• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25384

    Título
    Modelado, optimización y análisis tecno-económico de un proceso para producir aire enriquecido en oxígeno por desorción de agua. Aplicación y diseño para un hospital en África subsahariana
    Otros títulos
    Modelling, optimisation and techno-economic analysis of a process to produce oxygen-enriched air by water desorption. Application and design for a hospital in sub-Saharan Africa
    Autor
    Gimeno Sanz, Alberto Nicolás
    Director o Tutor
    Peña Miranda, María del Mar AgripinaAutoridad UVA
    Manenti, Flavio
    Previtali, Daniele
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2017
    Titulación
    Grado en Ingeniería Química
    Resumen
    Oxygen, along with oxygen enriched air, is used in multiple applications, namely chemical industry and healthcare industry. Currently there are three main ways to get oxygen: cryogenic distillation, water electrolysis and membrane separation, being the first the most widely used on industrial scale. It allows the production of highly concentrated oxygen but it has one main downside, which is the high energy spending. The other processes present a lower costefficiency. A new process to produce enriched air was analysed. It is based on the ability of water to absorb and desorb oxygen at different thermodynamic equilibria, varying temperature and pressure. Firstly, based on empirical tests carried out in laboratory it was attempted to create a mathematical model. The first attempt was modelled with neural networks, but the small available empirical set of information did not allow to get a trustworthy model. The second attempt, adjusted by square errors minimising, outperforms the simulations done with computational software based on theoretical equations. Secondly, the process was simulated by computer solving the Rachford-Rice equation with an Excel worksheet and with the computer software SimSci PRO/II. Thirdly, the process model was applied to three different scenarios: chemical industry, ship propulsion and healthcare industry. In the chemical and the oil industry oxidation processes are common practice, ships use large quantities of air to oxidise the fuel in the combustion process that propels them and oxygen is important in healthcare in almost every lung related issue. Regarding the two first scenarios, the outcomes resulted in flows of water so massive that rendered the whole process unfeasible. The application to healthcare was focused on contexts where there is no possibility to obtain bottled oxygen or electricity supply is unreliable, i.e. sub- Saharan Africa. The process was designed to the Sounon-Sero hospital in Nikki (Benin), as a proxy for any hospital in a similar context. In fact, based on the information provided by that hospital, after traumatisms and malaria, it is lung-related infections that account for the highest number of patients attended at Sounon- Sero. A special emphasis has been put in designing a simple and reliable system with a demand sizing based on supply side, given the maximum capabilities of the equipment that can be found in Nikki. This opens new research opportunities regarding a more precise demand sizing or budget, which is to be done within an on-field venture.
    Materias (normalizadas)
    Ingeniería química
    Oxígeno - Indústria
    Departamento
    Departamento de Ingeniería Química y Tecnología del Medio Ambiente
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/25384
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30857]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFG-I-666.pdf
    Tamaño:
    2.732Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10