Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22515
Título
Prediction of the Spectroscopic Parameters of New Iron Compounds: Hydride of Iron Cyanide/Isocyanide, HFeCN/HFeNC
Año del Documento
2016
Editorial
American Astronomical Society
Descripción
Producción Científica
Documento Fuente
The Astrophysical Journal, vol. 828, 9 p. (2016)
Resumo
Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their 5 states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.
Palabras Clave
Astroquímica
Moléculas
ISSN
0004-637X
Revisión por pares
SI
Patrocinador
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA330U13)
Version del Editor
Propietario de los Derechos
© The American Astronomical Society
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International