• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25947

    Título
    Modelling biological rhythms using order restricted inference
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Congreso
    Advances in Directional Statistics (ADISTA 2017)
    Año del Documento
    2017
    Documento Fuente
    Advances in Directional Statistics (ADISTA 2017). Roma Tre University, Rome, Italy, p.46
    Resumo
    Many biological processes, such as cell cycle, circadian clock or menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit periodic patterns over time. Modelling these rhythms is a challenge in literature since usually the sampling density is low, the number of periods is generally two and the underlying signals adopt a wide range of temporal patterns, see Larriba et al. (2016). Several authors proposed parametric functions of time, such as the sinusoidal function, to model these signals. However these parametric functions might be too rigid for data derived from cell-cycle or circadian clock. Among these, a common shape of interest to a biologist is the circular up-down-up signal with a unique peak (U) and a unique trough (L) within each period. The shape of these signals is entirely described by mathematical inequalities among their components which allow to establish a relationship between the euclidean and the circular space using circular isotonic regression. In this work we state this connection between the euclidean and the circular space based on circular isotonic regression, formulate the ML isotonic regression estimator under circular up-down-up constraints and assess its computational advantages to calculate the circular isotonic regression estimator (CIRE), see Rueda et al. (2009). Results are shown both on simulations and on real data.
    Patrocinador
    MINECO grant MTM2015-71217-R
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/25947
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    ADISTA17 Programme and Book of Abstracts.pdf
    Tamaño:
    679.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10