Mostrar el registro sencillo del ítem

dc.contributor.authorAngulo Torga, Óscar 
dc.contributor.authorLópez Marcos, Juan Carlos 
dc.contributor.authorLópez Marcos, Miguel Ángel 
dc.date.accessioned2016-12-02T13:06:27Z
dc.date.available2016-12-02T13:06:27Z
dc.date.issued2017
dc.identifier.citationJournal of Computational and Applied Mathematics 309 (2017) 522-531es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/21436
dc.descriptionProducción Científicaes
dc.description.abstractPopulation balance models represent an accurate and general way of describing the complicated dynamics of cell growth. In this paper we study the numerical integration of a model for the evolution of a size-structured cell population with asymmetric division. We present and analyze a novel and efficient second-order numerical method based on the integration along the characteristic curves. We prove the optimal rate of convergence of the scheme andweratify it by numerical simulation. Finally,weshow that the numerical scheme serves as a valuable tool in order to approximate the stable size distribution of the model.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAnálisis numéricoes
dc.subjectPoblaciónes
dc.titleA second-order numerical method for a cell population model with asymmetric divisiones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttp://dx.doi.org/10.1016/j.cam.2016.03.008es
dc.identifier.publicationfirstpage522es
dc.identifier.publicationissue309es
dc.identifier.publicationlastpage531es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA191U13)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem