• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25748

    Título
    Pullback, forward and chaotic dynamics in 1d nonautonomous linear-dissipative equations
    Autor
    Caraballo Garrido, Tomás
    Langa Rosado, José Antonio
    Obaya, RafaelAutoridad UVA
    Año del Documento
    2017
    Editorial
    IOPPublishing
    Descripción
    Producción Científica
    Documento Fuente
    Nonlinearity 30 (2017), no.1, 274-299
    Resumen
    The global attractor of a skew product semiflow for a non-autonomous differential equation describes the asymptotic behaviour of the model. This attractor is usually characterized as the union, for all the parameters in the base space, of the associated cocycle attractors in the product space. The continuity of the cocycle attractor in the parameter is usually a difficult question. In this paper we develop in detail a 1D non-autonomous linear differential equation and show the richness of non-autonomous dynamics by focusing on the continuity, characterization and chaotic dynamics of the cocycle attractors. In particular, we analyse the sets of continuity and discontinuity for the parameter of the attractors, and relate them with the eventually forward behaviour of the processes. We will also find chaotic behaviour on the attractors in the Li–Yorke and Auslander–Yorke senses. Note that they hold for linear 1D equations, which shows a crucial difference with respect to the presence of chaotic dynamics in autonomous systems.
    ISSN
    951-7715
    Revisión por pares
    SI
    DOI
    10.1088/1361-6544/30/1/274
    Patrocinador
    MINECO/FEDER MTM2015- 66330-P
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/643073
    Version del Editor
    http://iopscience.iop.org/issue/0951-7715/30/1
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/25748
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    PFCNonlinearity.pdf
    Tamaño:
    266.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10