• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21106

    Título
    Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array
    Autor
    Cetó, Xavier
    Apetrei, Constantin
    Valle, Manel del
    Rodríguez Méndez, María LuzAutoridad UVA Orcid
    Año del Documento
    2014
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Electrochimica Acta, Febrero 2014, vol. 120, p. 180-186
    Résumé
    In this work, two sets of voltammetric sensors -prepared using different strategies- have been combined in an electronic tongue to evaluate the complete antioxidant profile of red wines. To this aim, wine samples were analyzed with the whole set of sensors. In order to reduce the large dimensionality of the data set while keeping the relevant information provided by the sensors, two different methods of feature selection and data compression were used (the kernels method and Discrete Wavelet Transform feature extraction method). Then, the coefficients obtained were used as the input variables of Principal Component Analysis (to evaluate the capability of discrimination. Partial-least squares regression (PLS) and artificial neural networks (ANNs) were performer to build the quantitative prediction models that allowed the quantification of the antioxidant capacity of the tested wines.
    Materias (normalizadas)
    Antioxidants
    Electronic tongue
    Polyphenols
    Voltammetric sensors
    Wine
    ISSN
    00134686
    Revisión por pares
    SI
    DOI
    10.1016/j.electacta.2013.12.079
    Patrocinador
    Spanish Ministry of Science and Innovation, MICINN (Madrid) a través de los proyectos CTQ2010-17099 y AGL2009-12660/ALI, Junta de Castilla y León (VA032U13) y programa ICREA Academia
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S001346861302519X
    Propietario de los Derechos
    Elsevier B.V.
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21106
    Derechos
    embargoedAccess
    Aparece en las colecciones
    • DEP63 - Artículos de revista [322]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    1-s2.0-S001346861302519X-main.pdfEmbargado hasta: 2200-01-01
    Tamaño:
    990.6Ko
    Formato:
    Adobe PDF
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10