Mostrar el registro sencillo del ítem

dc.contributor.authorDotto, Francesco
dc.contributor.authorFarcomeni, Alessio
dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2016-07-21T12:12:10Z
dc.date.available2016-07-21T12:12:10Z
dc.date.issued2016
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/18094
dc.description.abstractAn iteratively reweighted approach for robust clustering is presented in this work. The method is initialized with a very robust clustering partition based on an high trimming level. The initial partition is then refined to reduce the number of wrongly discarded observations and substantially increase efficiency. Simulation studies and real data examples indicate that the final clustering solution is both robust and efficient, and naturally adapts to the true underlying contamination level.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEstadísticaes
dc.titleA Reweighting Approach to Robust Clusteringes
dc.typeinfo:eu-repo/semantics/preprintes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem