Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/23526
Título
Assessing the influence of the carbon source on the abatement of industrial N2O emissions coupled with the synthesis of added-value bioproducts
Año del Documento
2017
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Science of The Total Environment, 2017, Volume 598, Pages 765–771
Abstract
The continuous abatement of a synthetic N2O emission from a nitric acid plant coupled with the simultaneously production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer and the coenzyme Q10 (CoQ10) in a bubble column reactor (BCR) was tested using methanol, glycerol and a mixture of sodium acetate-acetic acid (Ac-HAc) as a carbon and electron donor source. The BCRs were inoculated with Paracoccus denitrificans and supplied with the carbon/electron donor at a loading rate of 139 g C m− 3 d− 1. High N2O removal efficiencies (81–91%) were achieved, with glycerol supporting the highest abatement. The PHBV cell content ranged from 25 to 53%, with highest accumulation in the culture obtained with methanol and Ac-HAc. However, the greatest PHBV productivities were observed in the BCRs operated with glycerol and Ac-HAc (21.7 and 33.5 g PHBV m− 3 d− 1, respectively). Glycerol supply induced the highest molar ratio (23%) of the homopolymer 3-hydroxyvalerate in the composition of PHBV. In addition, the specific cell content of CoQ10 ranged from 0.4 to 1 mg g− 1. This work constitutes, to the best of our knowledge, the first study combining N2O abatement with the simultaneous production of multiple bioproducts, which pave the way to the development of greenhouse gas biorefineries for climate change mitigation.
Palabras Clave
Óxido nítrico
Cambio climático
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (Project CTM2015-70442-R and Red NOVEDAR)
Version del Editor
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International