Mostrar el registro sencillo del ítem

dc.contributor.authorEr, Erkan 
dc.contributor.authorGómez Sánchez, Eduardo 
dc.contributor.authorBote Lorenzo, Miguel Luis 
dc.contributor.authorDimitriadis Damoulis, Ioannis 
dc.contributor.authorAsensio Pérez, Juan Ignacio 
dc.date.accessioned2017-07-31T10:24:38Z
dc.date.available2017-07-31T10:24:38Z
dc.date.issued2017
dc.identifier.citationEr, E., Gómez-Sánchez, E., Bote-Lorenzo, M.L., Dimitriadis, Y., Asensio-Pérez, J.I. Predicting Peer-Review Participation at Large Scale Using an Ensemble Learning Method. Proceedings of the Learning Analytics Summer Institute Spain 2017, Madrid, Spain, July 2017.es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/24845
dc.descriptionProducción Científicaes
dc.description.abstractPeer review has been an effective approach for the assessment of mas-sive numbers of student artefacts in MOOCs. However, low student participation is a barrier that can result in inefficiencies in the implementation of peer reviews, disrupting student learning. In this regard, knowing earlier the estimate number of peer works that students will review may bring numerous pedagogical utilities in MOOCs. Previously, we have attempted to predict student participation in peer review in a MOOC context. Building on our previous work, in this study we pro-pose an ensemble learning approach with a refined set of features. Results show that the prediction performance improves when a preceding classification model is trained to identify students with no peer-review participation and that the re-fined features were effective with more transferability to other contexts.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherCEUR Workshop Proceedingses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationMOOCes
dc.subject.classificationRevisión por pareses
dc.titlePredicting Peer-Review Participation at Large Scale Using an Ensemble Learning Methodes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.relation.publisherversionhttp://ceur-ws.org/es
dc.relation.publisherversionhttps://lasi17.snola.es/es
dc.title.eventLASI: Learning Analytics Summer Institute & Summer School (2017. Madrid)es
dc.description.projectMinisterio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA082U16)es
dc.description.projectSNOLA (TIN2015-71669-REDT)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem