• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Academic Search

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22928

    Título
    A new method for identification of cyclic circadian genes using circular isotonic regression.
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Congreso
    XXXV Congreso Nacional de Estadística e Investigación Operativa
    Año del Documento
    2015
    Abstract
    Identification of periodic patterns in gene expression data is important for studying the regulation mechanism of the circadian system. The information available is often given only by one or two cycles. Consequently, the number of observations is not enough to fit certain models, such as Fourier's models, properly. Some authors have already developed procedures or algorithms among which the JTK\_Cycle algorithm is the most popular one. We propose a new method to identify cyclic gene expressions based on circular order restricted inference. Validation of the method is made through real data sets and simulations. Moreover, we compare the results obtained by the method with other detecting methods developed in the literature.
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22928
    Derechos
    restrictedAccess
    Collections
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Show full item record
    Files in this item
    Nombre:
    abstract.v3.pdf
    Tamaño:
    5.193Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10