Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorBarroso García, Verónica 
dc.contributor.authorCrespo Senado, Andrea
dc.contributor.authorArroyo Domingo, Carmen Ainhoa 
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2016-12-15T07:34:27Z
dc.date.available2016-12-15T07:34:27Z
dc.date.issued2016
dc.identifier.citationMedical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 2016 Global, Institute of Electrical and Electronics Engineers (IEEE) , 2016, p. 79-82es
dc.identifier.isbn978-1-5090-2484-1es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/21749
dc.descriptionProducción Científicaes
dc.description.abstractSleep apnea-hypopnea syndrome (SAHS) is a chronic sleep-related breathing disorder, which is currently considered a major health problem. In-lab nocturnal polysomnography (NPSG) is the gold standard diagnostic technique though it is complex and relatively unavailable. On the other hand, the analysis of blood oxygen saturation (SpO2) from nocturnal pulse oximetry (NPO) is a simple, noninvasive, highly available and effective alternative. This study focused on the design and assessment of a neural network (NN) aimed at detecting SAHS using information from at-home unsupervised portable SpO2 recordings. A Bayesian multilayer perceptron NN (MLP-NN) was proposed, fed with complementary oximetric features properly selected. A dataset composed of 320 unattended SpO2 recordings was analyzed (60% for training and 40% for validation). The proposed Bayesian MLP-NN achieved 94.2% sensitivity, 69.6% specificity, and 89.8% accuracy in the test set. Our results suggest that automated analysis of at-home portable NPO recordings by means of Bayesian MLP-NN could be an effective and highly available technique in the context of SAHS diagnosis.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectOximetryes
dc.titleAutomated Analysis of Unattended Portable Oximetry by means of Bayesian Neural Networks to Assist in the Diagnosis of Sleep Apneaes
dc.typeinfo:eu-repo/semantics/bookPartes
dc.relation.publisherversionhttps://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7500953es
dc.description.projectJunta de Castilla y León (project VA059U13)es
dc.description.projectPneumology and Thoracic Surgery Spanish Society (265/2012)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem