Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorGordaliza Ramos, Alfonso 
dc.contributor.authorGreselin, Francesca
dc.contributor.authorIngrassia, Salvatore
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2015-05-26T16:46:08Z
dc.date.available2015-05-26T16:46:08Z
dc.date.issued2015
dc.identifier.citationArxiv, Febrero 2015, vol.1, p.1-30es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/11617
dc.descriptionProducción Científicaes
dc.description.abstractA robust estimator for a wide family of mixtures of linear regression is presented. Robustness is based on the joint adoption of the Cluster Weighted Model and of an estimator based on trimming and restrictions. The selected model provides the conditional distribution of the response for each group, as in mixtures of regression, and further supplies local distributions for the explanatory variables. A novel version of the restrictions has been devised, under this model, for separately controlling the two sources of variability identified in it. This proposal avoids singularities in the log-likelihood, caused by approximate local collinearity in the explanatory variables or local exact fits in regressions, and reduces the occurrence of spurious local maximizers. In a natural way, due to the interaction between the model and the estimator, the procedure is able to resist the harmful influence of bad leverage points along the estimation of the mixture of regressions, which is still an open issue in the literature. The given methodology defines a well-posed statistical problem, whose estimator exists and is consistent to the corresponding solution of the population optimum, under widely general conditions. A feasible EM algorithm has also been provided to obtain the corresponding estimation. Many simulated examples and two real datasets have been chosen to show the ability of the procedure, on the one hand, to detect anomalous data, and, on the other hand, to identify the real cluster regressions without the influence of contamination. Keywords Cluster Weighted Modeling · Mixture of Regressions · Robustnesses
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherUniversidad de Valladolid. Facultad de Medicinaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAnálisis multivariantees
dc.titleRobust estimation of mixtures of regressions with random covariates, via trimming and constraintses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage30es
dc.identifier.publicationtitleArxives
dc.identifier.publicationvolume1es
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem