/7 ms, field of view (FOV): 220 X 220 mm?,
matrix size: 110X 110, voxel size: 2x2x2mm?3, b-values: (200,
500, 1200, 2400, 4000, 6000)s/mm? with (20, 20, 30, 61, 61, 61)
gradient directions, respectively, 11 non-diffusion-weighted
scans in AP direction repeated every twentieth volume and

two non-diffusion-weighted scans in PA direction. For this
study, we use only the diffusion-weighted MR samples acquired
ath = {500,1200}s/ mm?

The acquisition details of two other databases are provided in
the Supporting Information S1.

2.3 | Data Preprocessing

The MICRA dataset was preprocessed using the following pipe-
line: (1) noise removal using the Mar¢enko-Pastur Principal
Component Analysis technique over a window of size 5X5X5
voxels (MP-PCA; Veraart, Novikov, et al. 2016; Veraart,
Fieremans, and Novikov 2016), (2) Gibbs ringing artefacts cor-
rection (Kellner et al. 2016), (3) Rician bias correction applied
voxel-wise with the formula (Pieciak et al. 2018)

M,(x)=> [(M(x)) +| ey 2az(x)(l/2] . ®

The correction given by Equation (3) was applied under the as-
sumption that the MP-PCA algorithm generates a proxy for the
expectation of signal magnitude, (M(x)), 62(x) is the spatially-
dependent noise standard deviation, (4) susceptibility-induced
distortions estimation using the FSL FMRIB Software
Library v6 topup tool (Analysis Group, FMRIB, Oxford, UK;
Andersson et al. 2003; Smith et al. 2004), (5) head movements
and eddy current distortions correction using the FSL eddy
(Andersson et al. 2016), and (6) B1 field inhomogeneity correc-
tion using the N4 algorithm (Tustison et al. 2010).

2.4 | Free-Water-Corrected Diffusion
Tensor Imaging

The FW-corrected DTI is modeled using a two-component
representation characterising hindered diffusion using a
diffusion tensor, and free diffusion represented by a mono-
exponential decay (Pierpaoli and Jones 2004; Pasternak
et al. 2009):

S,
;(01);) = (1 - frexp(-bg'Dg) +f exp(-bDy).f € [0,1] (4)

with S(b, g) being the diffusion-weighted MR signal acquired in
direction g at b-value b, S(0) is a non-diffusion-weighted MR sig-
nal, and D is a symmetric semi-positive matrix of size 3x 3. The
two-component representation given by Equation (4) reduces to
the standard DTI for f = 0.

2.5 | Estimation Methods: DTI
and FW-Corrected DTI

The following methods are considered in this study to estimate
FWVF, DTI and FW-corrected DTI:

1. Bi-tensor-S: joint estimation of FWVF and FW-corrected
DTI in the variational framework from single-shell ac-
quisitions (Pasternak et al. 2009); the learning rate has
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been fixed to 0.005, the optimization uses 200 iterations
and the initialization employs the tissue's MD prior set
to 0.6 X 107> mm? /s (Golub et al. 2021), unless otherwise
stated,

2. Bi-tensor-M: joint estimation of FWVF and FW-corrected
DTI via the non-linear least squares procedure from
multiple-shell acquisitions (Hoy et al. 2014; Henriques
et al. 2017),

3. SM: FWVF estimation using the spherical means tech-
nique from multiple-shell acquisitions (Tristan-Vega
et al. 2022); the spherical harmonics decomposition at
the order of L =6 is computed using the inverse linear
problem with the regularisation based on the Laplace-
Beltrami operator and the regularisation weight set
to 4=0.001, the parallel diffusivity parameter is fixed
to Apy =2.0X 10>mm? /s and penalty term v used to
promote prolate convolution kernels was optimised to
v = 0.015 for the MICRA database.

4. DTI: standard DTI estimated via the non-linear least
squares (NLLS; Koay et al. 2006),

5. FW-DTI: customised FW-corrected DTI scheme using the
NLLS based on a pre-estimated FWVF with the SM tech-
nique. This scenario assumes the diffusion-weighted MR
signal is corrected for the isotropic component prior to the
estimation procedure:

3(b.g) = (1_,?)‘1(551’_(;2) - exp(—bD0)> + exp(=bDy).
)

where S(b,g)is the normalised diffusion-weighted MR signal after
removing the FW component, S(0) is the averaged signal across
all non-diffusion-weighted MR acquisitions, ]A” is the FWVF esti-
mated using the SM technique from multiple-shell data.

We calculate FA, MD, RD (radial diffusivity) and AD (axial
diffusivity) measures for each DTI-based technique con-
sidered in the study, i.e., Bi-tensor-S, Bi-tensor-M, DTI and
FW-DTI. For DTI and FW-DTI, we handle two variants: sin-
gle- and multiple-shell data. In the former FW-DTI variant,

the FWVF is estimated using the SM approach from multiple-
shell data, while the DTI-based parameters are derived from
single-shell data. This configuration may reflect a realistic
clinical scenario in which the acquisition protocol includes
a standard DTI scheme approximately at b = 1000s / mm? and
only a few directions at a lower b-value, around 500s / mm?.
Alternatively, if the study includes data acquired at a higher
outer shell, for instance, b =2000s/mm? (as in the ZJU or
Magdeburg databases), it may be advantageous to estimate the
FWVF from two shells and then obtain DTI-based measures
from the shell at b =1000s /mm? In the multiple-shell vari-
ant, both the FWVF and DTI parameters are computed from
multiple-shell data. Table 1 summarises all methods used in
the study.

We used the DIPY library v. 1.9.0 (https://dipy.org) for non-
linear DTI and DIPY with in-house implementation for FW-
DTI fitting procedures delivered in Python 3.11.5 (https://
www.python.org), NumPy 1.26.4 (https://numpy.org) and
SciPy 1.11.1 (https://scipy.org). The implementation of Bi-
tensor-S followed that of (Golub et al. 2021; https://github.
com/mvgolub/FW-DTI-Beltrami), while Bi-tensor-M em-
ployed the one provided with the DIPY library. The SM was
estimated using the dMRI-Lab toolbox (https://www.lpi.tel.
uva.es/dmrilab) run under MATLAB R2023b (The MathWorks
Inc., Natick, MA).

2.6 | Data Registration

The FA volumes estimated using a standard DTI at
b = 1200s / mm? for MICRA database were used to register the
data to the Montreal Neurological Institute (MNI) space, so-
called standard space. Specifically, we linearly registered FA
volumes computed with the standard DTI from each scan to
the FSL template FMRIB58_FA using the FSL flirt tool under
seven degrees of freedom, normalised correlation cost func-
tion and spline interpolation. The linearly transformed FA vol-
umes were then non-linearly deformed via the FSL fnirt. All
measures from the subjects’ native spaces were mapped to the
MNI space using a trilinear interpolation. We then retrieved
the white matter label from the Johns Hopkins University

TABLE1 | Summary of FWVF, DTI and FW-corrected DTI estimation procedures used in the study.

Single-shell

Multiple-shell

DTI FW-corrected DTI FW-corrected
Method FWVF measures DTI measures FWVF measures DTI measures
Bi-tensor-S (Pasternak et al. 2009) v v
Bi-tensor-M (Hoy et al. 2014) v v
SM (Tristan-Vega et al. 2022) v
DTI (Koay et al. 2006) v v
FW-DTI v v

Note: The methods are classified into single- and multiple-shell data handled in the estimation process. !\ The DTI-based parameters are estimated from single-shell

data, using the FWVF previously estimated from multiple-shell data.
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(JHU) WM atlas (Mori et al. 2005) in the standard space and
shrunk it using a morphological binary erosion operator with
a cross-shaped kernel of size 3X3 X3 to eliminate potential
misregistration outliers due to a partial volume effect. All
scripting was carried out using the Arturo programming lan-
guage 0.9.83 (https://arturo-lang.io).

2.7 | Variability, Separability and Reliability
Assessment

Three characteristics of the FWVF and DTI-related mea-
sures are computed, namely reproducibility, reliability, and
separability, all three in the standard space. First, we warp
the measures from the subjects’ native spaces to the standard
space using the warping fields obtained from the data regis-
tration procedure. Then, we compute the spatially dependent
characteristics mentioned above across the repeated scans.
Repeatability and reproducibility are explained in terms of the
variability index, which defines the general ability to replicate
the measure across scans or scanners of the same subject, and
they are expressed by the coefficient of variation (CoV). By
definition, the smaller the variability, the higher the repeat-
ability and reproducibility. In our study, we distinguish three
scenarios: (1) intra-scanner repeatability—the inter-session
scans are replicated using the same scanner with a short
time interval between the scans, (2) inter-session longitudi-
nal reproducibility—the scans are repeated using the same
scanner with a longer time interval between the scans (e.g.,
several weeks) and possibly affected by confounding factors
(e.g., changes in magnetic field drifts) and (3) inter-scanner
reproducibility—the scans are repeated using the same scan-
ner type, but installed in different locations. The reliability
index reflects the measure's consistency, and it is expected to
be high for measures that are stable in value across repeated
scans. Decomposing the variance into within-subject and
between-subjects variances, as defined by Zuo et al. (2019),
enables the computation of a ratio that reflects how much of
the total variance is explainable by actual inter-individual
differences rather than noise or session variability. The last
index, separability, illustrates the metric's ability to capture
inter-subject discrepancies.

271 | Variability

The variability of a metric has been defined as the median value
from the CoVs computed across all subjectss =1, ..., S

©)
where the CoV for subject s, CoV,(x), is given by

Std. dev(x)

CoVsx) = Meang(x)

)

The sample mean Meang(x) and sample standard deviation
Std. dev,(x) are defined over the stack of M, scans available for
s — th subject (see Supporting Information S1 for details).

2.7.2 | Reliability

The reliability index has been defined using the formulation by
Zuo et al. (2019)

Reliability(x) = ——— ==

,,,,,

®)
where Var (x) is the sample variance of the measure and
var,_; _g{.}is the population variance calculated across sample
means Mean,(x), i.e., the normalisation factor in the variance
formula equals1/S.
2.7.3 | Separability

We define the separability index as follows:

std.dev,_; ¢{Mean(x)}

Separability(x) = x100[ %], (9)

mean,_; _s{Meany(x)}

where std.dev,_, ¢{.} is the population standard deviation
with the normalisation factor also given by 1/S.

2.7.4 | Diffusion Kernel Density Estimation (DiffKDE)?

The KDE method estimates the probability density function
from data samples in a non-parametric way. Given a random
sample x;, ... ,x, from an unknown probability density func-
tion f(x), a non-negative kernel function K and a bandwidth
h > 0, the formula for the KDE at a point x, is given by (Hastie
et al. 2009)

P = BR(FE)

The KDE-based procedure must be applied with great care,
as Silverman's rule-of-thumb bandwidth selection method
(Silverman 1986) may yield suboptimal results for non-
Gaussian histogram shapes. Thereupon, we employ an
advanced DiffKDE approach, which uses the improved
Sheather-Jones method to automatically determine the opti-
mal smoothing parameter (Sheather and Jones 1991; Botev
et al. 2010). The DiffKDE uses a linear diffusion process (i.e.,
heat equation) to model the density and minimises the asymp-
totic mean integrated squared error criterion to select an opti-
mal smoothing parameter. Compared to KDE, which models
the density as a sum of kernel functions centred at the data
points, the DiffKDE models the density as a solution to a par-
tial differential equation with initial conditions derived from
the empirical density of the data.

We compute the DiffKDE over all data points from the white
matter area in the standard space of the measure. Representing
variability and reliability as density plots diminishes the
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influence of potential misregistered voxels or those affected by
partial-volume effects on the results.

3 | Experimental Results

This section wraps the experimental results generated for in sil-
ico data and MICRA database.

3.1 | InSilico Experiments

In the in silico experiment depicted in Figure 1, we exam-
ine different FW-correction DTI schemes and relate the FW-
corrected MD and FA measures under f = 0.2 to the standard
DTI-based equivalents, but obtained from the cellular model
only (i.e., f = 0 in Equation 1). Among the multiple-shell-based
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FIGURE 1 | The 2D density plots illustrate the experimental re-
sults from an in silico model under a two-fibre bundle configuration:
(a) the MD and FA parameters estimated using the standard DTI from
noiseless reference data covering the cellular component only. The FW-
corrected MD and FA estimated from the signal covering FW (f = 0.2)
and cellular components: (b) Bi-tensor-S and Bi-tensor-M approaches,
and (c) FW-DTI customised scheme according to Equation (5). In total,
15% samples have been used to obtain a single 2D density plot.

techniques, the FW-DTI customised scheme yields smaller dis-
crepancies of MD and FA from the standard DTI-based MD and
FA than the B-tensor-M technique. However, the FW-corrected
MD using the FW-DTI scheme is more flattened compared to
the FW-corrected MD obtained via the Bi-tensor-M. Regarding
the single-shell techniques evaluated at b = 1200s /mm?, the
flattening effect is more evident, albeit the FW-corrected MD
using the FW-DTI scheme also follows the general trend of stan-
dard DTI-based MD. The Bi-tensor-S method converges to the
tissue's prior, i.e., the FW-corrected parameter oscillates around
the value of 0.6 x 107> mm?/s.

