Mostrar el registro sencillo del ítem

dc.contributor.authorFritz, Heinrich
dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2016-12-20T11:48:32Z
dc.date.available2016-12-20T11:48:32Z
dc.date.issued2013
dc.identifier.citationInformation Sciences, 245, 38-52.es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/21850
dc.description.abstractIt is well-known that outliers and noisy data can be very harmful when applying clustering methods. Several fuzzy clustering methods which are able to handle the presence of noise have been proposed. In this work, we propose a robust clustering approach called F-TCLUST based on an “impartial” (i.e., self-determined by data) trimming. The proposed approach considers an eigenvalue ratio constraint that makes it a mathematically well-defined problem and serves to control the allowed differences among cluster scatters. A computationally feasible algorithm is proposed for its practical implementation. Some guidelines about how to choose the parameters controlling the performance of the fuzzy clustering procedure are also given.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEstádisticaes
dc.titleRobust Constrained Fuzzy Clusteringes
dc.typeinfo:eu-repo/semantics/articlees
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem