• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21718

    Título
    Automated Analysis of Nocturnal Oximetry as Screening Tool for Childhood Obstructive Sleep Apnea-Hypopnea Syndrome
    Autor
    Álvarez González, Daniel
    Kheirandish Gozal, Leila
    Gutiérrez Tobal, Gonzalo César
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2015
    Editorial
    IEEE Conference Publications
    Descripción
    Producción Científica
    Documento Fuente
    Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2015, , p. 2800-3
    Abstract
    Childhood obstructive sleep apnea-hypopnea syndrome (OSAHS) is a highly prevalent condition that negatively affects health, performance and quality of life of infants and young children. Early detection and treatment improves neuropsychological and cognitive deficits linked with the disease. The aim of this study was to assess the performance of automated analysis of blood oxygen saturation (SpO2) recordings as a screening tool for OSAHS. As an initial step, statistical, spectral and nonlinear features were estimated to compose an initial feature set. Then, fast correlation-based filter (FCBF) was applied to search for the optimum subset. Finally, the discrimination power (OSAHS negative vs. OSAHS positive) of three pattern recognition algorithms was assessed: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and logistic regression (LR). Three clinical cutoff points commonly used in the literature for positive diagnosis of the disease were applied: apnea-hypopnea index (AHI) of 1, 3 and 5 events per hour (e/h). Our methodology reached 88.6% accuracy (71.4% sensitivity and 100.0% specificity, 100.0% positive predictive value, and 84.0% negative predictive value) in an independent test set using QDA for a clinical cut-off point of 5 e/h. These results suggest that SpO2 nocturnal recordings may be used to develop a reliable and efficient screening tool for childhood OSAHS
    Materias (normalizadas)
    Sleep Apnea-Hypopnea Syndrome
    ISSN
    1557-170X
    Revisión por pares
    SI
    DOI
    10.1109/EMBC.2015.7318973
    Patrocinador
    Junta de Castilla y León (project VA059U13)
    Version del Editor
    http://ieeexplore.ieee.org/servlet/opac?punumber=1000269
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21718
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [157]
    Show full item record
    Files in this item
    Nombre:
    Alvarez_etal_EMBC_2015_post-review.pdf
    Tamaño:
    189.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10