Mostrar el registro sencillo del ítem

dc.contributor.authorCano Urdiales, Begoña 
dc.contributor.authorReguera, Nuria
dc.date.accessioned2017-07-12T10:54:32Z
dc.date.available2017-07-12T10:54:32Z
dc.date.issued2017
dc.identifier.citationJournal of Computational and Applied Mathematics, 2017, 316, 86–99es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/24374
dc.description.abstractIn this paper a technique is suggested to avoid order reduction when using Strang method to integrate nonlinear Schrödinger equation subject to time-dependent Dirichlet boundary conditions. The computational cost of this technique is negligible compared to that of the method itself, at least when the timestepsize is fixed. Moreover, a thorough error analysis is given as well as a modification of the technique which allows to conserve the symmetry of the method while retaining its second order.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleAvoiding order reduction when integrating nonlinear Schrödinger equation with Strang methodes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevier B. V.es
dc.identifier.doihttp://dx.doi.org/10.1016/j.cam.2016.09.033es
dc.relation.publisherversionhttps://www.journals.elsevier.com/journal-of-computational-and-applied-mathematics/es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: MTM 2015-66837-Pes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem