• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21074

    Título
    Applying Deep Learning Techniques to Cultural Heritage Images Within the INCEPTION Project
    Autor
    Llamas Fernández, José MaríaAutoridad UVA
    Martín Lerones, PedroAutoridad UVA
    Zalama Casanova, EduardoAutoridad UVA Orcid
    Gómez García-Bermejo, JaimeAutoridad UVA Orcid
    Congreso
    EuroMed 2016: Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. Part I
    Año del Documento
    2016
    Editorial
    Springer International Publishing AG
    Descripción
    Producción Científica
    Documento Fuente
    Marinos Ioannides, Eleanor Fink, Antonia Moropoulou, Monika Hagedorn-Saupe, Antonella Fresa, Gunnar Liestøl, Vlatka Rajcic, Pierre Grussenmeyer (Eds.). EuroMed 2016: Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. Nicosia, Cyprus, 31 october – 5 november, 2016. Springer International publishing, 2016
    Resumen
    The digital documentation of cultural heritage (CH) often requires interpretation and classification of a huge amount of images. The INCEPTION European project focuses on the development of tools and methodologies for obtaining 3D models of cultural heritage assets, enriched by semantic information and integration of both parts on a new H-BIM (Heritage - Building Information Modeling) platform. In this sense, the availability of automated techniques that allow the interpretation of photos and the search using semantic terms would greatly facilitate the work to develop the project. In this article the use of deep learning techniques, specifically the convolutional neural networks (CNNs) for analyzing images of cultural heritage is assessed. It is considered that the application of these techniques can make a significant contribution to the objectives sought in the INCEPTION project and, more generally, the digital documentation of cultural heritage.
    Materias (normalizadas)
    Patrimonio cultural
    Información electrónica
    ISBN
    978-3-319-48974-2
    DOI
    10.1007/978-3-319-48974-2_4
    Patrocinador
    Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)
    Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R)
    Version del Editor
    http://rd.springer.com/chapter/10.1007/978-3-319-48974-2_4
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21074
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Mostrar el registro completo del ítem
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10