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ABSTRACT
Diffusion tensor imaging (DTI) corrected for the free-water (FW) enables the separation of a hindered Gaussian-like profile 
from an isotropic component, which represents diffusion found in cerebrospinal and interstitial fluids within the extracellular 
space of grey and white matter. The assessment of the reproducibility and reliability properties of FW-corrected DTI is a cru-
cial factor in demonstrating the potential clinical utility of this refinement, particularly considering the examinations across 
multiple medical centres. This paper explores the variability, reliability, and separability properties of free-water volume frac-
tion (FWVF) and FW-corrected DTI-based measures in healthy human brain white matter using publicly available test–retest 
databases acquired in (1) intra-scanner, (2) intra-scanner longitudinal and (3) inter-scanner settings under varying acquisition 
schemes. Three different estimation techniques to retrieve the FW-corrected DTI parameters tailored to single- or multiple-
shell diffusion-sensitising magnetic resonance (MR) acquisitions are investigated: (i) a direct optimization of bi-tensor signal 
representation in the variational framework, (ii) the region contraction-based approach and (iii) the spherical means technique 
combined with a correction of diffusion-weighted MR signal prior to DTI estimation. We found the previous suggestion that the 
FW correction to DTI in a single-shell diffusion-weighted MR acquisition improves the repeatability of DTI-based measures 
may be data- and methodology-dependent, and does not generalise to multiple-shell scenarios. The study also confirms that 
the single-shell variational FW-correction method fails to retrieve meaningful information from the mean diffusivity (MD) 
parameter. In contrast, the combined FW-correction scheme reduces the biological variability of MD, regardless of whether 
DTI is estimated from single- or multiple-shell data, given that the FWVF used for the correction in both cases is derived from 
multiple-shell acquisitions. Our experiments have shown that the most reliable and repeatable/reproducible measures, while 
preserving a moderate separability property, are fractional anisotropy and axial diffusivity estimated in a multiple-shell variant 
under a combined FW-correction scheme. On the contrary, our results show evidence that the least reliable measures are the 
mean diffusivity estimated using any FW-correction procedure, as well as the FWVF parameter itself. These results can be used 
to establish the direction for selecting the most attractive FW-correction DTI scheme for clinical applications in terms of the 
variability-reliability-separability criterion.

1   |   Introduction

Diffusion-weighted magnetic resonance imaging (MRI) is 
a well-established medical modality that enables the non-
invasive probing of random motion of water molecules 

in vivo, particularly in brain tissue (Le Bihan and Johansen-
Berg  2012). A common approach employed to represent the 
diffusion-weighted MR signal is single-compartment diffu-
sion tensor imaging (DTI) by providing a set of unique quan-
titative measures summarising the directional water diffusion 
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process (Basser et  al.  1994; Westin et  al.  2002). Extending 
the standard DTI to the so-called bi-tensor representation 
has facilitated the separation of hindered diffusion depicted 
with a tensor-based Gaussian-like profile and the isotropic 
component, which illustrates the diffusion found in cerebro-
spinal and interstitial fluids within the extracellular space of 
grey and white matter (Pierpaoli and Jones  2004; Pasternak 
et  al.  2009). This separation is possible due to suitably se-
lected numerical optimization schemes that enable one to 
compute the directional DTI profile and the free-water vol-
ume fraction (FWVF), a scalar parameter illustrating the 
fitted isotropic fraction of the bi-tensor representation to the 
diffusion-sensitised MR signal. Such computations are possi-
ble both for single- (Pasternak et al. 2009) and multiple-shell 
acquisitions (Pasternak et al. 2012; Hoy et al. 2014; Bergmann 
et al. 2020; Tristán-Vega et al. 2022).

The FW-corrected DTI has been an essential tool in clinical 
applications, particularly the single-shell FW-corrected DTI, 
which is primarily employed in cognitive performance evalu-
ation (Maillard et al. 2019), modelling neurodegenerative dis-
orders such as Parkinson's (Ofori et al. 2015) or Alzheimer's 
(Bergamino et  al.  2021; Nakaya et  al.  2022), brain ageing 
(Metzler-Baddeley et al. 2012; Chad et al. 2018), schizophre-
nia (Carreira Figueiredo et al. 2022) or detecting first episodes 
of psychosis (Lyall et al. 2018), as the evidence indicates the 
method improves the specificity of DTI measures (Bergamino 
et al. 2021; Chad et al. 2023) and the reliability and accuracy 
of tractometry in brain ageing (Chang et al. 2025). However, 
the single-shell FW-corrected DTI by Pasternak et al. (2009) 
has been lately put into stake because it is unclear whether 
it accurately captures actual anatomy-related changes in the 
diffusivity profile of brain white matter. For instance, Golub 
et al.  (2021) have shown that the single-shell FW-correction 
scheme can yield plausible results, but the optimization proce-
dure heavily depends on the initialization strategy, potentially 
affecting the method's specificity. Correia et al. (2024) discov-
ered a flattening effect of FW-corrected MD profiles with age 
and FW-corrected FA strong positive correlations with age in 
some regions, which seem not to be present in a multiple-shell 
scenario. The authors of these works advocate for considering 
the multiple-shell rather than single-shell tailored schemes 
once correcting the DTI for the FW component. As an ex-
ample, the multiple-shell variant has explicitly demonstrated 
benefits over the single-shell in brain age predictions (Nemmi 
et al. 2022).

Although numerous FW-corrected DTI applications have al-
ready been demonstrated in a wide range of clinical scenar-
ios, much less attention has been paid to the reproducibility 
and reliability of the measures obtained from this refinement. 
Until now, the intra-scanner repeatability (or more generally, 
the inter-scanner reproducibility) and reliability studies have 
concentrated primarily on the standard DTI-based metrics 
under specific acquisition conditions, such as variable mag-
netic strength fields (Grech-Sollars et  al.  2015; Venkatraman 
et  al.  2015; Jakab et  al.  2017), multi-band acquisition scheme 
(Duan et  al.  2015), and spatial resolution (Shahim et  al.  2017; 
Zhong et  al.  2024), considering particular cohorts like fetal 
brains (Jakab et  al.  2017), neonates (Merisaari et  al.  2019) or 
in the older population (Laguna et al. 2020), in a longitudinal 

scenario (Boudreau et al. 2025), across multiple centres (Grech-
Sollars et  al.  2015) or even under scanner relocation (Melzer 
et  al.  2020). Apart from providing detailed quantitative re-
sults, some other studies proposed vendor-agnostic sequences 
to reduce inter-scanner variabilities (Liu et  al.  2024) or drew 
conclusions on possible solutions to post hoc improve the repro-
ducibility or reliability of DTI-based parameters. For instance, 
Jakab et  al.  (2017) presented a negative impact of fetal head 
motion on DTI repeatability and suggested that this effect can 
be partially palliated with motion correction algorithms. Ades-
Aron et al. (2025) have shown that proper denoising of diffusion-
weighted MR data (either in complex or magnitude space) leads 
to a significant reduction in variability of DTI-based measures 
and increases statistical power for low signal-to-noise ratio vox-
els in intra- and inter-scanner, and inter-protocol studies. In the 
work by Albi et al. (2017), it has been suggested that suppress-
ing the FW component in DTI using the single-shell approach 
by Pasternak et al. (2009) leads to reduced repeatability errors 
of standard metrics such as fractional anisotropy (FA) or mean 
diffusivity (MD) on average approximately at 1%pt.1 However, 
taking a closer look at the experimental methodology, the work 
by Albi et al. (2017) may lead to more inquiries than answers, as 
different numerical optimization schemes have been arranged 
to compare the standard DTI-based measures and the FW-
corrected ones, i.e., the linear least squares procedure versus the 
non-linear optimization in a variational framework. Besides, 
the work utilises a questionable single-shell-based FW correc-
tion scheme and uses only a test–retest database acquired in a 
longitudinal intra-scanner scenario.

In this paper, we revisit the study by Albi et al. (2017) and explore 
the repeatability and reproducibility, reliability and separability 
of FW-corrected DTI under three different approaches used to 
correct the DTI for the FW component, namely (1) a single-shell 
variational scheme by Pasternak et al. (2009), (2) the multiple-
shell region contraction-based approach by Hoy et al. (2014), and 
(3) a prior correction of diffusion-weighted MR signal for the FW 
component estimated using the spherical means technique by 
Tristán-Vega et al. (2022), preceded by a standard DTI estima-
tion from FW-corrected signal. We emphasise that single-shell 
estimation should not be regarded as equivalent to multiple-
shell estimation, as it fails to capture the full spectrum of the 
biological variability of brain tissue. Our study encompasses 
three databases acquired in (i) intra-scanner, (ii) intra- scanner 
longitudinal and (iii) inter-scanner scenarios, as well as under 
various experimental setups.

2   |   Materials and Methods

2.1   |   In Silico Data

We generate in silico data by composing the signals originat-
ing from cellular and free-water compartments, following the 
formulation:

(1)

A(b, g)

A(0)
= (1− f )

∑

k∈B

�kAk(b, g)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cellular compartment

+ fexp
(

−bD0

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

free−water compartment

, f ∈[0, 1]
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with D0 = 3.0 × 10−3mm2 ∕s being the apparent diffusion coef-
ficient for water at a temperature of approximately 37°C, f  is 
the FWVF parameter, and Ak(b, g) is the cellular compartment 
integrating intra- and extra-axonal parts spherically convolved 
with the fibre orientation density function Φ(g)

where the tensor Dic,k represents the intra-cellular part and is 
characterised with two perpendicular null eigenvalues, �perp

ic,k
= 0 , 

and the tensor Dec,k is axis-symmetric with a non-zero perpen-
dicular diffusivity �perp

ec,k
. The cellular compartment defined in 

Equation (1) can be represented using a single- (B = {1}) or two-
fibre bundle (B = {1, 2}) with partial fractions �1 + �2 = 1 . The 
signal given by Equation (1) is then contaminated with a Rician 
noise (Aja-Fernández and Vegas-Sánchez-Ferrero 2016; Pieciak 
et  al.  2017), as follows S(b, g) = |

|

A(b, g) + Nre + j ⋅ Nim
|

|

 with 
Nre,Nim ∼ N

(

0, �2
)

. For more information on synthetic data 
generation scheme, see the Supporting Informations in Pieciak 
et al. (2023).

We generate two sets of synthetic data representing a single 
fibre bundle (�2 = 0) and a two-fibre bundle case (�1 = �2 = 0.5). 
The experimental setup for each dataset comprises 18 replicas 
of baseline samples and diffusion-weighted samples generated 
at b = {600, 1200}s∕mm2 and 90 gradient directions per shell 
distributed according to the sampling defined by the HCP 
WuMinn project (Van Essen et al. 2013). The signal-to-noise of 
the data ratio has been defined in terms of baseline signal as 
SNR = A(0)∕� and fixed to 300. For each set, we also generate 
noiseless reference data with no FW component, i.e., f = 0 in 
Equation (1).

2.2   |   In Vivo Data

We use three publicly available diffusion-weighted MR da-
tabases compatible with single- and multiple-shell DTI and 
FW-corrected DTI. Two databases, namely MICRA (Koller 
et al. 2021) and Magdeburg (Lehmann et al. 2021), cover re-
peated scans for each subject acquired using a single scan-
ner (i.e., intra-scanner acquisitions). The third database, the 
ZJU (Tong et al. 2020), covers multiple scans across identi-
cal scanners located in different centres (i.e., inter-scanner 
scenario).

The acquisition setup for the MICRA database was as follows. 
The database covers inter-session repeated scans from a sin-
gle centre. Six healthy volunteers (3F/3M) aged 24–30 were 
scanned, five times each using a 3T Connectom MRI research 
scanner (Siemens Healthcare, Erlangen, Germany) equipped 
with an ultra-strong gradient system at 300 mT/m. Acquisition 
protocol: single-shot spin-echo echo planar imaging sequence, 
anterior–posterior (AP) phase-encoding direction, repetition 
time (TR): 3000 ms, echo time (TE): 59 ms, pulse separation/
pulse duration Δ/δ: 24/7 ms, field of view (FOV): 220 × 220 mm2, 
matrix size: 110 × 110, voxel size: 2 × 2 × 2 mm3, b-values: (200, 
500, 1200, 2400, 4000, 6000) s/mm2 with (20, 20, 30, 61, 61, 61) 
gradient directions, respectively, 11 non-diffusion-weighted 
scans in AP direction repeated every twentieth volume and 

two non-diffusion-weighted scans in PA direction. For this 
study, we use only the diffusion-weighted MR samples acquired 
at b = {500, 1200}s∕mm2.

The acquisition details of two other databases are provided in 
the Supporting Information S1.

2.3   |   Data Preprocessing

The MICRA dataset was preprocessed using the following pipe-
line: (1) noise removal using the Marčenko-Pastur Principal 
Component Analysis technique over a window of size 5 × 5 × 5 
voxels (MP-PCA; Veraart, Novikov, et  al.  2016; Veraart, 
Fieremans, and Novikov 2016), (2) Gibbs ringing artefacts cor-
rection (Kellner et al. 2016), (3) Rician bias correction applied 
voxel-wise with the formula (Pieciak et al. 2018)

The correction given by Equation (3) was applied under the as-
sumption that the MP-PCA algorithm generates a proxy for the 
expectation of signal magnitude, ⟨M(x)⟩, �2(x) is the spatially-
dependent noise standard deviation, (4) susceptibility-induced 
distortions estimation using the FSL FMRIB Software 
Library v6 topup tool (Analysis Group, FMRIB, Oxford, UK; 
Andersson et al. 2003; Smith et al. 2004), (5) head movements 
and eddy current distortions correction using the FSL eddy 
(Andersson et al. 2016), and (6) B1 field inhomogeneity correc-
tion using the N4 algorithm (Tustison et al. 2010).

2.4   |   Free-Water-Corrected Diffusion 
Tensor Imaging

The FW-corrected DTI is modeled using a two-component 
representation characterising hindered diffusion using a 
diffusion tensor, and free diffusion represented by a mono-
exponential decay (Pierpaoli and Jones  2004; Pasternak 
et al. 2009):

with S(b, g) being the diffusion-weighted MR signal acquired in 
direction g at b-value b, S(0) is a non-diffusion-weighted MR sig-
nal, and D is a symmetric semi-positive matrix of size 3 × 3. The 
two-component representation given by Equation (4) reduces to 
the standard DTI for f = 0.

2.5   |   Estimation Methods: DTI 
and FW-Corrected DTI

The following methods are considered in this study to estimate 
FWVF, DTI and FW-corrected DTI:

1.	 Bi-tensor-S: joint estimation of FWVF and FW-corrected 
DTI in the variational framework from single-shell ac-
quisitions (Pasternak et  al.  2009); the learning rate has 

(2)

Ak(b, g) = vkΦ(g)⊗ exp
(

−bgTDic,kg
)

+
(

1 − vk
)

Φ(g)⊗ exp
(

−bgTDec,kg
)

,

(3)Mc(x)=
1

2

�

⟨M(x)⟩+
�

�

�

⟨M(x)⟩2−2�2(x)
�

�

�

1∕2
�

.

(4)
S(b, g)

S(0)
= (1 − f ) exp

(

−bgTDg
)

+ f exp
(

−bD0

)

, f ∈ [0, 1]
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been fixed to 0.005, the optimization uses 200 iterations 
and the initialization employs the tissue's MD prior set 
to 0.6 × 10−3mm2 ∕s (Golub et al. 2021), unless otherwise 
stated,

2.	 Bi-tensor-M: joint estimation of FWVF and FW-corrected 
DTI via the non-linear least squares procedure from 
multiple-shell acquisitions (Hoy et  al.  2014; Henriques 
et al. 2017),

3.	 SM: FWVF estimation using the spherical means tech-
nique from multiple-shell acquisitions (Tristán-Vega 
et  al.  2022); the spherical harmonics decomposition at 
the order of L = 6 is computed using the inverse linear 
problem with the regularisation based on the Laplace-
Beltrami operator and the regularisation weight set 
to � = 0.001, the parallel diffusivity parameter is fixed 
to �par = 2.0 × 10−3mm2 ∕s and penalty term � used to 
promote prolate convolution kernels was optimised to 
� = 0.015 for the MICRA database.

4.	 DTI: standard DTI estimated via the non-linear least 
squares (NLLS; Koay et al. 2006),

5.	 FW-DTI: customised FW-corrected DTI scheme using the 
NLLS based on a pre-estimated FWVF with the SM tech-
nique. This scenario assumes the diffusion-weighted MR 
signal is corrected for the isotropic component prior to the 
estimation procedure:

where S̃(b ,g) is the normalised diffusion-weighted MR signal after 
removing the FW component, S(0) is the averaged signal across 
all non-diffusion-weighted MR acquisitions, f̂  is the FWVF esti-
mated using the SM technique from multiple-shell data.

We calculate FA, MD, RD (radial diffusivity) and AD (axial 
diffusivity) measures for each DTI-based technique con-
sidered in the study, i.e., Bi-tensor-S, Bi-tensor-M, DTI and 
FW-DTI. For DTI and FW-DTI, we handle two variants: sin-
gle- and multiple-shell data. In the former FW-DTI variant, 

the FWVF is estimated using the SM approach from multiple-
shell data, while the DTI-based parameters are derived from 
single-shell data. This configuration may reflect a realistic 
clinical scenario in which the acquisition protocol includes 
a standard DTI scheme approximately at b = 1000s∕mm2 and 
only a few directions at a lower b-value, around 500s∕mm2. 
Alternatively, if the study includes data acquired at a higher 
outer shell, for instance, b = 2000s∕mm2 (as in the ZJU or 
Magdeburg databases), it may be advantageous to estimate the 
FWVF from two shells and then obtain DTI-based measures 
from the shell at b = 1000s∕mm2. In the multiple-shell vari-
ant, both the FWVF and DTI parameters are computed from 
multiple-shell data. Table 1 summarises all methods used in 
the study.

We used the DIPY library v. 1.9.0 (https://​dipy.​org) for non-
linear DTI and DIPY with in-house implementation for FW-
DTI fitting procedures delivered in Python 3.11.5 (https://​
www.​python.​org), NumPy 1.26.4 (https://​numpy.​org) and 
SciPy 1.11.1 (https://​scipy.​org). The implementation of Bi-
tensor-S followed that of (Golub et  al.  2021; https://​github.​
com/​mvgol​ub/​FW-​DTI-​Beltrami), while Bi-tensor-M em-
ployed the one provided with the DIPY library. The SM was 
estimated using the dMRI-Lab toolbox (https://​www.​lpi.​tel.​
uva.​es/​dmrilab) run under MATLAB R2023b (The MathWorks 
Inc., Natick, MA).

2.6   |   Data Registration

The FA volumes estimated using a standard DTI at 
b = 1200s∕mm2 for MICRA database were used to register the 
data to the Montreal Neurological Institute (MNI) space, so-
called standard space. Specifically, we linearly registered FA 
volumes computed with the standard DTI from each scan to 
the FSL template FMRIB58_FA using the FSL flirt tool under 
seven degrees of freedom, normalised correlation cost func-
tion and spline interpolation. The linearly transformed FA vol-
umes were then non-linearly deformed via the FSL fnirt. All 
measures from the subjects' native spaces were mapped to the 
MNI space using a trilinear interpolation. We then retrieved 
the white matter label from the Johns Hopkins University 

(5)

S̃(b ,g) =
(

1− f̂
)−1

(

S(b ,g)

S(0)
− exp

(

−bD0

)

)

+ exp
(

−bD0

)

,

TABLE 1    |    Summary of FWVF, DTI and FW-corrected DTI estimation procedures used in the study.

Method

Single-shell Multiple-shell

FWVF
DTI 

measures
FW-corrected 
DTI measures FWVF

DTI 
measures

FW-corrected 
DTI measures

Bi-tensor-S (Pasternak et al. 2009) ✓ ✓

Bi-tensor-M (Hoy et al. 2014) ✓ ✓

SM (Tristán-Vega et al. 2022) ✓

DTI (Koay et al. 2006) ✓ ✓

FW-DTI ✓ ✓

Note: The methods are classified into single- and multiple-shell data handled in the estimation process.  The DTI-based parameters are estimated from single-shell 
data, using the FWVF previously estimated from multiple-shell data.
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(JHU) WM atlas (Mori et al. 2005) in the standard space and 
shrunk it using a morphological binary erosion operator with 
a cross-shaped kernel of size 3 × 3 × 3 to eliminate potential 
misregistration outliers due to a partial volume effect. All 
scripting was carried out using the Arturo programming lan-
guage 0.9.83 (https://​artur​o-​lang.​io).

2.7   |   Variability, Separability and Reliability 
Assessment

Three characteristics of the FWVF and DTI-related mea-
sures are computed, namely reproducibility, reliability, and 
separability, all three in the standard space. First, we warp 
the measures from the subjects' native spaces to the standard 
space using the warping fields obtained from the data regis-
tration procedure. Then, we compute the spatially dependent 
characteristics mentioned above across the repeated scans. 
Repeatability and reproducibility are explained in terms of the 
variability index, which defines the general ability to replicate 
the measure across scans or scanners of the same subject, and 
they are expressed by the coefficient of variation (CoV). By 
definition, the smaller the variability, the higher the repeat-
ability and reproducibility. In our study, we distinguish three 
scenarios: (1) intra-scanner repeatability—the inter-session 
scans are replicated using the same scanner with a short 
time interval between the scans, (2) inter-session longitudi-
nal reproducibility—the scans are repeated using the same 
scanner with a longer time interval between the scans (e.g., 
several weeks) and possibly affected by confounding factors 
(e.g., changes in magnetic field drifts) and (3) inter-scanner 
reproducibility—the scans are repeated using the same scan-
ner type, but installed in different locations. The reliability 
index reflects the measure's consistency, and it is expected to 
be high for measures that are stable in value across repeated 
scans. Decomposing the variance into within-subject and 
between-subjects variances, as defined by Zuo et  al.  (2019), 
enables the computation of a ratio that reflects how much of 
the total variance is explainable by actual inter-individual 
differences rather than noise or session variability. The last 
index, separability, illustrates the metric's ability to capture 
inter-subject discrepancies.

2.7.1   |   Variability

The variability of a metric has been defined as the median value 
from the CoVs computed across all subjects s = 1, … , S

where the CoV for subject s, CoVs(x), is given by

The sample mean Means(x) and sample standard deviation 
Std. devs(x) are defined over the stack of Ms scans available for 
s − th subject (see Supporting Information S1 for details).

2.7.2   |   Reliability

The reliability index has been defined using the formulation by 
Zuo et al. (2019)

where Vars(x) is the sample variance of the measure and 
vars=1,…,S{ .} is the population variance calculated across sample 
means Means(x), i.e., the normalisation factor in the variance 
formula equals 1∕S.

2.7.3   |   Separability

We define the separability index as follows:

where std. devs=1,…,S{. } is the population standard deviation 
with the normalisation factor also given by 1∕S.

2.7.4   |   Diffusion Kernel Density Estimation (DiffKDE)2

The KDE method estimates the probability density function 
from data samples in a non-parametric way. Given a random 
sample x1, … , xn from an unknown probability density func-
tion f (x), a non-negative kernel function K and a bandwidth 
h > 0, the formula for the KDE at a point x0 is given by (Hastie 
et al. 2009)

The KDE-based procedure must be applied with great care, 
as Silverman's rule-of-thumb bandwidth selection method 
(Silverman  1986) may yield suboptimal results for non-
Gaussian histogram shapes. Thereupon, we employ an 
advanced DiffKDE approach, which uses the improved 
Sheather-Jones method to automatically determine the opti-
mal smoothing parameter (Sheather and Jones  1991; Botev 
et al. 2010). The DiffKDE uses a linear diffusion process (i.e., 
heat equation) to model the density and minimises the asymp-
totic mean integrated squared error criterion to select an opti-
mal smoothing parameter. Compared to KDE, which models 
the density as a sum of kernel functions centred at the data 
points, the DiffKDE models the density as a solution to a par-
tial differential equation with initial conditions derived from 
the empirical density of the data.

We compute the DiffKDE over all data points from the white 
matter area in the standard space of the measure. Representing 
variability and reliability as density plots diminishes the 

(6)

Variability(x) =medians=1,…,S

{

CoVs(x)
}

× 100[%] ,

(7)CoVs(x) =
Std. devs(x)

Means(x)
.

(8)

Reliability(x) =
vars=1,…,S

{

Means(x)
}

vars=1,…,S

{

Means(x)
}

+means=1,…,S

{

Vars(x)
} ,

(9)Separability(x) =
std .devs=1,…,S

{

Means(x)
}

means=1,…,S

{

Means(x)
} × 100[%] ,

(10)f̀
(

x0;h
)

=
1

nh

n
∑

i= 1

K
(x − xi

h

)

.
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6 of 14 Human Brain Mapping, 2026

influence of potential misregistered voxels or those affected by 
partial-volume effects on the results.

3   |   Experimental Results

This section wraps the experimental results generated for in sil-
ico data and MICRA database.

3.1   |   In Silico Experiments

In the in silico experiment depicted in Figure  1, we exam-
ine different FW-correction DTI schemes and relate the FW-
corrected MD and FA measures under f = 0.2 to the standard 
DTI-based equivalents, but obtained from the cellular model 
only (i.e., f = 0 in Equation 1). Among the multiple-shell-based 

techniques, the FW-DTI customised scheme yields smaller dis-
crepancies of MD and FA from the standard DTI-based MD and 
FA than the B-tensor-M technique. However, the FW-corrected 
MD using the FW-DTI scheme is more flattened compared to 
the FW-corrected MD obtained via the Bi-tensor-M. Regarding 
the single-shell techniques evaluated at b = 1200s∕mm2, the 
flattening effect is more evident, albeit the FW-corrected MD 
using the FW-DTI scheme also follows the general trend of stan-
dard DTI-based MD. The Bi-tensor-S method converges to the 
tissue's prior, i.e., the FW-corrected parameter oscillates around 
the value of 0.6 × 10−3mm2 ∕s.

3.2   |   Visual Inspection of the Measures

We now move to in vivo experiments, first by visually inspect-
ing the measures in the subject's native coordinate system. We 
have chosen a single subject from the MICRA database (sub-01, 
ses-01) and displayed the measures in Figure 2. In Figure 2a, 
we illustrate the FWVF estimated under multiple-shell data 
at b = {500, 1200}s∕mm2 using the SM and Bi-tensor-M ap-
proaches, and single-shell data at b = 1200s∕mm2 with the Bi-
tensor-S. The results obtained with Bi-tensor-M and Bi-tensor-S 
differ despite both techniques are conceptually based on a di-
rect optimization of Equation (4), albeit using distinct numerical 
schemes. Next, in Figure 2b,c, the DTI measures estimated from 
multiple- and single-shell acquisitions have been illustrated 
in the following rows: (i) standard DTI (no free-water correc-
tion), (ii) FW-corrected DTI according to Equation (5) and (iii) 
Bi-tensor-M or Bi-tensor-S approach. We observe increased FA 
values and decreased MD, AD and RD over the brain using 
all three FW-correction schemes examined, i.e., the FW-DTI, 
Bi-tensor-M and Bi-tensor-S. Besides, the FW-corrected MD 
parameter estimated using the Bi-tensor-S approach exhibits 
flattened spatial characteristics over the brain (see Figure 2c). 
The median (interquartile range) value of FW-corrected MD 
computed with the Bi-tensor-S approach over the WM area is 
0.6006 (0.6 − 0.6015).

3.3   |   Variability Maps

In the experiment shown in Figure 3, we visually inspect spa-
tially dependent variability maps of the measures in the stan-
dard space computed according to Equation (6) for the MICRA 
dataset.

In Figure 3a, we illustrate the variability of the FWVF estimated 
from: (i) multiple-shell data using the SM, (ii) multiple-shell data 
using the Bi-tensor-M procedure and (iii) single-shell data via the 
Bi-tensor-S. Among the three techniques mentioned above, the 
highest variability is observed with the Bi-tensor-M approach, 
with the median CoV over the white matter area at 19.9%, com-
pared to SM (CoV = 11.78%) and Bi-tensor-S (CoV = 11.57%).

Next, in Figure 3b,c, we present the variability of DTI metrics 
computed with the standard DTI and under a FW-correction 
from multiple- and single-shell data. The first observation is that 
the variability of the FA parameter follows different spatial char-
acteristics compared to MD, AD and RD. Specifically, the vari-
ability of FA is remarkably lower in the white matter compared 

FIGURE 1    |    The 2D density plots illustrate the experimental re-
sults from an in silico model under a two-fibre bundle configuration: 
(a) the MD and FA parameters estimated using the standard DTI from 
noiseless reference data covering the cellular component only. The FW-
corrected MD and FA estimated from the signal covering FW ( f = 0.2) 
and cellular components: (b) Bi-tensor-S and Bi-tensor-M approaches, 
and (c) FW-DTI customised scheme according to Equation (5). In total, 
153 samples have been used to obtain a single 2D density plot.
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to the grey matter, while the variability of MD, AD, and RD is 
more homogeneous across the white and grey matter areas. The 
median CoV of multiple-shell-based FA parameter varies only 

slightly across the methods considered: 4.35% (DTI), 4.27% 
(FW-DTI) and 4.56% (Bi-tensor-M). For the multiple-shell MD, 
the results are more pronounced: 2.76% (DTI), 3.22% (FW-DTI) 

FIGURE 2    |    Estimated microstructural measures for a selected MICRA acquisition (sub-01, ses-01, slice 36): (a) FWVF estimated from multiple-
shell data (SM and Bi-tensor-M approaches) and single-shell data (Bi-tensor-S), (b) DTI-based measures estimated from multiple-shell data using a 
standard DTI, and two free water-correction methodologies: FW-DTI according to Equation (5) and Bi-tensor-M, and (c) DTI-based measures esti-
mated from single-shell data using the standard DTI, FW-DTI and Bi-tensor-S. The FWVF parameter for FW-DTI was pre-estimated using the SM 
approach from multiple-shell data in both scenarios presented in panels (b) and (c).

FIGURE 3    |    Inter-session variability maps of the measures defined in the standard space for MICRA database according to the coefficient of 
variation defined by Equation (6): (a) FWVF estimated from multiple-shell data (SM and Bi-tensor-M approaches) and single-shell data (Bi-tensor-S), 
(b) DTI-based measures estimated from multiple-shell data using a standard DTI, and two FW-correction methodologies: FW-DTI according to 
Equation (5) and Bi-tensor-M, and (c) DTI-based measures estimated from single-shell data with the standard DTI, FW-DTI and Bi-tensor-S. The 
FWVF parameter for FW-DTI was pre-estimated using the SM approach from multiple-shell data in both scenarios presented in panels (b) and (c).
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8 of 14 Human Brain Mapping, 2026

and 4.11% (Bi-tensor-M). However, in the case of MD estimated 
with Bi-tensor-S, the results are contentious—the experiment 
has revealed the smallest variability across all the measures 
considered in the study.

3.4   |   Density-Based Variability and Reliability 
Indices

From this point onward, only the results for the multiple-shell 
data are presented in the main paper. For the extended results, 
including single-shell data, we refer the reader to the Supporting 
Information S1.

The following two experiments assess the variability and reli-
ability of the measures across the white matter in the form of 
density plots. The plots have been estimated using the DiffKDE 
approach (Sheather and Jones  1991; Botev et  al.  2010) for 
multiple-shell measures previously illustrated in Figure  2 and 
are depicted in Figure 4.

The FWVF parameter, no matter how it is estimated, is poorly 
reproducible over the white matter, to a much lesser ex-
tent than the DTI and FW-corrected DTI measures. Density 
plots representing the variability (i.e., CoV parameter) of the 
FWVF parameter reach their peaks at CoV = 10.08% (SM), 
and CoV = 15% (Bi-tensor-M). In general, the plots represent-
ing the variability for the measures considered in the study 
exhibit unimodal, predominantly positively skewed densities. 
Our results demonstrate the FW-correction primarily does not 

improve the repeatability/reproducibility of DTI-related mea-
sures compared to the standard DTI case, and even if it does, 
the changes are minute. We found the contrary behaviour of 
multiple-shell Bi-tensor-M scheme—the FW-correction has 
led to an increase in the variability of MD/AD/RD measures 
(see Figure 4b).

Our experiments also reveal that the measures characterised 
with the lowest reliability are multiple-shell FWVF and FW-
corrected MD (see Figure 4c,d). Notably, the FW-correction to 
MD has led to a significant decrease in the reliability param-
eter, regardless of the numerical method used to estimate the 
measure, i.e., the reliability peak is far below 0.5. At large, the 
plots representing the reliability index exhibit unimodal and 
negatively skewed densities for the evaluated measures (cf. to 
the densities of the variability parameter). In general, the reli-
ability of standard DTI-based measures is roughly equal to or 
better than the reliability of equivalent measures corrected for 
the FW component.

3.5   |   Variability, Reliability and Separability

We now proceed to quantitative experiments that demonstrate 
two relationships: (i) reliability versus variability and (ii) separa-
bility versus variability.

In the first experiment depicted in Figure 5, we put together 
the population's first (25th percentile), second (median) and 
third (75th percentile) quartiles computed for the variability 

FIGURE 4    |    Inter-session kernel density-based variability (top) and reliability (bottom) indices computed for MICRA database over the white mat-
ter area: (a, c) FWVF estimated from multiple-shell data (SM and Bi-tensor-M approaches), (b, d) DTI-based measures estimated from multiple-shell 
data using standard DTI, FW-DTI according to Equation (5) and Bi-tensor-M. The FWVF parameter for FW-DTI was pre-estimated from multiple-
shell data using the SM approach.
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9 of 14Human Brain Mapping, 2026

and reliability indices. The ‘population’ is understood here as 
all voxels taken from the white matter region defined in the 
standard space. Note that the smaller the third quartile for the 
variability index, the better, while the larger the third quar-
tile for the reliability, the better. As mentioned in the previous 
section, the FWVF is characterised by the highest variability 
among all measures, typically several times higher than DTI-
based measures, and a relatively low reliability. However, the 
variability and reliability indices vary between the methods 
used to estimate the FWVF. Nevertheless, the SM technique 
has shown superior behaviour over the Bi-tensor-M in terms 
of reliability, though the variability index does not give a clear 
answer to which method varies more. The multiple-shell DTI-
based measures with no FW correction are more reproducible 
and more reliable than FW-corrected equivalents using the Bi-
tensor-M approach. The experiments show evidence that cor-
recting DTI measures for the FW component via Equation (5) 
would be a more appropriate solution in terms of variability-
reliability criterion, given that it potentially avoids such de-
clines in reproducibility and reliability indexes, as observed in 
the Bi-tensor-M approach.

In the final experiment, we strive to establish optimal measures 
in terms of reliability, variability and separability indices. In the 
bar charts presented in Figure 6a, we relate the median reliabil-
ity to median variability. Both indices are ordered according 
to the median reliability. The indices were computed over the 
white matter area in the standard space. In general, the results 
presented in charts-based plots illustrate that the highest reli-
ability measures are generally reproducibly approving, with the 
variability being less than 5%. In this class, one can identify AD, 
FA, and RD computed from standard DTI, with the last two 
measures characterised by higher variability and separability 
than the AD. Contrarily, the measures characterised by low reli-
ability, such as the FWVF, are typically highly variable.

Considering the FW-corrected DTI, we observe FA and AD 
rectified with the customised scheme from multiple-shell data 
are more reliable, reproducible and somewhat separable com-
pared to the Bi-tensor-M approach. The previously discussed 

FW-corrected MD with the Bi-tensor-S, although it has re-
vealed extremely low variability, is a non-reliable measure (see 
the extended results in Figure S14). Our experiments have also 
demonstrated that the FW-corrected MD under Bi-tensor-M and 
FW-DTI are also the least reliable among the DTI measures. 
Overall, the MD measure, computed in any FW-correction 
variant is the least reliable and separable parameter among all 
DTI-based parameters considered in this study. The FWVF is 
also non-reliable but seems to be a highly separable parameter 
(see Figure  6b). Interestingly, the FW-corrected RD obtained 
with any FW correction scheme is moderately reliable, but rea-
sonably highly variable and separable measure, second only to 
the FWVF.

4   |   Discussion

This paper re-examines the previous findings made by Albi 
et  al.  (2017) that the FW correction to DTI from single-
shell diffusion-weighted MR data, as proposed by Pasternak 
et al. (2009), enhances the repeatability of DTI-based measures, 
such as FA or MD. Our study extrapolates that study to other 
FWVF estimation techniques and FW-correction DTI schemes 
particularly tailored to multiple-shell data. Although the results 
we report focus on the MICRA database, they are corroborated 
in the Supporting Information S1 by two additional databases 
with distinct characteristics, which include intra-scanner longi-
tudinal and inter-scanner variabilities. Our results suggest that 
the improved repeatability of the FW-corrected DTI compared 
to a standard DTI in a single-shell scenario observed by Albi 
et  al.  (2017) may be data- and methodology-dependent, and 
does not generalize to multiple-shell FW correction schemes. 
On the contrary, we have shown that the FW-corrected DTI 
in a multiple-shell scenario, using a region contraction-based 
technique by Hoy et  al.  (2014), leads to systematic declines in 
repeatability/reproducibility and reliability compared to the 
standard DTI, as the number of degrees of freedom in the op-
timization procedure is larger. Our study shows evidence that 
the most reliable and repeatable (and reproducible) measures are 
FA, AD and RD estimated from the standard DTI and among 

FIGURE 5    |    Inter-session reliability versus variability plots computed for MICRA database over the white matter area: (a) FWVF estimated from 
multiple-shell data (SM and Bi-tensor-M approaches), (b) DTI-based measures estimated from multiple-shell data using standard DTI, FW-DTI 
according to Equation (5) and Bi-tensor-M. The FWVF parameter for FW-DTI was pre-estimated from multiple-shell data using the SM approach. 
The markers present median values calculated over the white matter area, while the horizontal and vertical lines represent distances between the 
first Q1 = 0.25 (25th percentile) and third Q3 = 0.75 (75th percentile) quartiles. The horizontal and vertical ranges for plots representing multiple- and 
single-shell equivalent cases have been fixed.
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10 of 14 Human Brain Mapping, 2026

the FW-corrected DTI-based measures the FA and AD esti-
mated from a previously corrected diffusion-weighted MR sig-
nal under a multiple-shell variant. In contrast, the least reliable 
and separable measure is the MD obtained from any FW correc-
tion approach, as well as the FWVF parameter itself, no matter 
whether estimated separately via the SM technique or jointly 
with the DTI.

In general, one can follow several approaches to correct 
the DTI for the FW, either using single- or multiple-shell 
diffusion-weighted MR data. The first and most popularised 
approach by Pasternak et  al.  (2009), which we refer to here 
as the Bi-tensor-S, directly optimises the bi-tensor represen-
tation given by Equation (4) within a variational framework. 
This formulation enables estimation of both the FWVF and 
FW-corrected DTI measures in a joint optimisation procedure 
using only single-shell diffusion-weighted MR data acquired 
approximately at b = 1000s∕mm2. However, the method re-
quires the initialization scheme to be carefully selected (Parker 
et al. 2020; Golub et al. 2021) and yet it can fail to retrieve bi-
ological information from the MD-corrected parameter (see 
Figure 1b). The second group of methods optimise Equation (4) 
using the numerical schemes tailored for multiple-shell ac-
quisitions (Pasternak et al. 2012; Hoy et al. 2014; Bergmann 
et al. 2020). As a representative, in this study, we follow the re-
gion contraction-based method by Hoy et al. (2014), which we 
call the Bi-tensor-M. Our experiments demonstrate that, while 
the Bi-tensor-M technique preserves biological information in 
the MD parameter, both the FW-corrected MD and FA param-
eters remain biased (see Figure 1b). Recently, the advantage 
of FWVF estimated using multiple-shell over single-shell 
has been demonstrated in the context of brain age estima-
tion (Nemmi et  al.  2022) and healthy brain ageing (Correia 

et al. 2024). An alternative solution is to estimate the FWVF 
parameter, correct the diffusion-weighted MR signal for the 
FW component and then re-estimate the standard DTI from 
the corrected signal (Pieciak et  al.  2023; Chang et  al.  2025; 
Guadilla et  al.  2025). Here, the biological variability of the 
FW-corrected MD parameter appears limited, while the MD 
and FA parameters are relatively free of the bias seen in the Bi-
tensor-M approach (cf. Figure 1c to Figure 1b). The last group 
consists of deep learning-based approaches that aim to find 
a non-linear mapping between diffusion-weighted MR signal 
and FW or FW-corrected DTI parameters (Molina-Romero 
et al. 2018; Weninger et al. 2020).

We start our discussion by commenting on the sanity checks, 
displaying the estimated measures using different techniques. 
Figure  2d depicts a particularly flattened FW-corrected MD 
characteristic computed with the Bi-tensor-S approach. We 
note the flattening effect has been previously explored by 
Golub et al.  (2021) in the context of in silico experiments and 
by Correia et  al.  (2024) in brain ageing. To put it differently, 
the FW-corrected MD using the Bi-tensor-S turns out to be the 
tissue's prior. Contrary to Bi-tensor-S, the FW-corrected MD 
computed using the Bi-tensor-M and FW-DTI approaches has 
enabled us to discriminate between WM and GM areas. As for 
other FW-corrected measures, increased FA and decreased MD/
AD/RD parameters over the white matter are consistent across 
the datasets considered in our study and with previous reports 
(Metzler-Baddeley et al. 2012; Hoy et al. 2014; Golub et al. 2021; 
Pieciak et al. 2023).

It is noteworthy that the FWVF estimated using SM, Bi-
tensor-S, and Bi-tensor-M actually presents the effective 
FW fraction confounded by T2 relaxation, but it is typically 

FIGURE 6    |    (a) Box-plots presenting inter-session median reliability and median variability of multiple-shell indices computed from the MICRA 
database over the white matter area. The colours in the variability box-plot reflect the ordering according to the variability index value (i.e., the lower 
the value, the more beige the colour). (b) A diagram representing the separability index as a function of the variability index. A single marker refers to 
the median variability and median separability values calculated over the white matter area in the standard space. The FW-corrected DTI measures 
are annotated with a subscript ‘c’.
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11 of 14Human Brain Mapping, 2026

used as a proxy for the FWVF (Pasternak et al. 2009; Golub 
et al. 2021). Although none of the above-mentioned methods 
directly model freely diffusing water, they somewhat aggre-
gate the diffusion found as the cerebrospinal fluid and inter-
stitial fluid in the extracellular space of grey and white matter 
(Pasternak et al. 2009). Intrinsically, the FWVF may be biased 
by other pools, such as blood perfusion, which affects the sig-
nal at low b-values (Rydhög et al. 2017).

In the study by Albi et al. (2017), it has been suggested that the 
FW correction to DTI from a single-shell acquisition improves 
the longitudinal test–retest repeatability of FA and MD met-
rics by reducing the CoV on average approximately at 1%pt. 
Our study partially corroborates these results, illustrating an 
improvement in FA/MD repeatability for MICRA database in 
terms of median CoV over the WM at 0.3%pt./2.5%pt. However, 
this pattern might not be general, given the results from other 
databases presented in the Supporting Information  S1. The 
recent study by Correia et  al.  (2024) discovered the flatten-
ing effect of FW-corrected MD parameter with age. Our study 
has revealed an excellent reproducibility of FW-corrected MD, 
which directly explains the flattened spatial characteristics of 
the measure. In other words, the Bi-tensor-S provides the prior 
for the MD measure (here, assumed to be 0.6 × 10−3mm2 ∕s) 
rather than the value contemplating the actual FW-corrected 
MD parameter. Moreover, the FW-corrected MD parameter 
with the Bi-tensor-S approach is neither reliable nor separa-
ble (see the extended results demonstrated in Figure  S14). 
This is a consequential result that may raise questions about 
the repeatability (and thus, the trustworthiness) of previous 
findings in the brain studies based on a single-shell Bi-tensor-
S-based MD parameter. In general, the FW-corrected MD pa-
rameter estimated using any single- or multiple-shell-based 
method considered in our experiments exhibits low reliability 
and separability, which clarifies the factiously excellent re-
producibility observed in Figure 3. Interestingly, the reliabil-
ity of FW-corrected MD measure, regardless of the method 
used, is consistently lower than the standard DTI-based MD 
(see Figure  5b). The results obtained with the single-shell 
Bi-tensor-S method do not translate to the multiple-shell sce-
nario, as the FW-corrected MD, AD and RD parameters com-
puted with Bi-tensor-M approach reveal increased variability 
compared to the standard DTI (see Figure 4b and Figure 5b). 
A direct reason for the variability growth observed in the 
Bi-tensor-M approach is the increased number of degrees of 
freedom in the optimised cost function. The variability of a 
FW-corrected DTI might decrease if one pre-estimates the 
FWVF using an external method, such as the SM (Tristán-
Vega et  al.  2022), corrects the diffusion-weighted MR signal 
for the FW component and then re-estimates the DTI using 
a standard procedure. Remarkably, ‘fixing’ the FWVF in the 
optimization process does not reduce the reliability of the FW-
corrected measures compared to the Bi-tensor-M, as indicated 
by the experiment depicted in Figure 5b.

The experiments demonstrated consistency in the variability of 
FWVF against the DTI and FW-corrected DTI measures across 
all three datasets. Specifically, the FWVF estimated using 
any method considered in the study demonstrates a higher 
CoV over the white matter area compared to all DTI-based 

measures examined in this study. The experimental results 
do not provide a clear answer as to which multiple-shell-based 
technique (i.e., the region contraction-based or the spherical 
means) is superior in terms of reproducibility. However, the Bi-
tensor-M technique is trailing behind the SM considering the 
reliability index.

Finally, we note the study goes beyond the standard intra-site 
repeatability or inter-site reproducibility, as it also explores 
longitudinal reproducibility. Such longitudinal reproduc-
ibility evaluation is particularly important in a clinical sce-
nario once the features observed in the images are expected 
to demonstrate the evolution of the brain between the scans, 
or confounding factors such as different operators handling 
the scanner or magnetic field drifts (Lehmann et  al.  2021; 
Boudreau et al. 2025).

5   |   Conclusions

This paper studies the variability, reliability and separability 
properties of FW-corrected DTI in the healthy human brain. 
We explore different methodologies used to correct the DTI 
for the FW compartment, depending on whether the diffusion-
weighted MR acquisitions are single- or multiple-shell-based, 
and evaluate them using three publicly available databases ac-
quired in inter-session, intra-scanner longitudinal and inter-
scanner scenarios. Our study has shown that one should not 
only look for the maximal repeatability (or reproducibility) of 
FW-corrected DTI measures in the brain studies, but also assess 
the reliability and separability indices, as it has been particularly 
observed with the FW-corrected MD parameter using the single-
shell variational method. Importantly, how to correct the DTI 
for the FW is of great importance—the behaviour of the single-
shell method appears to be data-dependent, with questionable 
enhancement in variability and reliability, as well as the FW-
corrected MD parameter being anatomically non-meaningful. 
The multiple-shell FW-correction contraction-based technique 
has shown a reduced reproducibility and reliability of the mea-
sures compared to the standard DTI, the results being consis-
tent across the evaluated data. As a conclusive remark, the FW 
correction to DTI should not be considered in terms of conceiv-
able ‘improvement’ in the repeatability (or reproducibility) and 
reliability, but rather as a methodology that provides informa-
tion about the probed tissue, which the standard DTI partially 
hides. However, the choice of the FW-correction scheme should 
be made to avoid impacting the reproducibility, reliability, and 
accuracy of DTI-based parameters. As a solution, we suggest 
employing a customised FW-correction scheme, i.e., estimating 
the FWVF externally, correcting the diffusion-weighted MR sig-
nal for the FW, and then re-estimating the DTI using a standard 
procedure. Our experiments have provided evidence that this 
strategy improves the repeatability and reproducibility while not 
(significantly) affecting the reliability of the FW-corrected mea-
sures compared to the multiple-shell FW-correction of bi-tensor 
representation, while maintaining a relatively low error in the 
estimated MD and FA parameters. However, we note that this 
technique may result in a reduction of the biological information 
conveyed by the MD-corrected measure, although it still exhib-
its a lower average bias compared to the Bi-tensor-M approach.
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Endnotes
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