Mostrar el registro sencillo del ítem

dc.contributor.authorFarrán Martín, José Ignacio 
dc.contributor.authorGarcía Sánchez, Pedro A.
dc.contributor.authorHeredia, Benjamín A.
dc.contributor.authorLeamer, Micah J.
dc.date.accessioned2017-09-12T21:34:42Z
dc.date.available2017-09-12T21:34:42Z
dc.date.issued2017
dc.identifier.citationDesigns, Codes and Cryptographyes
dc.identifier.issn0925-1022es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/25557
dc.description.abstractIn this manuscript we show that the second Feng-Rao number of any telescopic numerical semigroup agrees with the multiplicity of the semigroup. To achieve this result we rst study the behavior of Ap ery sets under gluings of nu- merical semigroups. These results provide a bound for the second Hamming weight of one-point Algebraic Geometry codes, which improves upon other estimates such as the Griesmer Order Bound.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleThe second Feng-Rao number for codes coming from telescopic semigroupses
dc.typeinfo:eu-repo/semantics/articlees
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem