Mostrar el registro sencillo del ítem

dc.contributor.authorAdimy, Mostafa
dc.contributor.authorAngulo Torga, Óscar 
dc.contributor.authorMarquet, Catherine
dc.contributor.authorSebaa, Leila
dc.date.accessioned2016-12-02T13:21:58Z
dc.date.available2016-12-02T13:21:58Z
dc.date.issued2014
dc.identifier.citationDiscrete and Continuous Dynamical Systems - Series B. Jan 2014, Vol. 19 Issue 1, p. 1-26es
dc.identifier.issn1531-3492es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/21438
dc.descriptionProducción Científicaes
dc.description.abstractWe investigate a mathematical model of blood cell production in the bone marrow (hematopoiesis). The model describes both the evolution of primitive hematopoietic stem cellsand the maturation of these cells as they differentiate to form the three types of blood cells (red blood cells, white cells and platelets). The primitive hematopoietic stem cells and the first generations of each line (progenitors) are able to self-renew, and can be either in a proliferating or in a resting phase (G0-phase). These properties are gradually lost while cells become more and more mature. The three types of progenitors and mature cells are coupled to each other via their common origin in primitive hematopoietic stem cells compartment. Peripheral control loops of primitive hematopoietic stem cells and progenitors as well as a local autoregulatory loop are considered in the model. The resulting system is composed by eleven age-structured partial differential equations. To analyze this model, we don’t take into account cell age-dependence of coefficients, that prevents a usual reduction of the structured system to an unstructured delay differential system. We investigate some fundamental properties of the solutions of this system, such as boundedness and positivity. We study the existence of stationary solutions: trivial, axial and positive steady states. Then we give conditions for the local asymptotic stability of the trivial steady state and by using a Lyapunov function, we obtain a sufficient condition for its global asymptotic stability. In some particular cases, we analyze the local asymptotic stability of the positive steady state by using the characteristic equation. Finally, by numerical simulations, we illustrate our results and we show that a change in the duration of cell cycle can cause oscillations. This can be related to observations of some periodical hematological disease such as chronic myelogenous leukemia, cyclical neutropenia, cyclical thrombocytopenia, etc.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectModel of hematopoiesises
dc.titleA mathematical model of multistage hematopoietic cell lineageses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3934/dcdsb.2014.19.1es
dc.relation.publisherversionhttp://www.aimsciences.orges
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage26es
dc.identifier.publicationtitleDiscrete and Continuous Dynamical Systemses
dc.identifier.publicationvolume19es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA191U13)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem