Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25801
Título
Characterization of cocycles attractors for nonautonomous reaction-diffusion equations
Año del Documento
2016
Editorial
World Scientific
Descripción
Producción Científica
Documento Fuente
International Journal of Bifurcation and Chaos Vol. 26, No. 08, 1650135 (2016)
Resumen
In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutio
ISSN
1793-6551
Revisión por pares
SI
Patrocinador
MINECO/FEDER MTM2015-66330
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/643073
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International