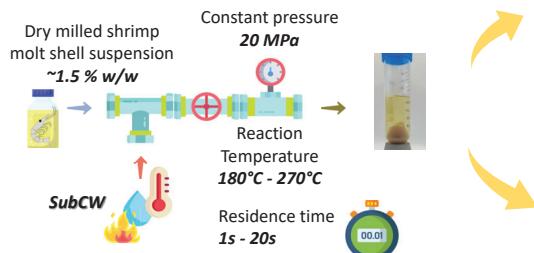

Shrimp molt protein extraction by subcritical water conditions in continuous ultrafast reactors

de-Souza-Ribeiro, Mauricio M.^{1,2}, Casas González, Andrea^{1,2}, Alonso, Esther^{1,2}, Rodríguez-Rojo, Soraya^{1,2}


BioEcoUVa, Research Institute on Bioeconomy, PressTech Group, University of Valladolid, Spain
Dpt. Chemical Engineering and Environmental Technology, School of Industrial Engineering, UVa, Spain.

*corresponding author: soraya.rodriguez@uva.es

- ❖ Aquaculture is an important sector in shrimp market: 63% of global production with indoor farming growing ¹
- ❖ Molt residue is generated with similar composition to adult shrimp Shell
- ❖ Generally valorized for chitin production by intense use of acid and alkali solutions that hampers the use of other valuable components, namely, proteins, but also minerals
- ❖ Subcritical water is a clean and selective media for protein hydrolysates production: 96% yield at 260°C for 5 min³
- ❖ To reduce degradation of proteins in the extract and chitin in the solid, low residence time is required ^{4,5}: ultrafast sudden expansion micro-reactors (UF-SEMR) for biomass continuous processing developed in our group⁶ allow to reduce residence time below 60s

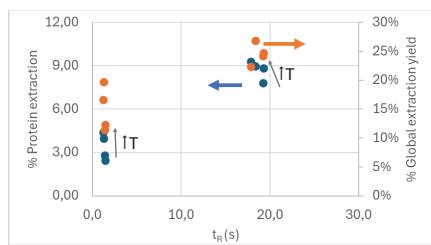
Experimental set-up: UF-SEMR

Analytical methods

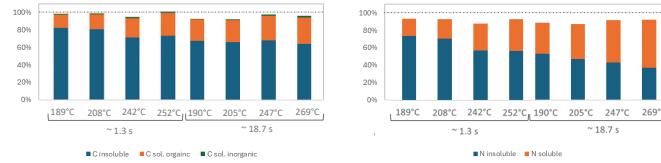
Water soluble products: Protein hydrolysate

- Protein content (BCA method, AA profile by HPLC)
- Total Organic Carbon (TOC), Inorganic Carbon (IC) & Total Nitrogen (TN)
- pH, CaCO₃ content
- HPLC profile for degradation products
- MALDI-ToF

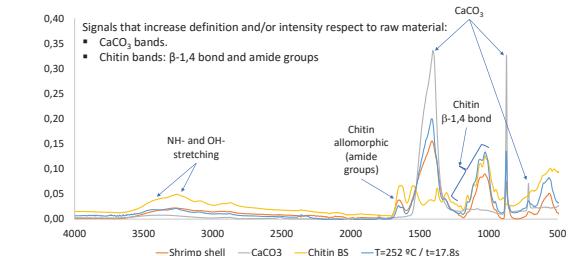
Water insoluble products: Chitin and minerals


- Elemental Analysis (C, H, N)
- Ash content (TGA)
- FTIR & X-Ray diffraction
- Particle size distribution (laser diffraction)

Results


✓ Raw material composition & Elemental Analysis

Component	% Dry basis	Element	% Dry basis
Fatty acids	0.7125 ± 0.003	C	23.26 ± 0.08
Protein	11.7 ± 0.5	H	2.855 ± 0.007
Chitin	15.1 ± 0.6	N	3.92 ± 0.03
Ash	54.82 ± 0.09		


✓ Water soluble product: Protein extraction and global extraction yield

✓ Carbon and Nitrogen mass balances

✓ Water insoluble product: FTIR characterization

Preliminary conclusions & On track

- ❖ **Water soluble product** : Maximum protein extraction of 9.3% at 269°C and 17.8s. Similar yield found for microwave processing (own results) at 206°C for 5.6 min.
- ❖ **Residence time** has a greater effect on **protein extraction** than reaction temperature: **On-going** experiments at longer residence time in the low temperature range
- ❖ Higher **purity of extract** at longer **residence time**: protein extraction increase by 2-3 fold and global extraction yield by 1.3 – 2 fold:
On going characterization: co-extraction and degradation compounds, and molecular weight of peptides (protein hydrolysate)
- ❖ **Water Insoluble product**: composite of CaCO₃ and chitin. **On-going** structural characterization to verify no degradation of chitin (α allomorph and acetylation degree)
- ❖ **Particle size reduction** by mechanical effect, no effect of residence time nor temperature, in tested range: 75% reduction as D (3,4) from 72 µm to 19 µm (average values)

References

- <https://www.fao.org/in-action/globefish/news-events/trade-and-market-news/q1-2023-jan-mar/en/> Accessed 30/05/2024.
- Maschmeyer, T. et al., *Chem. Soc. Rev.*, 49, (2020) 4527–4563.
- Espríndola-Cortés, A. et al. *Carbohydr. Polym.*, 172, (2017) 332–341.
- Rogalski, T. et al. *J. Supercrit. Fluids* 36, 49–58 (2005).
- Yang, W. et al. (2018). *J. Supercrit. Fluids* 135, 254–262.
- Cantero, D.A. et al., *BioresourceTech.* 135 (2013) 697–703

Acknowledgements. This work was supported by Spanish Ministry of Science and Innovation (project PID2020-119481RA-I00), the Regional Government of Castilla y León and FEDER-EU, program CLU-2019-04. M.M. de Souza Ribeiro thanks Junta de Castilla y León for his doctoral grant. Noray Sea Food company is acknowledged for providing molt shells.