• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25947

    Título
    Modelling biological rhythms using order restricted inference
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Congreso
    Advances in Directional Statistics (ADISTA 2017)
    Año del Documento
    2017
    Documento Fuente
    Advances in Directional Statistics (ADISTA 2017). Roma Tre University, Rome, Italy, p.46
    Résumé
    Many biological processes, such as cell cycle, circadian clock or menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit periodic patterns over time. Modelling these rhythms is a challenge in literature since usually the sampling density is low, the number of periods is generally two and the underlying signals adopt a wide range of temporal patterns, see Larriba et al. (2016). Several authors proposed parametric functions of time, such as the sinusoidal function, to model these signals. However these parametric functions might be too rigid for data derived from cell-cycle or circadian clock. Among these, a common shape of interest to a biologist is the circular up-down-up signal with a unique peak (U) and a unique trough (L) within each period. The shape of these signals is entirely described by mathematical inequalities among their components which allow to establish a relationship between the euclidean and the circular space using circular isotonic regression. In this work we state this connection between the euclidean and the circular space based on circular isotonic regression, formulate the ML isotonic regression estimator under circular up-down-up constraints and assess its computational advantages to calculate the circular isotonic regression estimator (CIRE), see Rueda et al. (2009). Results are shown both on simulations and on real data.
    Patrocinador
    MINECO grant MTM2015-71217-R
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/25947
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    ADISTA17 Programme and Book of Abstracts.pdf
    Tamaño:
    679.0Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10