3.2 | Visual Inspection of the Measures

We now move to in vivo experiments, first by visually inspect-
ing the measures in the subject’s native coordinate system. We
have chosen a single subject from the MICRA database (sub-01,
ses-01) and displayed the measures in Figure 2. In Figure 2a,
we illustrate the FWVF estimated under multiple-shell data
at b = {500,1200}s/mm? using the SM and Bi-tensor-M ap-
proaches, and single-shell data at b = 1200s / mm? with the Bi-
tensor-S. The results obtained with Bi-tensor-M and Bi-tensor-S
differ despite both techniques are conceptually based on a di-
rect optimization of Equation (4), albeit using distinct numerical
schemes. Next, in Figure 2b,c, the DTI measures estimated from
multiple- and single-shell acquisitions have been illustrated
in the following rows: (i) standard DTI (no free-water correc-
tion), (ii) FW-corrected DTI according to Equation (5) and (iii)
Bi-tensor-M or Bi-tensor-S approach. We observe increased FA
values and decreased MD, AD and RD over the brain using
all three FW-correction schemes examined, i.e., the FW-DTI,
Bi-tensor-M and Bi-tensor-S. Besides, the FW-corrected MD
parameter estimated using the Bi-tensor-S approach exhibits
flattened spatial characteristics over the brain (see Figure 2c).
The median (interquartile range) value of FW-corrected MD
computed with the Bi-tensor-S approach over the WM area is
0.6006 (0.6 — 0.6015).

3.3 | Variability Maps

In the experiment shown in Figure 3, we visually inspect spa-
tially dependent variability maps of the measures in the stan-
dard space computed according to Equation (6) for the MICRA
dataset.

In Figure 3a, we illustrate the variability of the FWVF estimated
from: (i) multiple-shell data using the SM, (ii) multiple-shell data
using the Bi-tensor-M procedure and (iii) single-shell data via the
Bi-tensor-S. Among the three techniques mentioned above, the
highest variability is observed with the Bi-tensor-M approach,
with the median CoV over the white matter area at 19.9 %, com-
pared to SM (CoV = 11.78 %) and Bi-tensor-S (CoV = 11.57 %).

Next, in Figure 3b,c, we present the variability of DTI metrics
computed with the standard DTI and under a FW-correction
from multiple- and single-shell data. The first observation is that
the variability of the FA parameter follows different spatial char-
acteristics compared to MD, AD and RD. Specifically, the vari-
ability of FA is remarkably lower in the white matter compared
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FIGURE2 | Estimated microstructural measures for a selected MICRA acquisition (sub-01, ses-01, slice 36): (a) FWVF estimated from multiple-
shell data (SM and Bi-tensor-M approaches) and single-shell data (Bi-tensor-S), (b) DTI-based measures estimated from multiple-shell data using a
standard DTI, and two free water-correction methodologies: FW-DTI according to Equation (5) and Bi-tensor-M, and (c) DTI-based measures esti-
mated from single-shell data using the standard DTI, FW-DTI and Bi-tensor-S. The FWVF parameter for FW-DTI was pre-estimated using the SM
approach from multiple-shell data in both scenarios presented in panels (b) and (c).
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FIGURE 3 | Inter-session variability maps of the measures defined in the standard space for MICRA database according to the coefficient of
variation defined by Equation (6): (a) FWVF estimated from multiple-shell data (SM and Bi-tensor-M approaches) and single-shell data (Bi-tensor-S),
(b) DTI-based measures estimated from multiple-shell data using a standard DTI, and two FW-correction methodologies: FW-DTI according to
Equation (5) and Bi-tensor-M, and (c) DTI-based measures estimated from single-shell data with the standard DTI, FW-DTI and Bi-tensor-S. The
FWVF parameter for FW-DTI was pre-estimated using the SM approach from multiple-shell data in both scenarios presented in panels (b) and (c).

to the grey matter, while the variability of MD, AD, and RD is slightly across the methods considered: 4.35% (DTI), 4.27%
more homogeneous across the white and grey matter areas. The (FW-DTI) and 4.56 % (Bi-tensor-M). For the multiple-shell MD,
median CoV of multiple-shell-based FA parameter varies only the results are more pronounced: 2.76 % (DTI), 3.22 % (FW-DTI)
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FIGURE4 | Inter-session kernel density-based variability (top) and reliability (bottom) indices computed for MICRA database over the white mat-
ter area: (a, c) FWVF estimated from multiple-shell data (SM and Bi-tensor-M approaches), (b, d) DTI-based measures estimated from multiple-shell
data using standard DTI, FW-DTI according to Equation (5) and Bi-tensor-M. The FWVF parameter for FW-DTI was pre-estimated from multiple-

shell data using the SM approach.

and 4.11 % (Bi-tensor-M). However, in the case of MD estimated
with Bi-tensor-S, the results are contentious—the experiment
has revealed the smallest variability across all the measures
considered in the study.

3.4 | Density-Based Variability and Reliability
Indices

From this point onward, only the results for the multiple-shell
data are presented in the main paper. For the extended results,
including single-shell data, we refer the reader to the Supporting
Information S1.

The following two experiments assess the variability and reli-
ability of the measures across the white matter in the form of
density plots. The plots have been estimated using the DiffKDE
approach (Sheather and Jones 1991; Botev et al. 2010) for
multiple-shell measures previously illustrated in Figure 2 and
are depicted in Figure 4.

The FWVF parameter, no matter how it is estimated, is poorly
reproducible over the white matter, to a much lesser ex-
tent than the DTI and FW-corrected DTI measures. Density
plots representing the variability (i.e., CoV parameter) of the
FWVF parameter reach their peaks at CoV =10.08% (SM),
and CoV = 15% (Bi-tensor-M). In general, the plots represent-
ing the variability for the measures considered in the study
exhibit unimodal, predominantly positively skewed densities.
Our results demonstrate the FW-correction primarily does not

improve the repeatability/reproducibility of DTI-related mea-
sures compared to the standard DTI case, and even if it does,
the changes are minute. We found the contrary behaviour of
multiple-shell Bi-tensor-M scheme—the FW-correction has
led to an increase in the variability of MD/AD/RD measures
(see Figure 4b).

Our experiments also reveal that the measures characterised
with the lowest reliability are multiple-shell FWVF and FW-
corrected MD (see Figure 4c,d). Notably, the FW-correction to
MD has led to a significant decrease in the reliability param-
eter, regardless of the numerical method used to estimate the
measure, i.e., the reliability peak is far below 0.5. At large, the
plots representing the reliability index exhibit unimodal and
negatively skewed densities for the evaluated measures (cf. to
the densities of the variability parameter). In general, the reli-
ability of standard DTI-based measures is roughly equal to or
better than the reliability of equivalent measures corrected for
the FW component.

3.5 | Variability, Reliability and Separability

We now proceed to quantitative experiments that demonstrate
two relationships: (i) reliability versus variability and (ii) separa-
bility versus variability.

In the first experiment depicted in Figure 5, we put together
the population's first (25th percentile), second (median) and
third (75th percentile) quartiles computed for the variability
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FIGURE S5 | Inter-session reliability versus variability plots computed for MICRA database over the white matter area: (a) FWVF estimated from

multiple-shell data (SM and Bi-tensor-M approaches), (b) DTI-based measures estimated from multiple-shell data using standard DTI, FW-DTI

according to Equation (5) and Bi-tensor-M. The FWVF parameter for FW-DTI was pre-estimated from multiple-shell data using the SM approach.

The markers present median values calculated over the white matter area, while the horizontal and vertical lines represent distances between the
first Q; = 0.25(25th percentile) and third Q; = 0.75 (75th percentile) quartiles. The horizontal and vertical ranges for plots representing multiple- and

single-shell equivalent cases have been fixed.

and reliability indices. The ‘population’ is understood here as
all voxels taken from the white matter region defined in the
standard space. Note that the smaller the third quartile for the
variability index, the better, while the larger the third quar-
tile for the reliability, the better. As mentioned in the previous
section, the FWVF is characterised by the highest variability
among all measures, typically several times higher than DTI-
based measures, and a relatively low reliability. However, the
variability and reliability indices vary between the methods
used to estimate the FWVF. Nevertheless, the SM technique
has shown superior behaviour over the Bi-tensor-M in terms
of reliability, though the variability index does not give a clear
answer to which method varies more. The multiple-shell DTI-
based measures with no FW correction are more reproducible
and more reliable than FW-corrected equivalents using the Bi-
tensor-M approach. The experiments show evidence that cor-
recting DTI measures for the FW component via Equation (5)
would be a more appropriate solution in terms of variability-
reliability criterion, given that it potentially avoids such de-
clines in reproducibility and reliability indexes, as observed in
the Bi-tensor-M approach.

In the final experiment, we strive to establish optimal measures
in terms of reliability, variability and separability indices. In the
bar charts presented in Figure 6a, we relate the median reliabil-
ity to median variability. Both indices are ordered according
to the median reliability. The indices were computed over the
white matter area in the standard space. In general, the results
presented in charts-based plots illustrate that the highest reli-
ability measures are generally reproducibly approving, with the
variability being less than 5%. In this class, one can identify AD,
FA, and RD computed from standard DTI, with the last two
measures characterised by higher variability and separability
than the AD. Contrarily, the measures characterised by low reli-
ability, such as the FWVTF, are typically highly variable.

Considering the FW-corrected DTI, we observe FA and AD
rectified with the customised scheme from multiple-shell data
are more reliable, reproducible and somewhat separable com-
pared to the Bi-tensor-M approach. The previously discussed

FW-corrected MD with the Bi-tensor-S, although it has re-
vealed extremely low variability, is a non-reliable measure (see
the extended results in Figure S14). Our experiments have also
demonstrated that the FW-corrected MD under Bi-tensor-M and
FW-DTI are also the least reliable among the DTI measures.
Overall, the MD measure, computed in any FW-correction
variant is the least reliable and separable parameter among all
DTI-based parameters considered in this study. The FWVF is
also non-reliable but seems to be a highly separable parameter
(see Figure 6b). Interestingly, the FW-corrected RD obtained
with any FW correction scheme is moderately reliable, but rea-
sonably highly variable and separable measure, second only to
the FWVF.

4 | Discussion

This paper re-examines the previous findings made by Albi
et al. (2017) that the FW correction to DTI from single-
shell diffusion-weighted MR data, as proposed by Pasternak
et al. (2009), enhances the repeatability of DTI-based measures,
such as FA or MD. Our study extrapolates that study to other
FWYVF estimation techniques and FW-correction DTI schemes
particularly tailored to multiple-shell data. Although the results
we report focus on the MICRA database, they are corroborated
in the Supporting Information S1 by two additional databases
with distinct characteristics, which include intra-scanner longi-
tudinal and inter-scanner variabilities. Our results suggest that
the improved repeatability of the FW-corrected DTI compared
to a standard DTTI in a single-shell scenario observed by Albi
et al. (2017) may be data- and methodology-dependent, and
does not generalize to multiple-shell FW correction schemes.
On the contrary, we have shown that the FW-corrected DTI
in a multiple-shell scenario, using a region contraction-based
technique by Hoy et al. (2014), leads to systematic declines in
repeatability/reproducibility and reliability compared to the
standard DTI, as the number of degrees of freedom in the op-
timization procedure is larger. Our study shows evidence that
the most reliable and repeatable (and reproducible) measures are
FA, AD and RD estimated from the standard DTI and among
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FIGURE 6 | (a)Box-plots presenting inter-session median reliability and median variability of multiple-shell indices computed from the MICRA
database over the white matter area. The colours in the variability box-plot reflect the ordering according to the variability index value (i.e., the lower

the value, the more beige the colour). (b) A diagram representing the separability index as a function of the variability index. A single marker refers to

the median variability and median separability values calculated over the white matter area in the standard space. The FW-corrected DTI measures

are annotated with a subscript ‘c’.

the FW-corrected DTI-based measures the FA and AD esti-
mated from a previously corrected diffusion-weighted MR sig-
nal under a multiple-shell variant. In contrast, the least reliable
and separable measure is the MD obtained from any FW correc-
tion approach, as well as the FWVF parameter itself, no matter
whether estimated separately via the SM technique or jointly
with the DTI.

In general, one can follow several approaches to correct
the DTI for the FW, either using single- or multiple-shell
diffusion-weighted MR data. The first and most popularised
approach by Pasternak et al. (2009), which we refer to here
as the Bi-tensor-S, directly optimises the bi-tensor represen-
tation given by Equation (4) within a variational framework.
This formulation enables estimation of both the FWVF and
FW-corrected DTI measures in a joint optimisation procedure
using only single-shell diffusion-weighted MR data acquired
approximately at b= 1000s /mm?2 However, the method re-
quires the initialization scheme to be carefully selected (Parker
et al. 2020; Golub et al. 2021) and yet it can fail to retrieve bi-
ological information from the MD-corrected parameter (see
Figure 1b). The second group of methods optimise Equation (4)
using the numerical schemes tailored for multiple-shell ac-
quisitions (Pasternak et al. 2012; Hoy et al. 2014; Bergmann
et al. 2020). As a representative, in this study, we follow the re-
gion contraction-based method by Hoy et al. (2014), which we
call the Bi-tensor-M. Our experiments demonstrate that, while
the Bi-tensor-M technique preserves biological information in
the MD parameter, both the FW-corrected MD and FA param-
eters remain biased (see Figure 1b). Recently, the advantage
of FWVF estimated using multiple-shell over single-shell
has been demonstrated in the context of brain age estima-
tion (Nemmi et al. 2022) and healthy brain ageing (Correia

et al. 2024). An alternative solution is to estimate the FWVF
parameter, correct the diffusion-weighted MR signal for the
FW component and then re-estimate the standard DTI from
the corrected signal (Pieciak et al. 2023; Chang et al. 2025;
Guadilla et al. 2025). Here, the biological variability of the
FW-corrected MD parameter appears limited, while the MD
and FA parameters are relatively free of the bias seen in the Bi-
tensor-M approach (cf. Figure 1c to Figure 1b). The last group
consists of deep learning-based approaches that aim to find
a non-linear mapping between diffusion-weighted MR signal
and FW or FW-corrected DTI parameters (Molina-Romero
et al. 2018; Weninger et al. 2020).

We start our discussion by commenting on the sanity checks,
displaying the estimated measures using different techniques.
Figure 2d depicts a particularly flattened FW-corrected MD
characteristic computed with the Bi-tensor-S approach. We
note the flattening effect has been previously explored by
Golub et al. (2021) in the context of in silico experiments and
by Correia et al. (2024) in brain ageing. To put it differently,
the FW-corrected MD using the Bi-tensor-S turns out to be the
tissue's prior. Contrary to Bi-tensor-S, the FW-corrected MD
computed using the Bi-tensor-M and FW-DTI approaches has
enabled us to discriminate between WM and GM areas. As for
other FW-corrected measures, increased FA and decreased MD/
AD/RD parameters over the white matter are consistent across
the datasets considered in our study and with previous reports
(Metzler-Baddeley et al. 2012; Hoy et al. 2014; Golub et al. 2021;
Pieciak et al. 2023).

It is noteworthy that the FWVF estimated using SM, Bi-
tensor-S, and Bi-tensor-M actually presents the effective
FW fraction confounded by T, relaxation, but it is typically
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used as a proxy for the FWVF (Pasternak et al. 2009; Golub
et al. 2021). Although none of the above-mentioned methods
directly model freely diffusing water, they somewhat aggre-
gate the diffusion found as the cerebrospinal fluid and inter-
stitial fluid in the extracellular space of grey and white matter
(Pasternak et al. 2009). Intrinsically, the FWVF may be biased
by other pools, such as blood perfusion, which affects the sig-
nal at low b-values (Rydhog et al. 2017).

In the study by Albi et al. (2017), it has been suggested that the
FW correction to DTI from a single-shell acquisition improves
the longitudinal test-retest repeatability of FA and MD met-
rics by reducing the CoV on average approximately at 1%pt.
Our study partially corroborates these results, illustrating an
improvement in FA/MD repeatability for MICRA database in
terms of median CoV over the WM at 0.3%pt./2.5%pt. However,
this pattern might not be general, given the results from other
databases presented in the Supporting Information S1. The
recent study by Correia et al. (2024) discovered the flatten-
ing effect of FW-corrected MD parameter with age. Our study
has revealed an excellent reproducibility of FW-corrected MD,
which directly explains the flattened spatial characteristics of
the measure. In other words, the Bi-tensor-S provides the prior
for the MD measure (here, assumed to be 0.6 x 10~>mm? /s)
rather than the value contemplating the actual FW-corrected
MD parameter. Moreover, the FW-corrected MD parameter
with the Bi-tensor-S approach is neither reliable nor separa-
ble (see the extended results demonstrated in Figure S14).
This is a consequential result that may raise questions about
the repeatability (and thus, the trustworthiness) of previous
findings in the brain studies based on a single-shell Bi-tensor-
S-based MD parameter. In general, the FW-corrected MD pa-
rameter estimated using any single- or multiple-shell-based
method considered in our experiments exhibits low reliability
and separability, which clarifies the factiously excellent re-
producibility observed in Figure 3. Interestingly, the reliabil-
ity of FW-corrected MD measure, regardless of the method
used, is consistently lower than the standard DTI-based MD
(see Figure 5b). The results obtained with the single-shell
Bi-tensor-S method do not translate to the multiple-shell sce-
nario, as the FW-corrected MD, AD and RD parameters com-
puted with Bi-tensor-M approach reveal increased variability
compared to the standard DTI (see Figure 4b and Figure 5b).
A direct reason for the variability growth observed in the
Bi-tensor-M approach is the increased number of degrees of
freedom in the optimised cost function. The variability of a
FW-corrected DTI might decrease if one pre-estimates the
FWVF using an external method, such as the SM (Tristan-
Vega et al. 2022), corrects the diffusion-weighted MR signal
for the FW component and then re-estimates the DTI using
a standard procedure. Remarkably, ‘fixing’ the FWVF in the
optimization process does not reduce the reliability of the FW-
corrected measures compared to the Bi-tensor-M, as indicated
by the experiment depicted in Figure 5b.

The experiments demonstrated consistency in the variability of
FWVF against the DTI and FW-corrected DTI measures across
all three datasets. Specifically, the FWVF estimated using
any method considered in the study demonstrates a higher
CoV over the white matter area compared to all DTI-based

measures examined in this study. The experimental results
do not provide a clear answer as to which multiple-shell-based
technique (i.e., the region contraction-based or the spherical
means) is superior in terms of reproducibility. However, the Bi-
tensor-M technique is trailing behind the SM considering the
reliability index.

Finally, we note the study goes beyond the standard intra-site
repeatability or inter-site reproducibility, as it also explores
longitudinal reproducibility. Such longitudinal reproduc-
ibility evaluation is particularly important in a clinical sce-
nario once the features observed in the images are expected
to demonstrate the evolution of the brain between the scans,
or confounding factors such as different operators handling
the scanner or magnetic field drifts (Lehmann et al. 2021;
Boudreau et al. 2025).

5 | Conclusions

This paper studies the variability, reliability and separability
properties of FW-corrected DTI in the healthy human brain.
We explore different methodologies used to correct the DTI
for the FW compartment, depending on whether the diffusion-
weighted MR acquisitions are single- or multiple-shell-based,
and evaluate them using three publicly available databases ac-
quired in inter-session, intra-scanner longitudinal and inter-
scanner scenarios. Our study has shown that one should not
only look for the maximal repeatability (or reproducibility) of
FW-corrected DTI measures in the brain studies, but also assess
the reliability and separability indices, as it has been particularly
observed with the FW-corrected MD parameter using the single-
shell variational method. Importantly, how to correct the DTI
for the FW is of great importance—the behaviour of the single-
shell method appears to be data-dependent, with questionable
enhancement in variability and reliability, as well as the FW-
corrected MD parameter being anatomically non-meaningful.
The multiple-shell FW-correction contraction-based technique
has shown a reduced reproducibility and reliability of the mea-
sures compared to the standard DTI, the results being consis-
tent across the evaluated data. As a conclusive remark, the FW
correction to DTI should not be considered in terms of conceiv-
able ‘improvement’ in the repeatability (or reproducibility) and
reliability, but rather as a methodology that provides informa-
tion about the probed tissue, which the standard DTI partially
hides. However, the choice of the FW-correction scheme should
be made to avoid impacting the reproducibility, reliability, and
accuracy of DTI-based parameters. As a solution, we suggest
employing a customised FW-correction scheme, i.e., estimating
the FWVF externally, correcting the diffusion-weighted MR sig-
nal for the FW, and then re-estimating the DT using a standard
procedure. Our experiments have provided evidence that this
strategy improves the repeatability and reproducibility while not
(significantly) affecting the reliability of the FW-corrected mea-
sures compared to the multiple-shell FW-correction of bi-tensor
representation, while maintaining a relatively low error in the
estimated MD and FA parameters. However, we note that this
technique may result in a reduction of the biological information
conveyed by the MD-corrected measure, although it still exhib-
its a lower average bias compared to the Bi-tensor-M approach.

Human Brain Mapping, 2026

11 of 14

25U90 17 SUOLLILIOD) BAER.D) 3ot e L) A PoUBACD 912 SIPILE VO ‘3N J0 Sa|NI 10} AReiq 1T SUIIUO AB|IV O (SUONIPUOO-PU.-SLLLBILI0D™B |1 AReAd 18U |uo//SdIy) SUONIPUOD PUE SWL | a1 295 *[920Z/Z0/6T] UO AXeiq i auIluO a1 ‘PloPe|Ie A 8a PepSRAIUN AQ TEX0. WAU/Z00T OT/10pL0"Aa| W ARe.q1BU 1|uo//Sdny WOl popeojumo ‘€ ‘920Z ‘E6T0L60T



Acknowledgements

This work was funded by Junta de Castilla y Leén and Fondo Social
Europeo Plus (FSE+) under research grant VA156P24; Agencial Estatal
de Investigacion (Ministerio de Ciencia e Innovacién of Spain) with
research grants PID2021-124407NB-100 and PID2024-158963NB-100.
Tomasz Pieciak acknowledges the Polish National Agency for Academic
Exchange for grant PPN/BEK/2019/1/00421 under the Bekker pro-
gramme. Guillem Paris was funded by the Consejeria de Educacién de
Castillay Leén and the European Social Fund through the ‘Ayudas para
financiar la contrataciéon predoctoral de personal investigador - Orden
EDU/1100/201712/12’ program. Open Access funding enabled and or-
ganized by CRUE/BUCLE 2025 Gold.

The authors acknowledge Dr. Nico Lehmann for sharing the Magdeburg
database.

The authors did not use generative Al in the writing of this manuscript.

Funding

This work was supported by Junta de Castilla y Le6n and Fondo Social
Europeo Plus (FSE+) (VA156P24), Ministerio de Ciencia e Innovacion
(PID2021-124407NB-I00, PID2024-158963NB-100), Narodowa Agencja
Wymiany Akademickiej (PPN/BEK/2019/1/00421) and Consejeria de
Educacién de Castilla y Leén and the European Social Fund (Orden
EDU/1100/201712/12).

Ethics Statement

Ethics approval was waived for this study due to the use of external data.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Data comes from the papers by Koller et al. (2021), Lehmann et al. (2021)
and Tong et al. (2020).

Endnotes
! Percent point.

2DiffKDE is a computational method used to estimate the probability
density function and should not be confused with diffusion-weighted
MR technique.

References

Ades-Aron, B., S. Coelho, G. Lemberskiy, et al. 2025. “Denoising Improves
Cross-Scanner and Cross-Protocol Test-Retest Reproducibility of Diffusion
Tensor and Kurtosis Imaging.” Human Brain Mapping 46, no. 4: €70142.

Aja-Fernandez, S., and G. Vegas-Sanchez-Ferrero. 2016. Statistical
Analysis of Noise in MRI. Springer International Publishing.

Albi, A., O. Pasternak, L. Minati, et al. 2017. “Free Water Elimination
Improves Test-Retest Reproducibility of Diffusion Tensor Imaging
Indices in the Brain: A Longitudinal Multisite Study of Healthy Elderly
Subjects.” Human Brain Mapping 38, no. 1: 12-26.

Andersson, J. L., M. S. Graham, E. Zsoldos, and S. N. Sotiropoulos.
2016. “Incorporating Outlier Detection and Replacement Into a Non-
Parametric Framework for Movement and Distortion Correction of
Diffusion MR Images.” NeuroImage 141: 556-572.

Andersson, J. L., S. Skare, and J. Ashburner. 2003. “How to Correct
Susceptibility Distortions in Spin-Echo Echo-Planar Images: Application
to Diffusion Tensor Imaging.” NeuroImage 20, no. 2: 870-888.

Basser, P. J., J. Mattiello, and D. LeBihan. 1994. “Estimation of the
Effective Self-Diffusion Tensor From the NMR Spin Echo.” Journal of
Magnetic Resonance. Series B 103, no. 3: 247-254.

Bergamino, M., R.R. Walsh, and A. M. Stokes. 2021. “Free-Water Diffusion
Tensor Imaging Improves the Accuracy and Sensitivity of White Matter
Analysis in Alzheimer's Disease.” Scientific Reports 11, no. 1: 6990.

Bergmann, @., R. Henriques, C. F. Westin, and O. Pasternak. 2020.
“Fast and Accurate Initialization of the Free-Water Imaging Model
Parameters From Multi-Shell Diffusion MRI.” NMR in Biomedicine 33,
no. 3: e4219.

Botev, Z. 1., J. F. Grotowski, and D. P. Kroese. 2010. “Kernel Density
Estimation via Diffusion (2010).” Annals of Statistics 38, no. 5:
2916-2957.

Boudreau, M., A. Karakuzu, A. Boré, et al. 2025. “Longitudinal
Reproducibility of Brain and Spinal Cord Quantitative MRI Biomarkers.”
Imaging Neuroscience 3:imag_a_00409.

Carreira Figueiredo, I., F. Borgan, O. Pasternak, F. E. Turkheimer,
and O. D. Howes. 2022. “White-Matter Free-Water Diffusion
MRI in Schizophrenia: A Systematic Review and Meta-Analysis.”
Neuropsychopharmacology 47, no. 7: 1413-1420.

Chad, J. A., O. Pasternak, D. H. Salat, and J. J. Chen. 2018. “Re-
Examining Age-Related Differences in White Matter Microstructure
With Free-Water Corrected Diffusion Tensor Imaging.” Neurobiology of
Aging 71: 161-170.

Chad, J. A., N. Sochen, J.J. Chen, and O. Pasternak. 2023. “Implications
of Fitting a Two-Compartment Model in Single-Shell Diffusion MRI.”
Physics in Medicine and Biology 68, no. 21: 215012.

Chang, K., L. Burke, N. LaPiana, et al. 2025. “Free Water Elimination
Tractometry for Aging Brains.” Imaging Neuroscience 3: IMAG.a.991.
https://doi.org/10.1162/IMAG.a.991.

Correia, M. M., R. N. Henriques, M. Golub, S. Winzeck, and R. G. Nunes.
2024. “The Trouble With Free-Water Elimination Using Single-Shell
Diffusion MRI Data: A Case Study in Ageing.” Imaging Neuroscience
2:1-17.

Duan, F., T. Zhao, Y. He, and N. Shu. 2015. “Test-Retest Reliability of
Diffusion Measures in Cerebral White Matter: A Multiband Diffusion
MRI Study.” Journal of Magnetic Resonance Imaging 42,no.4:1106-1116.

Golub, M., R. N. Henriques, and R. G. Nunes. 2021. “Free-Water DTI
Estimates From Single b-Value Data Might Seem Plausible but Must
Be Interpreted With Care.” Magnetic Resonance in Medicine 85, no. 5:
2537-2551.

Grech-Sollars, M., P. W. Hales, K. Miyazaki, et al. 2015. “Multi-Centre
Reproducibility of Diffusion MRI Parameters for Clinical Sequences in
the Brain.” NMR in Biomedicine 28, no. 4: 468-485.

Guadilla, I., A. R. Fouto, A. Ruiz-Tagle, I. Esteves, G. Caetano, and N.
A. Silva. 2025. “White Matter Alterations in Episodic Migraine Without
Aura Patients Assessed With Diffusion MRI: Effect of Free Water
Correction.” Journal of Headache and Pain 26, no. 1: 1-13.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman. 2009. The
Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer.

Henriques, N. R., A. Rokem, E. Garyfallidis, S. St-Jean, E. T. Peterson,
and M. M. Correia. 2017. “Optimization of a Free Water Elimination
Two-Compartment Model for Diffusion Tensor Imaging.” ReScience 3,
no. 1: 2.

Hoy, A. R., C. G. Koay, S. R. Kecskemeti, and A. L. Alexander. 2014.
“Optimization of a Free Water Elimination Two-Compartment Model
for Diffusion Tensor Imaging.” NeuroImage 103: 323-333.

Jakab, A., R. Tuura, C. Kellenberger, and I. Scheer. 2017. “In Utero
Diffusion Tensor Imaging of the Fetal Brain: A Reproducibility Study.”
NeuroImage: Clinical 15: 601-612.

12 of 14

Human Brain Mapping, 2026

25U90 17 SUOLLILIOD) BAER.D) 3ot e L) A PoUBACD 912 SIPILE VO ‘3N J0 Sa|NI 10} AReiq 1T SUIIUO AB|IV O (SUONIPUOO-PU.-SLLLBILI0D™B |1 AReAd 18U |uo//SdIy) SUONIPUOD PUE SWL | a1 295 *[920Z/Z0/6T] UO AXeiq i auIluO a1 ‘PloPe|Ie A 8a PepSRAIUN AQ TEX0. WAU/Z00T OT/10pL0"Aa| W ARe.q1BU 1|uo//Sdny WOl popeojumo ‘€ ‘920Z ‘E6T0L60T


https://doi.org/10.1162/IMAG.a.991

Kellner, E., B. Dhital, V. G. Kiselev, and M. Reisert. 2016. “Gibbs-
Ringing Artifact Removal Based on Local Subvoxel-Shifts.” Magnetic
Resonance in Medicine 76, no. 5: 1574-1581.

Koay, C. G., L. C. Chang, J. D. Carew, C. Pierpaoli, and P. J. Basser.
2006. “A Unifying Theoretical and Algorithmic Framework for Least
Squares Methods of Estimation in Diffusion Tensor Imaging.” Journal
of Magnetic Resonance 182, no. 1: 115-125.

Koller, K., U. Rudrapatna, M. Chamberland, et al. 2021. “MICRA:
Microstructural Image Compilation With Repeated Acquisitions.”
Neurolmage 225: 117406.

Laguna, P. A. L., A. J. Combes, J. Streffer, et al. 2020. “Reproducibility,
Reliability and Variability of FA and MD in the Older Healthy
Population: A Test-Retest Multiparametric Analysis.” Neurolmage:
Clinical 26: 102168.

Le Bihan, D., and H. Johansen-Berg. 2012. “Diffusion MRI at 25:
Exploring Brain Tissue Structure and Function.” Neurolmage 61, no. 2:
324-341.

Lehmann, N., N. Aye, J. Kaufmann, et al. 2021. “Longitudinal
Reproducibility of Neurite Orientation Dispersion and Density Imaging
(NODDI) Derived Metrics in the White Matter.” Neuroscience 457:
165-185.

Liu, Q., L. Ning, I. A. Shaik, et al. 2024. “Reduced Cross-Scanner
Variability Using Vendor-Agnostic Sequences for Single-Shell Diffusion
MRI.” Magnetic Resonance in Medicine 92, no. 1: 246-256.

Lyall, A. E., O. Pasternak, D. G. Robinson, et al. 2018. “Greater
Extracellular Free-Water in First-Episode Psychosis Predicts Better
Neurocognitive Functioning.” Molecular Psychiatry 23, no. 3: 701-707.

Maillard, P., E. Fletcher, B. Singh, et al. 2019. “Cerebral White Matter
Free Water: A Sensitive Biomarker of Cognition and Function.”
Neurology 92, no. 19: e2221-e2231.

Melzer, T. R., R. J. Keenan, G. J. Leeper, et al. 2020. “Test-Retest
Reliability and Sample Size Estimates After MRI Scanner Relocation.”
NeuroImage 211: 116608.

Merisaari, H., J. J. Tuulari, L. Karlsson, et al. 2019. “Test-Retest
Reliability of Diffusion Tensor Imaging Metrics in Neonates.”
NeuroImage 197: 598-607.

Metzler-Baddeley, C., M. J. O'Sullivan, S. Bells, O. Pasternak, and D. K.
Jones. 2012. “How and How Not to Correct for CSF-Contamination in
Diffusion MR1.” NeuroImage 59, no. 2: 1394-1403.

Molina-Romero, M., B. Wiestler, P. A. Gomez, M. 1. Menzel, and B.
H. Menze. 2018. “Deep Learning With Synthetic Diffusion MRI Data
for Free-Water Elimination in Glioblastoma Cases.” In International
Conference on Medical Image Computing and Computer-Assisted
Intervention, 98-106. Springer International Publishing.

Mori, S., S. Wakana, P. C. Van Zijl, and L. M. Nagae-Poetscher. 2005.
MRI Atlas of Human White Matter. Elsevier.

Nakaya, M., N. Sato, H. Matsuda, et al. 2022. “Free Water Derived by
Multi-Shell Diffusion MRI Reflects Tau/Neuroinflammatory Pathology
in Alzheimer's Disease.” Algheimer's & Dementia: Translational
Research & Clinical Interventions 8, no. 1: €12356.

Nemmi, F., M. Levardon, and P. Péran. 2022. “Brain-Age Estimation
Accuracy Is Significantly Increased Using Multishell Free-Water
Reconstruction.” Human Brain Mapping 43, no. 7: 2365-2376.

Ofori, E., O. Pasternak, P.J. Planetta, et al. 2015. “Longitudinal Changes
in Free-Water Within the Substantia Nigra of Parkinson's Disease.”
Brain 138, no. 8: 2322-2331.

Parker, D., A. A. Ould Ismail, R. Wolf, et al. 2020. “Freewater esti-
matoR Using iNtErpolated iniTialization (FERNET): Characterizing
Peritumoral Edema Using Clinically Feasible Diffusion MRI Data.”
PLoS One 15, no. 5: €0233645.

Pasternak, O., M. E. Shenton, and C. F. Westin. 2012. “Estimation of
Extracellular Volume From Regularized Multi-Shell Diffusion MRL.” In
International Conference on Medical Image Computing and Computer-
Assisted Intervention, 305-312. Springer Berlin Heidelberg.

Pasternak, O., N. Sochen, Y. Gur, N. Intrator, and Y. Assaf. 2009. “Free
Water Elimination and Mapping From Diffusion MRI.” Magnetic
Resonance in Medicine 62, no. 3: 717-730.

Pieciak, T., S. Aja-Fernandez, and G. Vegas-Sanchez-Ferrero. 2017.
“Non-Stationary Rician Noise Estimation in Parallel MRI Using a
Single Image: A Variance-Stabilizing Approach.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 39, no. 10: 2015-2029.

Pieciak, T., G. Paris, D. Beck, et al. 2023. “Spherical Means-Based
Free-Water Volume Fraction From Diffusion MRI Increases Non-
Linearly With Age in the White Matter of the Healthy Human Brain.”
Neurolmage 279:120324.

Pieciak, T., I. Rabanillo-Viloria, and S. Aja-Fernandez. 2018. “Bias
Correction for Non-Stationary Noise Filtering in MRIL.” In 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018), 307—
310. IEEE.

Pierpaoli, C., and D. K. Jones. 2004. “Removing CSF Contamination
in Brain DT-MRIs by Using a Two-Compartment Tensor Model.” In
International Society for Magnetic Resonance in Medicine Meeting, 1215.
International Society for Magnetic Resonance in Medicine Meeting
(ISMRM).

Rydhog, A. S., F. Szczepankiewicz, R. Wirestam, et al. 2017. “Separating
Blood and Water: Perfusion and Free Water Elimination From Diffusion
MRI in the Human Brain.” Neurolmage 156: 423-434.

Shahim, P., L. Holleran, J. H. Kim, and D. L. Brody. 2017. “Test-Retest
Reliability of High Spatial Resolution Diffusion Tensor and Diffusion
Kurtosis Imaging.” Scientific Reports 7, no. 1: 11141.

Sheather, S.J.,and M. C. Jones. 1991. “A Reliable Data-Based Bandwidth
Selection Method for Kernel Density Estimation.” Journal of the Royal
Statistical Society. Series B, Statistical Methodology 53, no. 3: 683-690.

Silverman, B. W. 1986. Density Estimation for Statistics and Data
Analysis. Chapman & Hall/CRC.

Smith, S. M., M. Jenkinson, M. W. Woolrich, et al. 2004. “Advances in
Functional and Structural MR Image Analysis and Implementation as
FSL.” NeuroImage 23: S208-S219.

Tong, Q., H. He, T. Gong, et al. 2020. “Multicenter Dataset of Multi-Shell
Diffusion MRI in Healthy Traveling Adults With Identical Settings.”
Scientific Data 7, no. 1: 157.

Tristdn-Vega, A., G. Paris, R. de Luis-Garcia, and S. Aja-Fernandez.
2022. “Accurate Free-Water Estimation in White Matter From Fast
Diffusion MRI Acquisitions Using the Spherical Means Technique.”
Magnetic Resonance in Medicine 87, no. 2: 1028-1035.

Tustison, N. J., B. B. Avants, P. A. Cook, et al. 2010. “N4ITK: Improved
N3 Bias Correction.” IEEE Transactions on Medical Imaging 29, no. 6:
1310-1320.

Van Essen, D. C., S. M. Smith, D. M. Barch, et al. 2013. “The WU-Minn
Human Connectome Project: An Overview.” Neurolmage 80: 62-79.

Venkatraman, V. K., C. E. Gonzalez, B. Landman, et al. 2015. “Region
of Interest Correction Factors Improve Reliability of Diffusion
Imaging Measures Within and Across Scanners and Field Strengths.”
Neurolmage 119: 406-416.

Veraart, J., E. Fieremans, and D. S. Novikov. 2016. “Diffusion MRI
Noise Mapping Using Random Matrix Theory.” Magnetic Resonance in
Medicine 76, no. 5: 1582-1593.

Veraart, J., D. S. Novikov, D. Christiaens, B. Ades-Aron, J. Sijbers, and
E. Fieremans. 2016. “Denoising of Diffusion MRI Using Random Matrix
Theory.” NeuroImage 142: 394-406.

Human Brain Mapping, 2026

13 of 14

25U90 17 SUOLLILIOD) BAER.D) 3ot e L) A PoUBACD 912 SIPILE VO ‘3N J0 Sa|NI 10} AReiq 1T SUIIUO AB|IV O (SUONIPUOO-PU.-SLLLBILI0D™B |1 AReAd 18U |uo//SdIy) SUONIPUOD PUE SWL | a1 295 *[920Z/Z0/6T] UO AXeiq i auIluO a1 ‘PloPe|Ie A 8a PepSRAIUN AQ TEX0. WAU/Z00T OT/10pL0"Aa| W ARe.q1BU 1|uo//Sdny WOl popeojumo ‘€ ‘920Z ‘E6T0L60T



Weninger, L., S. Koppers, C. H. Na, K. Juetten, and D. Merhof. 2020.
“Free-Water Correction in Diffusion MRI: A Reliable and Robust
Learning Approach.” In Computational Diffusion MRI: MICCAI
Workshop, Shenzhen, China, October 2019,91-99. Springer International
Publishing.

Westin, C. F., S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R.
Kikinis. 2002. “Processing and Visualization for Diffusion Tensor
MRI.” Medical Image Analysis 6, no. 2: 93-108.

Zhong, J., X. Liu, Y. Hu, et al. 2024. “Robustness of Quantitative
Diffusion Metrics From Four Models: A Prospective Study on the
Influence of Scan-Rescans, Voxel Size, Coils, and Observers.” Journal of
Magnetic Resonance Imaging 60, no. 4: 1470-1483.

Zuo, X. N., T. Xu, and M. P. Milham. 2019. “Harnessing Reliability for
Neuroscience Research.” Nature Human Behaviour 3, no. 8: 768-771.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Data S1: Supporting Information.

14 of 14

Human Brain Mapping, 2026

25U90 17 SUOLLILIOD) BAER.D) 3ot e L) A PoUBACD 912 SIPILE VO ‘3N J0 Sa|NI 10} AReiq 1T SUIIUO AB|IV O (SUONIPUOO-PU.-SLLLBILI0D™B |1 AReAd 18U |uo//SdIy) SUONIPUOD PUE SWL | a1 295 *[920Z/Z0/6T] UO AXeiq i auIluO a1 ‘PloPe|Ie A 8a PepSRAIUN AQ TEX0. WAU/Z00T OT/10pL0"Aa| W ARe.q1BU 1|uo//Sdny WOl popeojumo ‘€ ‘920Z ‘E6T0L60T



	Reproducibility and Reliability of Free-Water-Corrected Diffusion Tensor Imaging of the Brain: Revisited
	ABSTRACT
	1   |   Introduction
	2   |   Materials and Methods
	2.1   |   In Silico Data
	2.2   |   In Vivo Data
	2.3   |   Data Preprocessing
	2.4   |   Free-Water-Corrected Diffusion Tensor Imaging
	2.5   |   Estimation Methods: DTI and FW-Corrected DTI
	2.6   |   Data Registration
	2.7   |   Variability, Separability and Reliability Assessment
	2.7.1   |   Variability
	2.7.2   |   Reliability
	2.7.3   |   Separability
	2.7.4   |   Diffusion Kernel Density Estimation (DiffKDE)2


	3   |   Experimental Results
	3.1   |   In Silico Experiments
	3.2   |   Visual Inspection of the Measures
	3.3   |   Variability Maps
	3.4   |   Density-Based Variability and Reliability Indices
	3.5   |   Variability, Reliability and Separability

	4   |   Discussion
	5   |   Conclusions
	Acknowledgements
	Funding
	Ethics Statement
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References


